Two parties (Alice and Bob) agree on a common secret key SK, in order to establish a secret channel. Basic security requirement:

- implicit authentication

- only the intended partners can compute the session key.

Summary

- Password-based Authenticenticated Key Exchange
- EKE, OKE and a generalization
- Trapdoor Hard-to-Invert Isomorphisms
- Examples

Authenticated Key Exchange

Two parties (Alice and Bob) agree on a common secret key SK, in order to establish a secret channel. Basic security requirement:

- implicit authentication

- only the intended partners can compute the session key.
Authentication

To prevent active attacks, some kind of authentication of the flows is required:
- **Asymmetric**: (sk_A, pk_A) and possibly (sk_B, pk_B)
- **Symmetric**: common (high-entropy) secret
- **Password**: common (low-entropy) secret
 - *e.g.* a 20-bit password

Password-based Authentication

Password (low-entropy secret) *e.g. 20 bits*
- exhaustive search is possible
- basic attack: **on-line exhaustive search**
 - the adversary guesses a password
 - tries to play the protocol with this guess
 - failure ⇒ it erases the password from the list
 - and restarts...
 - after 1,000,000 attempts, the adversary wins
 - cannot be avoided

 We want it to be the best attack…

Dictionary Attack

- **Off-line exhaustive search**
 - a few passive or active attacks
 - failure/transcript ⇒ erasure of MANY passwords from the list: this is called **dictionary attack**
- To prevent them:
 - a passive eavesdropping
 - no *useful* information about the password
 - an active trial
 - cancels *at most one* password

Summary

- Password-based Authenticated Key Exchange
 - EKE, OKE and a generalization
 - Trapdoor Hard-to-Invert Isomorphisms
- Examples
Encrypted Key Exchange

Bellovin-Merritt

Problems:
- Encoding of pk not often uniformly distributed in the ES plaintext space
- pk and c are rarely on the same space
- Nice exception: ElGamal (DH-EKE) on $<g>$
- Many security analyses in the ROM, ICM, ...

Open Key Exchange

Lucks

- The public key pk is sent in **clear**:

Surjection: Necessary

- If not, given c', one eliminates the π's that lead to a c which is not in the image set of EA_{pk}: *partition attack*
- If yes, given c', any π is possible: sending the correct k means *guessing the good π*

Efficient Implementation

- Using the **one-time pad**, and bijections $\text{EA}_{pk} = f_{pk}$ and $\text{DA}_{sk} = g_{sk} = f_{pk}^{-1}$

- f_{pk} must be a **bijection** onto a group (G_{pk}, \otimes)
- f_{pk} must be *"hard-to-invert"
- G must be a random function (RO) onto G_{pk}
Efficiently Sampleable

\(f_{pk} \) must be \textit{trapdoor} “hard-to-invert”, not necessarily “one-way”: but just \textit{samplable}

\((r, c) \leftarrow S(pk)\) such that \(r\) random in \(M_{pk}\) and \(c = f_{pk}(r)\)

\(pk\) must be easy to generate

\(f_{pk}\) must be a bijection ⇒ \textit{to be checked}

Hard-to-Invert: not Enough?

When \(pk\) is chosen by Alice

\(sk\) is unknown to the adversary

- the adversary can know only one pre-image \(r\) (for the guessed password \(\pi\))
- for other \(\pi\)’s, the “hard-to-invert” property prevents from extracting/checking other \(r\) values

This is the intuition... For the formal proof

- Hard-to-invert
- Bijection
- Morphism

Morphism: for the Proof

For checking a password, one uses \(k\) or \(SK\)

⇒ one must compute \(r\) (appears in \(H-H’\) queries)

- Either \(c’\) sent by Bob: from any correct \((\pi, r)\)
 such that \(c’ = f_{pk}(r) \otimes G(\pi)\), one can invert \(f_{pk}\)
 - by simulating \(c’ = f_{pk}(a)\)
 for a known \(a\)
 - by embedding the challenge \(y\) in \(G(\pi)\)
 \[y = c’ \otimes f_{pk}(a) = f_{pk}(r) \otimes f_{pk}(a) = f_{pk}(r-a)\]
- Or by the adversary: from two correct pairs \((\pi, r)\)

Trapdoor Hard-to-Invert Isomorphisms Family

\(F = (f_{pk}, _pk)\) trapdoor hard-to-invert isomorphisms

- \((pk, sk) \leftarrow G(1^k)\): generation
 - \(f_{pk}\) is an isomorphism from \(M_{pk}\) onto \(G_{pk}\)
- \((r, c) \leftarrow S(pk)\): sample
 - such that \(r\) random in \(M_{pk}\) and \(c = f_{pk}(r)\) (random in \(G_{pk}\))

- Given \(y\) and \(pk\), check whether \(y \in f_{pk}(M_{pk}) = G_{pk}\)
- Given \(y\) and \(sk\), easy to invert \(f_{pk}\) on \(y\)
- Without \(sk\), hard to invert \(f_{pk}\)
Password-based Authenticated Key Exchange

EKE, OKE and a generalization

Trapdoor Hard-to-Invert Isomorphisms

Candidates

Diffie-Hellman: $sk = x, pk = g^x$

$$f_{pk}(g^a) = g^{ax} = pk^a, g_{sk}(b) = b^{1/x}$$

f_{pk} is not one-way, but hard-to-invert under the **CDH assumption**

\Rightarrow classical DH-AKE variants (PAK or AuthA)

RSA: $sk = d, pk = (n,e)$

f_{pk} is one-way under the **RSA assumption**, but pk must contain a valid RSA key: NIZK proof

\Rightarrow variant of “protected OKE”

Candidates (Cont'd)

Square root: $sk = (p,q), pk = n$

f_{pk} is an automorphism onto QR_n, but for specific moduli only (Blum moduli)

\Rightarrow to be checked: can be done (verified) efficiently

f_{pk} is one-way under the **integer factoring problem**

\Rightarrow the first **Password-Based Authenticated Key Exchange** based on **factoring**