Chosen-Ciphertext Security without Redundancy

Duong Hieu Phan
ENS – France

David Pointcheval
CNRS-ENS – France

Asiacrypt '03
Taipei - Taiwan
December 1st 2003

Summary

- Asymmetric Encryption
- Full-Domain Permutation Encryption
- 3-round OAEP
- Conclusion
Asymmetric Encryption

An asymmetric encryption scheme \(\pi = (G, E, D) \) is defined by 3 algorithms:

- **G** – key generation
 \[\omega \rightarrow G \rightarrow (k_e, k_d) \]

- **E** – encryption
 \[m \rightarrow E \rightarrow c \]

- **D** – decryption
 \[r \rightarrow D \rightarrow m \]

Security Notions

- **One-Wayness (OW)**:
 without the private key, it is computationally impossible to recover the plaintext

- **Semantic Security (IND - Indistinguishability)**:
 the ciphertext reveals no more information about the plaintext to a polynomial adversary
Attacks

- **Chosen-Plaintext Attacks (CPA)**
 - the basic attack in the public-key setting
 - the adversary can encrypt any message of its choice
- **More information: oracle access**
- **Chosen-Ciphertext Attacks (CCA)**
 - the adversary has access to the decryption oracle on any ciphertext of its choice (except the challenge)
 - non-adaptive (CCA1): only before receiving the challenge
 - adaptive (CCA2): unlimited oracle access

IND-CCA2

- $b \in \{0, 1\}$
- r random

- $b' \overset{?}{=} b$

- m_b, r

- m_0, m_1

- c^*

- $c \neq c^*$

- c or \bot

- m or \bot

- k_o to G to k_d

- CCA1

- CCA2
Indistinguishability: Probabilistic

To achieve indistinguishability, a public-key encryption scheme must be probabilistic
otherwise, with the challenge \(c = \text{E}(m_b) \)
one computes \(c_0 = \text{E}(m_0) \) and checks whether \(c_0 = c \)

For any plaintext, the number of possible ciphertexts must be lower-bounded by \(2^k \),
for a security level in \(2^k \):

\[
\text{at least } \text{length}(c) \geq \text{length}(m) + k
\]
Optimal Size = No Redundancy

- No redundancy = any ciphertext is valid:
 - is a possible output of $E(m,r)$
 - the function $E : \mathcal{M} \times \mathcal{R} \rightarrow \mathcal{C}$
 $$(m,r) \rightarrow c$$ is a surjection

- Advantages:
 - optimal bandwidth
 - no reaction attack / implementation issues
 - easier distribution of the decryption process

Full-Domain Permutation Encryption

- First candidate: in the same vein as the Full-Domain Hash Signature
- Public permutation \mathbf{P} (Random Permutation Model) onto $\mathcal{M} \times \mathcal{R} \approx \mathcal{C} \approx \{0,1\}^n \times \{0,1\}^k \approx \{0,1\}^l$
- Trapdoor one-way permutation f onto $\{0,1\}^l$

$E : \mathcal{M} \times \mathcal{R} \rightarrow \mathcal{C}$
$$(m,r) \rightarrow c = f(\mathbf{P}(m,r))$$

- the public key is the pair (f, \mathbf{P}) which includes \mathbf{P}^{-1}
- the private key is the trapdoor f^{-1}
FDP Encryption is IND-CCA2 Secure

In the RPM, a \((t, \varepsilon)\)-IND-CCA2 adversary helps to invert \(f\) within almost the same time \(t\), and with success probability greater than \(\varepsilon - q/2^k\)

- Simulation of the oracles \(\mathbf{P}\), \(\mathbf{P}^{-1}\) and \(\mathbf{D}\) using a list \(\Lambda\) of tuples \(\{(m, r, p, c)\}\): \(p = \mathbf{P}(m, r)\), \(c = f(p) = \mathbf{E}(m, r)\)
 - problem if \((m, r)\) is assumed to correspond to \(\mathbf{P}^{-1}(f^{-1}(c))\) from the \(\mathbf{D}\)-simulation, and the adversary asks for \(\mathbf{P}(m, r)\):
 - the simulation should output \(p = f^{-1}(c)\), which is unknown but \(\mathbf{D}\) outputs \(m\) only: \(r\) is unpredictable

FDP Encryption: Properties

- No redundancy
- Optimal bandwidth: \(\text{length}(c) = \text{length}(m) + k\)
- High security level: IND-CCA2
 - with efficient reduction
 - but in the Random-Permutation Model

Can we weaken the assumptions?
The Random-Oracle Model

- A weaker model: the random-oracle model
 - access to a truly random function
- How to build a random permutation from a random function?
 - Luby-Rackoff: a Feistel construction
 - not that easy: here, one has access to the internal function...

Let us try anyway: OAEP

2-round OAEP

\[M = m \| 0^k \]
\[r \text{ random} \]

\[E(m) : c = f(s \| t) \]

\[D(c) : s \| t = f^{-1}(c) \]

then invert OAEP, if the redundancy is satisfied, one returns \(m \)

\[G, H : \text{random functions} \]
2-round OAEP (cont'd)

- In the random-oracle model
- If \(f \) is a trapdoor partial-domain OW permutation:
 - \((s, t) \rightarrow f(s \parallel t)\) trapdoor one-way
 - \(f(s \parallel t) \rightarrow s\) also hard to compute
- With a redundancy \(0^k\) and random of size \(k_0\)

The encryption scheme \(f\)-OAEP:

- IND-CCA2 with quadratic time reduction (in \(q_F q_G T_f\))
 + quadratic lost (in \(q_D q_G / 2^{k_0}\): \(k_0 = 2k\))
- \(\text{length}(c) = \text{length}(m) + 3k\)

What About the Redundancy?

- For IND-CCA2: redundancy
 Plaintext-awareness = unvalid ciphertexts
- Without redundancy... is it still IND-CCA2?
 - 2-round OAEP: no known attack, but no proof either
 - Any simulation seems to be subject to the Shoup's attack (malleability of OAEP)
 - 3-round OAEP: can be proven
3-round OAEP

- $E(m) : c = f(t \parallel u)$
- $D(c) : t \parallel u = f^{-1}(c)$

then invert OAEP, and return m

F, G and H: random functions

Idea of the Security

- 2-round OAEP: as in the Shoup's attack,
 - the adversary can forge a ciphertext c, with the same r as in the challenge ciphertext
 - the simulator cannot check that!
- With one more round:
 - the adversary is stuck!

\Rightarrow one can simulate everything
 - at random when not already known
Tightness of the Reduction

- Everything works well with lists, Λ_F, Λ_G, Λ_H, Λ_D
- But for $g = G(s)$, which implies
 - $F(r) = m \oplus s$ for $r = t \oplus g$
 - for any $(t, h) \in \Lambda_H$, and $(m, c) \in \Lambda_D$

\[
\text{in case such a query is asked later}
\]
- Problem if such a query has already been asked...
Since g is random, the overall probability of such a bad event is upper-bounded by $q_D q_F / 2^k$.

Security Result

With a random of size k_0, but no redundancy

In the ROM, a (t, ε)-IND-CCA2 adversary helps to partially invert f within $t' \approx t + q_g q_H T_f$, and with success probability greater than $\varepsilon - q_D Q / 2^{k_0}$

The 3-round OAEP is:

- IND-CCA2 with quadratic time reduction
 + quadratic lost ($\Rightarrow k_0 = 2k$)
- length(c) = length(m) + 2k
Conclusion

We have proposed the first IND-CCA2 encryption schemes, without redundancy:

- the FDP encryption is optimal
 - based on the OW of the trapdoor permutation
 - optimal bandwidth
 - but in the Random-Permutation Model
- the 3-round OAEP has similar characteristics as the 2-round OAEP, but without redundancy