Efficient Receipt-Freeness for e-Voting

David Pointcheval

Joint work with Olivier Blazy, Georg Fuchsbauer and Damien Vergnaud

Ecole normale supérieure, CNRS & INRIA

Chinacrypt – Beijing – China

October 17th, 2010

Outline

1 Introduction
2 Cryptographic Tools
3 Electronic Voting: State-of-the-Art
4 Signatures on Randomizable Ciphertexts

Electronic Voting

Dessert Choice

If one wants to get preferences for the desserts, one asks people to vote for

- Chocolate Cake
- Cheese Cake
- Ice Cream
- Apple

with e.g., possibly 2 choices

After collection of the ballots, one counts the number of choices:

<table>
<thead>
<tr>
<th>Dessert</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chocolate Cake</td>
<td>243</td>
</tr>
<tr>
<td>Cheese Cake</td>
<td>111</td>
</tr>
<tr>
<td>Ice Cream</td>
<td>167</td>
</tr>
<tr>
<td>Apple</td>
<td>52</td>
</tr>
</tbody>
</table>

→

1 Chocolate Cake
2 Ice Cream
3 Cheese Cake
4 Apple
Electronic Voting: Basic Properties

Authentication
- Only people authorized to vote should be able to vote
- Voters should vote only once

Anonymity
- Votes and voters should be unlinkable

Main Approaches
- Blind Signatures
- Homomorphic Encryption ← the most promising

Homomorphic Encryption & Signature

- The voter generates his vote \(v \in \{0, 1\} \) (for each □)
- The voter encrypts \(v \) to the server \(c = \varepsilon_{pk}(v; r) \)
- The voter signs his vote \(\sigma = S_{usk}(c; s) \)

Such a pair \((c, \sigma)\) is a ballot

- unique per voter, because it is signed by the voter
- anonymous, because the vote is encrypted

Counting: granted homomorphic encryption, anybody can compute

\[
C = \prod c = \prod \varepsilon_{pk}(v_i; r_i) = \varepsilon_{pk}(\sum v_i; \sum r_i) = \varepsilon_{pk}(V; R)
\]

The server decrypts the tally \(V = D_{sk}(C) \), and proves it

Weaknesses

- **Anonymity**: the server can decrypt any individual vote
 \(\rightarrow \) use of distributed decryption (threshold decryption)
- **Receipt**: if a voter wants to sell his vote, \(r_i \) is a proof
 (a coercer can also provide a modified voting client system
 in order to generate a receipt or even receive it directly)
 \(\rightarrow \) re-randomization of the ciphertext

Distributed decryption is easy (ElGamal, Linear, etc),
while re-randomization of the ciphertext requires more work!

Receipt-Freeness

Our goal is to prevent receipts
\(\rightarrow \) receipt-free electronic system
Introduction Cryptographic Tools State-of-the-Art Signatures on Ciphertexts

Outline

1 Introduction

2 Cryptographic Tools
 • Computational Assumptions
 • Signature & Encryption
 • Security
 • Groth-Sahai Methodology

3 Electronic Voting: State-of-the-Art

4 Signatures on Randomizable Ciphertexts

David Pointcheval – 9/43

Assumptions: Diffie-Hellman

Definition (The Computational Diffie-Hellman problem (CDH))

\(\mathbb{G} \) a cyclic group of prime order \(p \).
The CDH assumption in \(\mathbb{G} \) states:
for any generator \(g \leftarrow \mathbb{G} \), and any scalars \(a, b \leftarrow \mathbb{Z}_p^* \),
given \((g, g^a, g^b) \), it is hard to compute \(g^{ab} \).

Definition (The Decisional Diffie-Hellman problem (DDH))

\(\mathbb{G} \) a cyclic group of prime order \(p \).
The DDH assumption in \(\mathbb{G} \) states:
for any generator \(g \leftarrow \mathbb{G} \), and any scalars \(a, b, c \leftarrow \mathbb{Z}_p^* \),
given \((g, g^a, g^b, g^c) \), it is hard to decide whether \(c = ab \) or not.

In some pairing-friendly groups, the latter assumption is wrong.

Assumptions: Linear Problem

Definition (Decision Linear Assumption (DLin))

\(\mathbb{G} \) a cyclic group of prime order \(p \).
The DLin assumption states:
for any generator \(g \leftarrow \mathbb{G} \), and any scalars \(a, b, x, y, c \leftarrow \mathbb{Z}_p^* \),
given \((g, g^x, g^y, g^{xa}, g^{yb}, g^c) \), it is hard to decide whether \(c = a + b \) or not.

Equivalently, given a reference triple \((u = g^x, v = g^y, g) \) and a new triple \((U = u^a = g^{xa}, V = v^b = g^{yb}, T = g^c) \), decide whether \(T = g^{a+b} \) or not (that is \(c = a + b \)).

General Encryption Tools: Signature

Definition (Signature Scheme)

\(S = (\text{Setup}, \text{SKeyGen}, \text{Sign}, \text{Verif}) \):
- \(\text{Setup}(1^k) \rightarrow \) global parameters \(\text{param} \);
- \(\text{SKeyGen}(\text{param}) \rightarrow \) pair of keys \((sk, vk) \);
- \(\text{Sign}(sk, m; s) \rightarrow \) signature \(\sigma \), using the random coins \(s \);
- \(\text{Verif}(vk, m, \sigma) \rightarrow \) validity of \(\sigma \)

If one signs \(F = \mathcal{F}(M) \), for any function \(\mathcal{F} \), one extends the above definitions: \(\text{Sign}(sk, (\mathcal{F}, F, \Pi_M); s) \) and \(\text{Verif}(vk, (\mathcal{F}, F, \Pi_M), \sigma) \) where \(\mathcal{F} \) details the function that is applied to the message \(M \) yielding \(F \), and \(\Pi_M \) is a proof of knowledge of a preimage of \(F \) under \(\mathcal{F} \).
Introduction Cryptographic Tools State-of-the-Art Signatures on Ciphertexts

Signature: Example

In a group G of order p, with a generator g, and a bilinear map $e: G \times G \rightarrow G_T$

Waters Signature

For a message $M = (M_1, \ldots, M_k) \in \{0, 1\}^*$,
we define $F(M) = u_0 \prod_{i=1}^k u_i^{M_i}$, where $u = (u_0, \ldots, u_k) \ll G^{k+1}$.
For an additional generator $h \ll G$.

- $\text{SKeyGen}: vk = X = g^x$, $sk = Y = h^x$, for $x \ll \mathbb{Z}_p$;
- $\text{Sign}(sk = Y, M; s)$, for $M \in \{0, 1\}^*$ and $s \ll \mathbb{Z}_p$
 $\rightarrow \sigma = (\sigma_1 = Y \cdot F(M)^s, \sigma_2 = g^{-s})$;
- $\text{Verif}(vk = X, M, \sigma = (\sigma_1, \sigma_2))$ checks whether
 $e(g, \sigma_1) \cdot e(F(M), \sigma_2) = e(X, h)$.

General Tools: Encryption

Definition (Encryption Scheme)

$E = (\text{Setup}, \text{EKeyGen}, \text{Encrypt}, \text{Decrypt})$:
- $\text{Setup}(1^k) \rightarrow \text{global parameters param}$;
- $\text{EKeyGen}(\text{param}) \rightarrow \text{pair of keys (pk, dk)}$;
- $\text{Encrypt}(pk, m; r) \rightarrow \text{ciphertext c, using the random coins r}$;
- $\text{Decrypt}(dk, c) \rightarrow \text{plaintext, or } \perp \text{if the ciphertext is invalid}$.

Homomorphic Encryption

For some group laws: \oplus on the plaintext, \otimes on the ciphertext, and \ominus on the randomness

$\text{Encrypt}(pk, m_1; r_1) \otimes \text{Encrypt}(pk, m_2; r_2) = \text{Encrypt}(pk, m_1 \oplus m_2; r_1 \ominus r_2)$

$\text{Decrypt}(sk, \text{Encrypt}(pk, m_1; r_1) \otimes \text{Encrypt}(pk, m_2; r_2)) = m_1 \oplus m_2$

Security

Security Notions: Signature

Signature: EF-CMA

Existential Unforgeability under Chosen-Message Attacks
An adversary should not be able to generate a new valid message-signature pair even if it is allowed to ask signatures on any message of its choice

Impossibility to forge signatures

Waters signature reaches EF-CMA under the CDH assumption
Security Notions: Encryption

Encryption: IND-CCA

Indistinguishability under Chosen-Plaintext Attacks

An adversary that chooses two messages, and receives the encryption of one of them, should not be able to decide which one has been encrypted.

Impossibility to learn any information about the plaintext

The Linear Encryption reaches IND-CPA under the DLin assumption.

Groth-Sahai Commitments

Under the DLin assumption, the commitment key is:

\[(u_1 = (u_{1,1}, 1, g), u_2 = (1, u_{2,2}, g), u_3 = (u_{3,1}, u_{3,2}, u_{3,3})) \in (\mathbb{G}^3)^3\]

Initialization

\[u_3 = u_1^\lambda \odot u_2^\mu = (u_{3,1} = u_{1,1}^\lambda, u_{3,2} = u_{2,2}^\mu, u_{3,3} = g^{\lambda + \mu})\]

with \(\lambda, \mu \in \mathbb{Z}_p^*,\) and random elements \(u_{1,1}, u_{2,2} \leftarrow \mathbb{G}.\)

It means that \(u_3\) is a linear tuple w.r.t. \((u_{1,1}, u_{2,2}, g).\)

Groth-Sahai Proofs

- If \(u_3\) a linear tuple, these commitments are perfectly binding.
- With the initialization parameters, the committed values can even be extracted \(\rightarrow\) extractable commitments.
- Using pairing product equations, one can make proofs on many relations between scalars and group elements:

\[\prod_j e(A_j, X_j)^{\alpha_j} \prod_i e(Y_i, B_i)^{\beta_i} \prod_{i,j} e(X_i, Y_j)^{\gamma_{i,j}} = t,\]

where the \(A_j, B_i,\) and \(t\) are constant group elements, \(\alpha_i, \beta_i,\) and \(\gamma_{i,j}\) are constant scalars, and \(X_j\) and \(Y_i\) are either group elements in \(\mathbb{G}_1\) and \(\mathbb{G}_2,\) or of the form \(g_1^{X_j}\) or \(g_2^{Y_i},\) respectively, to be committed.
- The proofs are perfectly sound.
Groth-Sahai Methodology

Groth-Sahai Proofs

- If \(u_3 \) a linear tuple, these commitments are perfectly binding
 - The proofs are perfectly sound
- If \(u_3 \) is a random tuple, the commitments are perfectly hiding
 - The proofs are perfectly witness hiding
- Under the \(DLin \) assumption, with a correct initialization, proofs are witness hiding

Can be used for any **Pairing Product Equation**

If one re-randomizes the commitments, the proof can be adapted

Outline

1. **Introduction**
2. **Cryptographic Tools**
3. **Electronic Voting: State-of-the-Art**
 - General Process
 - Receipt-Freeness
4. **Signatures on Randomizable Ciphertexts**

General Process

Dessert Choice

A ballot consists of one or two crosses in

- Chocolate Cake
- Cheese Cake
- Ice Cream
- Apple

Each box is thus expressed as a bit: \(v_i \in \{0, 1\} \), for \(i = 1, 2, 3, 4 \)

With the additional constraint (at most 2 choices): \(\sum_i v_i \in \{0, 1, 2\} \)

In the following, we focus on one box only:

- \(V_i \) is the \(i \)-th voter
- \(v_i \) is the value of the box for this voter: 0 or 1

Voting Procedure

Cryptographic Primitives

- Signature \(S = (Setup, SKeyGen, Sign, Verif) \)
 - that is EF-CMA, *e.g.*, Waters Signature;
- Homomorphic enc. \(\mathcal{E} = (Setup, EKeyGen, Encrypt, Decrypt) \)
 - that is IND-CPA, *e.g.*, ElGamal or Linear Encryption

+ distributed decryption, as Linear Encryption scheme allows

Initialization

- The authority owns a signing/verification key-pair \((sk, vk)\)
- The ballot-box owns an encryption key \(pk \), which decryption capability is distributed among the board members
- Each voter \(V_i \) owns a signing/verification key-pair \((usk_i, uvk_i)\)
Voting Procedure

Voting Phase

- **Voter** V_i
- $c_i = Encrypt(pk, v_i; r_i)$
- $\sigma_i = Sign(usk_i, c_i; s_i)$
- $\Pi_c = \text{Proof of bit encryption}$
- $\Sigma = \text{Sign}(sk, c_i; s'_i)$

Counting Procedure

Counting Phase

- Anybody can check all the votes (c_i, σ_i, Π_c)
- Anybody can compute

 $C = \prod c_i = \prod E_{pk}(v_i; r_i) = E_{pk}(\sum v_i; \sum r_i) = E_{pk}(V; R)$

 - The board members decrypt C in a distributed and verifiable way, into V

Receipt-Freeness

- Non-transferable proof of $c'_i \equiv c_i$: verifier-designated proof

 - Proof of knowledge of $[r'_i$ such that $c'_i = Random(c_i, r'_i)]$ or $[usk_i]$

Security

Re-Randomization

- re-randomization: the voter no longer knows the random coins

 - designated-verifier proof: voter convinced and non-transferable proof

 The initial proof Π_c can be verified on c by the server only

 To get universal verifiability, the proof should be adapted

 Possible with Groth-Sahai methodology

Weakness: interactions

Interactive proof: 2-round voting (at best!)

Non-Interactive Receipt-Freeness

Our goal: non-interactive receipt-freeness
Introduction

Cryptographic Tools

State-of-the-Art

Signatures on Ciphertexts

Outline

1 Introduction

2 Cryptographic Tools

3 Electronic Voting: State-of-the-Art

4 Signatures on Randomizable Ciphertexts

- Our Full Primitive
- Example
- Security Notions

Signatures on Randomizable Ciphertexts

Our Full Primitive

Example

Security Notions

David Pointcheval – 29/43

Voting Phase

Voter V_i

$$c_i = \text{Encrypt}(pk, v_i; r_i)$$

$$\sigma_i = \text{Sign}(usk_i, c_i; s_i)$$

$$\Pi_c = \text{Proof of bit encryption}$$

$$\rightarrow c_i, \sigma_i, \Pi_c \rightarrow (c_i', \sigma_i', \Pi'_c) = \text{Random}(c_i, \sigma_i, \Pi_c; r'_i)$$

$$\leftarrow c_i', \Pi'_c, \Sigma_i \rightarrow \Sigma_i = \text{Sign}(sk_i, (c_i', \Pi'_c); s'_i)$$

The server not only adapts the proof, but the signature too!

- from (σ_i, Π_c): authorization and uniqueness of a voter
- from c_i: privacy for the voter
- from Random: receipt-freeness (unknown random coins $r_i + r'_i$)

David Pointcheval – 30/43

Linear Encryption

In a group \mathbb{G} of order p, with a generator g, and a bilinear map $e : \mathbb{G} \times \mathbb{G} \rightarrow \mathbb{G}_T$

Linear Encryption

- $E\text{KeyGen} : dk = (x_1, x_2) \xleftarrow{\$} \mathbb{Z}_p^2$, $pk = (X_1 = g^{x_1}, X_2 = g^{x_2})$

- $\text{Encrypt}(pk = (X_1, X_2), m; (r_1, r_2))$, for $m \in \mathbb{G}$ and $(r_1, r_2) \xleftarrow{\$} \mathbb{Z}_p^2$

 $$\rightarrow c = (c_1 = X_1^{r_1}, c_2 = X_2^{r_2}, c_3 = g^{r_1 + r_2} \cdot m)$$

- $\text{Decrypt}(dk = (x_1, x_2), c = (c_1, c_2, c_3)) \rightarrow m = c_3 / c_1^{1/x_1} c_2^{1/x_2}$

Re-Randomization

- $\text{Random}_e(pk = (X_1, X_2), c = (c_1, c_2, c_3); (r'_1, r'_2))$, for $(r'_1, r'_2) \xleftarrow{\$} \mathbb{Z}_p^2$

 $$\rightarrow c' = (c'_1 = c_1 \cdot X_1^{r'_1}, c'_2 = c_2 \cdot X_2^{r'_2}, c'_3 = c_3 \cdot g^{r'_1 + r'_2})$$

David Pointcheval – 31/43
Waters Signature

In a group G of order p, with a generator g, and a bilinear map $e : G \times G \to G_T$

Waters Signature

[Waters, 2005]

For a message $M = (M_1, \ldots, M_k) \in \{0, 1\}^k$, we define $F = \mathcal{F}(M) = u_0 \prod_{i=1}^k u_i^M$, where $\sigma = (u_0, \ldots, u_k) \in \mathbb{Z}_{p}^{k+1}$. For an additional generator $h \in \mathbb{G}$,

- **KeyGen**: $vk = X = g^x$, $sk = Y = h^x$, for $x \in \mathbb{Z}_p$
- **Sign**($sk = Y, F, s$), for $M \in \{0, 1\}^k$, $F = \mathcal{F}(M)$, and $s \in \mathbb{Z}_p$

 $\sigma = (\sigma_1 = Y \cdot F^s, \sigma_2 = g^{-s})$

- **Verif**($vk = X, M, \sigma = (\sigma_1, \sigma_2)$) checks whether

 $e(g, \sigma_1) \cdot e(F, \sigma_2) = e(X, h)$.

Re-Randomization of Ciphertext

For a valid ciphertext-signature pair, so that the plaintext is different from all the plaintexts in the ciphertexts sent to the signing oracle

σ_3 is needed for ciphertext re-randomization

Unforgeability under Chosen-Ciphertext Attacks

The adversary is allowed to ask any valid ciphertext of his choice to the signing oracle

Because of the re-randomizability of the ciphertext-signature, we cannot expect resistance to existential forgeries, but we should allow a restricted malleability only:

Forgery

A valid ciphertext-signature pair, so that the plaintext is different from all the plaintexts in the ciphertexts sent to the signing oracle

\[c = (c_1 = X_{1}^{r_1}, c_2 = X_{2}^{r_2}, \quad c_3 = g^{r_1+r_2} \cdot F) \]

\[\sigma = (\sigma_1 = Y \cdot c_3^s, \quad \sigma_2 = (c_1^s, c_2^s), \quad \sigma_3 = (g^s, X_1^s, X_2^s) \]

\[c' = (c_1' = c_1 \cdot X_1^{r_1'}, c_2' = c_2 \cdot X_2^{r_2'}, \quad c_3' = c_3 \cdot g^{r_1'+r_2'} \]

\[\sigma' = (\sigma_1' = \sigma_{3,0}^{r_1'+r_2'}, \quad \sigma_2' = (\sigma_{2,0} \cdot \sigma_{3,1}^{r_1'}, \sigma_{2,1} \cdot \sigma_{3,2}^{r_2'}), \quad \sigma_3' = \sigma_3 \]

Anybody can publicly re-randomize c into c' with additional random coins (r_1', r_2'), and adapt the signature σ of c into σ' of c'.
Unforgeability

From a valid ciphertext-signature pair:
\[c = (c_1 = X_1^1, c_2 = X_2^2, c_3 = g^{r_1+r_2} \cdot F) \]
\[\sigma = (\sigma_1 = Y \cdot c_3^s, \sigma_2 = (c_1^s, c_2^s), \sigma_3 = (g^s, X_1^1, X_2^2)) \]

and the decryption key \((x_1, x_2)\), one extracts
\[F = c_3 / (c_1^{1/x_1} c_2^{1/x_2}) \]
\[\Sigma = (\Sigma_1 = \sigma_1 / (\sigma_2^{1/x_1} \sigma_2^{1/x_2}), \Sigma_2 = \sigma_3) \]
\[= (Y \cdot F^s, g^s) \]

Security of Waters signature is for a pair \((M, \Sigma)\)
→ needs of a proof of knowledge \(\Pi_M\) of \(M\) in \(F = \mathcal{F}(M)\)
bit-by-bit commitment of \(M\) and Groth-Sahai proof

Chosen-Message Attacks

From a valid ciphertext \(c = (c_1 = X_1^1, c_2 = X_2^2, c_3 = g^{r_1+r_2} \cdot F)\), and the additional proof of knowledge of \(M\), one extracts \(M\) and asks for a Waters signature:
\[\Sigma = (\Sigma_1 = Y \cdot F^s, \Sigma_2 = g^s) \]

In this signature, the random coins \(s\) are unknown, we thus need to know the coins in \(c\)

\[\rightarrow \text{ needs of a proof of knowledge } \Pi_r \text{ of } r_1, r_2 \text{ in } c \]
bit-by-bit commitment of \(r_1, r_2\) and Groth-Sahai proof

From the random coins \(r_1, r_2\) (and the decryption key):
\[\sigma = (\sigma_1 = \Sigma_1 \cdot \Sigma_2^{r_1+r_2}, \sigma_2 = (\Sigma_2^{r_1}, \Sigma_2^{r_2}), \sigma_3 = (\Sigma_2, \Sigma_2^{r_1}, \Sigma_2^{r_2})) \]
\[= Y \cdot c_3^s, (c_1^s, c_2^s), (g^s, X_1^1, X_2^2) \]

Chosen-Ciphertext Attacks

A valid ciphertext \(C = (c_1, c_2, c_3, \Pi_M, \Pi_r)\) is a

- ciphertext \(c = (c_1, c_2, c_3)\)
- a proof of knowledge \(\Pi_M\) of the plaintext \(M\) in \(F = \mathcal{F}(M)\)
- a proof of knowledge \(\Pi_r\) of the random coins \(r_1, r_2\)

From such a ciphertext and the decryption key \((x_1, x_2)\), and a Waters signing oracle, one can generate a signature on \(C\)

Forgery

From a valid ciphertext-signature pair \((C, \sigma)\), where \(C\) encrypts \(M\), one can generate a Waters signature on \(M\)

Security

- From the Waters signing oracle, we answer Chosen-Ciphertext Signing queries
- From a Forgery, we build a Waters Existential Forgery

Security Level

Since the Waters signature is EF-CMA under the CDH assumption, our signature on randomizable ciphertext is Unforgeable against Chosen-Ciphertext Attacks under the CDH assumption
Properties

Proofs
Since we use the Groth-Sahai methodology for the proofs Π_M and Π_r:
- in case of re-randomization of c, one can adapt Π_M and Π_r
- because of the need of M, but also r_1 and r_2 in the simulation, we need bit-by-bit commitments:
 - M can be short (`bit-long)
 - r_1 and r_2 are random in \mathbb{Z}_p
 \rightarrow C is large!

Efficiency
We can improve efficiency: with a variant of Waters Signature
\rightarrow shorter signatures: $9\ell + 33$ group elements

Conclusion
Extractable Randomizable Signature on Randomizable Ciphertexts

Various Applications
- non-interactive receipt-free electronic voting scheme
- (fair) blind signature

Security relies on the CDH and the $DLin$ assumptions
For an `ℓ-bit message, ciphertext-signature:
$9\ell + 33$ group elements

A more efficient variant with asymmetric pairing
on the CDH^* and the $SXDH$ assumptions
Ciphertext-signature: $6\ell + 15$ group elements in G_1
and $6\ell + 7$ group elements in G_2