Two parties (Alice and Bob) agree on a *common* secret key SK, in order to establish a secret channel.

- Basic security requirement:

 implicit authentication

 only the intended partners can compute the session key.
Authentication

To prevent active attacks, some kind of authentication of the flows is required:

- **Asymmetric**: $\langle sk_A, pk_A \rangle$ and possibly $\langle sk_B, pk_B \rangle$
- **Symmetric**: common (high-entropy) secret
- **Password**: common (low-entropy) secret

e.g. a 20-bit password

Password-based Authentication

Password (low-entropy secret) *e.g. 20 bits*

- exhaustive search is possible
- basic attack: **on-line exhaustive search**

 - the adversary guesses a password
 - tries to play the protocol with this guess
 - failure \Rightarrow it erases the password from the list
 - and restarts...

 - after 1,000,000 attempts, the adversary wins

 cannot be avoided

We want it to be the **best attack**…

Dictionary Attack

- **Off-line exhaustive search**

 - a few passive or active attacks
 - failure/transcript \Rightarrow erasure of **MANY** passwords from the list: this is called dictionary attack

- To prevent them:

 - a passive eavesdropping

 - no *useful* information about the password
 - an active trial

 - cancels *at most one* password

Summary

- Password-based Authenticated Key Exchange

 - EKE, OKE and a generalization

 - Trapdoor Hard-to-Invert Isomorphisms

- Examples
Efficiently Samplable

- f_{pk} must be *trapdoor* “hard-to-invert”, not necessarily “one-way”: but just *samplable*

 \[(r, c) \leftarrow S(pk) \text{ such that } r \text{ random in } M_{pk} \text{ and } c = f_{pk}(r)\]

- pk must be easy to generate
- f_{pk} must be a bijection ⇒ *to be checked*

Hard-to-Invert: not Enough?

When pk is chosen by Alice

- sk is unknown to the adversary

 - the adversary can know only one pre-image r (for the guessed password π)
 - for other π's, the “hard-to-invert” property prevents from extracting/checking other r values

This is the intuition... For the formal proof

- Hard-to-invert
- Bijection
- Morphism

Morphism: for the Proof

For checking a password, one uses k or SK

- one must compute r (appears in H-H' queries)
- Either c' sent by Bob: from any correct (π, r) such that $c' = f_{pk}(r) \otimes G(\pi)$, one can invert f_{pk}
 - by simulating $c' = f_{pk}(a)$ for a known a
 - by embedding the challenge y in $G(\pi)$

 \[y = c' \otimes f_{pk}(a) = f_{pk}(r) \otimes f_{pk}(a) = f_{pk}(r-a)\]

- Or by the adversary: from two correct pairs (π, r)

Trapdoor Hard-to-Invert Isomorphisms Family

\[F = (f_{pk})_{pk}\] trapdoor hard-to-invert isomorphisms

- $(pk, sk) \leftarrow G(1^k)$: generation

 - f_{pk} is an isomorphism from M_{pk} onto G_{pk}
- $(r, c) \leftarrow S(pk)$: sample

 - such that r random in M_{pk} and $c = f_{pk}(r)$ (random in G_{pk})
- Given y and pk, check whether $y \in f_{pk}(M_{pk}) = G_{pk}$
- Given y and sk, easy to invert f_{pk} on y
- Without sk, hard to invert f_{pk}
Summary

- Password-based Authenticated Key Exchange
- EKE, OKE and a generalization
 - Trapdoor Hard-to-Invert Isomorphisms

Candidates

Diffie-Hellman: $sk = x$, $pk = g^x$

$$f_{pk}(g^a) = g^{ax} = pk^a$$

$g_{sk}(b) = b^{1/x}$

f_{pk} is not one-way, but hard-to-invert
under the **CDH assumption**

⇒ classical DH-AKE variants (PAK or AuthA)

RSA: $sk = d$, $pk = (n,e)$

f_{pk} is one-way under the **RSA assumption**,
buts pk must contain a valid RSA key: NIZK proof

⇒ variant of “protected OKE”

Candidates (Cont'd)

Square root: $sk = (p,q)$, $pk = n$

f_{pk} is an automorphism onto QR_n^*,
but for specific moduli only (Blum moduli)

⇒ to be checked: can be done (verified) efficiently

f_{pk} is one-way under
the **integer factoring problem**

⇒ the first **Password-Based Authenticated Key Exchange** based on **factoring**