Introduction

Cryptographic Tools

State-of-the-Art

Signatures on Ciphertexts

Efficient Receipt-Freeness for e-Voting

David Pointcheval

Ecole normale supérieure, CNRS & INRIA

Chinacrypt – Beijing – China

October 17th, 2010

Outline

1 Introduction

2 Cryptographic Tools

3 Electronic Voting: State-of-the-Art

4 Signatures on Randomizable Ciphertexts

Electronic Voting

Dessert Choice

If one wants to get preferences for the desserts, one asks people to vote for:

- Chocolate Cake
- Cheese Cake
- Ice Cream
- Apple

with e.g., possibly 2 choices

After collection of the ballots, one counts the number of choices:

<table>
<thead>
<tr>
<th>Dessert</th>
<th>Votes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chocolate Cake</td>
<td>243</td>
</tr>
<tr>
<td>Cheese Cake</td>
<td>111</td>
</tr>
<tr>
<td>Ice Cream</td>
<td>167</td>
</tr>
<tr>
<td>Apple</td>
<td>52</td>
</tr>
</tbody>
</table>

→ 1 Chocolate Cake
2 Ice Cream
3 Cheese Cake
4 Apple
Electronic Voting: Basic Properties

Authentication
- Only people authorized to vote should be able to vote
- Voters should vote only once

Anonymity
- Votes and voters should be unlinkable

Main Approaches
- Blind Signatures
- Homomorphic Encryption ← the most promising

General Approach: Homomorphic Encryption

Homomorphic Encryption & Signature
- The voter generates his vote $v \in \{0, 1\}$ (for each □)
- The voter encrypts v to the server $\rightarrow c = E_{pk}(v; r)$
- The voter signs his vote $\rightarrow \sigma = S_{sk}(c; s)$

Such a pair (c, σ) is a **ballot**
- unique per voter, because it is *signed* by the voter
- anonymous, because the vote is *encrypted*

Counting: granted homomorphic encryption, anybody can compute

$$C = \prod c = \prod E_{pk}(v_i; r_i) = E_{pk}(\sum v_i; \sum r_i) = E_{pk}(V; R)$$

The server decrypts the tally $V = D_{sk}(C)$, and proves it

Security
- uniqueness per voter: the voter *signs* his vote
- anonymity: the voter *encrypts* his vote

Universal Verifiability
- **Soundness**: every step can be proven and publicly checked
 - identity of voter: proof of identity = signature
 - validity of the vote: proof of bit encryption + more
 - decryption: proof of decryption

All the steps (voting + counting) can be checked afterwards
Helios is from this family: the IACR e-voting process

Weaknesses
- **Anonymity**: the server can decrypt any individual vote
 \rightarrow use of distributed decryption (threshold decryption)
- **Receipt**: if a voter wants to sell his vote, r_i is a proof
 (a coercer can also provide a modified voting client system
 in order to generate a receipt or even receive it directly)
 \rightarrow re-randomization of the ciphertext

Distributed decryption is easy (ElGamal, Linear, etc),
while re-randomization of the ciphertext requires more work!

Receipt-Freeness
- **Our goal is to prevent receipts**
 \rightarrow receipt-free electronic system
Introduction

Cryptographic Tools

• Computational Assumptions
• Signature & Encryption
• Security
• Groth-Sahai Methodology

Electronic Voting: State-of-the-Art

Signatures on Randomizable Ciphertexts

Assumptions: Diffie-Hellman

Definition (The Computational Diffie-Hellman problem (CDH))

\(\mathbb{G} \) a cyclic group of prime order \(p \).

The CDH assumption in \(\mathbb{G} \) states:

- for any generator \(g \in \mathbb{G} \), and any scalars \(a, b \in \mathbb{Z}_p^* \),
- given \((g,g^a,g^b)\), it is hard to compute \(g^{ab} \).

Definition (The Decisional Diffie-Hellman problem (DDH))

\(\mathbb{G} \) a cyclic group of prime order \(p \).

The DDH assumption in \(\mathbb{G} \) states:

- for any generator \(g \in \mathbb{G} \), and any scalars \(a, b, c \in \mathbb{Z}_p^* \),
- given \((g,g^a,g^b,g^c)\), it is hard to decide whether \(c = ab \) or not.

In some pairing-friendly groups, the latter assumption is wrong.

Assumptions: Linear Problem

Definition (Decision Linear Assumption (DLin))

\(\mathbb{G} \) a cyclic group of prime order \(p \).

The DLin assumption states:

- for any generator \(g \in \mathbb{G} \), and any scalars \(a, b, x, y, c \in \mathbb{Z}_p^* \),
- given \((g,g^x,g^y,g^{xa},g^{yb},g^c)\),
- it is hard to decide whether \(c = a + b \) or not.

Equivalently, given a reference triple \((u = g^x, v = g^y, g)\) and a new triple \((U = u^a = g^{xa}, V = v^b = g^{yb}, T = g^c)\),

decide whether \(T = g^{a+b} \) or not (that is \(c = a + b \)).

Signatures on Ciphertexts

Definition (Signature Scheme)

\(S = (\text{Setup}, \text{SKeyGen}, \text{Sign}, \text{Verif}) \):

- \(\text{Setup}(1^k) \rightarrow \) global parameters \(\text{param} \);
- \(\text{SKeyGen}(\text{param}) \rightarrow \) pair of keys \((sk, vk)\);
- \(\text{Sign}(sk, m; s) \rightarrow \) signature \(\sigma \), using the random coins \(s \);
- \(\text{Verif}(vk, m, \sigma) \rightarrow \) validity of \(\sigma \)

If one signs \(F = \mathcal{F}(M) \), for any function \(\mathcal{F} \), one extends the above definitions: \(\text{Sign}(sk, (\mathcal{F}, F, \Pi_M); s) \) and \(\text{Verif}(vk, (\mathcal{F}, F, \Pi_M), \sigma) \) where \(\mathcal{F} \) details the function that is applied to the message \(M \) yielding \(F \), and \(\Pi_M \) is a proof of knowledge of a preimage of \(F \) under \(\mathcal{F} \).
Introduction Cryptographic Tools State-of-the-Art Signatures on Ciphertexts

Signature & Encryption

Signature: Example

In a group G of order p, with a generator g, and a bilinear map $e : G \times G \to \mathbb{G}_T$

Waters Signature [Waters, 2005]

For a message $M = (M_1, \ldots, M_k) \in \{0, 1\}^k$,
we define $\mathcal{F}(M) = u_0 \prod_{i=1}^k u_i^{M_i}$, where $\bar{u} = (u_0, \ldots, u_k) \stackrel{\$}{\leftarrow} \mathbb{G}^{k+1}$.
For an additional generator $h \leftarrow \mathbb{G}$.

- **SKeyGen**: $vk = X = g^x$, $sk = Y = h^x$, for $x \stackrel{\$}{\leftarrow} \mathbb{Z}_p$;
- **Sign**($sk = Y, M; s$), for $M \in \{0, 1\}^k$ and $s \stackrel{\$}{\leftarrow} \mathbb{Z}_p$
 $\rightarrow \sigma = (\sigma_1 = Y \cdot \mathcal{F}(M)^s, \sigma_2 = g^{-s})$;
- **Verif**(vk = X, M, $\sigma = (\sigma_1, \sigma_2)$) checks whether
 $e(g, \sigma_1) \cdot e(\mathcal{F}(M), \sigma_2) = e(X, h)$.

Encryption: Example

In a group G of order p, with a generator g:

Linear Encryption [Boneh, Boyen, Shacham, 2004]

- $EKeyGen$: $dk = (x_1, x_2) \stackrel{\$}{\leftarrow} \mathbb{Z}_p^2$, $pk = (X_1 = g^{x_1}, X_2 = g^{x_2})$;
- $Encrypt(pk = (X_1, X_2), m; (r_1, r_2))$, for $m \in G$ and $(r_1, r_2) \stackrel{\$}{\leftarrow} \mathbb{Z}_p^2$
 $\rightarrow c = (c_1 = X_1^{r_1}, c_2 = X_2^{r_2}, c_3 = g^{r_1 + r_2} \cdot m)$;
- $Decrypt(dk = (x_1, x_2), c = (c_1, c_2, c_3)) \rightarrow m = c_3 / c_1^{1/x_1} c_2^{1/x_2}$.

Homomorphism

$\oplus_M = \times, \odot_C = \times, \odot_R = +$-homomorphism

With $m = g^M$ \rightarrow $\oplus_M = +, \odot_C = \times, \odot_R = +$-homomorphism

Security

Security Notions: Signature

Signature: EF-CMA

Existential Unforgeability under Chosen-Message Attacks
An adversary should not be able to generate a new valid message-signature pair even if it is allowed to ask signatures on any message of its choice

Impossibility to forge signatures

Waters signature reaches EF-CMA under the CDH assumption
Security Notions: Encryption

Encryption: IND-CCA

- **Indistinguishability under Chosen-Plaintext Attacks**
- An adversary that chooses two messages, and receives the encryption of one of them, should not be able to decide which one has been encrypted.

Impossibility to learn any information about the plaintext

The Linear Encryption reaches IND-CPA under the DLin assumption.

Groth-Sahai Methodology

Groth-Sahai Commitments

Under the DLin assumption, the commitment key is:

\[(u_1 = (u_{1,1}, 1, g), u_2 = (1, u_{2,2}, g), u_3 = (u_{3,1}, u_{3,2}, u_{3,3})) \in (\mathbb{G}^3)^3\]

Initialization

\[u_3 = u_1^λ \odot u_2^µ = (u_{3,1} = u_{1,1}^λ, u_{3,2} = u_{2,2}^µ, u_{3,3} = g^{λ + µ})\]

with \(\lambda, \mu \in \mathbb{Z}_p^*\), and random elements \(u_{1,1}, u_{2,2} \leftarrow \mathbb{G}\).

It means that \(u_3\) is a linear tuple w.r.t. \((u_{1,1}, u_{2,2}, g)\).

Groth-Sahai Proofs

- If \(u_3\) a linear tuple, these commitments are perfectly binding.
- With the initialization parameters, the committed values can even be extracted \(\rightarrow\) extractable commitments.
- Using pairing product equations, one can make proofs on many relations between scalars and group elements:

\[\prod_i e(A_i, X_i)^{α_i} \prod_i e(Y_i, B_i)^{β_i} \prod_i e(X_i, Y_i)^{γ_{i,j}} = t,\]

where the \(A_i, B_i, t\) are constant group elements, \(α_i, β_i, γ_{i,j}\) are constant scalars, and \(X_i, Y_i\) are either group elements in \(\mathbb{G}_1, \mathbb{G}_2\), or of the form \(g_1^{X_i}\) or \(g_2^{Y_i}\), respectively, to be committed.

- The proofs are perfectly sound.
Groth-Sahai Methodology

Groth-Sahai Proofs

- If \mathbf{u}_3 a linear tuple, these commitments are perfectly binding
- The proofs are perfectly sound
- If \mathbf{u}_3 is a random tuple, the commitments are perfectly hiding
- The proofs are perfectly witness hiding
- Under the $DLin$ assumption, with a correct initialization, proofs are witness hiding

Can be used for any Pairing Product Equation

If one re-randomizes the commitments, the proof can be adapted

Outline

1 Introduction
2 Cryptographic Tools
3 Electronic Voting: State-of-the-Art
 - General Process
 - Receipt-Freeness
4 Signatures on Randomizable Ciphertexts

Dessert Choice

A ballot consists of one or two crosses in

- Chocolate Cake
- Cheese Cake
- Ice Cream
- Apple

Each box is thus expressed as a bit: $v_i \in \{0, 1\}$, for $i = 1, 2, 3, 4$

With the additional constraint (at most 2 choices): $\sum_i v_i \in \{0, 1, 2\}$

In the following, we focus on one box only:

- V_i is the i-th voter
- v_i is the value of the box for this voter: 0 or 1

- Signature $S = (\text{Setup}, \text{SKKeyGen}, \text{Sign}, \text{Verif})$
 that is EF-CMA, e.g., Waters Signature;
- Homomorphic enc. $\mathcal{E} = (\text{Setup}, \text{EKeyGen}, \text{Encrypt}, \text{Decrypt})$
 that is IND-CPA, e.g., ElGamal or
Introduction Cryptographic Tools State-of-the-Art Signatures on Ciphertexts

Voting Procedure

General Process

Voting Phase

- **Voter** V_i
 - $c_i = Encrypt(pk, v_i; r_i)$
 - $\sigma_i = Sign(usk_i, c_i; s_i)$
 - $\Pi_c = Proof$ of bit encryption

- **Server** S
 - $\begin{align*} c_i, \sigma_i, \Pi_c & \rightarrow \Sigma_i \\ \Sigma_i = Sign(sk, c_i; s'_i) \end{align*}$

- **from** (σ_i, Π_c): authorization and uniqueness of a voter
- **from** c_i: privacy for the voter
 - because distributed decryption of the tally only
- **with** Σ_i: a voter can complain if his vote is not in the ballot-box

Counting Procedure

Counting Phase

- Anybody can check all the votes (c_i, σ_i, Π_c)
- Anybody can compute

\[
C = \prod c_i = \prod \varepsilon_{pk}(v_i; r_i) = \varepsilon_{pk}(\sum v_i; \sum r_i) = \varepsilon_{pk}(V; R)
\]

- The board members decrypt C in a distributed and verifiable way, into V

Everything is verifiable: **universal verifiability**

Weakness: Receipt

To sell his vote, the voter reveals his random coins r_i as a receipt

Receipt-freeness: the voter should not know the random coins r_i!

Re-Randomization

Voting Phase

- **Voter** V_i
 - $c_i = Encrypt(pk, v_i; r_i)$
 - $\Pi_c = Proof$ of bit encryption

- **Server** S
 - $c_i, \Pi_c \rightarrow c'_i = Random(c_i; r'_i)$
 - $\sigma'_i = Proof(c'_i \equiv c_i)$

- $\Sigma_i = Sign(sk, c_i; s'_i)$

Non-transferable proof of $c'_i \equiv c_i$: verifier-designated proof

Proof of knowledge of $[r'_i]$ such that $c'_i = Random(c_i; r'_i)$ or $[usk_i]$

Re-Randomization

- **re-randomization**: the voter no longer knows the random coins
- **designated-verifier proof**: voter convinced and non-transferable proof

The initial proof Π_c can be verified on c by the server only

To get **universal verifiability**, the proof should be adapted Possible with Groth-Sahai methodology

Weakness: interactions

Interactive proof: 2-round voting (at best!)

Non-Interactive Receipt-Freeness

Our goal: non-interactive receipt-freeness
4 Signatures on Randomizable Ciphertexts
 - Our Full Primitive
 - Example
 - Security Notions

Voting Phase
Voter \(V_i \)
\[c_i = \text{Encrypt}(pk, v_i; r_i) \]
\[\sigma_i = \text{Sign}(usk_i, c_i; s_i) \]
\[\Pi_c = \text{Proof of bit encryption} \]
\[(c_i', \sigma_i', \Pi'_c) = \text{Random}(c_i, \sigma_i, \Pi_c; r'_i) \]
\[c_i', \Pi'_c, \Sigma_i \]
\[\Sigma_i = \text{Sign}(sk, (c_i', \Pi'_c); s'_i) \]

The server not only adapts the proof, but the signature too!
- from \((\sigma_i, \Pi_c)\): authorization and uniqueness of a voter
- from \(c_i\): privacy for the voter
- from \(\text{Random}\): receipt-freeness (unknown random coins \(r_i + r'_i\))

Linear Encryption
In a group \(G \) of order \(p \), with a generator \(g \), and a bilinear map \(e : G \times G \rightarrow G_T \)

- \(E\text{KeyGen}: dk = (x_1, x_2) \xleftarrow{\$} \mathbb{Z}_p^2, pk = (X_1 = g^{x_1}, X_2 = g^{x_2}); \)
- \(\text{Encrypt}(pk = (X_1, X_2), m; (r_1, r_2)) \xleftarrow{\$} \mathbb{Z}_p^2 \)
 \[\rightarrow c = (c_1 = X_1^{r_1}, c_2 = X_2^{r_2}, c_3 = g^{r_1+r_2} \cdot m); \]
- \(\text{Decrypt}(dk = (x_1, x_2), c = (c_1, c_2, c_3)) \rightarrow m = c_3/c_1^{1/x_1} c_2^{1/x_2}. \)

Re-Randomization
- \(\text{Random}_c(pk = (X_1, X_2), c = (c_1, c_2, c_3); (r'_1, r'_2)), \) for \((r'_1, r'_2) \xleftarrow{\$} \mathbb{Z}_p^2 \)
 \[\rightarrow c' = (c'_1 = c_1 \cdot X_1^{r'_1}, c'_2 = c_2 \cdot X_2^{r'_2}, c'_3 = c_3 \cdot g^{r'_1+r'_2}). \)
Waters Signature

In a group G of order p, with a generator g, and a bilinear map $e : G \times G \rightarrow G_T$

Waters Signature

[Waters, 2005]

For a message $M = (M_1, \ldots, M_k) \in \{0, 1\}^k$, we define $F = F(M) = u_0 \prod_{i=1}^k u_i^{M_i}$, where $u = (u_0, \ldots, u_k) \triangleleft \mathbb{G}^{k+1}$.

For an additional generator $h \triangleleft \mathbb{G}$.

- $\text{SKeyGen}: vk = X = g^x, sk = Y = h^x$, for $x \triangleleft \mathbb{Z}_p$;
- $\text{Sign}(sk = Y, F; s)$, for $M \in \{0, 1\}^k$, $F = F(M)$, and $s \triangleleft \mathbb{Z}_p$;
- $\text{Verif}(vk = X, M, \sigma = (\sigma_1, \sigma_2))$ checks whether $e(g, \sigma_1) \cdot e(F, \sigma_2) = e(X, h)$.

Re-Randomization of Ciphertext

Security Notions

Unforgeability under Chosen-Ciphertext Attacks

Chosen-Ciphertext Attacks

The adversary is allowed to ask any valid ciphertext of his choice to the signing oracle.

Because of the re-randomizability of the ciphertext-signature, we cannot expect resistance to existential forgeries, but we should allow a restricted malleability only:

Forgery

A valid ciphertext-signature pair, so that the plaintext is different from all the plaintexts in the ciphertexts sent to the signing oracle.
Unforgeability

From a valid ciphertext-signature pair:

\[c = (c_1 = X_1^1, c_2 = X_2^2, c_3 = g^{r_1+r_2} \cdot F) \]
\[\sigma = (\sigma_1 = Y \cdot c_3^s, \sigma_2 = (c_1^s, c_2^s), \sigma_3 = (g^s, X_1^s, X_2^s)) \]

and the decryption key \((x_1, x_2)\), one extracts

\[F = c_0/(c_1^{1/x_1} c_2^{1/x_2}) \]
\[\Sigma = (\Sigma_1 = \sigma_1/(\sigma_2, 0, \sigma_2, 1), \Sigma_2 = \sigma_3, 0) \]
\[= (Y \cdot F^s, g^s) \]

Security of Waters signature is for a pair \((M, \Sigma)\)

\(\rightarrow\) needs of a proof of knowledge \(\Pi_M\) of \(M\) in \(F = \mathcal{F}(M)\)
bite-by-bit commitment of \(M\) and Groth-Sahai proof

Chosen-Message Attacks

From a valid ciphertext \(c = (c_1 = X_1^1, c_2 = X_2^2, c_3 = g^{r_1+r_2} \cdot F)\),
and the additional proof of knowledge of \(M\),
one extracts \(M\) and asks for a Waters signature:

\[\Sigma = (\Sigma_1 = Y \cdot F^s, \Sigma_2 = g^s) \]

In this signature, the random coins \(s\) are unknown,
we thus need to know the coins in \(c\)

\(\rightarrow\) needs of a proof of knowledge \(\Pi_r\) of \(r_1, r_2\) in \(c\)

bit-by-bit commitment of \(r_1, r_2\) and Groth-Sahai proof

From the random coins \(r_1, r_2\) (and the decryption key):

\[\sigma = (\sigma_1 = \Sigma_1 \cdot (\Sigma_2, 1, 0, \Sigma_2, 1), \sigma_2 = (\Sigma_2, \Sigma_2, 0, \Sigma_2, 1), \sigma_3 = (\Sigma_2, \Sigma_2, \Sigma_2, 1)) \]
\[= (Y \cdot c_3^s, (c_1^s, c_2^s), (g^s, X_1^s, X_2^s)) \]

Chosen-Ciphertext Attacks

A valid ciphertext \(C = (c_1, c_2, c_3, \Pi_M, \Pi_r)\) is a

- cipherertext \(c = (c_1, c_2, c_3)\)
- a proof of knowledge \(\Pi_M\) of the plaintext \(M\) in \(F = \mathcal{F}(M)\)
- a proof of knowledge \(\Pi_r\) of the random coins \(r_1, r_2\)

From such a ciphertext and the decryption key \((x_1, x_2)\),
and a Waters signing oracle, one can generate a signature on \(C\)

Forgery

From a valid ciphertext-signature pair \((C, \sigma)\), where \(C\) encrypts \(M\),
one can generate a Waters signature on \(M\)
Since we use the Groth-Sahai methodology for the proofs Π_M and Π_r
- in case of re-randomization of c, one can adapt Π_M and Π_r
- because of the need of M, but also r_1 and r_2 in the simulation,
 we need bit-by-bit commitments:
 - M can be short (\ell bit-long)
 - r_1 and r_2 are random in \mathbb{Z}_p
 \[\rightarrow C \text{ is large!} \]

Efficiency
We can improve efficiency: with a variant of Waters Signature
\[\rightarrow \text{shorter signatures: } 9\ell + 33 \text{ group elements} \]

Conclusion
Extractable Randomizable Signature on Randomizable Ciphertexts

Various Applications
- non-interactive receipt-free electronic voting scheme
- (fair) blind signature

Security relies on the CDH and the $DLin$ assumptions
For an ℓ-bit message, ciphertext-signature:
\[9\ell + 33 \text{ group elements} \]

A more efficient variant with asymmetric pairing
 - on the CDH^* and the $SXDH$ assumptions
Ciphertext-signature: $6\ell + 15$ group elements in G_1
 and $6\ell + 7$ group elements in G_2