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Abstract. Since the appearance of public-key cryptography in the seminal Diffie-
Hellman paper, many schemes have been proposed, but many have been broken. Indeed,
for many people, the simple fact that a cryptographic algorithm withstands cryptana-
lytic attacks for several years is considered as a kind of validation. But some schemes
took a long time before being widely studied, and maybe thereafter being broken.
A much more convincing line of research has tried to provide “provable” security for
cryptographic protocols, in a complexity theory sense: if one can break the cryptographic
protocol, one can efficiently solve the underlying problem.
Unfortunately, very few practical schemes can be proven in this so-called “standard
model” because such a security level rarely meets with efficiency. A convenient way to
achieve some kind of validation of efficient schemes has been to identify some concrete
cryptographic objects with ideal random ones: hash functions are considered as behaving
like random functions, in the so-called “random oracle model”, and groups are used as
black-box groups, in which one has to ask for additions to get new elements, in the
so-called “generic model”.
In this paper we present some generic designs for asymmetric encryption with provable
security in the random oracle model.
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1 Introduction

1.1 Motivation

Since the beginning of public-key cryptography, with the seminal Diffie-Hellman pa-
per [17], many suitable problems for cryptography have been proposed (e.g. one-
way —possibly trapdoor— functions) and many cryptographic schemes have been
designed, together with more or less heuristic proofs of their security relative to the
intractability of these problems (namely from the number theory, such as the integer
factorization, RSA [51], the discrete logarithm [20] and the Diffie-Hellman [17] prob-
lems, or from the complexity theory with some NP-complete problems, such as the
knapsack [15] problem or the decoding problem of random linear codes [35]). However,
most of those schemes have thereafter been broken.

The simple fact that a cryptographic algorithm withstands cryptanalytic attacks
for several years is often considered as a kind of validation procedure, but some
schemes take a long time before being broken. The best example is certainly the
Chor-Rivest cryptosystem [15, 34, 63], based on the knapsack problem, which took
more than 10 years to be totally broken, whereas before this last attack it was be-
lieved to be very hard, since all the classical attacks against knapsack instances, such
as LLL [33], have failed because of the high density of the involved instances. With
this example, but also many others, the lack of attacks at some time should not be
considered as a validation of the proposal.

c© 2000.
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1.2 Provable Security and Exact Security

A completely different paradigm is provided by the concept of “provable” security. A
significant line of research has tried to provide proofs in the framework of complexity
theory: the proofs provide reductions from a well-studied problem (RSA or the discrete
logarithm) to an attack against a cryptographic protocol. Firstly, people just tried to
produce polynomial reductions, in an asymptotic way [26, 25, 38, 49]. However, such
a result has no practical impact on the real security. Indeed, even with a polynomial
reduction, one may be able to break the cryptographic protocol within few hours,
whereas the reduction just leads to an algorithm against the underlying problem which
requires many years. Therefore, those reductions only prove the security when very
huge (and thus unpractical) parameters are used.

For few years, more efficient reductions have been expected, under the denomina-
tions of either “exact security” [9] or “concrete security” [43], which provide practical
security results. The ideal situation is reached when one manages to prove that from
an attack, one can describe an algorithm against the underlying problem, with almost
the same success probability within almost the same amount of time.

Unfortunately, in many cases, provable security is at the cost of an important loss
in terms of efficiency for the cryptographic protocol. Thus some models have been
proposed, trying to deal with the security of efficient schemes: some concrete objects
are identified with ideal (or black-box) ones.

For example, it is by now usual to identify hash functions with ideal random func-
tions, in the so-called “random oracle model” formalized by Bellare and Rogaway [7].
More recently, an other kind of idealization has been introduced in cryptography, the
black-box group [39, 59]: a new element necessarily comes from the addition (or the
subtraction) of two already known elements. It is the by now called “generic model”.
A recent work [55] even uses both models together to provide some new validations.

1.3 Outline of the Paper

In the next section, we discuss about the correctness of both ideal models, the random
oracle model and the generic model. Then, we precise the problems on which DL-based
schemes can rely. In the following section, we review the formalism of public-key
encryption schemes, with the security notions and some examples. Then, we present
some generic conversions which apply to any weakly secure scheme to make a strongly
secure one, with a sketch of the security analysis.

2 The Ideal Models

As said above, efficiency rarely meets with provable security. More precisely, none of
the most efficient schemes in their category has been proven secure in the standard
model. However, some of them admit security validations under ideal model assump-
tions: the random oracle model and/or the generic model.

2.1 The Random Oracle Model

Many cryptographic schemes use a hash function H (such as MD5 [50] or the American
standards SHA-1 [41], SHA-256, SHA-384 and SHA-512 [42]). This use of hash func-
tions was originally motivated by the wish to sign long messages with a single short
signature. In order to achieve non-repudiation, a minimal requirement on the hash
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function is the impossibility for the signer to find two different messages providing the
same hash value. This property is called collision-resistance.

It was later realized that hash functions were an essential ingredient for the security
of, first, signature schemes, and then of most of the cryptographic schemes. In order
to obtain security arguments, while keeping the efficiency of the designs that use hash
functions, few authors suggested using the hypothesis that H behaves like a random
function. First, Fiat and Shamir [21] applied it heuristically to provide a signature
scheme “as secure as” factorization. Then, Bellare and Rogaway [7, 8] formalized this
concept in many fields of cryptography: signature and public-key encryption.

In this model, the so-called “random oracle model”, the hash function can be seen
as an oracle which produces a truly random value for each new query. Of course, if
the same query is asked twice, identical answers are obtained. This is precisely the
context of relativized complexity theory with “oracles,” hence the name.

2.2 The Generic Model

Another model has been more recently defined, by now known as the “generic model”.
This model, used first by Naechev [39], focuses on adversaries that do not exploit any
special property of the encodings of group elements other than the fact that each group
element is encoded by a unique string. Typically, algorithms like Pollard’s [48] and
Shanks’ [56] algorithms are under the scope of this formalism, while index-calculus
methods [32, 27] do not fall in this category. Therefore, generic algorithms just use the
group-operation (e.g. the addition) as a black-box: any new element necessarily comes
from the addition (or the subtraction) of two already known elements. More recently,
Shoup [59] gave lower bounds for generic algorithms against the discrete logarithm,
the computational Diffie-Hellman problem [17] and the decisional version [12]. He
therefore provided a lower bound for any “generic adversary” against the Schnorr’s
identification scheme [53].

2.3 Discussion

About the random oracle model, no one has ever been able to provide a convincing
contradiction to this model, but just a theoretical counter-example [13] which uses
a classical diagonalization technique on clearly wrong designs for practical purpose!
Therefore, this model has been strongly accepted by the community, and is considered
as a good one, in which proofs of security give a good taste of the security level. Even
if it does not provide a formal proof of security (as in the standard model), it is argued
that proofs in this model ensure security of the overall design of the scheme provided
that the hash function has no weakness. Furthermore, assuming the tamper-resistance
of some devices, such as smart cards, the random oracle model is equivalent to the
standard model, simply requiring the existence of pseudo-random functions [37]. As a
consequence, almost all the standard organizations introduce designs provably secure
in that model, thanks to the security validation of very efficient protocols.

On the other hand, generic adversaries are not so realistic, because of their strong
restrictiveness. Indeed, some non-generic algorithms exist for a long time against the
discrete logarithm problem in the multiplicative groups of finite fields, such as the
index calculus [32, 27]. However this generic model is still considered valid for elliptic
curves [29] and hyper-elliptic curves [30, 31] settings. Non-generic algorithms appeared
in some particular cases, such as the anomalous elliptic curves [52], the super-singular
curves, where the discrete logarithm problem can be reduced to the finite field setting,
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because of the Frobenius map which has a trace zero [36], as well as the curves of
trace one [61] and more recently when many automorphisms exist on the curve [19].
However these curves were already advised not to be used in practice, but random
curves. Anyway, this model seems a somewhat stronger model than the random oracle
model.

3 The Intractability Assumptions

There are two major families in the number theory based public-key cryptography:

1. the schemes based on the integer factorization, and on the RSA problem;

2. the schemes based on the discrete logarithm problem, and on the Diffie-Hellman
problems, in any “suitable” group. The first groups in use were cyclic subgroups of

� ?
p. But many schemes are now applied to cyclic subgroups of an elliptic curve, or

of the Jacobian of an hyper-elliptic curve, with namely the so-called ECDSA [3],
the DSA [40] on elliptic curves.

3.1 Integer Factorization and the RSA Problem

A first classical problem which is widely believed to be intractable is the integer
factorization: it is clear that from two large primes p and q, it is easy to compute the
product N = pq. However the inverting problem, recovering p and q from N , is hard
to solve. Indeed, the Number Field Sieve technique [32] which the best known method
is super-polynomial in the size of N . And it has been recently used to establish the
record [14] of factoring a 512-bit number within three months.

A related problem is the well-known RSA problem on which was based the first
public-key cryptosystem, the RSA function [51], proposed by Rivest, Shamir and Adle-
man in 1978: Given a composite modulus, N = pq, product of two large primes, and
an exponent e, relatively prime to ϕ(N), for any x ∈

� ?
N, it is easy to compute

y = xe mod N . But for any y ∈
� ?

N, it is difficult to compute the e-th root x, which
satisfies xe = y mod N , unless one knows the factorization of N , or equivalently
d = e−1 mod ϕ(N), since x = yd mod N .

3.2 The Discrete Logarithm and the Diffie-Hellman Problems

The second family regroups DL-based problems in any suitable group. The setting is
quite general: one is given

– a cyclic group (G,+) of order q, denoted additively;
– a generator g.

We note in bold (such as g) any element of the group G, to distinguish it from a scalar
x ∈

�
q. But such a g could be an element in

�
?
p or a point of an elliptic curve, according

to the setting. Above, we talked about a “suitable” group G. In such a group, some of
the following problems have to be hard to solve.

– the Discrete Logarithm problem (DL): given y ∈ G, compute x ∈
�

q such that
y = x · g, then one denotes x = log

g
y.

– the Computational Diffie-Hellman problem (CDH): given two elements in
the group G, a = a · g and b = b · g, compute c = ab · g. Then one denotes
c = DH(a,b).
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– the Decisional Diffie-Hellman Problem (DDH): given three elements in the
group G, a = a · g, b = b · g and c = c · g, decide whether c = DH(a,b) (or
equivalently, whether c = abmod q).

It is clear that they are sorted from the strongest problem to the weakest one. Fur-
thermore, one may remark that they all are “random self-reducible”, which means
that any instance can be reduced to a uniformly distributed instance: there are only
average cases. Thus, the ability to solve a problem for a non-negligible fraction of in-
stances in polynomial time is equivalent to solve any instance in polynomial expected
time.

Very recently, Tatsuaki Okamoto and the author [45] defined a new variant of the
Diffie-Hellman problem, which we called the Gap Diffie-Hellman Problem, where one
wants to solve the CDH problem with an access to a DDH oracle.

Definition 1 (the Gap Diffie-Hellman Problem (GDH)). Given two elements
in the group G, a = a · g and b = b · g, compute c = ab · g, with the access to a
Decisional Diffie-Hellman oracle.

One may easily remark the following properties about above problems. Indeed, using
the oracle notation from the complexity theory, one can see that GDH = CDHDDH.

Property 2.
DL ≥ CDH ≥ DDH

DDH easy ⇐⇒ GDH = CDH

GDH easy ⇐⇒ CDH = DDH

For signature applications, one only requires groups where the DL problem is hard,
whereas encryption needs trapdoor problems and therefore requires groups where some
of the DH’s problems are also hard to solve.

However, the CDH problem is usually believed to be much stronger than the
DDH problem, which means that the GDH problem is difficult. This was the moti-
vation of our work on new encryption schemes based on the GDH problem [44] (see
section 4.4.2).

3.3 Proofs of Security

Until 1996, no practical DL-based cryptographic scheme has ever been formally stud-
ied, but just heuristically. And surprisingly, at Eurocrypt ’96, two opposite studies
have been driven on the El Gamal signature [20], the first DL-based signature de-
signed in 1985 and depicted on Figure 1. Whereas existential forgeries were known
for that scheme, it was believed to prevent universal forgeries. The first analysis, from
Daniel Bleichenbacher [11], showed such a universal forgery when the generator g is

– Initialization
g a generator of

�
?
p,

where p is a large prime
secret key x ∈

� ?
p−1

public key y = gx mod p

– Signature
– K ∈

�
?
p−1

and r = gK mod p

– s = (m− xr)/K mod p− 1

– Verification

gm ?
= yrrs mod p

Fig. 1. The El Gamal Signature Scheme.
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not properly chosen. The second one, from Jacques Stern and the author [47], proved
the security, against existential forgeries under adaptively chosen-message attacks, of
a slight variant with a randomly chosen generator g. The slight variant simply replaces
the message m by H(m, r) in the computation, while one uses a hash function H that
behaves like a random oracle. It is amazing to remark that the Bleichenbacher’s attack
also applies on our variant. Therefore, according to the initialization, our variant could
be a very strong signature scheme or become a very weak one!

About encryption, the first efficient construction with a formal proof of security
has been proposed by Bellare and Rogaway [8] in 1994. This construction, the so-called
OAEP, was claimed to apply to any trapdoor one-way permutation, as described on
Figure 2. However, in the late November 2000, this claim appeared to be wrong [58].

– Initialization
f a trapdoor one-way permutation

over the space {0, 1}k ,
g is the inverse,

thanks to the trapdoor
k = n + k0 + k1

secret key g
public key f

– Encryption of m ∈ {0, 1}n

– r ∈ {0, 1}k0

– s = m‖0k1 ⊕G(r) and t = r ⊕H(s)
– c = f(s‖t)

– Decryption of c ∈ {0, 1}k

– (s, t) = g(c)
– r = H(s)⊕ t and M = s⊕G(r)
– if M = m‖0k1 for some m, returns m,

otherwise, returns Reject.

Fig. 2. The OAEP Construction.

Anyway Eiichiro Fujisaki, Tatsuaki Okamoto, Jacques Stern and the author immedi-
ately provided a new proof [24], but then for trapdoor partially one-way permutations,
a stronger requirement about the permutation. In other words, the OAEP construc-
tion is still secure if recovering more than half of the bits of the pre-image by f is
intractable. Anyway, RSA is the sole trapdoor permutation, and thus the sole prac-
tical application of the OAEP conversion. And for RSA, the partial one-wayness is
equivalent to the one-wayness, thanks to the random self-reducibility. Therefore, the
RSA–OAEP is still secure relatively to the RSA problem.

Anyway, both examples show that a proof has to be performed in details. Further-
more, the conclusions have to be strictly followed by implementators, otherwise the
concrete implementation of a secure scheme can be very weak.

4 Public-Key Encryption

The aim of a public-key encryption is to allow anybody who knows the public key of
Alice to send her a message that she will be the only one able to recover it, thanks to
her private key.

4.1 Definitions

A public-key encryption scheme is defined by the three following algorithms:

– The key generation algorithm G. On input 1k, where k is the security parame-
ter, the algorithm G produces a pair (kp, ks) of matching public and secret keys.
Algorithm G is probabilistic.
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– The encryption algorithm E . Given a message m and a public key kp, E produces
a ciphertext c of m. This algorithm may be probabilistic.

– The decryption algorithm D. Given a ciphertext c and the secret key ks, D gives
back the plaintext m. This algorithm is necessarily deterministic.

4.2 Security Notions

As for signature schemes, the goals of the adversary may be various. The first common
security notion that one would like for an encryption scheme is the one-wayness: with
just public data, an attacker cannot get back the whole plaintext of a given ciphertext.
More formally, this means that for any adversary A, her success in inverting E without
the secret key should be negligible over the probability spaceM×Ω, whereM is the
message space and Ω is the space of the random coins r used for the encryption
scheme, and the internal random coins of the adversary:

SuccA = Pr
m,r

[(kp, ks)← G(1k) : A(kp, E(kp,m; r)) = m].

However, many applications require more from an encryption scheme, namely the se-
mantic security (a.k.a. polynomial security/indistinguishability of encryptions [25]): if
the attacker has some information about the plaintext, for example that it is either
“yes” or “no” to a crucial query, any adversary should not learn more with the view of
the ciphertext. This security notion requires the computational impossibility to distin-
guish between two messages, chosen by the adversary, which one has been encrypted,
with a probability significantly better than one half: her advantage AdvA, as defined
below where the adversary A is seen as a 2-stage Turing machine (A1,A2), should be
negligible.

AdvA = 2× Pr
b,r





(kp, ks)← G(1k)
(m0,m1, s)← A1(kp)
c = E(kp,mb; r)

: A2(m0,m1, s, c) = b



− 1.

Another notion has been thereafter defined, the so-called non-malleability [18], but
this notion is equivalent to the above one in some specific scenarios [10]. Moreover, it
is equivalent to the semantic security [6] in the most interesting scenario. Therefore,
we will just focus on the one-wayness and the semantic security.

On the other hand, an attacker can play many kinds of attacks: she may just have
access to public data, and then encrypt any plaintext of her choice (chosen-plaintext at-
tacks) or moreover query the decryption algorithm on any ciphertext of her choice, ex-
cept the challenge ciphertext (adaptively/non-adaptively chosen-ciphertext attacks [38,
49]). Recently, an intermediate attack has been described where the adversary has ac-
cess to an oracle which, on input a pair (m, c), answers whether c encrypts the message
m. This attack has been named the Plaintext-Checking Attack [44]:

Definition 3 (Plaintext-Checking Attack (PCA)). In the Plaintext-Checking
scenario, the adversary may ask any pair (m, c) of her choice to a Plaintext-Checking
Oracle that answers whether c encrypts m or not.

Furthermore, multi-user scenarios can be considered where related messages are
encrypted under different keys to be sent to many people (e.g. broadcast of encrypted
data). This may provide many useful data for an adversary. For example, RSA is
well-known to be weak in such a scenario [28, 57], namely with a small encryption
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exponent, using the Chinese Remainderings Theorem. But recent results prove that
semantically secure schemes, in the classical sense as described above, remain secure
in multi-user scenarios [5, 4], whatever the kind of attacks.

A general study of these security notions and attacks has been driven in [6], we
therefore refer the reader to this paper for more details. However, we can just review
the scenarios we will be interested in in the following:

– one-wayness under chosen-plaintext attacks (OW-CPA) – where the adversary
wants to recover the whole plaintext from just the ciphertext and the public key.
This is the weakest scenario.

– one-wayness under plaintext-checking attacks (OW-PCA) – where the adversary
wants to recover the whole plaintext with an access to a Plaintext-Checking Oracle
that answers, for any pair (m, c), whether c encrypts m or not. This is also a very
weak scenario.

– semantic security under adaptively chosen-ciphertext attacks (IND-CCA) – where
the adversary just wants to distinguish which plaintext, between two messages
of her choice, has been encrypted, while she can ask any query she wants to a
decryption oracle (except the challenge ciphertext). This is the strongest scenario,
and thus our goal when we design a cryptosystem.

4.3 Some Examples

The RSA Encryption. As already said, in 1978, Rivest–Shamir–Adleman [51] proposed
a public-key encryption, thanks to the “trapdoor one-way permutation” property of
the RSA function: the generation algorithm produces a large composite number N =
pq, a public key e, and a secret key d such that e · d = 1modϕ(N). The encryption of
a message m, encoded as an element in

� ?
N, is simply c = me modN . This ciphertext

can be easily decrypted thanks to the knowledge of d, m = cd modN . Clearly, this
encryption is OW-CPA, relative to the RSA problem. The determinism makes a PCA-
oracle unuseful (its answer would be unrelevant), therefore the RSA-encryption scheme
is OW-PCA relative to the RSA problem.

However, since it is deterministic, it cannot be semantically secure: given the en-
cryption c of either m0 or m1, the adversary simply computes c′ = me

0 modN and
checks whether c′ = c. Furthermore, as said above, with a small exponent e (e.g.
e = 3), any security vanishes under a multi-user attack: given c1 = m3 modN1,
c2 = m3 modN2 and c3 = m3 modN3, one can easily compute m3 modN1N2N3 thanks
to the Chinese Remainderings Theorem, which is exactly m3 in

�
and therefore leads

to an easy recovery of m.

The El Gamal Encryption. In 1985, El Gamal [20] designed a public-key encryption
scheme based on the Diffie-Hellman key exchange protocol [17]: given a cyclic group
G of order q and a generator g, the generation algorithm produces a random element
x ∈

� ?
q as secret key, and a public key y = x · g. The encryption of a message m,

encoded as an element m in G, is a pair (c = a · g,d = a · y + m). This ciphertext can
be easily decrypted thanks to the knowledge of x, since a · y = x · c, m = d− x · c.
This encryption scheme is well-known to be OW-CPA relative to the Computational
Diffie-Hellman problem. It is also semantically secure (under chosen-plaintext attacks)
relative to the Decisional Diffie-Hellman problem [62]. About OW-PCA, it relies on
the new Gap Diffie-Hellman problem [45].
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4.4 Secure Designs

As we have seen above, the expected security level is IND-CCA, whereas the RSA
encryption just reaches OW-CPA under the RSA assumption, and the El Gamal en-
cryption achieves IND-CPA under the DDH assumption. Can we achieve IND-CCA
for practical encryption schemes?

In 1994, Bellare and Rogaway [8] proposed a generic conversion, the “Optimal
Asymmetric Encryption Padding” (OAEP), which was claimed to apply to any trap-
door one-way permutation, such as RSA, in the random oracle model. Eventually,
it has just been shown to apply to trapdoor partially one-way permutations [58, 24].
Anyway, there was already no hope to use it with any DL-based primitive, because of
the “permutation” requirement.

Hopefully, first Fujisaki and Okamoto [22] proposed a generic conversion from
any IND-CPA scheme into an IND-CCA one. While applying this conversion to the
above El Gamal encryption, one obtains an IND-CCA encryption scheme relative to
the DDH problem, in the random oracle model. After, independently, Fujisaki and
Okamoto [23] and the author [46] proposed better generic conversions since they apply
to any OW-CPA scheme to make it into an IND-CCA one, under the same assumption.

This high security level is just at the cost of two more hashings for the new en-
cryption, as well as two more hashings and one re-encryption for the new decryption
process. This re-encryption cost is the main drawback of these conversions. There-
fore, with Tatsuaki Okamoto, we tried and succeeded in providing a both secure and
efficient conversion [44]: REACT, for “Rapid Enhanced-security Asymmetric Cryp-
tosystem Transform”. This latter conversion is indeed very efficient in many senses

– the computational overhead is just the cost of two hashings for both encryption
and decryption

– if one can break IND-CCA of the resulting scheme with an expected time T , one
can break OW-PCA of the basic scheme within almost the same amount of time.

Anyway, both above conversions apply to any OW-CPA (or OW-PCA resp.)
public-key encryption scheme. And the El Gamal encryption is a very nice candi-
date, under the Diffie-Hellman problems (the CDH problem, or the GDH problem
resp.). Let us describe both generic conversions [46, 44] on any encryption scheme
S = (G, E ,D)

E : PK ×M×R→ C D : SK × C →M,

where PK and SK are the sets of the public and secret keys,M is the message-space,
C is the ciphertext-space and R is the random-space. One should remark that R may
be small and even empty, with a deterministic encryption scheme, such as RSA. But
in many other cases, such as the El Gamal encryption, it is as large as M. Anyway,
as we will see later, if required, it can be made as huge as necessary.

4.4.1 The First Conversion. In the conversion [46], we need, as for OAEP [8],
two functions, a hash function H and a generator function G, both assumed to be
ideal random functions [7],

H : {0, 1}k →R G :M→ {0, 1}k ,

where k is a security parameter. The cryptosystem is depicted on Figure 3, with k =
`+κ, where ` and κ denote the length of the messages to be encrypted and the error-
parameter respectively: the new message-space M′ can be identified to {0, 1}`, and
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G′: Key Generation

(kp, ks)← G(1k)
−→ (kp, ks)

E ′: Encryption of m ∈M′ = {0,1}` → (a,b)

r ∈M and s ∈ {0, 1}κ are randomly chosen
a = E(kp, r;H(m‖s)) b = (m‖s)⊕G(r)

−→ (a, b) is the ciphertext

D′: Decryption of (a,b)

Given a ∈ C and b ∈ {0, 1}k

r = D(ks, a) M = b⊕G(r)
if a = E(kp, r;H(M)) −→ m = [M ]` is the plaintext

(otherwise, “Reject: invalid ciphertext”)

Fig. 3. Generic Converted Encryption Scheme S ′

this conversion decreases the success probability, in the reduction from the underlying
problem to an attack, by a value negligible in κ. The notation [M ]` id used for the
truncation of the bit-string M to its ` most significant bits.

About the new scheme S ′, one can show that, under some assumptions about
the original encryption scheme S, an attacker against semantic security under an
adaptively chosen-ciphertext attack can be used to efficiently invert E : in other words,
OW-CPA of S implies IND-CCA of S ′, in the random oracle model. Let us formally
prove this important result, which first relies on the following lemma.

Lemma 4. Let A be an attacker against the semantic security of S ′ in a chosen-
plaintext scenario. If we denote by ε the advantage of this attacker after qH queries
to the random oracle H, one can design an algorithm B that outputs, for any given
c, a set S of values such that the plaintext of c is in S with probability greater than
ε/2 − qH/2κ.

To understand this lemma, one just has to remark that the adversary has to have
asked either H(m‖s) or G(r) to get any information about the plaintext m. However,
the probability to have guessed the correct s after qH queries to H is less than qH/2κ.
If one outputs (α, β), as the encryption of either m0 or m1, where α is the value c on
which one wants to invert E and β a random bit-string, then the probability that the
adversary has asked for G(ρ) is greater than ε/2 − qH/2κ (on all the random coins
and on the pair (α, β) itself, and thus on c.) In that case, the plaintext ρ of α (and
thus of c) is in the list of queries asked to G.

However, if one wants to deal with the chosen-ciphertext attacks, one has to sim-
ulate the decryption oracle. But this can be easily done by someone who has access
to the list of the query-answer pairs from G and H: let (a, b) be a ciphertext asked by
the adversary to the decryption oracle. One takes all the queries r asked to G whose
answer has been gr and checks if the value M = b ⊕ gr has been asked to H. To a
positive answer, one finally checks whether a = E(kp, r;H(M)) or not. Therefore, a
really encrypted message will be accepted and correctly decrypted, but the adversary
may have sent a valid ciphertext (a, b), by chance: with an a that is really equal to
E(kp, r;H(G(r)⊕ b)).

As shown by recent works [58, 24], a complete proof has to be driven. Therefore, let
us use greek letters for the challenge ciphertext (α, β): ρ, σ for the implicitly random
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values. If one assumes E(kp, ·; ·) to be an injective map for any key kp (on the input
spaceM×R), then the preimage of α is a pair (ρ, τ). Eventually, we denote by µ the
padded plaintext, and thus µ = mb‖σ. Let us be given a ciphertext (a, b) to decrypt,
with the associated random r, s, as well as (r, t) for the pre-image of a, and M the
padded plaintext. We have several events to define:

– AskG and AskH the events that ρ, and µ, have been asked to G, and H respectively;
– AskR and AskM the events that r, and M , have been asked to G, and H respec-

tively;
– BadR and BadM the events that r = ρ, and M = µ respectively.

First, as already remarked, an accepted and decrypted ciphertext by above simulation
is necessarily correct. Therefore, an incorrect decryption (a failure, denoted by the
event F) may just come from a rejection of a valid ciphertext. Let us evaluate the
probability p of this event, provided that ¬AskG: ρ has not been asked to G (the
preimage ρ of α by E is not in the list of the queries asked to G.) Then we use the
notation pr for probabilities provided that ¬AskG, and let us split the failure event
according to AskR:

p = pr[F ∧ AskR] + pr[F ∧ ¬AskR].

Before any further analysis, let us remark that some events cannot happen at the
same time: BadR and BadM together would necessarily imply that the message and
the random values are the same as for the challenge ciphertext, which would lead to
the same ciphertext. However it is prohibited to the adversary to ask this challenge
ciphertext to the decryption oracle. Thus

BadR⇒ ¬BadM and BadM⇒ ¬BadR.

Let us go back to the analysis of the probability p. The former event can be split
according to AskM. But as we have already remarked, event AskR∧AskM necessarily
implies a correct decryption. Therefore

pr[F ∧ AskR] = pr[F ∧ AskR ∧ ¬AskM]

= pr[F ∧ AskR ∧ ¬AskM ∧ ¬BadM] + pr[F ∧ AskR ∧ ¬AskM ∧ BadM]

≤ pr[F ∧ ¬AskM ∧ ¬BadM] + pr[BadM ∧ ¬BadR]

≤ pr[F | ¬AskM ∧ ¬BadM] + Pr[BadM | ¬BadR ∧ ¬AskG]

≤ Pr[H(M) = t | ¬AskM ∧ ¬BadM] + Pr[G(r) = µ⊕ b | ¬AskG ∧ ¬BadR]

≤ 1/#R+ 1/2k

Now, let us consider the second part which we can split according to BadR:

pr[F ∧ ¬AskR] = pr[F ∧ ¬AskR ∧ BadR] + pr[F ∧ ¬AskR ∧ ¬BadR],

where the former event can furthermore be split according to AskM:

pr[F ∧ ¬AskR ∧ BadR] = pr[F ∧ ¬AskR ∧ BadR ∧ AskM]

+pr[F ∧ ¬AskR ∧ BadR ∧ ¬AskM]

≤ pr[AskM ∧ ¬AskR ∧ BadR] + pr[F ∧ ¬AskM ∧ BadR]

≤ pr[AskM | ¬AskR ∧ BadR] + pr[F ∧ ¬AskM ∧ ¬BadM]

≤ Pr[AskM |BadR ∧ ¬AskG] + pr[F | ¬AskM ∧ ¬BadM]

≤ qH/2κ + 1/#R.
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About the latter, we can also split it according to AskM: pr[F ∧ ¬AskR ∧ ¬BadR]

= pr[F ∧ ¬AskR ∧ ¬BadR ∧ AskM] + pr[F ∧ ¬AskR ∧ ¬BadR∧ ¬AskM]

≤ pr[AskM ∧ ¬AskR ∧ ¬BadR] + pr[F ∧ ¬AskR ∧ ¬BadR ∧ ¬AskM ∧ BadM]

+pr[F ∧ ¬AskR ∧ ¬BadR ∧ ¬AskM ∧ ¬BadM]

≤ pr[AskM | ¬AskR ∧ ¬BadR]

+pr[BadM ∧ ¬AskR ∧ ¬BadR] + pr[F ∧ ¬AskM ∧ ¬BadM]

≤ pr[AskM | ¬AskR ∧ ¬BadR]

+pr[BadM | ¬AskR ∧ ¬BadR] + pr[F | ¬AskM ∧ ¬BadM]

≤ qH/2k + 1/2k + 1/#R.

Therefore,

p ≤
3

#R
+

qH + 2

2k
+

qH

2κ
.

This even provides a plaintext-extractor [8]. Then combining both results, one obtains

Pr[AskG] ≥
ε

2
−

qH

2κ
− qD

(

3

#R
+

qH + 2

2k
+

qH

2κ

)

− Pr[AskG].

That allows us to state the following result, which encompasses chosen-ciphertext at-
tacks, under the assumption that for any public key kp ∈ PK, the encryption function
Ekp

:M×R→ C is an injection.

Theorem 5. Let A be an attacker against the semantic security of S ′ in a chosen-
ciphertext scenario. If we denote by ε the advantage of this attacker after qH queries
to the random oracle H and qD queries to the decryption oracle, one can design an
algorithm B that outputs, for any given c, a set S of values such that the plaintext of
c is in S with probability greater than

ε

4
−

1

2
×

(

(qD + 1)qH

2κ
+

qD(qH + 2)

2k
+

3qD

#R

)

.

Remark 6. One may remark that if R is too small, which can even be empty in the
case of a fully trapdoor function, above result is meaningless. However, one can easily
extend R: e.g. E2(kp,m; r1‖r2)← E1(kp,m; r1)‖r2.

In general, randomly choosing an element in the set S which is the set of the queries
asked to G, one can invert E with success probability greater than

1

4 · qG

×

(

ε−

(

2(qD + 1)qH

2κ
+

2qD(qH + 2)

2k
+

6qD

#R

))

,

where qH , qG and qD denote the number of queries asked to H, G and D respectively.
But such a reduction can be improved in the case of a random self-reducible problem,
such as the Diffie-Hellman problem, using the Shoup’s theorem [59] about the faulty
Diffie-Hellman oracles. It can also be improved under a gap-problem assumption [45],
and thus relative to the OW-PCA of the underlying cryptosystem S.
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4.4.2 A Rapid Enhanced-security Asymmetric Cryptosystem Transform

In the second REACT conversion [44], we also need two hash function G and H, both
assumed again to behave like random functions [7],

G :M→ {0, 1}` H : {0, 1}? → {0, 1}κ,

where κ is the security parameter, while ` denotes the size of the messages to encrypt.
The REACT conversion is depicted on Figure 4.

G′: Key Generation

(kp, ks)← G(1k)
−→ (kp, ks)

E ′: Encryption of m ∈M′ = {0,1}` → (a,b, c)

R ∈M and r ∈ R are randomly chosen
a = E(kp, R; r) b = m⊕G(R) c = H(R,m, a, b)

−→ (a, b, c) is the ciphertext

D′: Decryption of (a,b, c)

Given a ∈ C, b ∈ {0, 1}` and c ∈ {0, 1}κ

R = D(ks, a) m = b⊕G(R)
if c = H(R,m, a, b) and R ∈M −→ m is the plaintext

(otherwise, “Reject: invalid ciphertext”)

Fig. 4. Rapid Enhanced-security Asymmetric Cryptosystem Transform S ′

About this new scheme S ′, one can show that, an attacker against semantic security
under an adaptively chosen-ciphertext attack can be used to efficiently invert E , while
just asking for the validity of plaintext-ciphertext relations: in other words, OW-PCA
of S implies IND-CCA of S ′, in the random oracle model [7]. Based on this new PCA
scenario [44] and on the gap-problems [45], one can claim the following security result.

Theorem 7. Let A be an attacker against the semantic security of S ′ in a chosen-
ciphertext scenario. If we denote by ε the advantage of this adversary after qD, qG and
qH queries to the decryption oracle and to the random oracles G and H respectively,
one can design an algorithm B that outputs, for any given C, the plaintext of C, after
less than qG+qH queries to the Plaintext-Checking Oracle with probability greater than
ε/2 − qD/2κ.

As for the previous conversion, that security result comes from two distincts re-
marks:

– the adversary has to have asked either G(R) or H(R,m, a, b) to get any infor-
mation about m. Which means that for a given C = E(kp, R; r), R is in the list
of queries asked to G or to H. Simply asking for the qG + qH candidates to the
Plaintext-Checking Oracle, one can output the right one. Then, with probability
ε/2, one inverts E , after (qG + qH) queries to the Plaintext-Checking Oracle.

– However, in the chosen-ciphertext scenario, the adversary may ask queries to the
decryption oracle. We have to simulate it. To any query (a, b, c) asked by the
adversary to the decryption oracle, one looks at all the pairs (R,m) such that
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G a group of order q
g a generator of G
G : G → {0, 1}` and H : {0, 1}? → {0, 1}κ

(E,D) : {0, 1}` × {0, 1}? → {0, 1}? a symmetric encryption scheme

Secret Key: x ∈
�

q

Public Key: y = x · g

Encryption

r ∈R G and r ∈
�

q

E(y,m; r‖r) =

{

a = r · g b = r · y + r
b = E(G(r),m) c = H(r,m,a, b)

Decryption

D(x, (a,b, b, c)) =

{

r = b− x · a t = D(G(r), b)
if c = H(r,m,a, b) then m = t

Fig. 5. The REACT-EG Encryption Scheme

(R,m, a, b) has been asked to the random oracle H. For any such R, one asks
to the Plaintext-Checking Oracle whether a is a ciphertext of R (remark that
it does not make more queries to the Plaintext-Checking Oracle, since it has
already been taken in account above). Then it computes K = G(R), maybe using
a simulation of G if the query R has never been asked. If b = K ⊕m then one
outputs m as the plaintext of the triple (a, b, c). Therefore, any correctly computed
ciphertext is decrypted by the simulator. But if the adversary has not asked
H(R,m, a, b) the probability that the ciphertext is valid, and thus the decryption
not correctly simulated, is less than 1/2κ, if the adversary correctly guesses the
value of H(m,R, a, b).

4.5 Hybrid Conversions

In both conversions, one can improve efficiency. Indeed, in both cases, we have com-
puted some b = m ⊕ K, where K can be seen as a session key used in a one-time
pad encryption scheme. The one-time pad is well-known to be a perfect encryption
scheme, but in those conversions, it could be replaced by any symmetric encryption
scheme that is just semantically secure (under no plaintext nor ciphertext attacks).
Therefore, plaintexts of any size could be encrypted using those conversions.

4.6 The REACT-EG Encryption Scheme

4.6.1 Description. If one applies that latter REACT conversion to the famous
El Gamal encryption scheme [20], one gets the scheme presented on Figure 5, where
(E,D) is any symmetric encryption scheme whose keys are `-bit strings. This hybrid
scheme achieves the following security properties.

Theorem 8 (The REACT-EG Encryption Scheme). Let A be an IND-CCA
against the REACT-EG Encryption Scheme running within time bound T . If we denote
by ε the advantage of this adversary after qD, qG and qH queries to the decryption
oracle and the hash functions G and H respectively, one can design an algorithm B
that, within time T ′ ≤ T + (qG + qH)×O(1), for any ν < ε,
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– either breaks the GDH Problem after less than qG + qH queries to the DDH-
oracle, where

δ =
ε− ν

2
−

qD

2κ
,

– or gets an advantage greater than ν in breaking the semantic security of the sym-
metric encryption scheme (E,D).

In practice, one would choose a group G of order q on 160 bits, with a security
parameter κ = 80. If we consider that the adversary cannot make more than 264

calls to oracles, and even less to the decryption oracle D, then a successful attack
in expected time T would lead to an algorithm that solves the Gap Diffie-Hellman
problem within similar time, unless the symmetric encryption scheme is weak. That
is optimal!

4.6.2 Comparaison with Previous DH-Based Proposals. We focused on this
application for REACT, because many variants have been proposed for the El Gamal
encryption. However REACT provides the most efficient one. Indeed, many El Gamal
variants have already been proposed in the past, trying to deal with chosen-ciphertext
attacks. First, at PKC ’98, Tsiounis and Yung [62] proposed a variant secure against
chosen-ciphertext attacks, in the random oracle model. However, it was furthermore
based on both the Decisional Diffie-Hellman problem and an assumption about the
unforgeability of Schnorr signatures [54], which can only be proven in the generic
model [55]. Thereafter Shoup and Gennaro [60] proposed a new variant provably se-
cure against chosen-ciphertext attacks in the random oracle model, under the sole
assumption of the Decisional Diffie-Hellman problem. For both of them, efficiency was
a serious drawback: twice, or even more, slower than our proposals.

The most famous is of course the Cramer-Shoup variant [16], which is provably
secure in the standard model. However, the security relies on the Decisional Diffie-
Hellman problem and is rather slow, still more than twice as slow as ours.

Before this candidate, DHAES [1] was the most efficient El Gamal-like public-key
encryption scheme which reached IND-CCA security. However, this security, whereas it
does not require the random oracle model [7], is based on a non-standard assumption,
the Oracle Diffie-Hellman Assumption [2], which is somewhat as strong as the random
oracle model, and furthermore requires a MAC.

Consequently, the REACT-EG variant is among the most efficient, since it is al-
most as efficient as the original El Gamal scheme. Indeed, it just performs two more
hashings. Furthermore, it is semantically secure against adaptively chosen-ciphertext
attacks under the sole assumption of the Gap Diffie-Hellman problem in the random
oracle model.

5 Conclusion

In this paper, we reviewed the security notions for encryption, as well as some security
proofs. Furthermore, we have seen many generic conversions which apply to weakly
secure encryption schemes to make strongly secure ones. The last one, REACT, is the
most efficient and the most general one. Applied to the El Gamal encryption scheme,
it leads to the most efficient DL-based cryptosystem, based on the Gap Diffie-Hellman
problem.
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