
Introduction Cryptographic Tools State-of-the-Art Signatures on Ciphertexts

Efficient Receipt-Freeness for e-Voting

David Pointcheval

Joint work with Olivier Blazy, Georg Fuchsbauer and Damien Vergnaud

Ecole normale supérieure, CNRS & INRIA

Chinacrypt – Beijing – China
October 17th, 2010

David Pointcheval – 1/43

Introduction Cryptographic Tools State-of-the-Art Signatures on Ciphertexts

Outline

1 Introduction

2 Cryptographic Tools

3 Electronic Voting: State-of-the-Art

4 Signatures on Randomizable Ciphertexts

David Pointcheval – 2/43
Introduction Cryptographic Tools State-of-the-Art Signatures on Ciphertexts

Outline

1 Introduction
Electronic Voting
Homomorphic Encryption

2 Cryptographic Tools

3 Electronic Voting: State-of-the-Art

4 Signatures on Randomizable Ciphertexts

David Pointcheval – 3/43

Introduction Cryptographic Tools State-of-the-Art Signatures on Ciphertexts

Electronic Voting

Dessert Choice

If one wants to get preferences for the desserts,
one asks people to vote for

� Chocolate Cake
� Cheese Cake
� Ice Cream
� Apple

with e.g., possibly 2 choices
After collection of the ballots, one counts the number of choices:

Chocolate Cake 243
Cheese Cake 111
Ice Cream 167
Apple 52

→
1 Chocolate Cake
2 Ice Cream
3 Cheese Cake
4 Apple

David Pointcheval – 4/43



Introduction Cryptographic Tools State-of-the-Art Signatures on Ciphertexts

Electronic Voting

Electronic Voting: Basic Properties

Authentication
Only people authorized to vote should be able to vote
Voters should vote only once

Anonymity
Votes and voters should be unlinkable

Main Approaches
Blind Signatures
Homomorphic Encryption← the most promising

David Pointcheval – 5/43

Introduction Cryptographic Tools State-of-the-Art Signatures on Ciphertexts

Homomorphic Encryption

General Approach: Homomorphic Encryption

Homomorphic Encryption & Signature
The voter generates his vote v ∈ {0,1} (for each �)
The voter encrypts v to the server → c = Epk(v ; r)

The voter signs his vote → σ = Susk(c; s)

Such a pair (c, σ) is a ballot
unique per voter, because it is signed by the voter
anonymous, because the vote is encrypted

Counting: granted homomorphic encryption, anybody can compute

C =
∏

c =
∏
Epk(vi ; ri) = Epk(

∑
vi ;
∑

ri) = Epk(V ; R)

The server decrypts the tally V = Dsk(C), and proves it

David Pointcheval – 6/43
Introduction Cryptographic Tools State-of-the-Art Signatures on Ciphertexts

Homomorphic Encryption

General Approach: Homomorphic Encryption

Security
uniqueness per voter: the voter signs his vote
anonymity: the voter encrypts his vote

Universal Verifiability
Soundness: every step can be proven and publicly checked

identity of voter: proof of identity = signature
validity of the vote: proof of bit encryption + more
decryption: proof of decryption

All the steps (voting + counting) can be checked afterwards
Helios is from this family: the IACR e-voting process

David Pointcheval – 7/43

Introduction Cryptographic Tools State-of-the-Art Signatures on Ciphertexts

Homomorphic Encryption

General Approach: Homomorphic Encryption

Weaknesses
Anonymity: the server can decrypt any individual vote
→ use of distributed decryption (threshold decryption)

Receipt: if a voter wants to sell his vote, ri is a proof
(a coercer can also provide a modified voting client system

in order to generate a receipt or even receive it directly)
→ re-randomization of the ciphertext

Distributed decryption is easy (ElGamal, Linear, etc),
while re-randomization of the ciphertext requires more work!

Receipt-Freeness
Our goal is to prevent receipts
→ receipt-free electronic system

David Pointcheval – 8/43



Introduction Cryptographic Tools State-of-the-Art Signatures on Ciphertexts

Outline

1 Introduction

2 Cryptographic Tools
Computational Assumptions
Signature & Encryption
Security
Groth-Sahai Methodology

3 Electronic Voting: State-of-the-Art

4 Signatures on Randomizable Ciphertexts

David Pointcheval – 9/43

Introduction Cryptographic Tools State-of-the-Art Signatures on Ciphertexts

Computational Assumptions

Assumptions: Diffie-Hellman

Definition (The Computational Diffie-Hellman problem (CDH))
G a cyclic group of prime order p.
The CDH assumption in G states:

for any generator g $←G, and any scalars a,b $←Z∗p,
given (g,ga,gb), it is hard to compute gab.

Definition (The Decisional Diffie-Hellman problem (DDH))
G a cyclic group of prime order p.
The DDH assumption in G states:

for any generator g $←G, and any scalars a,b, c $←Z∗p,
given (g,ga,gb,gc), it is hard to decide whether c = ab or not.

In some pairing-friendly groups, the latter assumption is wrong.

David Pointcheval – 10/43
Introduction Cryptographic Tools State-of-the-Art Signatures on Ciphertexts

Computational Assumptions

Assumptions: Linear Problem

Definition (Decision Linear Assumption (DLin))
G a cyclic group of prime order p.
The DLin assumption states:

for any generator g $←G, and any scalars a,b, x , y , c $←Z∗p,
given (g,gx ,gy ,gxa,gyb,gc),

it is hard to decide whether c = a + b or not.

Equivalently, given a reference triple (u = gx , v = gy ,g)
and a new triple (U = ua = gxa,V = vb = gyb,T = gc),
decide whether T = ga+b or not (that is c = a + b).

David Pointcheval – 11/43

Introduction Cryptographic Tools State-of-the-Art Signatures on Ciphertexts

Signature & Encryption

General Tools: Signature

Definition (Signature Scheme)
S = (Setup,SKeyGen,Sign,Verif):

Setup(1k ) → global parameters param;
SKeyGen(param) → pair of keys (sk, vk);
Sign(sk,m; s) → signature σ, using the random coins s;
Verif(vk,m, σ) → validity of σ

If one signs F = F(M), for any function F , one extends the above
definitions: Sign(sk, (F ,F ,ΠM); s) and Verif(vk, (F ,F ,ΠM), σ) where
F details the function that is applied to the message M yielding F ,
and ΠM is a proof of knowledge of a preimage of F under F .

David Pointcheval – 12/43



Introduction Cryptographic Tools State-of-the-Art Signatures on Ciphertexts

Signature & Encryption

Signature: Example

In a group G of order p, with a generator g,
and a bilinear map e : G×G→ GT

Waters Signature [Waters, 2005]

For a message M = (M1, . . . ,Mk ) ∈ {0,1}k ,
we define F(M) = u0

∏k
i=1 uMi

i , where ~u = (u0, . . . ,uk )
$←Gk+1.

For an additional generator h $←G.
SKeyGen: vk = X = gx , sk = Y = hx , for x $←Zp;
Sign(sk = Y ,M; s), for M ∈ {0,1}k and s $←Zp
→ σ =

(
σ1 = Y · F(M)s, σ2 = g−s);

Verif(vk = X ,M, σ = (σ1, σ2)) checks whether

e(g, σ1) · e(F(M), σ2) = e(X ,h).

David Pointcheval – 13/43

Introduction Cryptographic Tools State-of-the-Art Signatures on Ciphertexts

Signature & Encryption

General Tools: Encryption

Definition (Encryption Scheme)
E = (Setup,EKeyGen,Encrypt,Decrypt):

Setup(1k ) → global parameters param;
EKeyGen(param) → pair of keys (pk,dk);
Encrypt(pk,m; r) → ciphertext c, using the random coins r ;
Decrypt(dk, c) → plaintext, or ⊥ if the ciphertext is invalid.

Homomorphic Encryption
For some group laws: ⊕ on the plaintext, ⊗ on the ciphertext,
and � on the randomness
Encrypt(pk,m1; r1)⊗Encrypt(pk,m2; r2) = Encrypt(pk,m1⊕m2; r1�r2)

Decrypt(sk,Encrypt(pk,m1; r1)⊗ Encrypt(pk,m2; r2)) = m1 ⊕m2

David Pointcheval – 14/43
Introduction Cryptographic Tools State-of-the-Art Signatures on Ciphertexts

Signature & Encryption

Encryption: Example

In a group G of order p, with a generator g:

Linear Encryption [Boneh, Boyen, Shacham, 2004]

EKeyGen: dk = (x1, x2)
$←Z2

p, pk = (X1 = gx1 ,X2 = gx2);

Encrypt(pk = (X1,X2),m; (r1, r2)), for m ∈ G and (r1, r2)
$←Z2

p
→ c =

(
c1 = X r1

1 , c2 = X r2
2 , c3 = gr1+r2 ·m

)
;

Decrypt(dk = (x1, x2), c = (c1, c2, c3)) → m = c3/c
1/x1
1 c1/x2

2 .

Homomorphism
(⊕M = ×,⊗C = ×,�R = +)-homomorphism
With m = gM → (⊕M = +,⊗C = ×,�R = +)-homomorphism

David Pointcheval – 15/43

Introduction Cryptographic Tools State-of-the-Art Signatures on Ciphertexts

Security

Security Notions: Signature

Signature: EF-CMA
Existential Unforgeability
under Chosen-Message
Attacks
An adversary should not be
able to generate a new valid
message-signature pair
even if it is allowed to ask
signatures on any message
of its choice

Impossibility to forge signatures
Waters signature reaches EF-CMA under the CDH assumption

David Pointcheval – 16/43



Introduction Cryptographic Tools State-of-the-Art Signatures on Ciphertexts

Security

Security Notions: Encryption

Encryption: IND-CCA
Indistinguishability under
Chosen-Plaintext Attacks
An adversary that chooses
two messages, and receives
the encryption of one of
them, should not be able to
decide which one has been
encrypted

Impossibility to learn any information about the plaintext
The Linear Encryption reaches IND-CPA under the DLin assumption

David Pointcheval – 17/43

Introduction Cryptographic Tools State-of-the-Art Signatures on Ciphertexts

Groth-Sahai Methodology

Groth-Sahai Commitments [Groth, Sahai, 2008]

Under the DLin assumption, the commitment key is:

(u1 = (u1,1,1,g),u2 = (1,u2,2,g),u3 = (u3,1,u3,2,u3,3)) ∈ (G3)3

Initialization

u3 = uλ1 � uµ2 = (u3,1 = uλ1,1,u3,2 = uµ2,2,u3,3 = gλ+µ)

with λ, µ $←Z∗p, and random elements u1,1,u2,2
$←G.

It means that u3 is a linear tuple w.r.t. (u1,1,u2,2,g).

David Pointcheval – 18/43
Introduction Cryptographic Tools State-of-the-Art Signatures on Ciphertexts

Groth-Sahai Methodology

Groth-Sahai Commitments

Group Element Commitment
To commit a group element X ∈ G,
one chooses random coins s1, s2, s3 ∈ Zp and sets

C(X ) := (1,1,X )� us1
1 � us2

2 � us3
3

= (us1
1,1 · u

s3
3,1,u

s2
2,2 · u

s3
3,2,X · gs1+s2 · us3

3,3).

Scalar Commitment
To commit a scalar x ∈ Zp,
one chooses random coins γ1, γ2 ∈ Zp and sets

C′(x) := (ux
3,1,u

x
3,2, (u3,3g)x )� uγ1

1 � uγ2
3

= (ux+γ2
3,1 · uγ1

1,1,u
x+γ2
3,2 ,ux+γ2

3,3 · gx+γ1).

David Pointcheval – 19/43

Introduction Cryptographic Tools State-of-the-Art Signatures on Ciphertexts

Groth-Sahai Methodology

Groth-Sahai Proofs

If u3 a linear tuple, these commitments are perfectly binding
With the initialization parameters, the committed values can even
be extracted → extractable commitments
Using pairing product equations, one can make proofs
on many relations between scalars and group elements:

∏

j

e(Aj ,Xj)
αj
∏

i

e(Yi ,Bi)
βi
∏

i,j

e(Xi ,Yj)
γi,j = t ,

where the Aj , Bi , and t are constant group elements,
αi , βj , and γi,j are constant scalars,
and Xj and Yi are either group elements in G1 and G2,
or of the form gxj

1 or gyi
2 , respectively, to be committed.

The proofs are perfectly sound
David Pointcheval – 20/43



Introduction Cryptographic Tools State-of-the-Art Signatures on Ciphertexts

Groth-Sahai Methodology

Groth-Sahai Proofs

If u3 a linear tuple, these commitments are perfectly binding
The proofs are perfectly sound

If u3 is a random tuple, the commitments are perfectly hiding
The proofs are perfectly witness hiding

Under the DLin assumption, with a correct initialization,
proofs are witness hiding

Can be used for any Pairing Product Equation
If one re-randomizes the commitments, the proof can be adapted

David Pointcheval – 21/43

Introduction Cryptographic Tools State-of-the-Art Signatures on Ciphertexts

Outline

1 Introduction

2 Cryptographic Tools

3 Electronic Voting: State-of-the-Art
General Process
Receipt-Freeness

4 Signatures on Randomizable Ciphertexts

David Pointcheval – 22/43
Introduction Cryptographic Tools State-of-the-Art Signatures on Ciphertexts

General Process

Dessert Choice

A ballot consists of one or two crosses in

� Chocolate Cake
� Cheese Cake
� Ice Cream
� Apple

Each box is thus expressed as a bit: vi ∈ {0,1}, for i = 1,2,3,4
With the additional constraint (at most 2 choices):

∑
i vi ∈ {0,1,2}

In the following, we focus on one box only:
Vi is the i-th voter
vi is the value of the box for this voter: 0 or 1

David Pointcheval – 23/43

Introduction Cryptographic Tools State-of-the-Art Signatures on Ciphertexts

General Process

Voting Procedure

Cryptographic Primitives
Signature S = (Setup,SKeyGen,Sign,Verif)
that is EF-CMA, e.g., Waters Signature;
Homomorphic enc. E = (Setup,EKeyGen,Encrypt,Decrypt)
that is IND-CPA, e.g., ElGamal or Linear Encryption

+ distributed decryption, as Linear Encryption scheme allows

Initialization
The authority owns a signing/verification key-pair (sk, vk)

The ballot-box owns an encryption key pk, which decryption
capability is distributed among the board members
Each voter Vi owns a signing/verification key-pair (uski ,uvki)

David Pointcheval – 24/43



Introduction Cryptographic Tools State-of-the-Art Signatures on Ciphertexts

General Process

Voting Procedure

Voting Phase

Voter Vi Server S
ci = Encrypt(pk, vi ; ri)
σi = Sign(uski , ci ; si)
Πc = Proof of

bit encryption
ci , σi ,Πc−−−−−−−−−−−−−→

Σi←−−−−−−−−−−−−− Σi = Sign(sk, ci ; s′i )

from (σi ,Πc): authorization and uniqueness of a voter
from ci : privacy for the voter

because distributed decryption of the tally only
with Σi : a voter can complain if his vote is not in the ballot-box

David Pointcheval – 25/43

Introduction Cryptographic Tools State-of-the-Art Signatures on Ciphertexts

General Process

Counting Procedure

Counting Phase
Anybody can check all the votes (ci , σi ,Πc)

Anybody can compute

C =
∏

ci =
∏
Epk(vi ; ri) = Epk(

∑
vi ;
∑

ri) = Epk(V ; R)

The board members decrypt C in a distributed
and verifiable way, into V

Everything is verifiable: universal verifiability

Weakness: Receipt
To sell his vote, the voter reveals his random coins ri as a receipt
Receipt-freeness: the voter should not know the random coins ri !

David Pointcheval – 26/43
Introduction Cryptographic Tools State-of-the-Art Signatures on Ciphertexts

Receipt-Freeness

Re-Randomization

Voting Phase

Voter Vi Server S
ci = Encrypt(pk, vi ; ri)
Πc = Proof of

bit encryption
ci ,Πc−−−−−−−−−−−−−→

c′i←−−−−−−−−−−−−− c′i = Random(ci ; r ′i )

Proof(c′i ≡ ci)←−−−−−−−−−−−−→
σi = Sign(uski , c′i ; si)

σi−−−−−−−−−−−−−→
Σi←−−−−−−−−−−−−− Σi = Sign(sk, ci ; s′i )

Non-transferable proof of c′i ≡ ci : verifier-designated proof
Proof of knowledge of [r ′i such that c′i = Random(ci , r ′i )] or [uski ]

David Pointcheval – 27/43

Introduction Cryptographic Tools State-of-the-Art Signatures on Ciphertexts

Receipt-Freeness

Security

Re-Randomization
re-randomization: the voter no longer knows the random coins
designated-verifier proof:
voter convinced and non-transferable proof

The initial proof Πc can be verified on c by the server only
To get universal verifiability, the proof should be adapted

Possible with Groth-Sahai methodology

Weakness: interactions
Interactive proof: 2-round voting (at best!)

Non-Interactive Receipt-Freeness
Our goal: non-interactive receipt-freeness

David Pointcheval – 28/43



Introduction Cryptographic Tools State-of-the-Art Signatures on Ciphertexts

Outline

1 Introduction

2 Cryptographic Tools

3 Electronic Voting: State-of-the-Art

4 Signatures on Randomizable Ciphertexts
Our Full Primitive
Example
Security Notions

David Pointcheval – 29/43

Introduction Cryptographic Tools State-of-the-Art Signatures on Ciphertexts

Our Full Primitive

Signatures on Randomizable Ciphertexts

Voting Phase

Voter Vi Server S
ci = Encrypt(pk, vi ; ri)
σi = Sign(uski , ci ; si)
Πc = Proof of

bit encryption
ci , σi ,Πc−−−−−−−−−−−−−→ (c′i , σ

′
i ,Π
′
c) =

Random(ci , σi ,Πc ; r ′i )

c′i ,Π
′
c ,Σi←−−−−−−−−−−−−− Σi = Sign(sk, (c′i ,Π

′
c); s′i )

The server not only adapts the proof, but the signature too!
from (σi ,Πc): authorization and uniqueness of a voter
from ci : privacy for the voter
from Random: receipt-freeness (unknown random coins ri + r ′i )

David Pointcheval – 30/43
Introduction Cryptographic Tools State-of-the-Art Signatures on Ciphertexts

Our Full Primitive

Signatures on Randomizable Ciphertexts

M

S
ig

n S

sk
;s

σ(M)

EncryptE
pk, r

C

RandomE

r ′

Randomizable
Encryption

S
ig

n S
E

sk
,p

k,
c;

s

σ(C)

RandomE

r ′

Ran
do

mSE

r′

Malleable
Signature on
Randomizable
Encryption

David Pointcheval – 31/43

Introduction Cryptographic Tools State-of-the-Art Signatures on Ciphertexts

Example

Linear Encryption

In a group G of order p, with a generator g,
and a bilinear map e : G×G→ GT

Linear Encryption [Boneh, Boyen, Shacham, 2004]

EKeyGen: dk = (x1, x2)
$←Z2

p, pk = (X1 = gx1 ,X2 = gx2);

Encrypt(pk = (X1,X2),m; (r1, r2)), for m ∈ G and (r1, r2)
$←Z2

p
→ c =

(
c1 = X r1

1 , c2 = X r2
2 , c3 = gr1+r2 ·m

)
;

Decrypt(dk = (x1, x2), c = (c1, c2, c3)) → m = c3/c
1/x1
1 c1/x2

2 .

Re-Randomization

RandomE(pk = (X1,X2), c = (c1, c2, c3); (r ′1, r
′
2)), for (r ′1, r

′
2)

$←Z2
p

→ c′ =
(
c′1 = c1 · X r ′1

1 , c
′
2 = c2 · X r ′2

2 , c
′
3 = c3 · gr ′1+r ′2

)
.

David Pointcheval – 32/43



Introduction Cryptographic Tools State-of-the-Art Signatures on Ciphertexts

Example

Waters Signature

In a group G of order p, with a generator g,
and a bilinear map e : G×G→ GT

Waters Signature [Waters, 2005]

For a message M = (M1, . . . ,Mk ) ∈ {0,1}k ,
we define F = F(M) = u0

∏k
i=1 uMi

i , where ~u = (u0, . . . ,uk )
$←Gk+1.

For an additional generator h $←G.
SKeyGen: vk = X = gx , sk = Y = hx , for x $←Zp;
Sign(sk = Y ,F ; s), for M ∈ {0,1}k , F = F(M), and s $←Zp
→ σ =

(
σ1 = Y · F s, σ2 = g−s);

Verif(vk = X ,M, σ = (σ1, σ2)) checks whether
e(g, σ1) · e(F , σ2) = e(X ,h).

David Pointcheval – 33/43

Introduction Cryptographic Tools State-of-the-Art Signatures on Ciphertexts

Example

Waters Signature on a Linear Ciphertext: Idea

We define F = F(M) = u0
∏k

i=1 uMi
i , and encrypt it

c =
(
c1 = X r1

1 , c2 = X r2
2 , c3 = gr1+r2 · F

)

KeyGen: vk = X = gx , sk = Y = hx , for x $←Zp
dk = (x1, x2)

$←Z2
p, pk = (X1 = gx1 ,X2 = gx2)

Sign((X1,X2),Y , c; s), for c = (c1, c2, c3)
→ σ =

(
σ1 = Y · cs

3, σ2 = (cs
1, c

s
2), σ3 = (gs,X s

1 ,X
s
2 )
)

Verif((X1,X2),X , c, σ) checks e(g, σ1) = e(X ,h) · e(σ3,0, c3)

e(σ2,0,g) = e(c1, σ3,0) e(σ2,1,g) = e(c2, σ3,0)

e(σ3,1,g) = e(X1, σ3,0) e(σ3,2,g) = e(X2, σ3,0)

σ3 is needed for ciphertext re-randomization

David Pointcheval – 34/43
Introduction Cryptographic Tools State-of-the-Art Signatures on Ciphertexts

Example

Re-Randomization of Ciphertext

c = (c1 = X r1
1 , c2 = X r2

2 , c3 = gr1+r2 · F )

σ = (σ1 = Y · cs
3, σ2 = (cs

1, c
s
2), σ3 = (gs,X s

1 ,X
s
2 ) )

after re-randomization by (r ′1, r
′
2)

c′ = (c′1 = c1 · X r ′1
1 , c′2 = c′2 · X

r ′2
2 , c′3 = c3 · gr ′1+r ′2 )

σ′ = (σ′1 = σ1 · σr ′1+r ′2
3,0 , σ′2 = (σ2,0 · σr ′1

3,1, σ2,1 · σr ′2
3,2), σ′3 = σ3 )

Anybody can publicly re-randomize c into c′

with additional random coins (r ′1, r
′
2),

and adapt the signature σ of c into σ′ of c′

David Pointcheval – 35/43

Introduction Cryptographic Tools State-of-the-Art Signatures on Ciphertexts

Security Notions

Unforgeability under Chosen-Ciphertext Attacks

Chosen-Ciphertext Attacks
The adversary is allowed to ask any valid ciphertext of his choice
to the signing oracle

Because of the re-randomizability of the ciphertext-signature,
we cannot expect resistance to existential forgeries,
but we should allow a restricted malleability only:

Forgery
A valid ciphertext-signature pair, so that the plaintext is different
from all the plaintexts in the ciphertexts sent to the signing oracle

David Pointcheval – 36/43



Introduction Cryptographic Tools State-of-the-Art Signatures on Ciphertexts

Security Notions

Unforgeability

From a valid ciphertext-signature pair:

c =
(
c1 = X r1

1 , c2 = X r2
2 , c3 = gr1+r2 · F

)

σ =
(
σ1 = Y · cs

3, σ2 = (cs
1, c

s
2), σ3 = (gs,X s

1 ,X
s
2 )
)

and the decryption key (x1, x2), one extracts

F = c3/(c1/x1
1 c1/x2

2 )

Σ =
(

Σ1 = σ1/(σ
1/x1
2,0 σ

1/x2
2,1 ), Σ2 = σ3,0

)

=
(

= Y · F s = gs)

Security of Waters signature is for a pair (M,Σ)
→ needs of a proof of knowledge ΠM of M in F = F(M)

bit-by-bit commitment of M and Groth-Sahai proof
David Pointcheval – 37/43

Introduction Cryptographic Tools State-of-the-Art Signatures on Ciphertexts

Security Notions

Chosen-Message Attacks

From a valid ciphertext c =
(
c1 = X r1

1 , c2 = X r2
2 , c3 = gr1+r2 · F

)
,

and the additional proof of knowledge of M,
one extracts M and asks for a Waters signature:

Σ =
(
Σ1 = Y · F s,Σ2 = gs)

In this signature, the random coins s are unknown,
we thus need to know the coins in c
→ needs of a proof of knowledge Πr of r1, r2 in c

bit-by-bit commitment of r1, r2 and Groth-Sahai proof
From the random coins r1, r2 (and the decryption key):
σ =

(
σ1 = Σ1 · Σr1+r2

2 , σ2 = (Σx1r1
2 ,Σx2r2

2 ), σ3 = (Σ2,Σ
r1
2 ,Σ

r2
2 )

)

= Y · cs
3, = (cs

1, c
s
2), = (gs,X s

1 ,X
s
2 )

David Pointcheval – 38/43
Introduction Cryptographic Tools State-of-the-Art Signatures on Ciphertexts

Security Notions

Security

Chosen-Ciphertext Attacks
A valid ciphertext C = (c1, c2, c3,ΠM ,Πr ) is a

ciphertext c = (c1, c2, c3)

a proof of knowledge ΠM of the plaintext M in F = F(M)

a proof of knowledge Πr of the random coins r1, r2

From such a ciphertext and the decryption key (x1, x2),
and a Waters signing oracle, one can generate a signature on C

Forgery
From a valid ciphertext-signature pair (C, σ), where C encrypts M,
one can generate a Waters signature on M

David Pointcheval – 39/43

Introduction Cryptographic Tools State-of-the-Art Signatures on Ciphertexts

Security Notions

Security

From the Waters signing oracle,
we answer Chosen-Ciphertext Signing queries

From a Forgery, we build a Waters Existential Forgery

Security Level
Since the Waters signature is EF-CMA under the CDH assumption,
our signature on randomizable ciphertext is Unforgeable

against Chosen-Ciphertext Attacks
under the CDH assumption

David Pointcheval – 40/43



Introduction Cryptographic Tools State-of-the-Art Signatures on Ciphertexts

Security Notions

Properties

Proofs
Since we use the Groth-Sahai methodology for the proofs ΠM and Πr

in case of re-randomization of c, one can adapt ΠM and Πr

because of the need of M, but also r1 and r2 in the simulation,
we need bit-by-bit commitments:

M can be short (` bit-long)
r1 and r2 are random in Zp

→ C is large!

Efficiency
We can improve efficiency: with a variant of Waters Signature
→ shorter signatures: 9`+ 33 group elements

David Pointcheval – 41/43

Introduction Cryptographic Tools State-of-the-Art Signatures on Ciphertexts

Conclusion

Our New Primitive

M

σ(M)

S
ig

n S

sk
;s

RandomS

s′

EncryptE
pk, r

C
dk

DecryptE

r

RandomE

r ′

S
ig

n S
E

sk
,p

k,
c;

s

σ(C)

Ran
do

mSE

r′ ,
s
′

SigExtSE

dk

r

David Pointcheval – 42/43
Introduction Cryptographic Tools State-of-the-Art Signatures on Ciphertexts

Conclusion

Conclusion

Extractable Randomizable Signature on Randomizable Ciphertexts

Various Applications
non-interactive receipt-free electronic voting scheme
(fair) blind signature

Security relies on the CDH and the DLin assumptions
For an `-bit message, ciphertext-signature:

9`+ 33 group elements

A more efficient variant with asymmetric pairing
on the CDH∗ and the SXDH assumptions

Ciphertext-signature: 6`+ 15 group elements in G1
and 6`+ 7 group elements in G2

David Pointcheval – 43/43


