
This Extended Abstract appears in
Proceedings of the 9th International Conference on Security and Cryptography for Networks (SCN ‘14)
3 – 5 September 2014, Amalfi, Italy – Michel Abdalla and Roberto de Prisco Eds., Springer-Verlag, LNCS 8642, pages 21–39.

Forward Secure Non-Interactive Key Exchange

David Pointcheval1 and Olivier Sanders1,2

1 École normale supérieure, CNRS & INRIA, Paris, France
2 Orange Labs, Applied Crypto Group, Caen, France

Abstract. Exposure of secret keys is a major concern when cryptographic protocols are implemented on
weakly secure devices. Forward security is thus a way to mitigate damages when such an event occurs.
In a forward-secure scheme, the public key is indeed fixed while the secret key is updated with a one-
way process at regular time periods so that security of the scheme is ensured for any period prior to the
exposure, since previous secret keys cannot be recovered from the corrupted one. Efficient constructions
have been proposed for digital signatures or public-key encryption schemes, but none for non-interactive key
exchange protocols, while the non-interactivity makes them quite vulnerable since the public information
cannot evolve from an execution to another one.
In this paper we present a forward-secure non-interactive key exchange scheme with sub-linear complexity
in the number of time periods. Our protocol is described using generic leveled multilinear maps, but we
show that it is compatible with the recently introduced candidates for such maps. We also discuss various
security models for this primitive and prove that our scheme fulfills them, under standard assumptions.

Keywords: forward security, non-interactive key exchange, multilinear map.

1 Introduction

1.1 Non-Interactive Key Exchange

The famous interactive key exchange protocol introduced in 1976 in the seminal paper [DH76] by Diffie
and Hellman can be turned into a simple and quite efficient non-interactive key exchange (NIKE)
scheme: it enables two parties, who have first agreed on some parameters, to share a common secret
without exchanging any additional messages but just their public keys. More precisely, the parameters
simply consist of a group G of prime order p along with a generator g ∈ G. When Alice, whose
secret/public keys pair is (x,X = gx) for some x ∈ Zp, wants to share a secret with Bob, whose
public key is Y = gy, she computes K = Y x, which value can be recovered by Bob by computing
Xy. However, eavesdroppers have no clue about this value, because of the intractability of the Diffie-
Hellman problem. Hashing the resulting secret K along with both identities even leads to a provably
secure scheme, according to the expected properties for a NIKE scheme, and this scheme is remarkably
efficient. Indeed, both secret and public keys consist of one element and sharing a secret only requires
one exponentiation from each user.

A first basic security model for NIKE has been provided by Bernstein [Ber06]. Thereafter, Cash,
Kiltz and Shoup [CKS08] enhanced it, allowing dishonestly generated public keys. This models the
real-life situation where public keys are published by users, without certification, or with a weak
certification only (when the certification authority does not check the knowledge of the associated
secret key, but just the identity of the owner of the public key). However, Freire et al [FHKP13]
pointed out some weaknesses in their model such as the inability of the adversary to corrupt honest
users, and thus get honestly generated secret keys or shared keys between two honest entities. They
proposed the dishonest-key registration model, as the strongest security model, together with a scheme
in a pairing-friendly setting, secure in the standard model.

Sakai, Oghishi and Kasahara [SOK00] proposed the first Identity-based NIKE (Id-NIKE) scheme,
later formalized and proven secure by Dupont and Enge in an ad-hoc security model [DE06]. The above
concerns about the Certification Authority, and dishonestly generated public keys, are irrelevant in the
identity-based setting, however, again, the lack of oracle access to previous shared keys was noticed
as a potential weakness by Paterson and Srinivasan [PS09]. They thus fixed the previous model and
explored the relationships between Id-NIKE and Identity-Based Encryption (IBE). Moreover, they
proposed constructions, using trapdoor discrete log groups, whose instantiations suffer from the high

c© Springer-Verlag 2014.

computational cost of the Extract algorithm (to get secret keys from identities), with security in the
random oracle model. Recently, Freire et al [FHPS13] provided the first Id-NIKE and Hierarchical
Id-NIKE schemes secure against corruptions in the standard model.

1.2 Forward Security

As for most of cryptographic protocols, the main threat against a NIKE scheme is exposure of users’
secret keys since, contrarily to interactive key exchange protocols which can still provide some security
in this case, all the session keys between the corrupted user and any other user get immediately
leaked. Leakage of a secret key is therefore a major issue for all users, not only for the corrupted
one. A classical solution to prevent leakage is to distribute the secret across multiple servers via
secret sharing. However, this is not compatible with the goal of non-interactive key exchange which
is to limit communications between the different parties. Anderson [And97] thus suggested forward
security to mitigate damages caused by key exposure: the lifetime of a system is now divided into
T time periods, the secret keys evolving with time. More precisely, at any time period i, each user
owns a secret key sk i which he can use as usual, but also to derive his secret key sk i+1, for the
next time period. However, forward security requires that an adversary being able to recover sk i is
unable to compromise the security of any previous time period: the evolving process from sk i to sk i+1

has to be one-way. In his talk, Anderson proposed a non trivial solution, but constructing protocols
whose parameters were sub-linear in the number of periods remained a challenge. The case of digital
signatures was first addressed by Bellare and Miner [BM99] which provided a security model but
also different constructions, one of them achieving constant key-size (i.e. independent of T). Then,
many other papers followed [AR00,IR01,KR02,BSSW06,ABP13], most of them providing schemes in
the RSA setting. The case of public-key encryption has later been addressed by Canetti, Halevi and
Katz [CHK07] whose construction in a pairing-friendly setting has complexity logarithmic in T only.

Although the case of forward-secure NIKE was mentioned in [And97], the problem of constructing
a scheme with sub-linear complexity has still remained open. One could think that the ideas used to
construct forward-secure signature or encryption schemes can lead to forward-secure NIKE schemes,
however, this does not seem to be the case for the reasons we describe below. We here make a distinction
between constructions in the RSA setting [BM99,AR00,IR01,ABP13] and the ones in a pairing-friendly
setting [BSSW06,CHK07].

The first forward-secure schemes were proposed in the RSA setting: the key evolving process relies
on the fact that exponentiation is a one-way function, even with a public exponent. Informally, the
underlying idea is to set the public key as Z = Se1·...·eT for T public exponents e1, ..., eT (we may
have ei = ej) and a secret element S. At each time period i, the user will prove knowledge of an
(ei · ... · eT)-th root of Z (thus sk i is Se1·...·ei−1), such a proof leading to an efficient signature scheme
by using the Fiat-Shamir heuristic [FS86]. Updating the secret key simply consists in computing skeii
and so does not require any randomness which would be convenient for constructing a NIKE scheme.
However, while assuming that Alice knows some n-th root of a public element ZA and that Bob knows
an m-th root of a public element ZB, computing a common secret between Alice and Bob is far from
being obvious. Therefore, the RSA setting unfortunately seems to be more suitable for signatures than
for NIKE schemes.

Since the seminal paper from Joux [Jou00], pairings have been widely used in cryptography, their
properties allowing to solve open problems such as to construct an efficient identity-based encryption
scheme [BF01]. In [CHK07], Canetti, Katz and Halevi used them to propose a forward-secure encryp-
tion scheme with logarithmic complexity in the number of time periods. However, since the involved
groups are of prime order, exponentiation with public exponent is no longer a one-way function. The
update algorithm is then more complex and involves randomness which makes sharing a common
secret more difficult since non-interactivity of the primitive implies that Bob cannot get information
about the random values used by Alice. The signature scheme of Boyen et al [BSSW06] is quite similar,
therefore the underlying idea of constructions in a pairing-friendly setting does not seem to suit the
NIKE case either. However, we emphasize that the randomness used to update the secret key is not

2

necessarily incompatible with NIKE but the protocol must ensure that the common secret shared by
Alice and Bob is independent of it.

1.3 Achievements

The lack of forward-secure NIKE scheme with sub-linear complexity could be explained by the limita-
tions of cryptographic tools known until recently. As with pairings a decade ago, the recent candidates
for multilinear maps proposed by Garg, Gentry and Halevi [GGH13] and Coron, Lepoint and Ti-
bouchi [CLT13] offer new functionalities allowing to achieve constructions previously impossible. An
example is provided in [FHPS13] where the authors used them to propose the first Id-NIKE scheme
secure in the standard model.

In this work we prove that constructing a forward-secure NIKE scheme is also possible by using
multilinear maps. Our scheme shares some similarities with tree-based forward-secure schemes since
we also associate time periods with all nodes of the tree. But the construction manages to handle
both evolution of secret keys and key exchange with the tree. It also provides some flexibility with the
number of levels of the multilinear map, since whatever the number of time periods a bilinear map
can be enough, at the cost of a larger secret key, while a smaller secret key will require a multilinear
map with a higher number of levels. In addition, our construction is compatible with multilinear maps
from [GGH13] and [CLT13], but requires some modifications that we describe in this paper. We also
formally define two security models for forward-secure NIKE and prove that our scheme achieves the
strongest one under a conventional assumption in the standard model.

1.4 Organization

In the next section, we recall the definition of generic leveled-multilinear maps and some of the dif-
ferences with their approximations proposed in [GGH13] and [CLT13]. Section 3 describes a security
model for forward-secure NIKE. We present a protocol using binary tree in Section 4 and then discuss
the necessary adjustments to suit existing implementations of multilinear maps. We then show how
to generalize the underlying idea of the previous protocol to get a trade-off between the size of the
secret key and the number of levels of the multilinear map.

2 Leveled Multilinear Maps

Boneh and Silverberg [BS03] defined n-linear maps as non-degenerate maps e from Gn
1 to G2 (where G1

and G2 are groups of same order) such that, for all g1, ..., gn ∈ G1 and a1, ..., an ∈ Z, e(ga1
1 , ..., g

an
n) =

e(g1, ..., gn)a1...an . The candidate multilinear map proposed by Garg, Gentry and Halevi [GGH13]
actually yields a richer structure since it is now possible to multiply any (bounded) subset of encodings
instead of n at a time. As in [HSW13], such maps will be denoted leveled multilinear maps. We recall
the formal definition of generic n-leveled multilinear groups.

Leveled Multilinear Maps. Generic n-leveled multilinear groups consist of n cyclic groups G1, ...,Gn

of prime order p, along with bilinear maps ei,j : Gi×Gj → Gi+j for i, j ≥ 1 and i+j ≤ n such that, for
all gi ∈ Gi, gj ∈ Gj and a, b ∈ Zp, ei,j(g

a
i , g

b
j) = ei,j(gi, gj)

a·b. In the following we will write e instead
of ei,j when i and j are obvious and e(g1, g2, . . . , gn) instead of e(g1, e(g2, . . . gn) . . .)).

The graded encoding schemes proposed in [GGH13] and [CLT13] are only approximations of such
leveled multilinear maps. One of the main differences is that group elements have many possible
representations called encodings. An encoding can be re-randomized but at the cost of introducing
some noise. Such a randomization, performed using the Rerand algorithm, is sometimes necessary to
prevent recovering of secret values. Indeed, let c be a secret level-zero encoding and g a public level-1
encoding. The level-1 encoding y = c · g (which is the equivalent of gc in conventional groups) cannot

3

be directly published since anyone will be able to recover c by computing y.g−1, it must first be re-
randomized into a new level-1 encoding y′ ← Rerand(y). All these randomizations could be an obstacle
for sharing a common secret, however, it is possible to extract, using the Extract algorithm, a canonical
bit string which depends on the group element and not on its encoding, meaning that two encodings
of the same element will give the same extracted string. Then the security of our protocols relies on
the following assumption.

The n-Multilinear Decisional Diffie-Hellman (n-MDDH) Assumption.
Given (g, gx1 , ..., gxn+1 , G) ∈ Gn+2

1 ×Gn, it is hard to decide whether G = e(gx1 , ..., gxn)xn+1 or not.

3 Forward-Secure Non-interactive Key Exchange and Security Model

3.1 Syntax

Following [CKS08] and [FHKP13], a forward-secure non-interactive key-exchange is defined by the
following algorithms along with an identity space IDS and a shared key space SHK. Identities are
used to track which public keys are associated with which users but we are not in the identity-based
setting.

– Setup(1k, T): On inputs a security parameter k and a number of time periods T , this probabilistic
algorithm outputs params, a set of system parameters that are implicit to the other algorithms.
The current time period t∗ is initially set to 1;

– Keygen(ID): On input an identity ID ∈ IDS this probabilistic algorithm outputs a public
key/secret key pair (pk , sk t∗), for the current time period t∗. We assume that the secret keys
implicitly contain the time periods, hence the subscripts;

– Update(sk t): This algorithm takes as inputs the secret key sk t at some period t (implicitly included
in sk t) and outputs the new secret key sk t+1 for the next time period, if t < T . If t = T then the
secret key is erased and there is no new key;

– Sharekey(IDA, pk
(A), IDB, sk

(B)
t): On inputs an identity IDA, associated with a public key pk (A)

and a secret key sk
(B)
t with identity IDB, outputs either a shared key shkAB

t ∈ SHK or a failure
symbol ⊥. This algorithm outputs ⊥ if IDA = IDB. Since the secret key sk t contains the time
period, the shared key shkAB

t is also specific to that time period t.

Correctness requires that, for any pair (IDA, IDB), if the secret keys sk
(A)
t and sk

(B)
t indeed correspond

to the same time period t:

Sharekey(IDA, pk
(A), IDB, sk

(B)
t) = Sharekey(IDB, pk

(B), IDA, sk
(A)
t).

As in most of the forward-secure primitives, we provide the number of time periods to the Setup

algorithm, because the parameters depend on it. In practice, one can take T large enough. Note that
T = 215 is enough to enumerate one-day time-periods for one century.

3.2 Security Model

We define the security of a forward-secure non-interactive key exchange through a game between an
adversary A and a challenger C. Our security model makes use of the following oracles:

– ORegHon(ID) is an oracle used by A to register a new honest user ID at the initial time period.
The challenger runs the Keygen algorithm with 1 as the current time period, returns the public key
pk to A and records (ID , sk1, pk , honest). This implicitly defines all the secret keys sk2, . . . , skT ;

– ORegCor(ID , pk) is an oracle used by A to register a new corrupted user ID with public key pk .
The challenger then records the tuple (ID ,−, pk , corrupted).

4

– OBreakin(ID , t) is an oracle used by A to get the ID ’s secret key at the time period t. The
challenger looks for a tuple (ID , sk1, pk , honest). If there is a match, then it returns sk t. Else, it
returns ⊥.

– OReveal(IDA, IDB, t) is an oracle used by A to get the shared key shk
(AB)
t between IDA and

IDB for the time period t. If both IDA and IDB are corrupted then C returns ⊥. Else, it runs the
Sharekey algorithm with the secret key of one of the honest users for the appropriate time period

and the public key of the other user and returns shk
(AB)
t .

A non-interactive key exchange is forward-secure if, for any adversary A and any security parameter
k, the advantage Pr[Expfs

A(k) = 1]− 1
2 is negligible in k, where Expfs

A(k) is defined as follows:

1. params ← Setup(1k, T)
2. (IDA, IDB, t

∗)← AORegHon,ORegCor,OBreakin,OReveal(params)

3. b
$← {0, 1}

4. If b = 0 then shk
(AB)
t∗ ← Sharekey(IDA, pk

(A), IDB, sk
(B)
t∗)

5. Else, shk
(AB)
t∗

$← SHK
6. b∗ ← AORegHon,ORegCor,OBreakin,OReveal(shk (AB)

t∗)
7. If IDA or IDB is corrupted then return 0
8. If an OBreakin-query has been asked on ID ∈ {IDA, IDB} with t ≤ t∗ then return 0
9. If an OReveal-query has been asked on (IDA, IDB, t

∗) then return 0
10. If b∗ = b then return 1
11. Else, return 0

The adversary succeeds if it is able to distinguish a valid shared key between two users from a random
element of the shared key space SHK. To avoid trivial cases, the adversary is not allowed to corrupt
the targeted users at a time period prior to t∗ or to get the shared key between them at this time
period. We emphasize that the adversary may corrupt any user (including IDA or IDB) for time
periods t > t∗, which models the forward security.

Registration. The use of a Certification Authority (CA) is inevitable for protocols which are not
in the ID-based settings, in order to link ID ’s and pk ’s. However, the assumptions made about the
procedures followed by this entity differ according to each model.

– In the registered-key model, when a user wants to get his pubic key certified, the CA verifies, using
a proof of knowledge, that the user actually knows the associated secret key. This enables the
challenger (the simulator in the security proof) to extract the secret key and thus to answer every
OReveal-queries involving corrupted users.

– Cash, Kiltz and Shoup [CKS08] considered a stronger model where the CA no longer requires
such a proof of knowledge of the secret key. In [FHKP13], the authors named it the dishonest-key
registration model, since the public keys are not checked anymore.

In the latter case, some OReveal queries are not easy to answer, since none of the secret keys are
known to the challenger/simulator. Hence the use of the Twin Diffie-Hellman [CKS08] which allows
the challenger to check some consistency, in the random oracle model, under the sole CDH assumption.
The requirement of the random oracle model has been more recently removed [FHKP13], by using
chameleon hash functions [KR00]. To this end, they actually add some elements to the public key
which provide a way for the challenger to recover the Diffie-Hellman value without knowledge of the
corresponding secret keys. However, consistency still has to be checked, which is possible in the pairing
settings only.

We can use the same approach, but with generic leveled multilinear maps, which are not pro-
vided with the existing implementations [GGH13,CLT13] of such maps. We explain the reasons in the
Section 4.4.

5

3.3 Forward Security with Linear Complexity

A trivial solution, secure in our model, is to generate T independent keys pair (pk ′i, sk
′
i) for any

NIKE scheme and to set pk as (pk ′1, . . . , pk
′
T) and sk1 as (sk ′1, . . . , sk

′
T). Updating the secret key

sk i = (sk ′i, . . . , sk
′
T) simply consists in erasing the value sk ′i. To avoid the linear complexity of the

public key we may use the following idea, similar to the one from [And97]: Let (G1,G2,GT , e, p) be

a bilinear setting, with groups of prime order p, and g1, . . . , gT
$← G1, g

$← G2. To generate his
public/secret key pair, a user randomly selects x

$← Zp and sets pk ← gx and sk1 ← (gx1 , . . . , g
x
T). To

update his secret key a user proceeds as in the previous solution, and to share a session key, at time
period t, with another user whose public key is gy, he computes e(gxt , g

y). This scheme is correct and
secure in the registered-key model. We can also avoid the linear complexity of the public parameters by
setting gi ← H(ti) for some cryptographic hash function H : {0, 1}∗ → G1. But the resulting scheme
will now be secure in the random oracle model only, with both the public keys and public parameters
of constant size, while the secret keys are linear in the number of time periods T . Our goal is now to
achieve a sub-linear complexity for the secret keys too.

4 A Forward-Secure Non-Interactive Key Exchange Scheme

As in [HSW13], we first describe a version of our scheme, using generic leveled multilinear maps, that
we prove secure in the registered-key model. We then explain how to achieve security in the dishonest-
key registration model defined in [FHKP13] and discuss the necessary adjustments to suit existing
multilinear maps [GGH13,CLT13] .

4.1 The protocol

Let Sn be the set of bitstrings of size smaller than n. We recall the lexicographic order on Sn. Let
s = b1 · · · b` and s′ = b′1 · · · b′k, with ` ≤ k ≤ n, be two bitstrings, then:

– if bi = b′i,∀ 1 ≤ i ≤ `, then s < s′ if ` < k, and s = s′ otherwise;
– else, let j ≤ ` be such that bi = b′i, ∀ 1 ≤ i < j, but bj 6= b′j . If bj < b′j then s < s′, else s > s′.

Each bitstring s ∈ Sn will now refer to a time period. Specifically, the i-th bitstring of Sn (considering
that the empty string does not belong in the set) will refer to the i-th time period: the order is thus
0, 00, 000, . . . , 0n, 0n−11, 0n−21, 0n−210, 0n−211, . . . , 1n, with T = #Sn = 2n+1 − 2 elements, and thus
corresponding to 2n+1 − 2 time periods.

Let (G1, . . . ,Gn+1) be an (n+1)-leveled multilinear group setting of order p, the algorithms defining
our forward-secure NIKE are described below:

– Setup(1k, n): This algorithm outputs the parameters (g, g1, ..., gn)
$← Gn+1

1 along with hs
$← G1

for each bitsring s ∈ Sn. The public parameters params contain the T + n + 1 elements. In the
following, for each s = b1 · · · b` ∈ Sn, we will denote Gs = e(hb1 , hb1b2 , . . . , hb1b2···b`) ∈ G`, where
e(hb) = hb ∈ G1.

– Keygen(ID): The user ID first selects x
$← Zp and then outputs pk ← gx and the secret key of ID

at the first time period, for s = 0, is sk0 ← {hx1 , hx0}. In the following, for each s = b1 · · · b` ∈ Sn,

we denote z
(ID)
s = Gx

s ∈ G`.
– Update(sks): Let ` be the length of s = b1 · · · b` and Is be the set {1 ≤ i ≤ ` :
bi = 0}. Then, sks can be parsed as ∪i∈Is{zb1···bi−11}∪{zs} (see the Correctness paragraph below)
and the algorithm proceeds as follows:
• if ` < n, then the next bitstring is s||0, the algorithm computes
zs||0 ← e(zs, hs||0), zs||1 ← e(zs, hs||1) and returns sks||0 ← (sks \ {zs}) ∪ {zs||1, zs||0};
• if ` = n, then we have s = b1 · · · bn. If s = 1n, then we have reached the last time period and

the algorithm returns ⊥. Else, let j be the greatest index such that bj = 0, the next time
period s∗ is then b1 · · · bj−11. The algorithm then returns sks∗ ← ∪i∈Is,i≤j{zb1···bi−11} ⊂ sks.

– Sharekey(IDA, pk
(A), IDB, sk

(B)
s): This algorithm returns ⊥ if IDA = IDB. Else, it outputs

shkAB
s ← e(z

(B)
s , g`+1, . . . , gn, pk

(A)) where ` is the length of s.

6

Correctness. We first prove by induction that, for each time period s, sks = ∪i∈Is{zb1···bi−11}∪{zs}.

– For s = 0 we have Is = {0} and sk0 = {z1} ∪ {z0}.
– If ` < n then the length of the next time period, s∗ = s||0, is ` + 1 and Is∗ = Is ∪ {` + 1}. The

Update algorithm ensures that the next secret key sks∗ is ∪i∈Is∗{zb1···bi−11} ∪ {zs∗}.
– If ` = n, then the next time period is s∗ = b1 · · · bj−11, so Is∗ = Is∩{1, . . . , j−1}. The new secret

key sks∗ := ∪i∈Is,i≤j{zb1···bi−11} =
∪i∈Is,i<j{zb1···bi−11} ∪ {zs∗} = ∪i∈Is∗{zb1···bi−11} ∪ {zs∗} is then consistent.

Finally, our protocol is correct since:

Sharekey(IDA, pk
(A), IDB, sk

(B)
s) = e(z(B)

s , g`+1, . . . , gn, pk
(A))

= e(hxB
b1
, hb1b2 , . . . , hb1b2···b` , g`+1, . . . , gn, g

xA)

= e(hxA
b1
, hb1b2 , . . . , hb1b2···b` , g`+1, . . . , gn, g

xB)

= e(z(A)
s , g`+1, . . . , gn, pk

(B))

= Sharekey(IDB, pk
(B), IDA, sk

(A)
s).

Our Protocol in a Nutshell. The Update algorithm must be a one-way function to ensure the
forward-security, but correctness requires keeping a relation between the secret key and the public
key. Therefore we cannot use an arbitrary one-way function (such as, for example, hash functions).
Our secret key sks at a time period s = b1 · · · b` can be divided into two parts: the element zs used to
share a secret key at the current time period, and the other ones (∪i∈Is{zb1···bi−11}) that will be used
to update the key. Since, ∀i ∈ Is, the strings b1 · · · bi−11 are not a prefix of a previous time period s∗,
no one can compute zs∗ from sks. Moreover, multilinearity of the map implies that zs is an element
Ax (if pk is gx) with A ∈ G`, which ensures correctness of our scheme. The use of different parameters
(g1, . . . , gn) and hs, for s ∈ Sn, offers an efficient way to answer the oracle queries while being able to
introduce the challenge values at a selected period, as shown in section 4.2.

For example, assume that n = 3 and s = 01, then we have sk01 = {z1} ∪ {z01}. Since the length
of s = 01 is 2 < n = 3, updating the secret key to the next time period s′ = 010 consists of replacing
z01 by z010 ← e(z01, h010) and z011 ← e(z01, h011), so the new secret key sks′ is {z1, z011} ∪ {z010} (see
Figure 1). Now, s′ has reached the maximum length n = 3 so the Update algorithm will simply delete
the element z010 to output the secret key of the following time period 011.

x

z0 = hx
0

z00 = e(z0, h00)

00

z01 = e(z0, h01)

z010 = e(z01, h010)

010

z011 = e(z01, h011)

011

01

0

z1 = hx
1

... ...

1

Fig. 1. Example for time period 010

7

4.2 Security Analysis

Theorem 1. In the registered-key model, our forward-secure NIKE scheme with 2n+1−2 time periods
is secure under the (n+ 1)-MDDH assumption.

Proof. Let A be an adversary against our forward-secure NIKE scheme such that ε = Pr[Expfs
A(k) =

1]− 1/2, then we construct B, an adversary against the (n+ 1)-MDDH problem, as follows:

– B first makes a guess for the target time period s∗ = b∗1 · · · b∗`∗
$← Sn, of length `∗, and the two

distinct honest users involved in the target session, i0, i1
$← {1, . . . , qH} where qH is a bound on

the number of ORegHon-queries.
– On input an (n + 1)-MDDH challenge (g, gx1 , . . . , gxn+2 , G), B generates (m1, . . . ,mn)

$← Zn
p and

ns
$← Zp for each s ∈ Sn, then sets:
• ∀i ∈ {1, . . . , n}\{`∗}, gi ← (gxi)mi

• g`∗ ← gm`∗

• ∀i ∈ {1, . . . , `∗}, hb∗1···b∗i ← g
xi·nb∗1···b

∗
i

• ∀s ∈ Sn\{b∗1, b∗1b∗2, . . . , b∗1 · · · b∗`∗}, hs ← gns

This way, only elements ht such that t is a prefix of s∗ will be challenge elements. This enables B to
handle any OBreakin-query on time periods later than s∗. Similarly, setting g`∗ as a non-challenge
element allows B to answer any OReveal-query for time periods other than s∗. Now, B runs A with
the above parameters and answers the different queries as follows:

– ORegHon(ID): Upon receiving an i-th register honest query, for a new identity ID , B acts as
follows: If i 6= i0 and i 6= i1 then it runs the Keygen-algorithm on ID and returns the resulting
public key to A. Else, we have i = ib for b ∈ {0, 1} and ID will now be denoted IDb. B will act as

if sk
(b)
0 = {hxn+1+b

1 , h
xn+1+b

0 } and then set pk (b) = gxn+1+b , from the challenge input.
– ORegCor(ID , pk): Upon receiving a public key pk along with a new identity ID , B registers them.

Since we first consider the registered-key model, we assume that B extracts the secret key sk = x
during the proof of knowledge of the secret key.

– OBreakin(ID , s): If ID 6= IDb for b ∈ {0, 1}, then B returns sk
(ID)
s . Else, the behaviour of B

depends on s. If s ≤ s∗, then B aborts. Else, B parses s as b1 · · · bk. The secret key of IDb at this

time period is sk
(b)
s = ∪i∈Is{z

(b)
b1···bi−11

} ∪ {z(b)s }. B proceeds as follows for each i ∈ Is:
• If i > `∗, then hb1···bi−11 = gnb1···bi−11 and thus z

(b)
b1···bi−11

=

e(h
xn+1+b

b1
, hb1b2 , . . . , hb1···bi−11) which B can compute as:

e(hb1 , hb1b2 , . . . , (g
xn+1+b)nb1···bi−11)

• If i ≤ `∗, then c1 · · · ci := b1 · · · bi−11 cannot be a prefix of s∗, otherwise we would have
s∗ ≥ b1 · · · bi−11 > s (since bi = 0). So there is j < i such that b∗j 6= cj or b∗i = 0 (which

means that for j = i, b∗j 6= 1 = ci), implying that B is able to return z
(b)
b1···bi−11

= z
(b)
c1···ci =

e(hxn+1+b
c1

, hc1c2 , . . . , hc1c2···ci) by computing:

e(hc1 , hc1c2 , . . . , hc1···cj−1 , (g
xn+1+b)nc1···cj , hc1···cj+1 , . . . , hc1c2···ci)

which is a valid value since hc1···cj = gnc1···cj .

Similarly, B is able to return z
(b)
s , since s is not a prefix of s∗, and thus hs = gns , which means

that B can answer every OBreakin-query on IDb for time periods s > s∗.
– OReveal(IDA, IDB, s): If at least one of the involved identity is honest and different from ID0

and ID1, then B runs the Sharekey algorithm. Else, we may assume (without loss of generality)
that IDB = IDb for some b ∈ {0, 1}. Since B is able to answer OBreakin-queries involving ID0 or
ID1 for time periods s > s∗, it is able to answer any OReveal-queries for these time periods. We
then only consider time periods s ≤ s∗:

8

• s < s∗. We distinguish the two following cases.
∗ If there is t ∈ Sn such that t is a prefix of s but not of s∗, then ht is not a challenge

element so B can compute zt (and so zs) in the same way as in OBreakin-queries, and
then return the valid shared key.
∗ Else, s = b∗1 · · · b∗k is a prefix of s∗, then B returns the valid shared key by computing:

e(hb∗1 , . . . , hb∗1···b∗k , gk+1, . . . , g`∗−1, (g
xn+1+b)m`∗ , g`∗+1, . . . , gn, pk

(A)).

• s = s∗. If {IDA, IDB} = {ID0, ID1} then B aborts. Else, IDA is a corrupted user, and then
B uses the extracted key xIDA

to return the shared key between IDA and IDb.
– At the challenge phase, A outputs two identities IDA and IDB along with a time period s. If

s 6= s∗ or {IDA, IDB} 6= {ID0, ID1} then B aborts. Else, it returns G
∏`∗

i=1 nb1···bi
∏n

i=`∗+1 mi which
is a valid shared key between ID0 and ID1 if G = e(gx1 , . . . , gxn+1)xn+2 and a random element
from the shared key space otherwise. B is then able, using the bit returned by A, to distinguish
the (n+ 1)-MDDH problem with an advantage greater than ε/(Tq2H).

ut

We stress that in order to have the (n+ 1)-MDDH problem intractable, one needs to use an (n+ 1)-
leveled multilinear map. With more levels, this problem because easy.

4.3 Dishonest-Key Registration Model

The simulator B above only needs the registered-key model to answer OReveal-queries involving a
dishonest identity A and one of the target identity IDb during the time period s∗. Indeed, the public
elements {g1, ..., gn} and {hs}s∈Sn are constructed in such a way that at least one of those involved
in the shared keys does not depend on a challenge element when s 6= s∗. The simulator is then able
to output shkA,IDb

s 6=s∗ by replacing this element by (gxn+1+b)r where r ∈ {m1, ...,mn} ∪ {ns}s∈Sn . This
is no longer true for the time period s∗, so B will use the secret key of A, extracted during the
ORegCor-queries, to output shkA,IDb

s∗ .
In [FHKP13], the authors provide an efficient way to avoid the registered-key model by using a

chameleon hash function [KR00] H : {0, 1}∗ × R → Zp, where R is the random space. The public
parameters params now contain three additional elements u0, u1 and u2 used to compute the public
keys. Indeed, besides gx, users now compute t ← H(gx||ID, r) for some random r ∈ R and z ←
(u0u

t
1u

t2
2)x, and set their public key as (gx, z, r). Before sharing a key shk , correctness of the public

key must be checked, which is possible in an n-linear setting (as long as n > 1).
To handle OReveal-queries involving a dishonest user, the reduction B will construct the param-

eters ui as follows:

– B first selects at random m0,m1
$← {0, 1} and v0, v1

$← R;
– B computes t0 ← H(m0, v0), t1 ← H(m1, v1) and a polynomial p(t) = p0 + p1 · t+ p2 · t2 of degree

2 whose roots are t0 and t1;
– Now let b1 be the prefix of length 1 of s∗ in the security proof, then B sets ui ← hpib1g

qi , for
i = 0, 1, 2, where q0, q1, q2 are the coefficients of another random polynomial of degree 2.

To register ID0 or ID1, B will use the secret key of the chameleon hash function to get r0 or r1
such that H(gxn+1+b ||IDb, rb) = tb and outputs (gxn+1+b , gxn+1+b·q(tb), rb) for b ∈ {0, 1}. This is a valid
public key because p(tb) = 0.

To answer OReveal-queries involving a dishonest identity A during the time period s∗, correctness
of the public key is first checked. So we may assume the public key pk (A) is well-formed: pk (A) =

{gxA , h
p(tA)·xA

b1
gq(tA)·xA , rA}, where tA ← H(gxA ||IDA, rA). Let pk (A)[i] be the i-th element of pk (A),

B is able to recover hxA
b1

by computing (pk (A)[2]/(pk (A)[1])q(tA))1/p(tA). Since b1 is a prefix of s∗, B is

able to recover z
(A)
s∗ = e(hxA

b1
, . . . , hs∗), which is the secret element from sk

(A)
s∗ used by A to compute

the shared key at the time period s∗.

9

The reduction B thus no longer needs the registered-key model to handle OReveal-queries. The
resulting protocol is then secure even considering the dishonest-key registration model. However, as
explained below, we can only use this idea with generic leveled multilinear groups, and this is not yet
possible with the concrete constructions proposed by [GGH13] and [CLT13].

4.4 Adjustments to Existing Multilinear Maps

We currently do not have a concrete construction for leveled multilinear maps: Garg, Gentry and
Halevi [GGH13], followed by Coron, Lepoint and Tibouchi [CLT13], have unfortunately just proposed
approximations of such maps. Nevertheless, the differences between their schemes and generic leveled
multilinear maps imply some changes in our protocol. The main drawback of these modifications
is that our protocol does no longer support the dishonest-key registration model and thus requires
a proof of knowledge of the secret key during the registration phase. This is due to the fact that
we cannot select elements from the exponent group (called level-zero encoding in their paper), but
only sample random ones. This is problematic because, in the previous security proof, simulations
of answers to OReveal-queries involving a corrupted identity were possible due to the elements u0,
u1 and u2, constructed using some specific exponents, which were the coefficients of the polynomial
p(t). Moreover, in that security proof, there is a need for inverting the exponent p(tA). Using the
terminology of [GGH13] and [CLT13], this means that, knowing a level-zero encoding of some c we
have to compute a level-zero encoding of c−1 which is not known as possible. We thus cannot achieve
security in the dishonest-key registration model and then only consider the registered-key model. The
resulting scheme is then similar to the one described at the beginning of this section but requires the
following adjustments:

– In the Keygen algorithm, the element x will now be a sampled level-0 encoding. The public key
pk and the secret key sk0 contain level-1 encodings which must be re-randomized (see Section 2)
using the Rerand algorithm.

– Similarly, in the Update algorithm, the new values zs must be randomized to prevent recovery of
secret keys of previous time periods.

– In the Sharekey algorithm, the secret key cannot be e(z
(B)
s , g`+1, . . . , gn, pk

(A)) since this value
depends on the randomness used for randomizing encodings during previous steps. We then run
the Extract algorithm on this value and define the shared secret key shkAB

s as the output.

This instantiation of our protocol illustrates that randomness is compatible with NIKE schemes as
long as the output of the Sharekey algorithm does not depend on it.

4.5 System Parameters

Our protocol requires (n+ 1)-leveled multilinear groups to handle T = 2n+1− 2 time periods. The set
of public parameters, consisting of T + n+ 1 elements from G1, can be shorten using a hash function
H : {0, 1}∗ → G1 (for example we may set hs ← H(s)), however, the security proof will require to
model H as a random oracle.

The size of the secret key sks depends on the time period s, however, it never contains more than
n+ 1 elements since #sks ≤ #Is + 1 ≤ n+ 1. Even if the number of levels only grows logarithmically
w.r.t. the number of time periods, the dependence between the former and the parameters size remains
a problem for the existing multilinear maps. In the next section we describe a generalization of our
protocol which provides a trade-off between the number of levels and the size of the secret key.

5 A General Framework

A natural goal when designing a forward-secure NIKE is to make the parameters independent of the
number of time periods. Compared to the protocol described in Section 3.3, our protocol has decreased
the number of elements in the secret key but has increased the number of levels of the multilinear

10

maps. It is possible to go further with this trade-off and thus achieve a protocol with only one element
in the secret key (but with a larger number of levels). We show in this section that each protocol of
this paper is actually a variant of a general framework allowing us to choose the number of elements in
the secret keys or the number of levels (but not both of them). The idea is somewhat similar with the
generic construction described in [BM99, Section 2] but with two major differences: First, Bellare and
Miner considered certification chains where the secret key si at some time period i was used to certify
the public key pi+1 of a new secret/public keys pair (si+1, pi+1). Signatures issued at the time period i
must then contain the full certification chain, namely ((σi, pi), . . . , (σ2, p2)) where σi is the certificate
on pi w.r.t pi−1. Using a binary tree, they reached a logarithmic number of elements in messages and
in storage. However, this idea is suitable for signature schemes but not for NIKE, one reason being
that the new public keys pi will remain unknown to other parties unless one publishes them all at
the beginning, which would correspond to the trivial solution. The second difference is that, with
their solution, a signing key (the secret key along with the stored values (σi, pi)) with constant size is
unachievable whereas this is theoretically possible with our construction (see Section 5.2).

5.1 The Framework

In the previous section, we considered the set Sn of bitstrings of size smaller than n. In this section

we rather consider the sets S(m)
n := {b1 · · · bk : k ≤ n and 0 ≤ bi < m} for any integer m > 0 (the

previous section therefore corresponds to the particular case where m = 2). Each string still refers to
a time period, a protocol using (n+ 1)-leveled multilinear groups then ensures m

m−1 × (mn − 1) time

periods if m > 1 and n time periods if m = 11.

– Setup and Sharekey algorithms are the same as the ones described in Section 4.1.
– Keygen(ID): The user ID first selects x

$← Zp and then outputs pk ← gx and the secret key of ID

at the first time period, sk0 ← {hxm−1, . . . , hx1 , hx0}. In the following, for each s = b1 · · · b` ∈ S
(m)
n ,

z
(ID)
s will still denote the following element of G`: e(h

x
b1
, hb1b2 , . . . , hb1b2···b`).

– Update(sks): Let ` be the length of s = b1 · · · b` and Is be the set {1 ≤ i ≤ ` : bi < m− 1}. Then,
sks =

⋃
i∈Is

⋃
bi<b≤m−1{zb1···bi−1b} ∪ {zs} and the algorithm proceeds as follows:

• If ` < n, then the next bitstring is s||0, the algorithm computes zs||0 ← e(zs, hs||0), zs||1 ←
e(zs, hs||1), . . . , zs||m−1 ← e(zs, hs||m−1), and returns sks||0 ← (sks\{zs})∪{zs||m−1, . . . , zs||1, zs||0}.
• If ` = n, then we have s = b1 · · · bn. If bi = m − 1, for all i, then we have reached the

last time period and the algorithm returns ⊥. Else, let j be the greatest integer such that
bj < m − 1, the next time period s∗ is then b1 · · · bj−1(bj + 1). The algorithm then returns
sks∗ ←

⋃
i∈Is,i≤j

⋃
bi<b≤m−1{zb1···bi−1b} ∪ {zs} ⊂ sks.

The proof of correctness is similar to the case where m = 2: each time we move from a period s of
length ` to a period s||0 of length `+ 1, the Update algorithm simply stores the elements zs∗ for every
strings s∗ of length ` + 1 whose prefix is s. Evolution of the secret key thus remains possible while
recovery of elements zt with t ≤ s is impossible. Adaptation of the security proof is straightforward.

5.2 System Parameters

The relation T = m
m−1 · (m

n − 1) (or T = n if m = 1) illustrates the trade-off between the number of
levels (n+ 1) of the multilinear map and the parameter m affecting the size of the secret key. Indeed,
our algorithms Keygen and Update lead to a secret key containing up to n(m − 1) + 1 elements. Let
us focus on the two following particular cases:

Case 1: n = 1. Our protocol only requires two levels from the multilinear map so we can use
conventional bilinear groups. The secret key at the first time period is {hxm−1, . . . , hx0 , } (with m = T),
the update algorithm is to simply delete the last element of the secret key. This protocol is then exactly
the same as the one described in Section 3.3.
1 This comes from the fact that pn = #S(m)

n follows an arithmetico-geometric progression pn = m(pn−1 + 1), with
p0 = 0.

11

Case 2: m = 1. For convenience, we will denote in such a case the time periods by {1, ..., T} rather
than {0, 00, . . . , 00 · · · 000}. The secret key always contains one element zi = e(hx1 , h2, ..., hi) ∈ Gi,
updating it just consists in computing zi+1 ← e(zi, hi+1). Assuming, as Papamanthou et al [PTT10],
the existence of multilinear maps where the size of the different groups Gi is independent of the number
of levels leads to a protocol where the sizes of the parameters and of the secret and public keys are
independent of the number of time periods T . However, implementations of such a protocol with the
maps from [GGH13] and [CLT13] will not achieve constant size since the size of the elements in the
secret key will actually depend on the number of levels and so on the number of time periods.

Trade-off. Between these two extreme cases, one can choose suitable parameters according to the
performance of the selected multilinear map. The maximal number of elements in the secret key is
N = n(m−1)+1, and can be expressed as a function of m and T using the relation T = m

m−1 ·(m
n−1)

if m > 1. We then get:

N = 1 +
m− 1

log(m)
· log

(
m− 1

m
× T + 1

)
which is an increasing function of m in]1;T]. There is thus no optimal choice for the parameters
(m,n). They have thus to be chosen according to some external constraints.

6 Conclusion

In this paper, we have first proposed two new security models for forward-secure non-interactive key
exchange scheme, in order to limit damages in case of key exposure. In the first registered-key model,
the certificate authority is assumed to strictly check the knowledge of the secret keys before certifying
public keys together with an identity, whereas in the second dishonest-key registration model, the
certificate authority just checks the identity but not the knowledge of the secret key associated to
the public key. The latter model encompasses related-key attacks, where an adversary would try to
generate public keys related to honest-user keys.

We then have proposed a construction that can be secure in the strongest security model using
generic leveled multilinear maps. Unfortunately, concrete multilinear maps do not yet satisfy all the
required properties, and thus our concrete construction just provides forward security in the registered-
key model. We have thus pointed out a gap between generic leveled multilinear maps and concrete
ones.

Of course, the efficiency of our construction depends to a large extent on the one of such maps.
However, our construction can be made practical by tuning the number of levels of the multilinear
map, impacting the size of the secret key but not the number of time periods.

Acknowledgments

This work was supported in part by the French ANR-12-INSE-0014 SIMPATIC Project and in part
by the European Research Council under the European Community’s Seventh Framework Programme
(FP7/2007-2013 Grant Agreement no. 339563 – CryptoCloud).

References

[ABP13] Michel Abdalla, Fabrice Ben Hamouda, and David Pointcheval. Tighter reductions for forward-secure signature
schemes. In Kaoru Kurosawa and Goichiro Hanaoka, editors, PKC 2013: 16th International Workshop on
Theory and Practice in Public Key Cryptography, volume 7778 of Lecture Notes in Computer Science, pages
292–311. Springer, February / March 2013.

[And97] Ross Anderson. Two remarks on public key cryptology., 1997.
[AR00] Michel Abdalla and Leonid Reyzin. A new forward-secure digital signature scheme. In Tatsuaki Okamoto,

editor, Advances in Cryptology – ASIACRYPT 2000, volume 1976 of Lecture Notes in Computer Science,
pages 116–129. Springer, December 2000.

12

[Ber06] Daniel J. Bernstein. Curve25519: New Diffie-Hellman speed records. In Moti Yung, Yevgeniy Dodis, Aggelos
Kiayias, and Tal Malkin, editors, PKC 2006: 9th International Conference on Theory and Practice of Public
Key Cryptography, volume 3958 of Lecture Notes in Computer Science, pages 207–228. Springer, April 2006.

[BF01] Dan Boneh and Matthew K. Franklin. Identity-based encryption from the Weil pairing. In Joe Kilian, editor,
Advances in Cryptology – CRYPTO 2001, volume 2139 of Lecture Notes in Computer Science, pages 213–229.
Springer, August 2001.

[BM99] Mihir Bellare and Sara K. Miner. A forward-secure digital signature scheme. In Michael J. Wiener, editor,
Advances in Cryptology – CRYPTO’99, volume 1666 of Lecture Notes in Computer Science, pages 431–448.
Springer, August 1999.

[BS03] Dan Boneh and Alice Silverberg. Applications of multilinear forms to cryptography. In Contemporary Math-
ematics, volume 324, pages 71–90, 2003.

[BSSW06] Xavier Boyen, Hovav Shacham, Emily Shen, and Brent Waters. Forward-secure signatures with untrusted
update. In Ari Juels, Rebecca N. Wright, and Sabrina De Capitani di Vimercati, editors, ACM CCS 06: 13th
Conference on Computer and Communications Security, pages 191–200. ACM Press, October / November
2006.

[CHK07] Ran Canetti, Shai Halevi, and Jonathan Katz. A forward-secure public-key encryption scheme. Journal of
Cryptology, 20(3):265–294, July 2007.

[CKS08] David Cash, Eike Kiltz, and Victor Shoup. The twin Diffie-Hellman problem and applications. In Nigel P.
Smart, editor, Advances in Cryptology – EUROCRYPT 2008, volume 4965 of Lecture Notes in Computer
Science, pages 127–145. Springer, April 2008.

[CLT13] Jean-Sébastien Coron, Tancrède Lepoint, and Mehdi Tibouchi. Practical multilinear maps over the integers.
In Ran Canetti and Juan A. Garay, editors, Advances in Cryptology – CRYPTO 2013, Part I, volume 8042
of Lecture Notes in Computer Science, pages 476–493. Springer, August 2013.

[DE06] Régis Dupont and Andreas Enge. Provably secure non-interactive key distribution based on pairings. Discrete
Applied Mathematics, 154(2):270–276, 2006.

[DH76] Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE Transactions on Information
Theory, 22(6):644–654, 1976.

[FHKP13] Eduarda S. V. Freire, Dennis Hofheinz, Eike Kiltz, and Kenneth G. Paterson. Non-interactive key exchange.
In Kaoru Kurosawa and Goichiro Hanaoka, editors, PKC 2013: 16th International Workshop on Theory and
Practice in Public Key Cryptography, volume 7778 of Lecture Notes in Computer Science, pages 254–271.
Springer, February / March 2013.

[FHPS13] Eduarda S. V. Freire, Dennis Hofheinz, Kenneth G. Paterson, and Christoph Striecks. Programmable hash
functions in the multilinear setting. In Ran Canetti and Juan A. Garay, editors, Advances in Cryptology –
CRYPTO 2013, Part I, volume 8042 of Lecture Notes in Computer Science, pages 513–530. Springer, August
2013.

[FS86] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification and signature problems.
In Andrew M. Odlyzko, editor, Advances in Cryptology – CRYPTO’86, volume 263 of Lecture Notes in
Computer Science, pages 186–194. Springer, August 1986.

[GGH13] Sanjam Garg, Craig Gentry, and Shai Halevi. Candidate multilinear maps from ideal lattices. In Thomas
Johansson and Phong Q. Nguyen, editors, Advances in Cryptology – EUROCRYPT 2013, volume 7881 of
Lecture Notes in Computer Science, pages 1–17. Springer, May 2013.

[HSW13] Susan Hohenberger, Amit Sahai, and Brent Waters. Full domain hash from (leveled) multilinear maps and
identity-based aggregate signatures. In Ran Canetti and Juan A. Garay, editors, Advances in Cryptology –
CRYPTO 2013, Part I, volume 8042 of Lecture Notes in Computer Science, pages 494–512. Springer, August
2013.

[IR01] Gene Itkis and Leonid Reyzin. Forward-secure signatures with optimal signing and verifying. In Joe Kilian,
editor, Advances in Cryptology – CRYPTO 2001, volume 2139 of Lecture Notes in Computer Science, pages
332–354. Springer, August 2001.

[Jou00] Antoine Joux. A one round protocol for tripartite diffie-hellman. In Wieb Bosma, editor, ANTS, volume 1838
of Lecture Notes in Computer Science, pages 385–394. Springer, 2000.

[KR00] Hugo Krawczyk and Tal Rabin. Chameleon signatures. In ISOC Network and Distributed System Security
Symposium – NDSS 2000. The Internet Society, February 2000.

[KR02] Anton Kozlov and Leonid Reyzin. Forward-secure signatures with fast key update. In Stelvio Cimato, Clemente
Galdi, and Giuseppe Persiano, editors, SCN 02: 3rd International Conference on Security in Communication
Networks, volume 2576 of Lecture Notes in Computer Science, pages 241–256. Springer, September 2002.

[PS09] Kenneth G. Paterson and Sriramkrishnan Srinivasan. On the relations between non-interactive key distribu-
tion, identity-based encryption and trapdoor discrete log groups. Des. Codes Cryptography, 52(2):219–241,
2009.

[PTT10] Charalampos Papamanthou, Roberto Tamassia, and Nikos Triandopoulos. Optimal authenticated data struc-
tures with multilinear forms. In Marc Joye, Atsuko Miyaji, and Akira Otsuka, editors, PAIRING 2010: 4th
International Conference on Pairing-based Cryptography, volume 6487 of Lecture Notes in Computer Science,
pages 246–264. Springer, December 2010.

[SOK00] R. Sakai, K. Ohgishi, and M. Kasahara. Cryptosystems based on pairing over elliptic curve. Symposium on
Cryptography and Information Security, 2000.

13

