Threshold Cryptography

When one cannot fully trust a unique person, but possibly a pool of individuals, the secret operation is distributed, so that authorized subsets only can perform it

- signature
- decryption

Threshold Cryptography

The access structure (authorized subsets) is defined by a threshold:

- any group of \(t \) players can perform the secret operation
- below this threshold, no power is provided to them
Threshold Public-Key Encryption

A ciphertext can be decrypted only if at least \(t \) users cooperate. Below this threshold, no additional information about the plaintext is leaked.

Many applications:
- electronic voting (decryption of the final result only)
- key-escrow
- identity-based cryptography (secret key extraction)
- etc

Classical Technique: ElGamal

\(\mathbb{G} = \langle g \rangle \) is a group of prime order \(p \)

Lagrange Interpolation (Shamir’s Secret Sharing)
- \(\mathcal{GM} \) generates a polynomial \(P \) of degree \(t - 1 \) over \(\mathbb{Z}_p \)
- each group member \(i \in \{1, \ldots, n\} \) receives \(sk_i = P(i) \)
- the group public key is \(PK = g^{sk} \), where \(sk = P(0) \)

\(t \) users can recover \(sk \), less than \(t \) users have no information.

Threshold ElGamal Encryption
- one can encrypt a message \(m \in \mathbb{G} \): \(c_1 = g^r, c_2 = PK^r \times m \)
- in order to decrypt, one has to compute \(a = PK^r = c_1^{sk} \):
 - each user \(i \) computes \(a_i = c_i^{sk_i} \)
 - with \(t \) values, \(a \) can be “interpolated”.
Limitations

At the key generation phase:

- the target group (or set) is fixed (the public key)
- the threshold t, to define the authorized subsets, is fixed

Dynamic Threshold Encryption

- any user can *dynamically* join the system as a future receiver
- the sender can *dynamically* choose the target set S
- the sender can *dynamically* set the threshold t

Related to

- Threshold broadcast encryption

 [Daza, Herranz, Morillo, Ràfols – ProvSec ’07]

 Ciphertext linear in $O(S)$

Outline

1. Formal Model
2. Our Construction
3. Conclusion
Robustness is achieved by **public** verification tools:

ValidateCT(EK, S, t, C). It checks whether C is a valid ciphertext with respect to EK, S and t

ShareVerify(VK, ID, uvk, C, σ). It checks whether σ is a valid decryption share with respect to uvk

KEM-DEM methodology:
- an ephemeral secret key K is first generated (KEM)
- a symmetric mechanism is used to encrypt the data (DEM)

Encrypt(EK, S, t). With the target set S (the public keys upk), and a threshold t, it outputs an ephemeral key K, and the key encapsulation material **HDR**
Security Model

Correctness. Valid encryptions should be correctly checked and decrypted, legitimate decryptions should be correctly verified, and should lead to the plaintext/ephemeral key.

Robustness. If t shares are correctly checked with ShareVerify, then the Combine algorithm outputs the correct key K.

Privacy. For any header HDR encrypted for a target set S of registered users with a threshold t, any collusion that contains less than t users from this target set cannot learn any information about the ephemeral key K.

Security Model: Privacy

Setup: The challenger runs $\text{Setup}(\lambda)$ and the public parameters $(\text{EK}, \text{DK}, \text{VK}, \text{CK})$ are given to the adversary.

Query phase 1: The adversary \mathcal{A} adaptively issues queries:
- Join queries (on a new user ID)
- Corrupt queries (on an existing user ID) to learn private keys
- ShareDecrypt queries (on an ID and a header HDR) to learn the partial decryption

Challenge: \mathcal{A} outputs a set of users S^* and a threshold t^*. The challenger randomly selects $b \leftarrow \{0, 1\}$, and gets $(K_0, \text{HDR}^*) = \text{Encrypt}(\text{EK}, S^*, t^*)$, and randomly chooses an ephemeral key K_1: it returns (K_b, HDR^*) to \mathcal{A}.

Query phase 2: as Query phase 1

Guess: The adversary \mathcal{A} outputs its guess b' for b.
Security Levels

With the natural restrictions on the oracle queries wrt. the target set and the threshold, the advantage of A is defined as

$$\text{Adv}_A(\lambda) = \left| \Pr[b' = b] - \frac{1}{2} \right|.$$

As usual, $\text{Adv}(T, n, m, t, q_C, q_D)$ denotes the maximal value over the adversaries A such that

- it runs within time T
- it makes at most
 - $n \text{ Join}$-queries
 - $q_C \text{ Corrupt}$-queries
 - $q_D \text{ ShareDecrypt}$-queries
- the size of S^* is upper-bounded by m
- the value of t^* is upper-bounded by t.

Security Level: the Basic one

Non-Adaptive Adversary (NAA)
We restrict the adversary to decide before the setup the set S^* and the threshold t^* to be sent to the challenger.

Non-Adaptive Corruption (NAC)
We restrict the adversary to decide before the setup the identities that will be corrupted.

Chosen-Plaintext Adversary (CPA)
We prevent the adversary from issuing ShareDecrypt-queries.

(n, m, t, q_C)-IND-NAA-NAC-CPA security
Non-adaptive adversary, non-adaptive corruption, and CPA.
Our **Combine** algorithm makes use of the **Aggregate** tool

[Delerablée, Paillier, and Pointcheval – Pairing ’07]

It allows to compute

\[L = A^{(\gamma + x_1) \ldots (\gamma + x_t)} \in \mathbb{G}_T \]

given \(A \) and \(\Sigma = \{(x_j, a_j = A^{\gamma + x_j})\}_{j=1}^t \), but \(\gamma \) private, where the \(x_j \)'s are pairwise distinct.

Our Construction: Setup

\textbf{Setup}(\lambda). Given a bilinear setting, \(e : \mathbb{G}_1 \times \mathbb{G}_2 \rightarrow \mathbb{G}_T \), with

- generators \(g \in \mathbb{G}_1 \) and \(h \in \mathbb{G}_2 \)
- \(\gamma, \alpha \leftarrow \mathbb{Z}_p^* \)
- \(\mathcal{D} = \{d_i\}_{i=1}^{m-1} \) of random values in \(\mathbb{Z}_p \), where \(m \) is the maximal size of a target set \((\mathcal{D} \) corresponds to a set of public dummy users)
- \(u = g^{\alpha \cdot \gamma} \)
- \(v = e(g, h)^\alpha \)

- The master secret key: \(\text{MK} = (g, \gamma, \alpha) \)
- The encryption key: \(\text{EK} = (m, u, v, h^{\alpha \cdot \gamma}, \{h^{\alpha \cdot \gamma^i}\}_{i=1}^{2m-1}, \mathcal{D}) \)
- The decryption key: \(\text{DK} = \emptyset \)
- The combining key: \(\text{CK} = (m, h, \{h^{\gamma^i}\}_{i=1}^{m-2}, \mathcal{D}) \)
Our Construction: Join/Encrypt

Join(MK, ID). Given MK = (g, γ, α), and an identity ID, it randomly chooses a new \(x \in \mathbb{Z}_p \):

\[
\text{upk} = x \quad \text{usk} = g^{\gamma + x} \]

Encrypt(EK, S, t). Given a set \(S = \{ \text{upk}_1 = x_1, \ldots, \text{upk}_s = x_s \} \) and a threshold \(t \) (with \(t \leq s \leq m \)), **Encrypt** picks \(k \leftarrow \mathbb{Z}_p^* \), and sets \(\text{HDR} = (C_1, C_2) \) and \(K = v^k \):

\[
C_1 = u^{-k} \\
C_2 = h^{k \cdot \alpha \cdot \prod_{x_j \in S} (\gamma + x_j) \cdot \prod_{x \in D_{m+t-s-1}} (\gamma + x)}
\]

- a set of \(m + t - s - 1 \) dummy users + a set of \(s \) authorized users ⇒ a polynomial of degree \(m + t - 1 \) in the exponent of \(h \):
- \(m + t - 1 \leq 2m - 1 \): can be computed from EK
- the cooperation of \(t \) authorized users will decrease the degree of the polynomial in \(v \) to degree \(m - 1 \): **too high degree for CK**!

Our Construction: Decryption

ShareDecrypt(ID, usk, HDR). Given \(\text{HDR} = (C_1, C_2) \) and \(\text{usk} = g^{\gamma + x} \):

\[
\sigma = e(\text{usk}, C_2) = v^{k \cdot \prod_{x_j \in S \cup D_{m+t-s-1}} (\gamma + x_j) / (\gamma + x)}
\]

Combine(CK, HDR, T, Σ). Given a set \(\Sigma \) of \(t \) decryption shares:

\[
K = \left(e(C_1, h^{p(\gamma)}) \cdot \text{Aggregate}(v, \Sigma) \right)^{1/c}
\]

- \(c = \prod_{x \in S \cup D_{m+t-s-1} \setminus T} x \in \mathbb{Z}_p \)
- \(p(\gamma) = \frac{1}{\gamma} \cdot \left(\prod_{x \in S \cup D_{m+t-s-1} \setminus T} (\gamma + x) - c \right) \), a polynomial of degree \(m - 2 \), computable from CK
Our Construction: Decryption (Cont’d)

\[K' = e\left(C_1, h^{p(\gamma)}\right) \cdot \text{Aggregate}(v, \Sigma) \]
\[= e\left(g^{-k \cdot \gamma}, h^{p(\gamma)}\right) \cdot v^k \prod_{x \in S \cup D} \tau(\gamma + x) \]
\[= v^{-k \cdot \gamma \cdot p(\gamma)} \cdot v^k (\gamma \cdot p(\gamma) + c) \]
\[= v^{k \cdot c} = K^c. \]

\text{ValidateCT}(EK, S, t, HDR). \quad \text{Given } HDR = (C_1, C_2)

\[C'_1 = u^{-1} \quad C'_2 = h^{\alpha \cdot \prod_{x \in S \cup D} (\gamma + x)} \]

\(HDR = (C_1, C_2) \) is valid with respect to \(S \) if and only if there exists a scalar \(k \) such that \(C_1 = C'_1 \cdot k \) and \(C_2 = C'_2 \cdot k \):

\[e(C_1, C'_2) \overset{?}{=} e(C'_1, C_2) \]

Our Construction: Security Result

\textbf{Theorem}

\[\text{Adv}(T, n, m, t, \ell, 0) \leq 2 \cdot \text{Adv}^{\text{mse} - \text{ddh}}(T', \ell, m, t). \]

\textbf{(\(\ell, m, t \)-Multi-Sequence of Exponents) DDH}

Let \(f \) and \(g \) be two random coprime polynomials, of respective orders \(\ell \) and \(m \), with pairwise distinct roots \(x_1, \ldots, x_\ell \) and \(y_1, \ldots, y_m \) respectively, as well as:

\[
\begin{align*}
g, g^{\gamma}, \ldots, g^{\gamma^{\ell+t-2}}, & \quad g^{k \cdot \gamma \cdot f(\gamma)}, \\
g^\alpha, g^{\alpha \cdot \gamma}, \ldots, g^{\alpha \cdot \gamma^{\ell+t}}, & \quad \\
h, h^{\gamma}, \ldots, h^{\gamma^{m-2}}, & \quad h^{k \cdot g(\gamma)}, \text{ and } T \in \mathbb{G}_T,
\end{align*}
\]

decide whether \(T \) is equal to \(e(g, h)^{k \cdot f(\gamma)} \) or not.
Our Construction: Security Result

Lemma (Generic Security)

For any probabilistic algorithm A that makes at most q queries to the group oracles, with $d = 4(\ell + t) + 6m + 2$

\[
\text{Adv}^{\text{mse-ddh}}(A, \ell, m, t) \leq \frac{(q + 4(\ell + t) + 6m + 4)^2 \cdot d}{2p}
\]

Theorem (Generic Security)

Our construction is secure
- against non-adaptive and generic adversaries
- under non-adaptive corruption
 and chosen-plaintext attacks

Our Construction: Efficiency

Ciphertext Size

Ciphertext: $C_1 = u^{-k}, C_2 = h^{k \cdot \alpha \cdot \prod_{x_i \in S}(\gamma + x_i) \prod_{x \in D^{m+t-s-1}}(\gamma + x)}$

The header has a constant size: two group elements

Decryption

Given $\text{HDR} = (C_1, C_2)$ and $\text{usk} = g^{\frac{1}{\gamma + x}}, \sigma = e(\text{usk}, C_2)$.

The user decryption is quite efficient: one pairing

Non-Interactive Combination

\[
K = \left(e\left(C_1, h^p(\gamma)\right) \cdot \text{Aggregate}(v, \Sigma) \right)^{1/c}
\]

The combination step does not need any interaction
Extensions: Random Oracle Model

All the previous properties are achieved in the standard model (under the MSE–DDH assumption)

Robustness

Easily achieved in the random oracle model, using Schnorr-like proof of equality of discrete logarithms

Identity-Based

It is simple to get an ID-based version in the random oracle model, by simply taking $u_{pk} = x = H(ID)$

Conclusion

- Security model for (dynamic) threshold public-key encryption (a.k.a. threshold broadcast encryption)
- Efficient and provably secure candidate the first with constant-size header

But still a lot of work on this topic:
- Use of a new non-standard assumption
- Secure against restricted adversaries only:
 - Chosen-plaintext attacks
 - Non-adaptive adversaries