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Abstract. Identification is a useful cryptographic tool. Since the zero-knowledge theory
appeared [3], several interactive identification schemes have been proposed (in particular
Fiat-Shamir [2] and its variants [4, 6, 5], Schnorr [8]). These identifications are based on
number theoretical problems. More recently, new schemes appeared with the particularity
that they are more efficient from the computational point of view and their security is
based on NP-complete problems: PKP (Permuted Kernels Problem) [9], SD (Syndrome
Decoding) [11] and CLE (Constrained Linear Equations) [12].
We present a new linear NP-complete problem which comes from neural networks and
learning machines: the Perceptrons Problem. We have some constraints, m vectors X i of
{−1, +1}n, and we want to find a vector V of {−1, +1}n such that Xi · V ≥ 0 for all i.
Next, we provide some zero-knowledge interactive identification protocols based on this
problem, with an evaluation of its security. Eventually, those protocols are well suited for
smart card applications.

1 Introduction

An interactive identification protocol involves two persons Alice and Bob, where
Alice wants to prove that she is really Alice, interactively. Alice has a public key
which everybody knows, and a secret key associated to the public key. She is the
only one who knows the secret key, and nobody can compute it. To prove her
identity, Alice proves that she knows a secret key associated to her public key.
Recently, the zero-knowledge theory showed that we can do this without reveal-
ing anything about the secret key. The first efficient zero-knowledge protocols
were based on number theoretical problems (Fiat-Shamir [2] and its variants [4,
6, 5], Schnorr [8]). They have two major disadvantages:

– The hardness of the problems used (factorization and discrete logarithm)
is not proved. Moreover, more efficient algorithms and computers threaten
them.

– Arithmetic operations are very expensive (modular multiplications, modular
exponentiations).

However, since 1989, new schemes have appeared, which rely on NP-complete
problems, and require only operations over small numbers or even on bits: PKP
(Permuted Kernels Problem) [9], SD (Syndrome Decoding) [11] or CLE (Con-
strained Linear Equations) [12].

This paper introduces another linear scheme based on the Perceptrons Prob-
lem, an NP-complete problem, which seems to be well suited for smart card
applications.
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2 The Perceptrons Problem

The following problem appears in physics and the study of the Ising’s percep-
trons, and in artificial intelligence with neural networks and learning machines.
We call it The Perceptrons Problem.

Definition 1. We call an ε-vector a vector which components are either −1 or
+1.

Definition 2. The Perceptrons Problem PP:

Input : X1, . . . , Xm, m ε-vectors of size n.
Question : Is there an ε-vector Y of size n such that for all j, X j · Y ≥ 0 ?

We will modify the original problem a little bit to make the interactive proof
easier, and to make the practical attacks more difficult:

Definition 3. Modified Perceptrons Problem PP’

Input : X1, . . . , Xm, m ε-vectors of size n.
T , a vector of size m with integer and nonnegative components.

Question : Are there an ε-vector Y of size n and a permutation, σ,
over {1, . . . , m} , such that for all j, X j · Y = Tσ(j) ?

Theorem 4. Both PP and PP’ are NP-complete.

Furthermore, we can prove that PP is difficult to approximate in the sense of
Papadimitriou and Yannakakis [7].

3 Cryptographic applications

3.1 Finite field

For cryptographic use, we must bound the size of the numbers used in order
to store them on a constant number of bits. So we will work in the finite field
with p elements, and m vectors X i of odd size n. We bound the value of the dot
products by a positive odd integer t. We can prove that if n, p and t are such
that 2p > n + t we have:

X i · Y ≥ 0 ⇐⇒ X i · Y mod p ∈ {1, 3, . . . , t}

3.2 Size of the problem

As we will see later, the values of m and n depend on the efficiency of the attacks.
However we can already prove a relation between them. Indeed, for the problem
PP’, we want that only one solution exists. Therefore, we want to know:

– the number of solutions for PP.
As soon as we know the existence of at least one solution, we can evaluate
the number of solutions for an instance of PP by a combinatorial method:
N(m, n)
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– the probability to obtain a given distribution d for T : Pm,n,d

There is just one solution, if we choose m and n such that N(m, n)×Pm,n,d ≈ 1
for all distribution d:

max Number of Least Number of
m n solutions Probability solutions

for PP for PP’
101 117 9.4 × 109 1.0 × 10−10 0.94
121 137 1.6 × 1011 6.0 × 10−12 1.06
141 157 2.6 × 1012 3.5 × 10−13 0.92
151 167 7.4 × 1012 1.4 × 10−13 1.04

4 Possible attacks

We tried several attacks against PP and PP’ in order to evaluate the security of
a possible protocol. But since there is no algebraic structure in those problems,
no manipulation of the matrix (the matrix which rows are the given vectors, X i)
will leave the problem unchanged (manipulation like Gaussian elimination, used
in the past against PKP, CLE or any problem based on error correcting codes
will not help here). So, it seems that only (more or less intelligent) exhaustive
search or probabilistic attacks would succeed.

4.1 The majority vector

The first approximation we want to try is the majority vector M :
{

Mj = +1 if #{i|X i
j = +1} > n

2

Mj = −1 otherwise

Theorem 5. For an m×n-instance constructed randomly, with solution V and

m ' n, the average Hamming distance between V and M , is roughly n · (
1

2
−

1

π
).

Then we thought of changing 18% of the components of M , and trying the
products. But, even if we begin with the most litigious values there are on

average 0.8 ×
(

n

0.18n

)

possibilities to try.

We can already fix a bound for n (and m) to overtake the usual workload of 264:
n ≥ 100.

4.2 Simulated annealing

Because of the inefficiency of previous attacks, we tried the well-known proba-
bilistic algorithm from artificial intelligence, known as simulated annealing [10].
This attack tries to minimize a function, Energy, defined on a finite metric space,
in a probabilistic way. Simulated annealing algorithms are an improvement of
gradient descent algorithms. Whereas gradient descent algorithms can converge
to a local minimum and stay there, simulated annealing algorithms try, with
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some small random perturbations, to go away. These perturbations, which may
be important at the beginning, have to decrease to zero.
It is clear that such an algorithm is not efficient on every energy function. In
fact, this function must be roughly “continuous”. For this reason, simulated
annealing doesn’t seem to be suited for PP’ but it should be ideal for PP. This
algorithm turned out to be the most efficient.
Then, we can evaluate the workload of such an attack with probability of success
equal to 0.5:

size number time time Workload?

of for a Solution
solutions solution Pr = 1/2 2n elementary

(seconds) (seconds) operations
31 × 31 40 40 1.103 15 minutes 36
51 × 51 400 60 17.103 4 hours 45 minutes 40
71 × 71 7.500 75 400.103 4 days 15 hours 44

101 × 117 4.7 109 85 399.109 12 thousand years 64
121 × 137 8.7 1010 130 11.1012 350 thousand years 68
123 × 123 9.8 106 105 720.106 22 years 10 months 55
151 × 151 306 106 1800 385.109 12 thousand years 64
151 × 167 3.7 1012 180 666.1012 21 million years 74
171 × 171 6.7 109 7200 34.1012 1 million years 70
189 × 189 78 109 36000 2.1015 63 million years 76
? workload estimated using a 60-70 MIPS processor speed

Those various tests allow us to suggest sizes which seem to be good for a secure
cryptographic use. The workload usually wanted is about 264, so we get m = 121
and n = 137, or any other greater size.
In addition, whatever the probabilistic attack, it will not be able to differentiate
the good solution of PP’ from any solution of PP. So, even if we supposed a
quick attack for PP (an NP-complete problem) which would need only 1 second
to find a solution for a 141×157-sized instance, the workload would remain above
264.

5 Protocols

Common data: p, n, t, integers such that 2p > t + n and h a collision-free,
random hash function.

Let A be a matrix of size m × n which rows represent a Perceptrons Problem
instance with V as a solution. Let D be a random permutation of AV .
Public key : (A, D)
Secret key : V

The prover selects
• a random permutation P over {0, . . . , m − 1} (to mix the rows of A.)
• a random signed permutation Q over {0, . . . , n − 1}

(to mix the columns of A, and to multiply them randomly by +1 or −1.)
• a random vector W of

�
n
p
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5.1 Three pass identification protocol (3p zk)

1. The prover computes A′ = PAQ, V ′ = Q−1V , R = W + V ′

and h0 = h(P |Q), h1 = h(W ), h2 = h(R), h3 = h(A′W ), h4 = h(A′R)
and sends (h0, h1, h2, h3, h4) to the verifier.

2. The verifier randomly selects an element c of {0, 1, 2, 3}
and sends c to the prover.

3. The prover sends: 4. The verifier checks:
if c = 0 : (P, Q, W ) h0 = h(P |Q), h1 = h(W ) and h3 = h(PAQW ).
if c = 1 : (P, Q, R) h0 = h(P |Q), h2 = h(R) and h4 = h(PAQR).
if c = 2 : (A′W, A′V ′) h3 = h(A′W ), h4 = h(A′W + A′V ′)

and ∃σ such that σ(A′V ′) = D.
if c = 3 : (W, V ′) h1 = h(W ), h2 = h(W + V ′) and V ′ ∈ {−1, +1}n.

5.2 Five pass identification protocol (5p zk)

1. The prover computes A′ = PAQ, V ′ = Q−1V
and h0 = h(P, Q), h1 = h(W |V ′), h2 = h(A′W |A′V ′)
and sends (h0, h1, h2) to the verifier.

2. The verifier randomly selects an element k of Z?(p)
and sends k to the prover.

3. The prover computes R = kW + V ′ and h3 = h(R), h4 = h(A′R)
and sends (h3, h4) to the verifier.

4. The verifier randomly selects an element c of {0, 1, 2}
and sends c to the prover.

5. The prover sends: 6. The verifier checks:
if c = 0 : (P, Q, R) h0 = h(P |Q), h3 = h(R) and h4 = h(PAQR)
if c = 1 : (A′W, A′V ′) h2 = h(A′W |A′V ′), h4 = h(kA′W + A′V ′)

and ∃σ such that σ(A′V ′) = D.
if c = 2 : (W, V ′) h1 = h(W |V ′), h3 = h(kW + V ′)

and V ′ ∈ {−1, +1}n

5.3 Properties

Theorem 6. Both 3p zk and 5p zk protocols are Interactive Proof Systems for

PP’.

Lemma 7. Assume that some probabilistic polynomial-time adversary is ac-

cepted with probability greater than

(

3

4

)r

+ ε after r rounds, then there exists a

polynomial-time probabilistic machine which extracts the secret key S from the

public data or outputs collisions for the commitment function, with overwhelming

probability.

Lemma 8. Assume that some probabilistic polynomial-time adversary is ac-

cepted with probability greater than

(

2p − 1

3(p − 1)

)r

+ ε after r rounds, then there

exists a polynomial-time probabilistic machine which extracts the secret key S
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from the public data or outputs collisions for the commitment function, with

overwhelming probability.

Using the idea of resettable simulation [3], in the random oracle model [1], it
can be shown that both protocols are zero-knowledge. Alternatively, one has to
assume specific statistical independance properties for the hash function. A light
version (3p light and 5p light) of those protocols, which reduces the number
of required rounds, can be made but it is no more zero-knowledge. However, the
given information is quite small and seems to be unusable.

6 Performances

The performances of this scheme are similar to those of the already existing
linear ones:

– As we can see in the following figure, to obtain the standard security level
of 10−6, with a very secure secret key, an identification requires between 4
and 6 kbytes of communication between the prover and the verifier (to be
compared to the 3kbytes for PKP and the 5kbytes for SD). And we can
improve them by the use of hash trees.

– Moreover, all the operations are additions and subtractions between small
integers (less than one byte). They are well suited to a very minimal envi-
ronment of 8-bit processors.

– They require very little RAM.
– We notice that public and secret keys are very small (less than 20 bytes for

the secret key, and about 32 for the public one). But we should not forget
that as for PKP, SD and CLE, this scheme is not identity based. It means
that public keys have to be certified by an authority.

7 Conclusion

We have defined a new identification scheme which is very easy to implement
on every kind of smart card because of its very simple operations, and the small
size of the data. We welcome attacks from readers.
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