Introduction cooco	Cryptographic Tools	State-of-the-Art 000000	Signatures on Ciphertexts	Introduction 00000	Cryptographi	ic Tools ooo	State-o	of-the-Ar	rt Signatures on Ciphertexts
_				Outline					
Effi	cient Receipt-F	Freeness for e	-Voting						
	David I	Pointcheval		1 Introd	luction				
	Joint work with Olivier Blazy, Gr	eorg Fuchsbauer and Damien Verg	naud	Cryptographic Tools					
	Ecole normale sup	périeure, CNRS & INRIA		Electronic Voting: State-of-the-Art					
م ب ر کرد. مرجع	Chrs Reve				, , , , , , , , , , , , , , , , , , ,				
			RIA	Signa	tures on Ran	dom	izable Ciphe	ertex	tts
		- Beijing – China r 17th, 2010							
	October	r 17th, 2010							
Introduction	Cryptographic Tools	State-of-the-Art 000000	David Pointcheval – 1/43 Signatures on Ciphertexts	Introduction •••••	Cryptographi	ic Tools 000	State-o	of-the-Ar	David Pointcheval – 2) rt Signatures on Ciphertexts occooccooccoocco
Outline				Electronic Voting	Choice				
					nts to get pref people to vote		ces for the de	esser	rts,
	onic Voting						Chocolate C		
 Homor 	morphic Encryption						Cheese Cak Ice Cream	(e	
Cryptog	aphic Tools						Apple		
Electronic	ic Voting: State-of-	the-Art			possibly 2 che ection of the b			the	number of choices:
Signatur	es on Randomizab	le Ciphertexts		Ch	ocolate Cake eese Cake Cream ple	243 11 167 52	1 7 →	1 2 3 4	Chocolate Cake Ice Cream Cheese Cake Apple

Introduction

State-of-the-Art

Signatures on Ciphertexts

Introduction momorphic Encryptio

State-of-the-Art

Signatures on Ciphertexts

Electronic Voting: Basic Properties

Authentication

- Only people authorized to vote should be able to vote
- Voters should vote only once

Anonymity

Votes and voters should be unlinkable

Main Approaches

- Blind Signatures
- Homomorphic Encryption ← the most promising

General Approach: Homomorphic Encryption

Homomorphic Encryption & Signature

- The voter generates his vote $v \in \{0, 1\}$ (for each \Box)
- The voter encrypts v to the server $\rightarrow c = \mathcal{E}_{nk}(v; r)$
- The voter signs his vote $\rightarrow \sigma = S_{usk}(c; s)$

Such a pair (c, σ) is a ballot

- unique per voter, because it is signed by the voter
- anonymous, because the vote is encrypted

Counting: granted homomorphic encryption, anybody can compute

$$C = \prod c = \prod \mathcal{E}_{pk}(v_i; r_i) = \mathcal{E}_{pk}(\sum v_i; \sum r_i) = \mathcal{E}_{pk}(V; R)$$

The server decrypts the tally $V = \mathcal{D}_{sk}(C)$, and proves it

General Approach: Homomorphic Encryption	Homomorphic Encryption General Approach: Homomorphic Encryption				
Introduction Cryptographic Tools State-of-the-Art Signatures on Ciphertexts code0 code0 co	Introduction Cryptographic occoccoccocc				

General Approach: Homomorphic Encryption

Security

- uniqueness per voter: the voter signs his vote
- anonymity: the voter encrypts his vote

Universal Verifiability

Soundness: every step can be proven and publicly checked

- identity of voter: proof of identity = signature
- validity of the vote: proof of bit encryption + more
- e decryption: proof of decryption

All the steps (voting + counting) can be checked afterwards Helios is from this family: the IACR e-voting process

Weaknesses

- Anonymity: the server can decrypt any individual vote → use of distributed decryption (threshold decryption)
- Receipt: if a voter wants to sell his vote. r is a proof (a coercer can also provide a modified voting client system in order to generate a receipt or even receive it directly)
 - → re-randomization of the ciphertext

Distributed decryption is easy (ElGamal, Linear, etc), while re-randomization of the ciphertext requires more work!

Receipt-Freeness

Our goal is to prevent receipts

→ receipt-free electronic system

Introduction 00000	OCCORDING TOOLS	State-of-the-Art 000000	Signatures on Ciphertexts	Introduction 00000	ecococococococococococococococococococo	State-of-the-Art coocoo	Signatures on Ciphertexts	
				Computational Assu	mptions			
Outline				Assump	tions: Diffie-He	llman		
 Comp Signation Secution 	graphic Tools putational Assumption ature & Encryption	ns		G a cyclic G The <i>CDH</i> a for any g given (<i>g</i> Definition G a cyclic	(The Computational group of prime order f issumption in \mathbb{G} state enerator $g \in \mathbb{G}$, and g (g^a, g^b) , it is hard to or (The Decisional Diff group of prime order f	o. s: any scalars <i>a</i> , b compute g ^{ab} . ie-Hellman proble o.	\mathbb{Z}_{ρ}^{*} ,	
Electro	nic Voting: State-of-	the-Art		The <i>DDH</i> assumption in \mathbb{G} states: for any generator $g \stackrel{\$}{\leftarrow} \mathbb{G}$, and any scalars $a, b, c \stackrel{\$}{\leftarrow} \mathbb{Z}_p^*$,				
Signatu	ires on Randomizab	le Ciphertexts			, $g^a, g^b, g^c)$, it is hard tiring-friendly groups,			

			David Pointcheval – 9/43				David Pointcheval – 10/4	
Introduction 00000	Cryptographic Tools	State-of-the-Art occocco	Signatures on Ciphertexts 00000000000000	Introduction 00000	Cryptographic Tools	State-of-the-Art coocco	Signatures on Ciphertexts 00000000000000	
Computational Assumptions				Signature & Encryption				
Accumptione: Linear Problem				Conoral Toole: Signature				

Definition (Decision Linear Assumption (DLin))

 $\begin{array}{l} \mathbb{G} \text{ a cyclic group of prime order } p. \\ \text{The } DLin \text{ assumption states:} \\ \text{ for any generator } g\overset{<}{\leftarrow} \mathbb{G}, \text{ and any scalars } a, b, x, y, c\overset{<}{\leftarrow} \mathbb{Z}_p^*, \\ \text{ given } (g, g^x, g^y, g^{xa}, g^{yb}, g^c), \\ \text{ it is hard to decide whether } c = a + b \text{ or not.} \end{array}$

Equivalently, given a reference triple $(u = g^x, v = g^y, g)$ and a new triple $(U = u^a = g^{xa}, V = v^b = g^{yb}, T = g^c)$, decide whether $T = g^{a+b}$ or not (that is c = a + b).

Definition (Signature Scheme)							
S = (Setup, SKeyGen, Sign, Verif):							
• Setup(1 ^k) \rightarrow global parameters param;							
• SKeyGen(param) \rightarrow pair of keys (sk, vk);							
• $Sign(sk, m; s) \rightarrow signature \sigma$, using the random coins s ;							
• Verif(vk, m, σ) \rightarrow validity of σ							

If one signs $F = \mathcal{F}(M)$, for any function \mathcal{F} , one extends the above definitions: $Sign(sk, (\mathcal{F}, F, \Pi_M), o)$ where \mathcal{F} details the function that is applied to the message M yielding F, and Π_M is a proof of knowledge of a preimage of F under \mathcal{F} .

Introduction 00000	Cryptographic Tools	State-of-the-Art 000000	Signatures on Ciphertexts	Introduction 00000	Cryptographic Tools	State-of-the-Art 000000	Signatures on Ciphertexts		
Signature & Encryption				Signature & Encryption					
Signature	: Example			General Tools: Encryption					
	of order p , with a generative map $e: \mathbb{G} \times \mathbb{G} \rightarrow \mathbb{G}$				(Encryption Schemo b, EKeyGen, Encrypt, I				

For a message $M = (M_1, \dots, M_k) \in \{0, 1\}^k$, we define $\mathcal{F}(M) = u_0 \prod_{i=1}^k u_i^{M_i}$ where $\vec{u} = (u_0, \dots, u_k) \stackrel{\$}{\leftarrow} \mathbb{G}^{k+1}$. For an additional generator $h \leftarrow \mathbb{G}$.

- SKeyGen: $vk = X = g^x$, $sk = Y = h^x$, for $x \leftarrow \mathbb{Z}_p$;
- Sign(sk = Y, M; s), for $M \in \{0, 1\}^k$ and $s \stackrel{\$}{\leftarrow} \mathbb{Z}_p$ $\rightarrow \sigma = (\sigma_1 = Y \cdot \mathcal{F}(M)^s, \sigma_2 = g^{-s});$
- Verif($vk = X, M, \sigma = (\sigma_1, \sigma_2)$) checks whether

$$e(g, \sigma_1) \cdot e(\mathcal{F}(M), \sigma_2) = e(X, h)$$

- Setup(1^k) → global parameters param;
- EKeyGen(param) → pair of keys (pk, dk);
- *Encrypt*(*pk*, *m*; *r*) \rightarrow ciphertext *c*, using the random coins *r*;
- $Decrypt(dk, c) \rightarrow plaintext, or \perp if the ciphertext is invalid.$

Homomorphic Encryption

For some group laws: \oplus on the plaintext, \otimes on the ciphertext, and \odot on the randomness

 $\textit{Encrypt}(\textit{pk},\textit{m}_1;\textit{r}_1) \otimes \textit{Encrypt}(\textit{pk},\textit{m}_2;\textit{r}_2) = \textit{Encrypt}(\textit{pk},\textit{m}_1 \oplus \textit{m}_2;\textit{r}_1 \odot \textit{r}_2)$

 $Decrypt(sk, Encrypt(pk, m_1; r_1) \otimes Encrypt(pk, m_2; r_2)) = m_1 \oplus m_2$

Introduction cooco	Cryptographic Tools	State-of-the-Art occocco	David Pointcheval – 13/43 Signatures on Ciphertexts		Cryptographic Tools	State-of-the-Art cccccco	David Pointcheval – 14/4 Signatures on Ciphertexts occoscoscosco
Signature & Encryption				Security			
Encryption	n: Example			Security	Notions: Signa	ature	

In a group \mathbb{G} of order p, with a generator g:

Linear Encryption

[Boneh, Boyen, Shacham, 2004]

EKeyGen:
$$dk = (x_1, x_2) \stackrel{\$}{\leftarrow} \mathbb{Z}_p^2$$
, $pk = (X_1 = g^{x_1}, X_2 = g^{x_2})$;

• Encrypt(
$$pk = (X_1, X_2), m; (r_1, r_2)$$
), for $m \in \mathbb{G}$ and $(r_1, r_2) \stackrel{\$}{\leftarrow} \mathbb{Z}^2_p$
 $\rightarrow c = (c_1 = X_1^{r_1}, c_2 = X_2^{r_2}, c_3 = g^{r_1+r_2} \cdot m);$

• Decrypt(
$$dk = (x_1, x_2), c = (c_1, c_2, c_3)$$
) $\rightarrow m = c_3/c_1^{1/x_1}c_2^{1/x_2}$.

Homomorphism

 $\begin{array}{l} (\oplus_M = \times, \otimes_C = \times, \odot_R = +) \text{-homomorphism} \\ \text{With } m = g^M \quad \rightarrow \quad (\oplus_M = +, \otimes_C = \times, \odot_R = +) \text{-homomorphism} \end{array}$

Signature: EF-CMA

Existential Unforgeability under Chosen-Message Attacks

An adversary should not be able to generate a new valid message-signature pair even if it is allowed to ask signatures on any message of its choice

$(m; \sigma)$

Impossibility to forge signatures

Waters signature reaches EF-CMA under the CDH assumption

Security No	otions: Encrypt	ion		Groth-Saha	ai Commitments	s	[Groth, Sahai, 2008]
Security				Groth-Sahai Methodology			
Introduction cooco	Cryptographic Tools	State-of-the-Art 000000	Signatures on Ciphertexts	Introduction 00000	Cryptographic Tools	State-of-the-Art coocco	Signatures on Ciphertexts

Security Notions: Encryption

Impossibility to learn any information about the plaintext The Linear Encryption reaches IND-CPA under the DLin assumption

Under the DLin assumption, the commitment key is:

$$(\mathbf{u}_1 = (u_{1,1}, 1, g), \mathbf{u}_2 = (1, u_{2,2}, g), \mathbf{u}_3 = (u_{3,1}, u_{3,2}, u_{3,3})) \in (\mathbb{G}^3)^3$$

Initialization

$$\begin{split} \mathbf{u}_3 &= \mathbf{u}_1^{\lambda} \odot \mathbf{u}_2^{\mu} = (u_{3,1} = u_{1,1}^{\lambda}, u_{3,2} = u_{2,2}^{\mu}, u_{3,3} = g^{\lambda+\mu}) \\ \text{with } \lambda, \mu \stackrel{\bigstar}{\leftarrow} \mathbb{Z}_{p^*}^* \text{ and random elements } u_{1,1}, u_{2,2} \stackrel{\bigstar}{\leftarrow} \mathbb{G}. \end{split}$$

It means that \mathbf{u}_3 is a linear tuple w.r.t. $(u_{1,1}, u_{2,2}, q)$.

Introduction 00000	Cryptographic Tools	State-of-the-Art 000000	David Pointcheval – 17/43 Signatures on Ciphertexts		Cryptographic Tools	State-of-the-Art 000000	David Pointcheval – 18/4 Signatures on Ciphertexts
Groth-Sahai Methodology				Groth-Sahai Method	lology		
Groth-Sahai Commitments			Groth-Sa	ahai Proofs			

Group Element Commitment

To commit a group element $X \in \mathbb{G}$. one chooses random coins $s_1, s_2, s_3 \in \mathbb{Z}_p$ and sets $\mathcal{C}(X) := (1, 1, X) \odot \mathbf{u}_1^{s_1} \odot \mathbf{u}_2^{s_2} \odot \mathbf{u}_2^{s_3}$

$$=(u_{1,1}^{s_1}\cdot u_{3,1}^{s_3}, u_{2,2}^{s_2}\cdot u_{3,2}^{s_3}, X\cdot g^{s_1+s_2}\cdot u_{3,3}^{s_3})$$

Scalar Commitment

To commit a scalar $x \in \mathbb{Z}_{n}$. one chooses random coins $\gamma_1, \gamma_2 \in \mathbb{Z}_p$ and sets $C'(x) := (u_{3,1}^x, u_{3,2}^x, (u_{3,3}g)^x) \odot \mathbf{u}_1^{\gamma_1} \odot \mathbf{u}_2^{\gamma_2}$ $= (u_{2,1}^{x+\gamma_2} \cdot u_{1,1}^{\gamma_1}, u_{2,2}^{x+\gamma_2}, u_{2,2}^{x+\gamma_2} \cdot q^{x+\gamma_1}).$

- If u₃ a linear tuple, these commitments are perfectly binding.
- With the initialization parameters, the committed values can even be extracted \rightarrow extractable commitments
- Using pairing product equations, one can make proofs on many relations between scalars and group elements:

$$\prod_{j} e(A_{j}, X_{j})^{\alpha_{j}} \prod_{i} e(Y_{i}, B_{i})^{\beta_{i}} \prod_{i,j} e(X_{i}, Y_{j})^{\gamma_{i,j}} = t,$$

where the A_i, B_i, and t are constant group elements. α_i, β_i , and $\gamma_{i,i}$ are constant scalars,

and X_i and Y_i are either group elements in \mathbb{G}_1 and \mathbb{G}_2 , or of the form $g_{1}^{x_{j}}$ or $g_{2}^{y_{j}}$, respectively, to be committed.

The proofs are perfectly sound

Introduction 00000	Cryptographic Tools	State-of-the-Art 000000	Signatures on Ciphertexts	Introduction 00000	Cryptographic Tools	State-of-the-Art	Signatures on Ciphertexts	
Groth-Sahai Method								
Groth-Sa	ahai Proofs			Outline				
 The p 	linear tuple, these co roofs are perfectly sou	und	, ,					
-	roofs are perfectly with			Crypto	graphic Tools			
	the <i>DLin</i> assumption are witness hiding	, with a correct initi	alization,	 Electronic Voting: State-of-the-Art General Process Receipt-Freeness 				
Can be used for any Pairing Product Equation If one re-randomizes the commitments, the proof can be adapted			-	ures on Randomizat	ole Ciphertexts			
Introduction	Cryptographic Tools	Siate-of-the-Art €00000	Dsvid Pointcheval = 21/43 Signatures on Ciphertexts opgoogoogoogo	Introduction	Cryptographic Tools	State-of-the-Art c≢ooc⊙	David Pointcheval = 22/43 Signatures on Ciphertexts opcococococo	
General Process				General Process				
Dessert	Choice			Voting P	rocedure			
A ballot co	nsists of one or two c	rosses in		Cryptogra	phic Primitives			

- Chocolate Cake
- Cheese Cake
- Ice Cream
- Apple

Each box is thus expressed as a bit: $v_i \in \{0, 1\}$, for i = 1, 2, 3, 4With the additional constraint (at most 2 choices): $\sum_i v_i \in \{0, 1, 2\}$

In the following, we focus on one box only:

- V_i is the *i*-th voter
- v_i is the value of the box for this voter: 0 or 1

Cryptographic Primitives

- Signature S = (Setup, SKeyGen, Sign, Verif) that is EF-CMA, e.g., Waters Signature;
- Homomorphic enc. E = (Setup, EKeyGen, Encrypt, Decrypt) that is IND-CPA, e.g., ElGamal or Linear Encryption
- + distributed decryption, as Linear Encryption scheme allows

Initialization

- The authority owns a signing/verification key-pair (sk, vk)
- The ballot-box owns an encryption key *pk*, which decryption capability is distributed among the board members
- Each voter V_i owns a signing/verification key-pair (usk_i, uvk_i)

Voting Pro	cedure			Counting	Procedure		
General Process				General Process			
Introduction cooco	Cryptographic Tools	State-of-the-Art	Signatures on Ciphertexts	Introduction 00000	Cryptographic Tools 00000000000	State-of-the-Art	Signatures on Ciphertexts

Voting Procedure

Voting Phase		
Voter V _i		Server S
$c_i = Encrypt(pk, v_i; r_i)$		
$\sigma_i = Sign(usk_i, c_i; s_i)$		
$\Pi_c = \text{Proof of}$	c_i, σ_i, Π_c	
bit encryption	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
	Σi	$\Sigma_i = Sign(sk, c_i; s'_i)$

- from (σ_i, Π_c): authorization and uniqueness of a voter
- from c_i: privacy for the voter because distributed decryption of the tally only
- with Σ_i: a voter can complain if his vote is not in the ballot-box

Counting Phase

- Anybody can check all the votes (c_i, σ_i, Π_c)
- Anybody can compute

$$C = \prod c_i = \prod \mathcal{E}_{pk}(v_i; r_i) = \mathcal{E}_{pk}(\sum v_i; \sum r_i) = \mathcal{E}_{pk}(V; R)$$

• The board members decrypt C in a distributed and verifiable way, into V

Everything is verifiable: universal verifiability

Weakness:

Re-Randomization

designated-verifier proof:

Weakness: interactions

Interactive proof: 2-round voting (at best!)

Our goal: non-interactive receipt-freeness

Non-Interactive Receipt-Freeness

To sell his vote, the voter reveals his random coins r_i as a receipt **Receipt-freeness:** the voter should not know the random coins $r_i!$

re-randomization: the voter no longer knows the random coins

voter convinced and non-transferable proof

The initial proof Π_c can be verified on c by the server only

To get universal verifiability, the proof should be adapted Possible with Groth-Sahai methodology

Introduction 00000	Cryptographic Tools	State-of-the-Art	David Pointcheval – 25/43 Signatures on Ciphertexts	Introduction 00000	Cryptographic Tools	State-of-the-Art	David Pointcheval – 26/43 Signatures on Ciphertexts
Receipt-Freeness				Receipt-Freeness			
Re-Rando	mization			Security			

Voting Phase Server S Voter Vi $c_i = Encrypt(pk, v_i; r_i)$ $\Pi_c = \text{Proof of}$ Ci. IIc bit encryption c'_i $c'_i = Random(c_i; r'_i)$ $Proof(c_i' \equiv c_i)$ σ_i $\sigma_i = Sign(usk_i, c'_i; s_i)$ Σi $\Sigma_i = Sign(sk, c_i; s'_i)$

Non-transferable proof of $c'_i \equiv c_i$: verifier-designated proof Proof of knowledge of $[r'_i]$ such that $c'_i = Random(c_i, r'_i)$ or $[usk_i]$

Introduction 00000	Cryptographic Tools	State-of-the-Art ocooco	Signatures on Ciphertexts	Introduction 00000	Cryptographic Tools ocooccoccoco	State-of-the-Art coocco	Signatures on Ciphertexts
Outline				Our Full Primitive	es on Random	izable Ciphert	exts
 3 Electror 4 Signatu • Our F • Exam 	graphic Tools nic Voting: State-of- rres on Randomizab full Primitive			$\sigma_i = Signi\Pi_c = Procbit enThe server• from (a• from c)$	$\begin{array}{l} ypt(pk, v_i; r_i) \\ (usk_i, c_i; s_i) \\ \text{of of} \\ cryption \end{array} \xrightarrow{c_i,}$	Ran Π'_c, Σ_i $\Sigma_i = Sig$ proof, but the signar and uniqueness of er	ture too! a voter
Introduction cocco Our Full Primitive	Cryptographic Tools	State-of-the-Art 000000	David Pointcheval – 29/43 Signatures on Ciphertexts	Introduction 00000 Example	Cryptographic Tools	State-of-the-Art coccco	David Pointcheval = 30 Signatures on Ciphertexts
Signature	es on Randomi	zable Cipherte	exts	Linear E	ncryption		
		hcrypte pk,r	Randomizable Encryption Malleable Signature on Randomizable Encryption	and a biline Linear Enc e EKeyG e Encryp →	G of order p, with a q evar map $e : \mathbb{G} \times \mathbb{G} \rightarrow$ stryption Ben: $d\mathbf{k} = (x_1, x_2) \stackrel{s}{\leftarrow} \cdot$ $c = (c_1 = X_1^{r_1}, c_2 =$ $c_1(d\mathbf{k} = (x_1, x_2), c =$	Bo $\mathbb{Z}_p^2, pk = (X_1 = g^{x_1}, r_1, r_2)), \text{ for } m \in \mathbb{G} \text{ as}$ $X_2^{r_2}, c_3 = g^{r_1 + r_2} \cdot m)$	nd $(r_1, r_2) \stackrel{\$}{\leftarrow} \mathbb{Z}_p^2$;
	((M))) andon ^{si}		mization $pm_{\mathcal{E}}(pk = (X_1, X_2), c$ $c' = (c'_1 = c_1 \cdot X_1^{r'_1}, c$	() = () () () 2.	··· · · · · · · · · · · · · · · · · ·

David Pointcheval - 31/43

00000	000000000000	000000	000000000000000000000000000000000000000	00000	000000000000	000000	000000000000000000000000000000000000000
Example				Example			
Waters Si	gnature			Waters S	ignature on a L	inear Cipher	text: Idea
In a group \mathbb{G} of order ρ , with a generator g , and a bilinear map $e : \mathbb{G} \times \mathbb{G} \to \mathbb{G}_T$				We define	$F = \mathcal{F}(M) = u_0 \prod_{i=1}^k u_i$,	

[Waters, 2005]

Waters Signature

For a message $M = (M_1, \ldots, M_k) \in \{0, 1\}^k$, we define $F = \mathcal{F}(M) = u_0 \prod_{i=1}^k u_i^{M_i}$, where $\vec{u} = (u_0, \ldots, u_k) \stackrel{\$}{\leftarrow} \mathbb{G}^{k+1}$. For an additional generator $h \stackrel{\$}{\leftarrow} \mathbb{G}$.

- SKeyGen: $vk = X = g^x$, $sk = Y = h^x$, for $x \stackrel{\$}{\leftarrow} \mathbb{Z}_p$;
- Sign(sk = Y, F; s), for $M \in \{0, 1\}^k$, $F = \mathcal{F}(M)$, and $s \leftarrow \mathbb{Z}_p$ $\rightarrow \sigma = (\sigma_1 = Y \cdot F^s, \sigma_2 = g^{-s});$
- Verif($vk = X, M, \sigma = (\sigma_1, \sigma_2)$) checks whether
 - $e(g, \sigma_1) \cdot e(F, \sigma_2) = e(X, h).$

σ₃ is needed for ciphertext re-randomization

Introduction	Cryptographic Tools	State-of-the-Art	David Pointcheval – 33/43 Signatures on Ciphertexts	Introduction	Cryptographic Tools	State-of-the-Art	David Pointcheval – 34/45 Signatures on Ciphertexts	
Example				Security Notions				
Re-Randomization of Ciphertext					Unforgeability under Chosen-Ciphertext Attacks			

$$\begin{aligned} & c = (c_1 = X_1^{r_1}, & o_2 = X_2^{r_2}, & o_3 = g^{r_1 + r_2} \cdot F) \\ & \sigma = (\sigma_1 = Y \cdot c_3^s, & \sigma_2 = (c_1^s, c_2^s), & \sigma_3 = (g^s, X_1^s, X_2^s)) \end{aligned}$$

after re-randomization by (r'_1, r'_2)

$$\begin{array}{ll} {\cal C}' = ({\cal C}'_1 = {\cal C}_1 \cdot {\cal X}_1^{{\cal I}'_1}, & {\cal C}'_2 = {\cal C}'_2 \cdot {\cal X}_2^{{\cal I}'_2}, & {\cal C}'_3 = {\cal C}_3 \cdot {\cal G}_1^{{\cal I}'_1 + {\cal I}'_2} &) \\ {\sigma}' = ({\sigma}'_1 = {\sigma}_1 \cdot {\sigma}_{3,0}^{{\cal I}'_1 + {\cal I}'_2}, {\sigma}'_2 = ({\sigma}_{2,0} \cdot {\sigma}_{3,1}^{{\cal I}'_1}, {\sigma}_{2,1} \cdot {\sigma}_{3,2}^{{\cal I}_2}), \, {\sigma}'_3 = {\sigma}_3 &) \end{array}$$

Anybody can publicly re-randomize *c* into *c'* with additional random coins (r'_1, r'_2) , and adapt the signature σ of *c* into σ' of *c'*

Chosen-Ciphertext Attacks

The adversary is allowed to ask any valid ciphertext of his choice to the signing oracle

Because of the re-randomizability of the ciphertext-signature, we cannot expect resistance to existential forgeries, but we should allow a restricted malleability only:

Forgery

A valid ciphertext-signature pair, so that the plaintext is different from all the plaintexts in the ciphertexts sent to the signing oracle

	tro	ıd	ct	io	
2	00	o			

Cryptographic Tools

State-of-the-Art

Signatures on Ciphertexts

Introduction 00000 Security Notions ryptographic Tools

State-of-the-Art 000000 Signatures on Ciphertexts

Security Notions

Unforgeability

From a valid ciphertext-signature pair:

$$\begin{split} & c = \left(c_1 = X_1^{r_1}, c_2 = X_2^{r_2}, c_3 = g^{r_1 + r_2} \cdot F\right) \\ & \sigma = \left(\sigma_1 = Y \cdot c_3^s, \sigma_2 = (c_1^s, c_2^s), \sigma_3 = (g^s, X_1^s, X_2^s)\right) \end{split}$$

and the decryption key (x_1, x_2) , one extracts

$$\begin{array}{lll} F = & c_3/(c_1^{1/x_1}c_2^{1/x_2}) \\ \Sigma = (& \Sigma_1 = \sigma_1/(\sigma_{2,0}^{1/x_1}\sigma_{2,1}^{1/x_2}), & \Sigma_2 = \sigma_{3,0}) \\ = (& = Y \cdot F^s & = g^s) \end{array}$$

Security of Waters signature is for a pair (M, Σ)

→ needs of a proof of knowledge Π_M of M in $F = \mathcal{F}(M)$ bit-by-bit commitment of M and Groth-Sahai proof

Chosen-Message Attacks

From a valid ciphertext $c = (c_1 = X_1^{r_1}, c_2 = X_2^{r_2}, c_3 = g^{r_1 + r_2} \cdot F)$, and the additional proof of knowledge of M, one extracts M and asks for a Waters signature:

 $\Sigma = (\Sigma_1 = Y \cdot F^s, \widetilde{\Sigma}_2 = g^s)$

In this signature, the random coins s are unknown, we thus need to know the coins in c

 \rightarrow needs of a proof of knowledge Π_r of r_1, r_2 in c

bit-by-bit commitment of r_1 , r_2 and Groth-Sahai proof From the random coins r_1 , r_2 (and the decryption key):

$$\begin{split} \sigma &= \left(\sigma_1 = \Sigma_1 \cdot \Sigma_2^{r_1 + r_2}, \qquad \sigma_2 = \left(\Sigma_2^{x_1 r_1}, \Sigma_2^{x_2 r_2} \right), \ \sigma_3 = \left(\Sigma_2, \Sigma_2^{r_1}, \Sigma_2^{r_2} \right) \ \right) \\ &= Y \cdot c_3^s, \qquad \qquad = \left(c_1^s, c_2^s \right), \qquad = \left(g^s, X_1^s, X_2^s \right) \end{split}$$

			David Pointcheval – 37/43				David Pointcheval – 38/4
Introduction 00000	Cryptographic Tools	State-of-the-Art 000000	Signatures on Ciphertexts	Introduction 00000	Cryptographic Tools	State-of-the-Art 000000	Signatures on Ciphertexts
Security Notions				Security Notions			
Security				Security			

Chosen-Ciphertext Attacks

A valid ciphertext $C = (c_1, c_2, c_3, \Pi_M, \Pi_r)$ is a

- ciphertext c = (c₁, c₂, c₃)
- a proof of knowledge Π_M of the plaintext M in $F = \mathcal{F}(M)$
- a proof of knowledge Π_r of the random coins r₁, r₂

From such a ciphertext and the decryption key (x_1, x_2) , and a Waters signing oracle, one can generate a signature on *C*

Forgery

From a valid ciphertext-signature pair (C, σ), where C encrypts M, one can generate a Waters signature on M

- From the Waters signing oracle, we answer Chosen-Ciphertext Signing queries
- From a Forgery, we build a Waters Existential Forgery

Security Level

Since the Waters signature is EF-CMA under the *CDH* assumption, our signature on randomizable ciphertext is <u>Unforgeable</u> against <u>Chosen-Ciphertext Attacks</u> under the *CDH* assumption

Introduction	Cryptographic Tools occoocoocoo	State-of-the-Art 000000	Signatures on Ciphertexts	Introduction	Cryptographic Tools ocoocoocooc	State-of-the-Art coocco	Signatures on Ciphertexts
Security Notions				Conclusion			

Our New Primitive

Properties

Proofs

Since we use the Groth-Sahai methodology for the proofs Π_M and Π_r

- in case of re-randomization of c, one can adapt Π_M and Π_r
- because of the need of *M*, but also r₁ and r₂ in the simulation, we need bit-by-bit commitments:
 - M can be short (*l* bit-long)
 - r₁ and r₂ are random in ℤ_p
 - → C is large!

Efficiency

We can improve efficiency: with a variant of Waters Signature

→ shorter signatures: 9ℓ + 33 group elements

Introduction 00000	Cryptographic Tools	State-of-the-Art 000000	David Pointcheval – 41/43 Signatures on Ciphertexts
Conclusion			
Conclus	ion		

Extractable Randomizable Signature on Randomizable Ciphertexts

Various Applications

- non-interactive receipt-free electronic voting scheme
- (fair) blind signature

Security relies on the *CDH* and the *DLin* assumptions For an ℓ -bit message, ciphertext-signature:

 $9\ell + 33$ group elements

A more efficient variant with asymmetric pairing on the *CDH*^{*} and the *SXDH* assumptions Ciphertext-signature: 6ℓ + 15 group elements in \mathbb{G}_1 and 6ℓ + 7 group elements in \mathbb{G}_2

David Pointcheval - 42/43