
DFC Update

Olivier Baudron1, Henri Gilbert2, Louis Granboulan1, Helena Handschuh3,
Robert Harley4, Antoine Joux5, Phong Nguyen1, Fabrice Noilhan6, David
Pointcheval1, Thomas Pornin1, Guillaume Poupard1, Jacques Stern1, and

Serge Vaudenay1

1 Ecole Normale Sup�erieure { CNRS
2 France Telecom

3 Gemplus { ENST
4 INRIA
5 SCSSI

6 Universit�e d'Orsay { LRI

Contact e-mail: Serge.Vaudenay@ens.fr

Abstract This document reports an update of DFC. We answer to a
question about the rationale for the CP Confusion Permutation. We give
new implementation results for DFC. In particular we present an impres-
sively fast implementation which takes 323 cycles on Compaq's 21164
Alpha microprocessor. On the new 21264 we expect to reach software
encryption rates over 500 Mbps. We also discuss making DFC scalable
to allow the block size or the number of rounds, in the encryption or key
schedule, to be varied. Finally, we describe how DFC may be subject to
slight change in its key schedule in order to �x a minor drawback noticed
by Coppersmith.

Since DFC was proposed in [5, 6], several issues were raised and several ad-
vances made. The present report addresses the following.

1. The rationale for CP was needed.
2. New implementation results.
3. Criticisms raised on the number of rounds.
4. Weak keys were identi�ed.

1 Rationale of the Design of CP

During the �rst AES workshop, the question of the rationale for the CP Confu-
sion Permutation was raised. The somewhat provocative answer given was that
CP could be replaced by anything else (even the identity function) as far as the
decorrelation analysis is concerned but, as discussed in the next section. This is
not enough to guarantee real security though, and CP actually plays some role
for the security. Decorrelation provides provable security against some classes of
attacks, and the frontier between these attacks and other potential ones which

might be covered by this theory is quite sharp. Conservative designs use heuris-
tic security for which the frontier is usually smooth. We believe that we should
use both approaches: combining decorrelation designs which provably protect
against some classes of attacks, with conservative design which increases the
di�culty of other attacks. This is the purpose of the CP function.

In the DFC design we wanted to mix several simple arithmetic operations over
mixed algebraic structures. We chose a CP which combines XOR and addition
(as is proposed in | for example | RC5 [7]). We also introduced some non-
algebraic randomness by means of a look-up table, and we wanted that table to
be limited to 256 bytes in order to minimize memory requirements (for smart
cards). We did not want to introduce rotations which are painful on the 6805 as
well as on Alpha or (Ultra)Sparc. We also used random translations by constants.
The original report [6] gives some rationale for the choice of the constants.

2 New Implementations

We have been optimizing our implementations provided in the AES CD-ROM2.
Using programming tricks to help the compilers to produce optimized code and
a fast carry scheme, we basically got a 30% speed improvement for our 64-bit
C implementation on Pentium Pro (1262 cycles), UltraSparc (910 cycles) and
Alpha processors (565 cycles). Harley made an implementation of DFC on ARM
which encrypts within 710 cycles (C language plus asm opcode) or 560 cycles
(assembly code).

We have optimized the Java implementation as well, using the JDK-2 and
\just-in-time" compilation.

Harley wrote an impressive implementation of DFC on the Alpha architec-
ture. This implementation is in ANSI-C but requires that long types be 64-bit
integers. It uses the Alpha assembly code instruction umulh if it is available
(this instruction returns the 64 most signi�cant bits of a 64x64 bit unsigned
multiplication) and otherwise falls back to generic replacement code for the
multiplication.

On 21164a microprocessors, we got an encryption within 323 cycles for m =
128 and r = 8. We measured 232 cycles on a prototype for the new generation
21264. A pure C implementation (not using umulh) encrypts one block within
526 cycles on the 21164a. This implementation is given in Appendix.

All these results are reported in Table 1.

3 Possible Variations on DFC

In order to address several issues on DFC (namely, the low number of rounds
and key scheduling issues), we discuss possible adjustments to DFC. The present
report does not aim to propose a speci�c variant but to show that the known
problems could easily be �xed.

2

platform language compiler programmer enc. time

Alpha 21164a C+asm cc.alt Harley 323
Alpha 21164a ANSI C cc.alt Harley 526
Alpha 21264 C+asm cc.alt Harley 232
Pentium Pro asm nasm Behr 550
Pentium Pro asm masm McGougan 482
Pentium Pro ANSI C gcc Noilhan 1262
UltraSparc C+asm SWC 5.0 Noilhan 910
UltraSparc Java JDK 1.2 Noilhan 11350
ARM C+asm gcc Harley 710
ARM asm gas Harley 560
6805 <200B RAM asm Poupard 35000
6805 <100B RAM asm Poupard 200000

Table1. Best known implementations of DFC on various platforms. The timing are
given in cycles for one block encryption. The Java implementations used just-in-time
compilers.

3.1 New Parameters

Several of our colleagues criticized DFC because of its low number of rounds.
Actually, our paradigm was to trust our security results and commit to them by
not adding too many extra rounds. We actually believe that due to the strength
provided by the decorrelation approach, the security increases with the number
of rounds faster than with regular designs. We are however concerned that DFC
should gain the con�dence of a general audience not familiar with the subtleties
of decorrelation theory. For this we suggest allowing the number of rounds r to
be increased, but still consider r = 8 as our nominal choice. Biham [3] suggested
using r = 9 in order to compare DFC to other ciphers with similar margins of
security. In Table 2 we reported Biham's suggested number of rounds for the
AES candidates and the best known implementation timing on Alpha 21164a
scaled accordingly. Mars becomes the fastest algorithm, followed by DFC.

cipher # rounds timing suggested new timing cipher # rounds timing suggested new timing

Cast256 48 749 40 624 Magenta 6 5074 10 8457
Crypton 12 499 11 457 Mars 32 507 20 317
Deal 6 2752 9 4128 RC6 20 559 20 559
DFC 8 323 9 363 Rijndael 10 490 8 392
E2 12 587 10 489 Safer+ 8 1502 7 1314
Frog 8 2752 ? Serpent 32 998 17 530
HPC 8 402 ? Two�sh 16 490 12 368
Loki97 16 2356 36 5301

Table2.Biham's suggested round numbers given at the Asiacrypt'98 Conference (taken
from [3]). We added the encryption time (in clock cycles) of the best software imple-
mentation on Alpha 21164a (see [2]) and the new timing if we change the algorithm
accordingly.

3

In this report, we also propose making DFC scalable, which may be useful
for some applications. We thus provide a scalable size m of the message blocks.
The AES requires a block-size of m = 128. If one wishes to reduce to reduce m,
it is necessary to change the prime number and the CP Confusion Permutation.
We simply recommend using the smallest prime number p which is greater than
2
m

2 .

m p
32 216 + 1
64 232 + 15
96 248 + 21
128 264 + 13

Concerning the RT Round Table, our design criterion was to limit the look-up
table to 256 bytes to �t into the ROM of smart cards. This is why we chose
a 6-bit input and a 32-bit output. In general, we propose using a 6-bit input
and a m

4
-bit output. (We thus use an amount of randomness proportional to m

and limited to 256 bytes when m = 128.) This way, we can de�ne a version of
DFC dedicated to 32-bit microprocessors (but with 64-bit blocks). We can also
propose a toy cipher with a block-size of 32 bits.

We shall refer to k as the key length. The AES requires k = 128, k = 192 and
k = 256. Our original design already tolerated any k within the range [0; 2m].

We add an extra parameter s which consists of the number of rounds used in
the key scheduling algorithm per round in the encryption. Our nominal choice
consists of s = 4. The key setup over encryption time ratio will be equal to s,
which is thus scalable.

Introducing these parameters does not a�ect the original design: choosing
the corresponding parameters makes it totally compatible.

3.2 A New Key Schedule

The key schedule of DFC has two (minor) drawbacks. First of all, Coppersmith
noted that if the internal RK2 Round Key happens to be zero (which holds with
probability 2�128), then the symmetries in the key schedule make the whole
encryption scheme become the identity function (in the sense that the encryption
of any message x will be x itself)! Second the �rst round key, RK1, depends on
only half of the secret key which may lead to an exhaustive key search attack on
the �rst round key. If desired, these drawbacks could easily be �xed with minor
changes to the key schedule, e.g. by changing EFi(K) from one round to the
other, and by making RK0 depend on K instead of being 0. We do not propose
making such an adjustment at this stage but, if requested, could do so during
the second round of the AES process.

4 Security Results

We state the security results in terms of the new parameters (m; k; r; s) and the
prime number p. We recall that the security results consist of, �rst, theoretical

4

results for an ideal DFC in which the RKi sequence is uniformly distributed (we
will call DFC�(m; r) this ideal algorithm which does not depend on k or s) and
second, some practical results obtained by relating the theoretical results back
to the real DFC algorithm.

Theorem 1. The permutation DFC�(m; r) admits a decorrelation bias of order

two which is such that

DecP2(DFC�(m; r)) � �
�+ 3�2 + �3 + 23�

m

2

�b r3c (1)

where � = DecF2(RF) is the pairwise decorrelation bias of the round function

which is such that

DecF2(RF) � 2

�� p

2
m

2

�2
� 1

�
(2)

where p is the smallest prime number greater than 2
m

2 .

(We consider here the decorrelation with the jjj:jjj1 norm as explained in [8{11].)
Thus if we let p = 2

m

2 (1 + �) we can approximate the decorrelation bias upper
bound by �

4� + 23�
m

2

�b r3c : (3)

This shows that the pairwise decorrelation bias is negligible compared to 2�m if
r � 9. We believe that r = 8 is su�cient. For m = 128, we have � = 13� 2�64

and we get back the original design of DFC:

DecP2(DFC�(128; r)) � 2�58b r3c: (4)

From decorrelation theory we know that the average complexity of di�erential
cryptanalysis (over the distribution of the keys) needs at least to be on the order
of 1=DecP2, as for linear cryptanalysis (from an asymptotic bound). Similarly,
the average complexity of any known plaintext which comes from an iterated

attack of order one needs to be at least on the order of 1=
p
DecP2. (In these

results, the phrase \on the order of" means equality to within a constant factor
depending only on the expected probability of success. For a probability of 50%,
these constants are greater than 1=10.) More precisely we recall the following
results taken from [8{11].

Theorem 2. For any di�erential distinguisher with complexity n against a per-

mutation over a space of 2m elements and with a pairwise decorrelation bias of

DecP2, the advantage Adv is such that

Adv � n

2
DecP2 +

n

2m � 1
: (5)

Similarly, for any linear distinguisher we have

lim
n!+1

Adv

n
1

3

� 9:3

�
2DecP2 +

1

2m � 1

� 1

3

: (6)

5

For any known plaintext iterated distinguisher with order 1 we have

Adv � 3

��
9

2
2�m +

3

2
DecP2

�
n2
� 1

3

+
n

2
DecP2: (7)

(For an accurate formalization of di�erential distinguishers, linear distinguishers
and iterated distinguishers, see [9{11].) When DecP2 is negligible compared to
2�m, decorrelation does not provide any more security with these bounds. It
is thus useless (when considering these results) to add too many rounds after
r � 8.

For example with m = 128 and r = 6 (the nominal choice of DFC re-

duced to 6 rounds instead of 8) we get Adv � n:2�117, Adv � (n:2�105)
1

3 and

Adv � (n2:2�110)
1

3 for di�erential distinguishers, linear distinguishers and iter-
ated attacks of order 1 against DFC�(128; 6) respectively. This formally proves
that DFC� is immune against these attacks if we use it less than 255 times with
the same key.

Since DFC has a key scheduling algorithm, we need some extra result to
transform the security results on DFC� to DFC. We let D(m; k; r; s) denote
the distribution of (RK1; : : : ;RKr) spanned by the key scheduling algorithm
of DFC(m; k; r; s) when K is a uniformly distributed k-bit key, and we let D�
denote the uniform distribution over rm-bit sequences. DFC� relies on the D�
distribution, but DFC uses the D one.

De�nition 3. We consider a probabilistic Turing machine A limited to t in-

structions and which is fed by a rm-bit random string of distribution D and

must output one bit. We consider the advantage of distinguishing D(m; k; r; s)
from D� de�ned by

AdvAt (m; k; r; s) = jPr[A(D(m; k; r; s)) = 1]� Pr[A(D�) = 1]j:

We let Ht(m; k; r; s) denote the maximal possible advantage with these parame-

ters.

This function Ht enables us to state the following \meta-theorem".

Theorem 4. Let tk be the minimal complexity of the key scheduling algorithm

and te be the minimal complexity of the encryption algorithm. If for some class

C of distinguishers the advantage of distinguishing DFC�(m; r) from a random

permutation is limited to f(t; n) where t is the complexity and n the number of

oracle calls, then the advantage of distinguishing DFC(m; k; r; s) from a truly

random permutation is limited to Ht+nte+tk(m; k; r; s) + f(t; n) in this class of

attacks.

When considering the structure of DFC, we have tk � ste. Therefore, assuming
that we cannot e�ciently distinguish D(m; k; r; s) from D� within a complexity
limited to xte (i.e. that Hxte(m; k; r; s) is negligible), all results for distinguishers
on DFC� with a limited number of oracle calls of n = x

2
� s and a limited

complexity of t = x

2
te are applicable on DFC.

6

Corollary 5. With the above notations, let � = Hxte(128; 128; 8; 4). With the

approximation that tk � 4te, we have the following results.

1. Adv � x:2�118 + � for any di�erential distinguisher,

2. Adv � (x:2�106)
1

3 + � for any linear distinguisher,

3. Adv � (x2:2�112)
1

3 + � for any iterated attack of order 1

for a number of queries of x

2
� 4 against DFC reduced to 6 rounds instead of 8.

Hence if � is negligible, DFC(128; 128; 8; 4) is provably secure against these at-
tacks for a number of uses which is less than 255.

We can thus propose two kinds of challenge to the research community:

1. distinguishing one RK1; : : : ;RKr sequence generated by DFC(128; 128; 8; 4)
from a uniformly distributed sequence with a complexity negligible compared
to 255 DFC encryptions,

2. distinguishing DFC�(128; 6) from a random permutation with a complexity
negligible compared to 255 DFC encryptions and a number of oracle calls
negligible compared to 255.

We proved that no di�erential, linear or iterated attack of order 1 can meet these
challenges. We conjecture that m � 128, k � 128, r � 8 and s � 4 are safe in
the sense of these challenges with the technology of the AES application period.

Acknowledgements

We wish to thank Don Coppersmith for mentioning the weak keys of DFC. We
also thank Brian Gladman, Dominik Behr and Danjel McGougan for their im-
pressive implementations of DFC as well as Eli Biham for valuable discussions,
Kazumaro Aoki and Doug Whiting for their comments and the NIST for orga-
nizing this exciting work.

References

1. K. Almquist. AES Candidate Performance on the Alpha 21164 Processor (version
1). Published in the sci.crypt Usenet Newsgroup. 23rd of December, 1998.

2. O. Baudron, H. Gilbert, L. Granboulan, H. Handschuh, A. Joux, P. Nguyen, F.
Noilhan, D. Pointcheval, T. Pornin, G. Poupard, J. Stern, S. Vaudenay. Report on
the AES Candidates. Submitted.

3. E. Biham. Invited talk given at the Asiacrypt'98 Conference. Slides available on
http://www.cs.technion.ac.il/�biham/

4. H. Feistel. Cryptography and Computer Privacy. Scienti�c American, vol. 228, pp.
15{23, 1973.

5. H. Gilbert, M. Girault, P. Hoogvorst, F. Noilhan, T. Pornin, G. Poupard, J. Stern,
S. Vaudenay. Decorrelated Fast Cipher: an AES Candidate. (Extended Abstract.)
In Proceedings from the First Advanced Encryption Standard Candidate Confer-

ence, National Institute of Standards and Technology (NIST), August 1998.

7

6. H. Gilbert, M. Girault, P. Hoogvorst, F. Noilhan, T. Pornin, G. Poupard, J. Stern,
S. Vaudenay. Decorrelated Fast Cipher: an AES Candidate. Submitted to the Ad-
vanced Encryption Standard process. In CD-ROM \AES CD-1: Documentation",
National Institute of Standards and Technology (NIST), August 1998.

7. R. L. Rivest. The RC5 Encryption Algorithm. In Fast Software Encryption, Leuven,
Belgium, Lectures Notes in Computer Science 1008, pp. 86{96, Springer-Verlag,
1995.

8. S. Vaudenay. Provable Security for Block Ciphers by Decorrelation. In STACS 98,
Paris, France, Lectures Notes in Computer Science 1373, pp. 249{275, Springer-
Verlag, 1998.

9. S. Vaudenay. Feistel Ciphers with L2-Decorrelation. To appear in SAC'98, LNCS.
10. S. Vaudenay. The Decorrelation Technique Home-Page.

URL:http://www.dmi.ens.fr/~vaudenay/decorrelation.html
11. S. Vaudenay Vers une Th�eorie du Chi�rement Sym�etrique, Dissertation for the

diploma of \habilitation to supervise research" from the University of Paris 7,
Technical Report LIENS-98-15 of the Laboratoire d'Informatique de l'Ecole Nor-
male Sup�erieure, 1998.

A Implementations of DFC on Alpha

The following implementation of DFC in ANSI-C detects if the Alpha ASM
instruction umulh is available and uses it if possible.

/* > dfc.c
* Purpose: Implement "Decorrelated Fast Cipher" from ENS for AES.
* Copyright: (c) Robert J. Harley, 16-July-1998
* Contact: Robert.Harley@inria.fr
* Legalese: This code is subject to the GNU General Public License (v2).
*/

/* Compile with an incantation like one of these:
* egcs -O3 -freg-struct-return -Wall dfc.c -o dfc
* cc.alt -O5 -tune host -std1 dfc.c -inline all -o dfc
*/

#ifndef __alpha
#error Take out the rpcc stuff to use this on 64-bit chips other than Alpha.
#endif

/*== #includes ===*/

/* ANSI includes */
#include <stdio.h>
#include <assert.h>

/* System-specific includes */
#if defined(__DECC) && defined(__alpha)
#include <c_asm.h>
#endif

/*== Types ===*/

typedef unsigned int u32;
typedef signed long s64;
typedef unsigned long u64;

typedef struct { u64 hi, lo; } u128;

8

