One-Time Verifier-Based Encrypted Key Exchange

Michel Abdalla
ENS – France

Olivier Chevassut
LBNL – DOE - USA

David Pointcheval
CNRS-ENS – France

PKC ’05
Les Diablerets, Switzerland
January 24th 2005

Summary

- Authenticated Key Exchange
- Password-Based Authentication
 - EKE and OKE
 - Security Results
- Enhanced Security against Corruption

Authenticated Key Exchange

Two parties (Alice and Bob) agree on a common secret key \(sk \), in order to establish a secret channel

- Basic security notion: semantic security
 - only the intended partners can compute the session key \(sk \)
- Formally:
 - the session key \(sk \) is indistinguishable from a random string \(r \), to anybody else

Further Properties

- Mutual authentication
 - They are both sure to actually share the secret with the people they think they do
- Forward-secrecy
 - Even if a long-term secret data is corrupted, previously shared secrets are still protected
Passive/Active Adversaries

- **Passive adversary**: history built using
 - the execute-queries → transcripts
 - the reveal-queries → session keys
- **Active adversary**: entire control of the network
 - the send-queries
 - active, adaptive adversary on concurrent executions
 - to send message to Alice or Bob (in place of Bob or Alice respectively)
 - to intercept, forward and/or modify messages

Semantic Security

As many execute, send and reveal queries as the adversary wants

0/1 try to guess b
- if b=0, answer the actual secret data sk
- if b=1, answer a random string r

Foward Secrecy: Corrupt-Query

Forward Secrecy: corruption of long term keys
- the corrupt-queries → long-term key

FS-Freshness:
- the instance has accepted (holds a key!)
- neither the instance nor its partner has been asked for a reveal query
- (neither the instance) nor its partner has been asked for a corrupt query

⇒ Diffie-Hellman provides the Forward Secrecy
Diffie-Hellman Key Exchange

\[G = \langle g \rangle, \text{ cyclic group of prime order } q \]

- Alice chooses a random \(x \in \mathbb{Z}_q \), computes and sends \(X = g^x \)
- Bob chooses a random \(y \in \mathbb{Z}_q \), computes and sends \(Y = g^y \)
- They can both compute the value \(K = Y^x = X^y \)

Properties

- Without any authentication, no security is possible: man-in-the-middle attack
 \(\Rightarrow \) some authentication is required
- If flows are authenticated (MAC or Signature), it provides the forward secrecy under the DDH Problem
- If one derives the session key as \(sk = H(K, ...) \), in the random oracle model, the forward secrecy is relative to the CDH Problem

Password-based Authentication

Password (short – low-entropy secret – say 20 bits)

- exhaustive search is possible
- basic attack: on-line exhaustive search
 - the adversary guesses a password
 - tries to play the protocol with this guess
 - failure \(\Rightarrow \) it erases the password from the list
 - and restarts...
- after \(2^{20} \) attempts, the adversary wins

Dictionary Attack

- The on-line exhaustive search
 - cannot be prevented
 - can be made less serious (delay, limitations, ...)
 We want it to be the best attack...
- The off-line exhaustive search
 - a few passive or active attacks
 - transcripts \(\Rightarrow \) password, by an off-line check
 - this is called dictionary attack
 \(\Rightarrow \) our GOAL: prevent dictionary attacks
Example: EKE

The most famous scheme: Encrypted Key Exchange
Either one or two flows are encrypted with the password

- E_x: ideal cipher
- $E_x(X) = H(\pi).X$ in ROM

EKE - OKE

- **OKE**: Open Key Exchange
 - first flow sent in clear (open)
 - forward secrecy = CDH

- **EKE**: Encrypted Key Exchange
 - both flows encrypted
 - semantic security = CDH

EKE: Forward secrecy = open problem

EKE: Security Results

- **Assumptions**
 - two different masks with H_1 and H_2
 - random-oracle model for $H, H_1,$ and H_2

Semantic security of EKE:
advantage $\leq 2q_s/N + 3q_h^2$ $\text{Succ}^\text{CDH}(t') + \epsilon$

Forward Secrecy of EKE:
advantage $\leq 2q_s/N + 4$ $\text{Succ}^\text{GDH}(t,q_h) + \epsilon$

$\text{Succ}^\text{GDH}(t,q) = \text{Probability to solve the CDH problem, within time } t,$ after q calls to a DDH oracle
Increased Security

- **Protecting against server corruptions:** verifier-based authentication
 - Alice knows a password π,
 - Bob just knows a verifier of the password $\nu = f(\pi)$,
 - ν is the *actual* password,
 - then Alice proves her knowledge of $\pi = f^{-1}(\nu)$, in ZK

Improved Security (Con'd)

- **Protecting against client corruptions:** one-time password authentication
 - the *actual* password is $\nu_n = f^n(\pi)$
 - at the end the client sends,
 encrypted under the new session key, $\nu_{n-1} = f^{n-1}(\pi)$,
 which validity can be easily checked
 - the next password will be ν_{n-1}