Twin Signatures: an Alternative to the Hash-and-Sign Paradigm

David Naccache (Gemplus, France)
David Pointcheval (ENS, France)
Jacques Stern (ENS, France)

Overview

◆ Introduction
◆ Security notions for signatures
◆ The twinning paradigm
◆ A DL-based example
◆ An RSA-based example
◆ Conclusion
Introduction

◆ Digital signature = electronic version of handwritten signatures

⇒ authenticates the sender of a message

● the receiver knows the identity of the sender

● the sender cannot deny later having sent the message (non-repudiation)

Digital signatures

Defined by two algorithms

◆ the signing algorithm \(S \):

 private key + message \(m \)

 \(\rightarrow \) signature \(\sigma \)

◆ the verification algorithm \(V \):

 public key + message \(m \) + alleged signature \(\sigma \)

 \(\rightarrow \) agrees or not
Digital signatures

Signing algorithm \(S \)
Verification algorithm \(V \)

\[m \rightarrow S \rightarrow \sigma \]

\[V \rightarrow \text{True/False} \]

Private key \(S \)
Public key \(P \)

Security: it is impossible to produce a new valid pair \((m, \sigma)\)

Security notions

More precisely, one considers

- **total break:**
 the adversary recovers the private key

- **universal forgery:**
 the adversary can sign any message of her choice

- **existential forgery:**
 the adversary can produce accepted message/signature pairs
Adversaries

The information available to the adversary may be various, thus several attacks

- no-message attacks:
 the adversary just knows the verification algorithm (i.e. the public key)

- known-message attacks:
 she knows some message-signature pairs

- (adaptively) chosen-message attacks:
 she has access to a signing oracle

Secure signature schemes

For achieving non-repudiation, the scheme must prevent existential forgeries.

Furthermore, signatures are aimed to be published, thus known-message attacks should be withstood.

Secure signature scheme:
no existential forgery even against adaptively chosen-message attacks.
Example: RSA signature

\[n = pq \text{ product of large primes} \]
\[e : \text{public exponent} \]
\[d = e^{-1} \mod \phi(n) : \text{private exponent} \]

Signature of the message \(m \in \mathbb{Z}_n \)
\[\sigma = m^d \mod n \]

Verification of \((m, \sigma)\)

test whether \(m = \sigma^e \mod n \)

\begin{itemize}
 \item Only small messages (in \(\mathbb{Z}_n \)) can be signed
 \item Existentially forgeable
\end{itemize}

\(\Rightarrow \) in order to solve the former problem:

use of a collision-resistant hash function \(h \)

If \(h \) furthermore behaves like a truly random function \(\{0, 1\}^* \rightarrow \mathbb{Z}_n : \text{FDH in the ROM} \)

FDH-RSA, provably secure [BR96, Co00]

\(\Rightarrow \) hash-and-sign or hash-and-decrypt
An alternative: twinning

Without the hash function, the RSA signature is insecure
- even with it, the security proof only holds in the random oracle model

Insecure? Because from σ it is easy to compute m such that $m = \sigma^e \mod n$

What about considering twin-signatures (σ, τ) such that $m = \sigma^e \mod n$ and $m+1 = \tau^e \mod n$?

Twin signatures

Let S be a signature scheme (maybe weakly secure)

We consider the signature scheme which consists in computing
- $m_1 = f(m,r)$ and $m_2 = g(m,r)$ for some random r
- $\sigma_1 = S(m_1)$ and $\sigma = S(m_2)$

We thus sign two related messages
A DL-based example: DSA

\[G = \langle g \rangle \text{ of prime order } q \]
\[x : \text{secret key} \quad y = g^x : \text{public key} \]

- For signing \(m \in \mathbb{Z}_q \), \(S_x(m) = (c,d) \), where
 \[0 < u < q \quad c = (g^u) \mod q \quad c \neq 0 \]
 \[\text{and} \quad d = (m + x \cdot c) / u \mod q \quad d \neq 0 \]

- Verification, \(V_y(m,c,d) : \)
 \[h = 1/d \mod q, \quad h_1 = h \cdot m \mod q, \]
 \[h_2 = h \cdot c \mod q, \quad c' = g^{h_1} \cdot y^{h_2} \]
 \[\text{check whether } 0 < c, d < q \text{ and } c = c' \mod q \]

Twin-DSA

\(DSA_x(m) = S_x(\text{SHA}(m)) \)

- Unfortunately, no security result, even in the random oracle model, or the generic model.

\(\text{Twin-DSA}_x(m) = ((c, d), (c', d')) \),
where \((c, d) \) and \((c', d') \) are two distinct signatures of \(m \) (with different random \(u, u' \))

Twin-DSA is secure in the generic model
An RSA-based example: GHR

\[n = pq \text{ product of large primes} \]
\[y \in \mathbb{Z}_n: \text{public element} \]

◆ For signing \(e, \quad S_{p,q}(e) = s \), where
\[d = e^{-1} \mod \varphi(n), \quad s = y^d \mod n \]
◆ Verification,
\[V_y(e,s) : s^e = y \mod n \]
◆ EuroC’ 99:
\[\text{GHR}_{p,q}(m) = S_{p,q}(h(m)) \]
if \(h \) is divisible-intractable + chameleon
\[\Rightarrow \text{no existential forgeries against adaptive chosen-message attacks} \]

Twin-GHR

◆ The chameleon property of \(h \) is required for simulating the signing oracle
\[\Rightarrow \text{without it, no security against chosen-message attacks} \]
◆ Twin-GHR\(_{p,q}(m,a\|b) = (S_{p,q}(e_1), S_{p,q}(e_2)) \)
for \(e_i = h(m_i) \) where
\[m_1 = (m\oplus a) \| (m\oplus b) \text{ and } m_2 = a \| b \]
◆ Verification: get \(m_1 \) and \(m_2 \), and \(M = m_1 \oplus m_2 \),
check the redundancy \(M = m \| m \), output \(m \)
Twin-GHR: Security

The twinning replaces the chameleon property:

- if h simply achieves divisible-intractability (or injection in the primes)

Twin-GHR prevents existential forgeries even against adaptive chosen-message attacks

- no generic model
- no random oracle
- just the flexible RSA problem.

Conclusion

Twinning is a new paradigm to

- prevent existential forgeries (*cf.* DSA)
 it may replace the random oracle model in some situations

- achieves security against adaptive chosen-message attacks (*cf.* GHR)
 it may replace chameleon hash function or the random oracle model

- this new direction should be more investigated.