OAEP 3-Round
A Generic and Secure Asymmetric Encryption Padding

Duong Hieu Phan
ENS – France

David Pointcheval
CNRS-ENS – France

Asiacrypt ’04
Jeju Island - Korea
December 6th 2004

Asymmetric Encryption

An asymmetric encryption scheme $\pi = (G, E, D)$ is defined by 3 algorithms:

- **G** – key generation
 $\omega \rightarrow G \rightarrow (k_e, k_d)$

- **E** – encryption
 $m \rightarrow r \rightarrow (k_e, k_d) \rightarrow c \rightarrow m$

- **D** – decryption
 $m \rightarrow (k_e, k_d) \rightarrow c \rightarrow m$

Summary

- Asymmetric Encryption
- OAEP 3-Round
 - Review
 - Limitations
- New Results
- Conclusion

Security Notion: IND-CCA2

An IND-CCA2 secure encryption scheme satisfies the following conditions:

1. **IND**
 - $b' \neq b$
 - $b' \neq c'$

2. **CCA1**
 - $c \neq c'$
 - $m \rightarrow m_0 \rightarrow m_1 \rightarrow m$

3. **CCA2**
 - $c \neq c'$
 - $m \rightarrow m_0 \rightarrow m_1 \rightarrow m$

IND: Probabilistic

To achieve indistinguishability, a public-key encryption scheme must be probabilistic otherwise, with the challenge \(c = E(m_b) \) one computes \(c_0 = E(m_o) \) and checks whether \(c_0 = c \).

For any plaintext, the number of possible ciphertexts must be lower-bounded by \(2^k \), for a security level in \(2^k \):

- at least \(\text{length}(c) \geq \text{length}(m) + k \)

CCA: Redundancy?

- For IND-CCA2: redundancy
 - Plaintext-awareness = invalid ciphertexts
- Last year, we proposed:
 - Full-Domain Permutation
 - OAEP 3-Round
 - **IND-CCA2 without redundancy**

OAEP 3-Round

- \(E(m) : c = f(t \parallel u) \)
- \(D(c) : t \parallel u = f^{-1}(c) \)

then invert OAEP, and return \(m \)

Security Result: Asiacrypt ’03

With a random of size \(k_0 \), but no redundancy

In the ROM, a \((t, \varepsilon)-\text{IND-CCA2}\) adversary helps to partially invert \(f \) within time \(t' \approx t + qD Q / 2^{k_0} \), with success probability \(\geq \varepsilon - qD Q / 2^{k_0} \)

Limitations:
- Requires a trapdoor OW permutation
- Reduction to the partial-domain one-wayness
Intuition

- From the view of the challenge c^*
 - OAEP (with redundancy): [Sh01] showed that an adversary could produce a ciphertext c, with $r = r^*$
 - [FOPS01] ... but needs to query $H(s^*)$
 - OAEP 2-round (w/t redundancy): we thought that no easy proof could lead to $H(s^*)$ but...
 - OAEP 3-round (w/t redundancy): could prove the requirement of the query $H(t^*)$
 \Rightarrow Partial-Domain OW
- This paper: requirement of both $G(s^*)$ and $H(t^*)$ \Rightarrow Full-Domain OW

New Security Result

With a random of size k_0, but no redundancy

In the ROM, a (t, ϵ)-IND-CCA2 adversary helps to invert f within time $t' \approx t + q g_q H^t r^t$

with success probability $\geq \epsilon/2 - 5q_d Q / 2^{k_0}$

where Q is the global number of queries

Simulation of the decryption oracle on c:
- look for all the tuples $(s, G(s), t, H(t))$
- check whether $f(t \parallel H(t) \oplus s) = c$
- compute $m = s \oplus F(t \oplus G(s))$ or random

Permutation Requirement

- The permutation requirement rules out many candidates: ElGamal, Paillier, Rabin, NTRU, ...
- Could we apply it to trapdoor one-way probabilistic injections?

\[f : (x, \rho) \rightarrow y = f(x, \rho) \]
- injection in x: at most one x for each y
 (but possibly many ρ)
- hard to invert
- a trapdoor helps to recover x

\[E(m, r \parallel \rho) = f(t \parallel u, \rho) \]

Problems for the Simulation

- Simulation of the decryption oracle on c:
 - look for all the tuples $(s, G(s), t, H(t))$
 - check whether $f(t \parallel H(t) \oplus s) = c$ (existence of ρ)
 - compute $m = s \oplus F(t \oplus G(s))$ or random
- Need of a decisional oracle: Same(c, c')
 - Do c and c' encrypt the same element?
 - Computational problem given access to a decisional oracle \Rightarrow Gap Problem
- And what about $c = f(t' \parallel H(t') \oplus s^*, \rho)$?
 - Same(c, c') is true, but $m = m^*$ is unknown
Relaxed Chosen-Ciphertext Security

- [ADR02] Generalized CCA:
 - R is a decryption-respecting relation
 - Intuition: R formalizes a trivial relation between ciphertexts encrypting the same plaintext.
 - The adversary is not allowed to ask decryption queries on c in relation with c^*
- [CKN03] Replayable CCA:
 - On c which encrypts either m_0 or m_1: answer = TEST
- Relaxed CCA: $(m, r, \rho) \rightarrow c = E(m, r || \rho)$
 - On $c = E(m^*, r^* || \rho)$: answer = TEST

Relations

- Generalized CCA: is the most natural
 - non-significant bits in the ciphertext cannot be used in the attack.
- Replayable CCA: TEST reveals some information
 - RCCA security \Rightarrow Replayable CCA
 - a RCCA simulator decrypts more often
 - On $c = E(m^*, r^* || \rho)$ \Rightarrow m is m_b and thus either m_0 or m_1
- If $|\rho| = 0$
 - TEST on c^* only: RCCA = CCA
 - Same is the equality test: no more Gap Problem

Security Result

With a random of size k_0, but no redundancy
In the ROM, a (t, ε)-IND-RCCA adversary helps to invert f within time $t' \approx t + qDq_Aq_H (T_f + T_{\text{Same}})$
with success probability $\geq \varepsilon / 2 - 5qDQ / 2^{k_0}$
after less than qDq_Aq_H queries to the Same oracle
- quite loose reduction in general:
 - large security parameters
 - but small overhead: 160 bits of additional randomness

The RSA Case

- The same proof applies to RSA
 - RCCA = CCA
 - Gap-RSA = RSA
 - Proper bookkeeping: better reduction
 - $qDq_Aq_H \rightarrow q_Aq_H$
 - \Rightarrow Cost of the reduction similar to OAEP
 - but relative to the Full-Domain RSA
 - \Rightarrow The most efficient reduction
 - for an RSA-based padding into a Z^*_n element
Conclusion

OAEP 3-Round: the best OAEP-like variant
- the tightest reduction in the RSA case
 - for any exponent
 - relative to the RSA problem
- no redundancy: *almost* optimal bandwidth
- applicable to most of the asymmetric primitives
 - namely ElGamal, relative to the Gap DH