Threshold Cryptography

When one cannot fully trust a unique person, but possibly a pool of individuals, the secret operation is distributed, so that authorized subsets only can perform it:

- signature
- decryption

Threshold Cryptography

The access structure (authorized subsets) is defined by a threshold:

- any group of t players can perform the secret operation
- below this threshold, no power is provided to them
Threshold Public-Key Encryption

A ciphertext can be decrypted only if at least \(t \) users cooperate. Below this threshold, no additional information about the plaintext is leaked.

Many applications:

- electronic voting (decryption of the final result only)
- key-escrow
- identity-based cryptography (secret key extraction)
- etc

Classical Technique: ElGamal

\(G = \langle g \rangle \) is a group of prime order \(p \)

Lagrange Interpolation (Shamir’s Secret Sharing)

\(GM \) generates a poly6.0 G0 c604081 cmBT/F30.0 w 310.14583
Limitations

At the key generation phase:
- the target group (or set) is fixed (the public key)
- the threshold t, to define the authorized subsets, is fixed

Dynamic Threshold Encryption

- any user can *dynamically* join the system as a future receiver
- the sender can *dynamically* choose the target set S
- the sender can *dynamically* set the threshold t

Related to

- Threshold broadcast encryption

 [Daza, Herranz, Morillo, Ràfols - ProvSec '07]

 Ciphertext linear in $O(S)$

Outline

1. Formal Model
2. Our Construction
3. Conclusion
A Dynamic TPKE Scheme: Encryption/Decryption

Setup(λ). It outputs a set of parameters
\[\text{PARAM} = (\text{MK}, \text{EK}, \text{DK}, \text{VK}, \text{CK}) \]
MK is the master secret key: for adding new users

Join(MK, ID). With MK and the identity ID of a new user, it outputs the user’s keys (usk, upk, uvk)

Encrypt(EK, S, t, M). With the target set S (the public keys upk), and the threshold t, it outputs an encryption of the message M

ShareDecrypt(DK, ID, usk, C). With his private key usk, user ID gets his decryption share σ, or ⊥

Combine(CK, S, t, C, T, Σ). With an authorized subset T (subset of t targeted users), and Σ = (σ₁, ..., σₜ) a list of t decryption shares, it outputs a cleartext M, or ⊥

Robustness is achieved by **public** verification tools:

ValidateCT(EK, S, t, C). It checks whether C is a valid ciphertext with respect to EK, S and t

ShareVerify(VK, ID, uvk, C, σ). It checks whether σ is a valid decryption share with respect to uvk

KEM-DEM methodology:
- an ephemeral secret key K is first generated (KEM)
- a symmetric mechanism is used to encrypt the data (DEM)

Encrypt(EK, S, t). With the target set S (the public keys upk), and a threshold t, it outputs an ephemeral key K, and the key encapsulation material HDR
Security Model

Correctness. Valid encryptions should be correctly checked and decrypted, legitimate decryptions should be correctly verified, and should lead to the plaintext/ephemeral key.

Robustness. If \(t \) shares are correctly checked with \texttt{ShareVerify}, then the \texttt{Combine} algorithm outputs the correct key \(K \).

Privacy. For any header \(\texttt{HDR} \) encrypted for a target set \(S \) of registered users with a threshold \(t \), any collusion that contains less than \(t \) users from this target set cannot learn any information about the ephemeral key \(K \).

Security Model: Privacy

Setup: The challenger runs \texttt{Setup}(\(\lambda \)) and the public parameters \((\texttt{EK}, \texttt{DK}, \texttt{VK}, \texttt{CK})\) are given to the adversary.

Query phase 1: The adversary \(\mathcal{A} \) adaptively issues queries:
- \texttt{Join} queries (on a new user ID)
- \texttt{Corrupt} queries (on an existing user ID) to learn private keys
- \texttt{ShareDecrypt} queries (on an ID and a header \(\texttt{HDR} \)) to learn the partial decryption

Challenge: \(\mathcal{A} \) outputs a set of users \(S^? \) and a threshold \(t^? \). The challenger randomly selects \(b \leftarrow \{0, 1\} \), and gets \((K_0, \texttt{HDR}^?) = \texttt{Encrypt}(\texttt{EK}, S^?, t^?)\), and randomly chooses an ephemeral key \(K_1 \): it returns \((K_b, \texttt{HDR}^?)\) to \(\mathcal{A} \).

Query phase 2: as **Query phase 1**

Guess: The adversary \(\mathcal{A} \) outputs its guess \(b' \) for \(b \).
Security Levels

With the natural restrictions on the oracle queries wrt. the target set and the threshold, the advantage of A is defined as

$$\text{Adv}_A(\lambda) = \left| \Pr[b' = b] - \frac{1}{2} \right|.$$

As usual, $\text{Adv}(T, n, m, t, q_C, q_D)$ denotes the maximal value over the adversaries A such that

- it runs within time T
- it makes at most
 - $n \text{Join}$-queries
 - $q_C \text{Corrupt}$-queries
 - $q_D \text{ShareDecrypt}$-queries
- the size of S^\star is upper-bounded by m
- the value of t^\star is upper-bounded by t.

Security Level: the Basic one

Non-Adaptive Adversary (NAA)
We restrict the adversary to decide before the setup the set S^\star and the threshold t^\star to be sent to the challenger

Non-Adaptive Corruption (NAC)
We restrict the adversary to decide before the setup the identities that will be corrupted

Chosen-Plaintext Adversary (CPA)
We prevent the adversary from issuing ShareDecrypt-queries

(n, m, t, q_C)-IND-NAA-NAC-CPA security
Non-adaptive adversary, non-adaptive corruption, and CPA
Aggregate Tool

Our **Combine** algorithm makes use of the **Aggregate** tool [Delerablé, Paillier, and Pointcheval – Pairing ’07]

It allows to compute

\[L = A^{\frac{1}{\gamma + x_1}} \cdots A^{\frac{1}{\gamma + x_t}} \in G_T \]

given \(A \) and \(\Sigma = \{(x_j, a_j = A^{\frac{1}{\gamma + x_j}})\}_{j=1}^t \), but \(\gamma \) private,

where the \(x_j \)'s are pairwise distinct.

Our Construction: Setup

Setup(\(\lambda \)). Given a bilinear setting, \(e : G_1 \times G_2 \to G_T \), with

- generators \(g \in G_1 \) and \(h \in G_2 \)
- \(\gamma, \alpha \leftarrow R \mathbb{Z}_p^* \)
- \(D = \{d_i\}_{i=1}^{m-1} \) of random values in \(\mathbb{Z}_p \),
 where \(m \) is the maximal size of a target set
 (\(D \) corresponds to a set of public dummy users)
- \(u = g^{\alpha \cdot \gamma} \)
- \(v = e(g, h)^\alpha \)
- The master secret key: \(MK = (g, \gamma, \alpha) \)
- The encryption key: \(EK = \left(m, u, v, h^\alpha, \{h^{\gamma^i}\}_{i=1}^{2m-1}, D \right) \)
- The decryption key: \(DK = \emptyset \)
- The combining key: \(CK = \left(m, h, \{h^{\gamma^i}\}_{i=1}^{m-2}, D \right) \)
Our Construction: Join/Encrypt

Join(MK, ID). Given MK = (g, γ, α), and an identity ID, it randomly chooses a new \(x \in \mathbb{Z}_p \):

\[
\text{upk} = x \
\text{usk} = g^{\frac{1}{\gamma + x}}
\]

Encrypt(EK, S, t). Given a set \(S = \{\text{upk}_1 = x_1, \ldots, \text{upk}_s = x_s\} \) and a threshold \(t \) (with \(t \leq s \leq m \)), Encrypt picks \(k \leftarrow Z_p^* \), and sets \(\text{HDR} = (C_1, C_2) \) and \(K = v^k \):

\[
\begin{align*}
C_1 &= u^{-k} \\
C_2 &= h^{k \cdot \alpha \cdot \prod_{x_i \in S} (\gamma + x_i)} \\
&\cdot \prod_{x \in \mathcal{D}_{m+t-s-1}} (\gamma + x)
\end{align*}
\]

- a set of \(m + t - s - 1 \) dummy users + a set of \(s \) authorized users \(\Rightarrow \) a polynomial of degree \(m + t - 1 \) in the exponent of \(h \):
- \(m + t - 1 \leq 2m - 1 \): can be computed from EK
- the cooperation of \(t \) authorized users will decrease the degree of the polynomial in \(v \) to degree \(m - 1 \): too high degree for CK!

Our Construction: Decryption

ShareDecrypt(ID, usk, HDR). Given \(\text{HDR} = (C_1, C_2) \) and

\[
\text{usk} = g^{\frac{1}{\gamma + x}}
\]

\[
\sigma = e(\text{usk}, C_2) = v^{\frac{k \cdot \prod_{x_i \in S \cup \mathcal{D}_{m+t-s-1}} (\gamma + x_i)}{\gamma + x}}.
\]

Combine(CK, HDR, T, Σ). Given a set \(Σ \) of \(t \) decryption shares:

\[
K = \left(e\left(C_1, h^{p(\gamma)} \right) \cdot \text{Aggregate}(v, Σ) \right)^{\frac{1}{c}}
\]

\[
c = \prod_{x \in S \cup \mathcal{D}_{m+t-s-1} \setminus T} x \in \mathbb{Z}_p
\]

\[
p(\gamma) = \frac{1}{\gamma} \cdot \left(\prod_{x \in S \cup \mathcal{D}_{m+t-s-1} \setminus T} (\gamma + x) - c \right),
\]

a polynomial of degree \(m - 2 \), computable from CK
Our Construction: Decryption (Cont'd)

\[K' = e\left(C_1, h^{p(\gamma)}\right) \cdot \text{Aggregate}\left(v, \Sigma\right) \]

\[= e\left(g^{-k \cdot \gamma}, h^{p(\gamma)}\right) \cdot v^{k \cdot \prod_{x \in S \cup D} (m+t-s-1)(\gamma+x)} \]

\[= v^{-k \cdot \gamma \cdot p(\gamma)} \cdot v^{k \cdot (\gamma \cdot p(\gamma)+c)} \]

\[= v^{k \cdot c} = K^c. \]

\[\text{ValidateCT}(E, S, t, \text{HDR}). \text{ Given } \text{HDR} = (C_1, C_2) \]

\[C_1' = u^{-1} \quad C_2' = h^{\alpha \cdot \prod_{x \in S \cup D} (m+t-s-1)(\gamma+x)} \]

HDR = (C_1, C_2) is valid with respect to S if and only if there exists a scalar k such that C_1 = C_1'^k and C_2 = C_2'^k:

\[e\left(C_1, C_2\right) \overset{?}{=} e\left(C_1', C_2\right) \]

Our Construction: Security Result

Theorem

\[\text{Adv}(T, n, m, t, \ell, 0) \leq 2 \cdot \text{Adv}^{\text{mse-} \text{ddh}}(T', \ell, m, t). \]

(-Multi-Sequence of Exponents) DDH

Let \(f \) and \(g \) be two random coprime polynomials, of respective orders \(\ell \) and \(m \), with pairwise distinct roots \(x_1, \ldots, x^\ell \) and \(y_1, \ldots, y_m \) respectively, as well as

\[x_1, \ldots, x^\ell, \quad y_1, \ldots, y_m \]

\[g, g^{\gamma}, \ldots, g^{\gamma^{\ell+t-2}}, \quad g^{k \cdot \gamma \cdot f(\gamma)} \]

\[g^{\alpha}, g^{\alpha \cdot \gamma}, \ldots, g^{\alpha \cdot \gamma^{\ell+t}}, \quad h, h^{\gamma}, \ldots, h^{\gamma^{m-2}}, \]

\[h^{\alpha}, h^{\alpha \cdot \gamma}, \ldots, h^{\alpha \cdot \gamma^{2m-1}}, \quad h^{k \cdot g(\gamma)} \text{, and } T \in G_T, \]

decide whether \(T \) is equal to \(e(g, h)^{k \cdot f(\gamma)} \) or not.
Our Construction: Security Result

Lemma (Generic Security) [Boneh, Boyen, Goh – Eurocrypt ’05]

For any probabilistic algorithm \(A \) that makes at most \(q \) queries to the group oracles, with \(d = 4(\ell + t) + 6m + 2 \)

\[
Adv_{mse-ddh}(A, \ell, m, t) \leq \frac{(q + 4(\ell + t) + 6m + 4)^2 \cdot d}{2p}
\]

Theorem (Generic Security)

Our construction is secure
- against non-adaptive and generic adversaries
- under non-adaptive corruption
 and chosen-plaintext attacks

Our Construction: Efficiency

Ciphertext Size

Ciphertext: \(C_1 = u^{−k}, C_2 = h^{k \cdot \alpha \cdot \prod_{x_j \in S}(\gamma + x_j) \cdot \prod_{x \in D}_{m+t-s-1}(\gamma + x)} \)

The header has a constant size: two group elements

Decryption

Given \(HDR = (C_1, C_2) \) and \(usk = g^{\frac{1}{\gamma + x}}, \sigma = e(usk, C_2) \).

The user decryption is quite efficient: one pairing

Non-Interactive Combination

\[K = \left(e \left(C_1, h^{p(\gamma)} \right) \cdot \text{Aggregate}(v, \Sigma) \right)^{\frac{1}{c}} \]

The combination step does not need any interaction
Extensions: Random Oracle Model

All the previous properties are achieved in the standard model (under the MSE–DDH assumption)

Robustness

Easily achieved in the random oracle model, using Schnorr-like proof of equality of discrete logarithms

Identity-Based

It is simple to get an ID-based version in the random oracle model, by simply taking $u^k = x = H(ID)$

Conclusion

- Security model for (dynamic) threshold public-key encryption (a.k.a. threshold broadcast encryption)
- Efficient and provably secure candidate the first with constant-size header

But still a lot of work on this topic:
- Use of a new non-standard assumption
- Secure against restricted adversaries only:
 - Chosen-plaintext attacks
 - Non-adaptive adversaries