Efficient Receipt-Freeness for e-Voting

David Pointcheval

Joint work with Olivier Blazy, Georg Fuchsbauer and Damien Vergnaud

Ecole normale supérieure, CNRS & INRIA

Chinacrypt – Beijing – China
October 17th, 2010

Outline

1 Introduction
 - Electronic Voting
 - Homomorphic Encryption

2 Cryptographic Tools

3 Electronic Voting: State-of-the-Art

4 Signatures on Randomizable Ciphertexts

Electronic Voting

Dessert Choice

If one wants to get preferences for the desserts, one asks people to vote for

- Chocolate Cake
- Cheese Cake
- Ice Cream
- Apple

with e.g., possibly 2 choices

After collection of the ballots, one counts the number of choices:

<table>
<thead>
<tr>
<th>Choice</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chocolate Cake</td>
<td>243</td>
</tr>
<tr>
<td>Cheese Cake</td>
<td>111</td>
</tr>
<tr>
<td>Ice Cream</td>
<td>167</td>
</tr>
<tr>
<td>Apple</td>
<td>52</td>
</tr>
</tbody>
</table>

→ 1 Chocolate Cake
2 Ice Cream
3 Cheese Cake
4 Apple
Electronic Voting: Basic Properties

Authentication
- Only people authorized to vote should be able to vote
- Voters should vote only once

Anonymity
- Votes and voters should be unlinkable

Main Approaches
- Blind Signatures
- Homomorphic Encryption ← the most promising

General Approach: Homomorphic Encryption

Homomorphic Encryption & Signature
- The voter generates his vote $v \in \{0, 1\}$ (for each \Box)
- The voter encrypts v to the server $\rightarrow c = \mathcal{E}_{pk}(v; r)$
- The voter signs his vote $\rightarrow \sigma = \mathcal{S}_{usk}(c; s)$

Such a pair (c, σ) is a **ballot**
- **unique** per voter, because it is signed by the voter
- **anonymous**, because the vote is encrypted

Counting: granted homomorphic encryption, anybody can compute

$$C = \prod c = \prod \mathcal{E}_{pk}(v_i; r_i) = \mathcal{E}_{pk}(\sum v_i; \sum r_i) = \mathcal{E}_{pk}(V; R)$$

The server decrypts the tally $V = \mathcal{D}_{sk}(C)$, and proves it

Security
- **uniqueness** per voter: the voter signs his vote
- **anonymity**: the voter encrypts his vote

Universal Verifiability
- **Soundness**: every step can be proven and publicly checked
 - identity of voter: proof of identity = signature
 - validity of the vote: proof of bit encryption + more
 - decryption: proof of decryption

All the steps (voting + counting) can be checked afterwards
Helios is from this family: the IACR e-voting process

Weaknesses
- **Anonymity**: the server can decrypt any individual vote \rightarrow use of distributed decryption (threshold decryption)
- **Receipt**: if a voter wants to sell his vote, r_i is a proof (a coercer can also provide a modified voting client system in order to generate a receipt or even receive it directly) \rightarrow re-randomization of the ciphertext

Distributed decryption is easy (ElGamal, Linear, etc), while re-randomization of the ciphertext requires more work!

Receipt-Freeness
- Our goal is to prevent receipts \rightarrow receipt-free electronic system
Outline

1. **Introduction**
2. **Cryptographic Tools**
 - Computational Assumptions
 - Signature & Encryption
 - Security
 - Groth-Sahai Methodology
3. **Electronic Voting: State-of-the-Art**
4. **Signatures on Randomizable Ciphertexts**

Assumptions: Diffie-Hellman

Definition (The Computational Diffie-Hellman problem (CDH))

\[\mathbb{G} \text{ a cyclic group of prime order } p. \]

The CDH assumption in \(\mathbb{G} \) states:

- for any generator \(g \leftarrow \mathbb{G} \), and any scalars \(a, b, x, y, c \leftarrow \mathbb{Z}_p^* \),
 - given \((g, g^a, g^b) \), it is hard to compute \(g^{ab} \).

Definition (The Decisional Diffie-Hellman problem (DDH))

\[\mathbb{G} \text{ a cyclic group of prime order } p. \]

The DDH assumption in \(\mathbb{G} \) states:

- for any generator \(g \leftarrow \mathbb{G} \), and any scalars \(a, b, c \leftarrow \mathbb{Z}_p^* \),
 - given \((g, g^a, g^b, g^c) \), it is hard to decide whether \(c = ab \) or not.

In some pairing-friendly groups, the latter assumption is wrong.

Assumptions: Linear Problem

Definition (Decision Linear Assumption (DLin))

\[\mathbb{G} \text{ a cyclic group of prime order } p. \]

The DLin assumption states:

- for any generator \(g \leftarrow \mathbb{G} \), and any scalars \(a, b, x, y, c \leftarrow \mathbb{Z}_p^* \),
 - given \((g, g^x, g^y, g^{xa}, g^{yb}, g^c) \),
 - it is hard to decide whether \(c = a + b \) or not.

Equivalently, given a reference triple \((u = g^x, v = g^y, g) \) and a new triple \((U = u^a = g^{xa}, V = v^b = g^{yb}, T = g^c) \), decide whether \(T = g^{a+b} \) or not (that is \(c = a + b \)).

General Tools: Signature

Definition (Signature Scheme)

\[S = (\text{Setup}, \text{SKeyGen}, \text{Sign}, \text{Verif}): \]

- \(\text{Setup}(1^k) \rightarrow \) global parameters \(\text{param} \);
- \(\text{SKeyGen}(\text{param}) \rightarrow \) pair of keys \((sk, vk) \);
- \(\text{Sign}(sk, m; s) \rightarrow \) signature \(\sigma \), using the random coins \(s \);
- \(\text{Verif}(vk, m, \sigma) \rightarrow \) validity of \(\sigma \)

If one signs \(F = \mathcal{F}(M) \), for any function \(\mathcal{F} \), one extends the above definitions: \(\text{Sign}(sk, (\mathcal{F}, F, \Pi_M); s) \) and \(\text{Verif}(vk, (\mathcal{F}, F, \Pi_M), \sigma) \) where \(\mathcal{F} \) details the function that is applied to the message \(M \) yielding \(F \), and \(\Pi_M \) is a proof of knowledge of a preimage of \(F \) under \(\mathcal{F} \).
Introduction Cryptographic Tools State-of-the-Art Signatures on Ciphertexts

Signature & Encryption

Signature: Example

In a group G of order p, with a generator g, and a generator s of its choice, even if it is allowed to ask for a message-signature pair able to generate a valid signature $\sigma = (\sigma_1, \sigma_2)$.

Waters Signature [Waters, 2005]

For a message $M = (M_1, \ldots, M_k) \in \{0, 1\}^k$, we define $F(M) = u_0 \prod_{i=1}^{k} u_i^{M_i}$, where $u = (u_0, \ldots, u_k) \in G^{k+1}$.

For an additional generator $h \in G$,

- SKeyGen: $vk = X = g^x, sk = h^x$, for $x \in \mathbb{Z}_p$;
- Sign($sk = Y, M, s$), for $M \in \{0, 1\}^k$ and $s \in \mathbb{Z}_p$
 \[\sigma = (\sigma_1 = Y \cdot F(M)^s, \sigma_2 = g^{-s}); \]
- Verif($vk = X, M, \sigma = (\sigma_1, \sigma_2)$) checks whether $e(g, \sigma_1) \cdot e(F(M), \sigma_2) = e(X, h)$.

General Tools: Encryption

Definition (Encryption Scheme)

$E = (\text{Setup, EKeyGen, Encrypt, Decrypt})$

- Setup(1^k) \rightarrow global parameters param;
- EKeyGen(param) \rightarrow pair of keys (pk, dk);
- Encrypt(pk, m, r) \rightarrow ciphertext c, using the random coins r;
- Decrypt(dk, c) \rightarrow plaintext, or \bot if the ciphertext is invalid.

Homomorphic Encryption

For some group laws: \oplus on the plaintext, \otimes on the ciphertext, and \odot on the randomness

\[\text{Encrypt}(pk, m_1; r_1) \otimes \text{Encrypt}(pk, m_2; r_2) = \text{Encrypt}(pk, m_1 \oplus m_2; r_1 \odot r_2) \]

\[\text{Decrypt}(sk, \text{Encrypt}(pk, m_1; r_1) \otimes \text{Encrypt}(pk, m_2; r_2)) = m_1 \oplus m_2 \]

Encryption: Example

In a group G of order p, with a generator g:

Linear Encryption [Boneh, Boyen, Shacham, 2004]

- EKeyGen: $dk = (x_1, x_2) \in \mathbb{Z}_p^2, pk = (X_1 = g^{x_1}, X_2 = g^{x_2})$;
- Encrypt($pk = (X_1, X_2), m = (r_1, r_2)$), for $m \in G$ and $(r_1, r_2) \in \mathbb{Z}_p^2$
 \[c = (c_1 = X_1^{r_1}, c_2 = X_2^{r_2}, c_3 = g^{r_1+r_2} \cdot m); \]
- Decrypt($dk = (x_1, x_2), c = (c_1, c_2, c_3)$) \rightarrow $m = c_3/c_1^{1/x_1}c_2^{1/x_2}$.

Homomorphism

$(\oplus_M = \times, \otimes_C = \times, \odot_R = +)$-homomorphism

With $m = g^M$ \rightarrow $(\oplus_M = +, \otimes_C = \times, \odot_R = +)$-homomorphism

Security

Security Notions: Signature

Signature: EF-CMA

Existential Unforgeability under Chosen-Message Attacks

An adversary should not be able to generate a new valid message-signature pair even if it is allowed to ask signatures on any message of its choice.

Impossibility to forge signatures

Waters signature reaches EF-CMA under the CDH assumption.
Security Notions: Encryption

Encryption: IND-CCA

Indistinguishability under Chosen-Plaintext Attacks

An adversary that chooses two messages, and receives the encryption of one of them, should not be able to decide which one has been encrypted.

Impossibility to learn any information about the plaintext

The Linear Encryption reaches IND-CPA under the DLin assumption.

Groth-Sahai Commitments

Under the DLin assumption, the commitment key is:

$$(u_1 = (u_{1,1}, 1, g), u_2 = (1, u_{2,2}, g), u_3 = (u_{3,1}, u_{3,2}, u_{3,3})) \in (G^3)^3$$

Initialization

$$u_3 = u_1^\lambda \circ u_2^\mu = (u_{3,1} = u_{1,1}^\lambda, u_{3,2} = u_{2,2}^\mu, u_{3,3} = g^{\lambda + \mu})$$

with $\lambda, \mu \in \mathbb{Z}_p^*$, and random elements $u_{1,1}, u_{2,2} \in \mathbb{G}$.

It means that u_3 is a linear tuple w.r.t. $(u_{1,1}, u_{2,2}, g)$.

Groth-Sahai Commitments

Group Element Commitment

To commit a group element $X \in \mathbb{G}$, one chooses random coins $s_1, s_2, s_3 \in \mathbb{Z}_p$ and sets

$$C(X) := (1, 1, X) \circ u_1^{s_1} \circ u_2^{s_2} \circ u_3^{s_3} = (u_{1,1}^{s_1} \cdot u_{3,1}^{s_3}, u_{2,2}^{s_2} \cdot u_{3,2}^{s_3}, X \cdot g^{s_1 + s_2} \cdot u_{3,3}^{s_3}).$$

Scalar Commitment

To commit a scalar $x \in \mathbb{Z}_p$, one chooses random coins $\gamma_1, \gamma_2 \in \mathbb{Z}_p$ and sets

$$C'(x) := (u_{3,1}^x, u_{3,2}^x, (u_{3,3}g^x)^x) \circ u_1^{\gamma_1} \circ u_3^{\gamma_2} = (u_{3,1}^{x \cdot \gamma_1} \cdot u_{1,1}^{\gamma_1}, u_{3,2}^{x \cdot \gamma_2} \cdot u_{3,3}^{x \cdot \gamma_2} \cdot g^{x \cdot \gamma_1+\gamma_2}).$$

Groth-Sahai Proofs

- If u_3 a linear tuple, these commitments are perfectly binding
- With the initialization parameters, the committed values can even be extracted \rightarrow extractable commitments
- Using pairing product equations, one can make proofs on many relations between scalars and group elements:

$$\prod_{i=1}^{j} e(A_i, X_j)^{\alpha_i} \prod_{i,j} e(Y_i, B_i)^{\beta_i} \prod_{i,j} e(X_i, Y_j)^{\gamma_{ij}} = t,$$

where the $A_j, B_i,$ and t are constant group elements, $\alpha_i, \beta_i,$ and γ_{ij} are constant scalars, and X_j and Y_i are either group elements in \mathbb{G}_1 and \mathbb{G}_2, or of the form g_1^x or g_2^y, respectively, to be committed.
- The proofs are perfectly sound.
Groth-Sahai Methodology

- If u_3 a linear tuple, these commitments are perfectly binding
 - The proofs are perfectly sound
- If u_3 is a random tuple, the commitments are perfectly hiding
 - The proofs are perfectly witness hiding
- Under the DLin assumption, with a correct initialization, proofs are witness hiding

Can be used for any **Pairing Product Equation**

If one re-randomizes the commitments, the proof can be adapted

Outline

1. **Introduction**
2. **Cryptographic Tools**
3. **Electronic Voting: State-of-the-Art**
 - General Process
 - Receipt-Freeness
4. **Signatures on Randomizable Ciphertexts**

General Process

Dessert Choice

A ballot consists of one or two crosses in

- Chocolate Cake
- Cheese Cake
- Ice Cream
- Apple

Each box is thus expressed as a bit: $v_i \in \{0, 1\}$, for $i = 1, 2, 3, 4$

With the additional constraint (at most 2 choices): $\sum_i v_i \in \{0, 1, 2\}$

In the following, we focus on one box only:

- V_i is the i-th voter
- v_i is the value of the box for this voter: 0 or 1

Voting Procedure

Cryptographic Primitives

- Signature $S = (\text{Setup}, \text{SKeyGen}, \text{Sign}, \text{Verif})$ that is EF-CMA, e.g., Waters Signature;
- Homomorphic enc. $\mathcal{E} = (\text{Setup}, \text{EKeyGen}, \text{Encrypt}, \text{Decrypt})$ that is IND-CPA, e.g., ElGamal or Linear Encryption

+ distributed decryption, as Linear Encryption scheme allows

Initialization

- The authority owns a signing/verification key-pair (sk, vk)
- The ballot-box owns an encryption key pk, which decryption capability is distributed among the board members
- Each voter V_i owns a signing/verification key-pair (usk_i, uvk_i)
Voting Procedure

Voting Phase

Voter V_i
- $c_i = \text{Encrypt}(pk, v_i; r_i)$
- $\sigma_i = \text{Sign}(usk_i, c_i; s_i)
- \Pi_C = \text{Proof of bit encryption}

Server S
- $c_i, \sigma_i, \Pi_C \xrightarrow{\Sigma_i} \Sigma_i = \text{Sign}(sk, c_i; s'_i)$

- from (σ_i, Π_C): authorization and uniqueness of a voter
- from c_i: privacy for the voter
 - because distributed decryption of the tally only
- with Σ_i: a voter can complain if his vote is not in the ballot-box

Counting Procedure

Counting Phase

- Anybody can check all the votes (c_i, σ_i, Π_C)
- Anybody can compute
 \[
 C = \prod c_i = \prod E^{\text{pk}}(v_i; r_i) = E^{\text{pk}}(\sum v_i; \sum r_i) = E^{\text{pk}}(V; R)
 \]
- The board members decrypt C in a distributed and verifiable way, into V

- Everything is verifiable: universal verifiability

Weakness: Receipt

To sell his vote, the voter reveals his random coins r_i as a receipt

Receipt-freeness: the voter should not know the random coins r_i!

Receipt-Freeness

Re-Randomization

Voting Phase

Voter V_i
- $c_i = \text{Encrypt}(pk, v_i; r_i)$
- $\Pi_C = \text{Proof of bit encryption}$

Server S
- $\Pi_C \xrightarrow{c'_i} c'_i = \text{Random}(c_i; r'_i)$
- $\sigma_i = \text{Sign}(usk_i, c'_i; s_i)$
- $\Sigma_i = \text{Sign}(sk, c_i; s'_i)$

- Non-transferable proof of $c'_i \equiv c_i$: verifier-designated proof
 - Proof of knowledge of $[r'_i]$ such that $c'_i = \text{Random}(c_i, r'_i)$]
 - or $[usk_i]$

Weakness: interactions

Interactive proof: 2-round voting (at best!)

Security

Re-Randomization

- re-randomization: the voter no longer knows the random coins
- designated-verifier proof:
 - voter convinced and non-transferable proof

The initial proof Π_C can be verified on c by the server only

To get universal verifiability, the proof should be adapted

Possible with Groth-Sahai methodology

Our goal: non-interactive receipt-freeness
Electronic Voting: State-of-the-Art

Signatures on Randomizable Ciphertexts

- Our Full Primitive
- Example
- Security Notions

The server not only adapts the proof, but the signature too!

- from \((\sigma_1, \Pi_c)\): authorization and uniqueness of a voter
- from \(c_i\): privacy for the voter
- from Random: receipt-freeness (unknown random coins \(r_i + r'_i\))

Linear Encryption

In a group \(G\) of order \(p\), with a generator \(g\), and a bilinear map \(e : G \times G \to G_T\)

Linear Encryption

- **EKeyGen**: \(dk = (x_1, x_2) \leftarrow \mathbb{Z}_p^2, \ pk = (X_1 = g^{x_1}, X_2 = g^{x_2})\);
- **Encrypt(pk = (X_1, X_2), m; (r_1, r_2))**, for \(m \in G\) and \((r_1, r_2) \leftarrow \mathbb{Z}_p^2\)
 \[c = (c_1 = X_1^{r_1}, c_2 = X_2^{r_2}, c_3 = g^{r_1 + r_2} \cdot m)\];
- **Decrypt(dk = (x_1, x_2), c = (c_1, c_2, c_3))** → \(m = c_3 / c_1^{1/x_1} c_2^{1/x_2}\).

Re-Randomization

- **Randomize(pk = (X_1, X_2), c = (c_1, c_2, c_3); (r'_1, r'_2))**, for \((r'_1, r'_2) \leftarrow \mathbb{Z}_p^2\)
 \[c' = (c'_1 = c_1 \cdot X_1^{r'_1}, c'_2 = c_2 \cdot X_2^{r'_2}, c'_3 = c_3 \cdot g^{r'_1 + r'_2})\].

Voting Phase

Voter \(V_i\)

\[c_i = \text{Encrypt}(pk, v_i; r_i)\]

\[\sigma_i = \text{Sign}(usk_i, c_i; s_i)\]

\[\Pi_c = \text{Proof of bit encryption}\]

\[c_i, \sigma_i, \Pi_c \rightarrow (c'_i, \sigma'_i, \Pi'_c) = \text{Random}(c_i, \sigma_i, \Pi_c; r'_i)\]

\[c'_i, \Pi'_c, \Sigma_i \rightarrow \Sigma_i = \text{Sign}(sk, (c'_i, \Pi'_c); s'_i)\]
Introduction Cryptographic Tools State-of-the-Art Signatures on Ciphertexts

Example

Waters Signature

In a group G of order p, with a generator g, and a bilinear map $e : G \times G \to G_T$

Waters Signature [Waters, 2005]

For a message $M = (M_1, \ldots, M_k) \in \{0, 1\}^k$,
we define $F = F(M) = u_0 \prod_{i=1}^{k} u_i^{M_i}$, where $\bar{u} = (u_0, \ldots, u_k) \in \mathbb{G}^{k+1}$.
For an additional generator $h \in G$,
- SKGen: $vk = X = g^x, sk = Y = h^x$, for $x \xleftarrow{} \mathbb{Z}_p$;
- Sign$(sk = Y, F, s)$, for $M \in \{0, 1\}^k$, $F = F(M)$, and $s \xleftarrow{} \mathbb{Z}_p$
 $\rightarrow \sigma = (\sigma_1 = Y \cdot F^s, \sigma_2 = g^{-s})$;
- Verif$(vk = X, M, \sigma = (\sigma_1, \sigma_2))$ checks whether
 $e(g, \sigma_1) \cdot e(F, \sigma_2) = e(X, h)$.

Waters Signature on a Linear Ciphertext: Idea

We define $F = F(M) = u_0 \prod_{i=1}^{k} u_i^{M_i}$, and encrypt it

$$c = (c_1 = X_1^{f_1}, c_2 = X_2^{f_2}, c_3 = g^{f_1+f_2} \cdot F)$$

- KeyGen: $vk = X = g^x, sk = Y = h^x$, for $x \xleftarrow{} \mathbb{Z}_p$
 $dk = (x_1, x_2) \xleftarrow{} \mathbb{Z}_p^2$, $pk = (X_1 = g^{x_1}, X_2 = g^{x_2})$
- Sign(X_1, X_2, Y, c, s), for $c = (c_1, c_2, c_3)$
 $\rightarrow \sigma = (\sigma_1 = Y \cdot c_3, \sigma_2 = (c_1^s, c_2^s), \sigma_3 = (g^s, X_1^s, X_2^s))$
- Verif(X_1, X_2, X, c, σ) checks
 $e(g, \sigma_1) = e(X, h) \cdot e(\sigma_3, c_3)$
 $e(\sigma_2, 0, g) = e(c_1, \sigma_3, 0)$
 $e(\sigma_2, 1, g) = e(c_2, \sigma_3, 0)$
 $e(\sigma_3, 1, g) = e(X_1, \sigma_3, 0)$
 $e(\sigma_3, 2, g) = e(X_2, \sigma_3, 0)$

σ_3 is needed for ciphertext re-randomization

Re-Randomization of Ciphertext

$$c = (c_1 = X_1^{f_1}, c_2 = X_2^{f_2}, c_3 = g^{f_1+f_2} \cdot F)$$
$$\sigma = (\sigma_1 = Y \cdot c_3^s, \sigma_2 = (c_1^s, c_2^s), \sigma_3 = (g^s, X_1^s, X_2^s))$$

after re-randomization by (r_1', r_2')

$$c' = (c_1' = c_1 \cdot X_1^{r_1'}, c_2' = c_2 \cdot X_2^{r_2'}, c_3' = c_3 \cdot g^{r_1'+r_2'})$$
$$\sigma' = (\sigma_1' = \sigma_1 \cdot \sigma_3, \sigma_2' = \sigma_2 \cdot \sigma_3, \sigma_2' = \sigma_3 \cdot \sigma_3, \sigma_3' = \sigma_3)$$

Anybody can publicly re-randomize c into c'
with additional random coins (r_1', r_2'),
and adapt the signature σ of c into σ' of c'

Unforgeability under Chosen-Ciphertext Attacks

Chosen-Ciphertext Attacks

The adversary is allowed to ask any valid ciphertext of his choice

to the signing oracle

Because of the re-randomizability of the ciphertext-signature,
we cannot expect resistance to existential forgeries,
but we should allow a restricted malleability only:

Forgery

A valid ciphertext-signature pair, so that the plaintext is different
from all the plaintexts in the ciphertexts sent to the signing oracle

Security Notions

David Pointcheval – 33/43

David Pointcheval – 34/43

David Pointcheval – 35/43
Unforgeability

From a valid ciphertext-signature pair:
\[
c = (c_1 = X_1^{r_1}, c_2 = X_2^{r_2}, c_3 = g^{r_1 + r_2} \cdot F)
\]
\[
\sigma = (\sigma_1 = Y \cdot c_3^s, \sigma_2 = (c_1^s, c_2^s), \sigma_3 = (g^s, X_1^s, X_2^s))
\]
and the decryption key \((x_1, x_2)\), one extracts
\[
F = c_3/(c_1^{1/x_1} c_2^{1/x_2})
\]
\[
\Sigma = (\Sigma_1 = \sigma_1/(\sigma_2^{1/x_1} \sigma_3^{1/x_2}), \Sigma_2 = \sigma_3^{1/0})
\]
\[
= (\quad = Y \cdot F^s = g^s)
\]

Security of Waters signature is for a pair \((M, \Sigma)\)
\(\rightarrow\) needs of a proof of knowledge \(\Pi_M\) of \(M\) in \(F = \mathcal{F}(M)\)
bite-by-bit commitment of \(M\) and Groth-Sahai proof

Chosen-Message Attacks

From a valid ciphertext \(c = (c_1 = X_1^{r_1}, c_2 = X_2^{r_2}, c_3 = g^{r_1 + r_2} \cdot F)\),
and the additional proof of knowledge of \(M\),
one extracts \(M\) and asks for a Waters signature:
\[
\Sigma = (\Sigma_1 = Y \cdot F^s, \Sigma_2 = g^s)
\]

In this signature, the random coins \(s\) are unknown, we thus need to know the coins in \(c\)
\(\rightarrow\) needs of a proof of knowledge \(\Pi_r\) of \(r_1, r_2\) in \(c\)
bite-by-bit commitment of \(r_1, r_2\) and Groth-Sahai proof
From the random coins \(r_1, r_2\) (and the decryption key):
\[
\sigma = (\sigma_1 = \Sigma_1 \cdot \Sigma_3^{r_1 + r_2}, \quad \sigma_2 = (\Sigma_2^{x_1 r_1}, \Sigma_2^{x_2 r_2}), \quad \sigma_3 = (\Sigma_2, \Sigma_2^{r_1}, \Sigma_2^{r_2}))
\]
\[
= Y \cdot c_3^s, \quad = (c_1^s, c_2^s), \quad = (g^s, X_1^s, X_2^s)
\]

From the Waters signing oracle,
we answer Chosen-Ciphertext Signing queries

From a Forgery, we build a Waters Existential Forgery

Security Level

Since the Waters signature is EF-CMA under the CDH assumption,
our signature on randomizable ciphertext is Unforgeable
against Chosen-Ciphertext Attacks
under the CDH assumption
Since we use the Groth-Sahai methodology for the proofs Π_M and Π_r
- in case of re-randomization of c, one can adapt Π_M and Π_r
- because of the need of M, but also r_1 and r_2 in the simulation,
 we need bit-by-bit commitments:
 - M can be short (ℓ bit-long)
 - r_1 and r_2 are random in \mathbb{Z}_p
 \rightarrow C is large!

Efficiency
We can improve efficiency: with a variant of Waters Signature
\rightarrow shorter signatures: $9\ell + 33$ group elements

Conclusion
Extractable Randomizable Signature on Randomizable Ciphertexts

Various Applications
- non-interactive receipt-free electronic voting scheme
- (fair) blind signature

Security relies on the CDH and the DLin assumptions
For an ℓ-bit message, ciphertext-signature:
 $9\ell + 33$ group elements

A more efficient variant with asymmetric pairing
 on the CDH* and the SXDH assumptions
Ciphertext-signature: $6\ell + 15$ group elements in G_1
 and $6\ell + 7$ group elements in G_2