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Abstract Traceable signatures schemes were introduced by Kiayias, Tsiounis and Yung in order to solve
traceability issues in group signature schemes. They wanted to enable authorities to delegate some of
their detection capabilities to tracing sub-authorities. Instead of opening every single signatures and then
threatening privacy, tracing sub-authorities are able to know if a signature was emitted by specific users
only.
In 2008, Libert and Yung proposed the first traceable signature schemes proven secure in the standard
model. We design another scheme in the standard model, with two instantiations based either on the
SXDH or the DLin assumptions. Our construction is far more efficient, both in term of group elements for
the signature, and pairing computation for the verification. Besides the “step-in” (confirmation) feature
that allows a user to prove he was indeed the signer, our construction provides the “step-out” (disavowal)
procedure that allows a user to prove he was not the signer.
Since list signature schemes are closely related to this primitive, we consider them, and answer an open
problem: list signature schemes are possible without random oracles.
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1 Introduction

Traceable signatures were introduced by Kiayias, Tsiounis and Yung in [KTY04] as an improvement
of group signatures (defined in [Cv91]). In addition to the classical properties of a group signature
scheme, that allows users to sign in the name of the group, while the opener only is able to trace back
the actual signer, traceable signatures allow the opener to delegate the tracing decision for a specific
user without revoking the anonymity of the other users: the opener can delegate its tracing capability
to sub-openers, but against specific signers without letting them trace other users. This gives two
crucial advantages: on the one hand tracing agents (sub-openers) can run in parallel; on the other
hand, honest users do not have to fear for their anonymity if authorities are looking for signatures
produced by misbehaving users only. This is in the same vein as searchable encryption [ABC+05],
where a trapdoor, specific to a keyword, allows to decide whether a ciphertext contains this keyword
or not, and provides no information about ciphertexts related to other keywords.

The first efficient traceable signature scheme, provably secure in the standard model, has been
introduced by Libert and Yung in [LY09]. We present another approach to provide such a scheme. In
addition, our construction is more efficient and provides some extra features.

Our construction can also be used to solve an open problem on list signatures. List signatures were
introduced by Canard et al. in [CSST06]. They let users sign anonymously, in an irrevocable way, but
grant linkability in a specific time-frame: no one can trace back the actual signer, but if a user signs
two messages within a specific time-frame, the signatures will be linkable. Since then, it has been an
open problem to know if there was any way to construct such a list signature scheme in the standard
model.

Contribution. We present simple and efficient constructions of both traceable signatures and list
signatures. They can be proven under reasonable assumptions (variations of the q − SDH, and DDHI
assumptions). We prove the security of both schemes in the standard model. In this paper we combine
the use of the Dodis-Yampolskiy pseudo-random function [DY05], a Delerablée-Pointcheval [DP06]
kind of certificate, Waters’ signature [Wat05] and the Groth-Sahai [GS08] methodology.

First, we present our traceable signature scheme: we extend the initial security model, with ad-
ditional features. The Delerablée-Pointcheval [DP06]-like certificate will allow delegation of tracing,
since a trapdoor, not enough for signing, enables tracing decision between a signature and an alleged
user. Users will also be able to confirm (step-in) or deny (step-out) being the actual signer, using their
signing key only, in a convincing way, which is a new attractive property. To achieve this, we define
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the notion of unique identifier, related to each signature, and specific to the user and an additional
input.

Granted this technique of unique identifier, we can give a positive answer to the open problem of
list signatures in the standard model: if we make the unique identifier specific to the user and the
time-frame, in a deterministic way, then two signatures by the same user within the same time-frame
will have the same identifier, which provides linkability. However, in this second setting the identifier
does not allow to get back to the actual signer.

Organization. In the next section, we present the primitive of traceable signature and the security
model, in the same vein as the BSZ model [BSZ05]. Then, we present the basic tools on which our
instantiations will rely. Eventually, we describe our schemes, in the SXDH setting, with the corre-
sponding assumptions for the security analysis that is provided. For the sake of consistency, in the
appendix, we then explain the results with the (intuitive) DLin instantiations of this scheme as it
requires roughly the same number of group elements and, based on the chosen elliptic curve and the
way one wants to verify the signatures, one may prefer one instantiation to the other. It also allows us
to compare our signature with the previous one, and show that we are at least twice as more efficient.
A recent paper [BFI+10] has shown that DLin signatures can be batch verified more efficiently than
the SXDH ones, which can also help our sub-openers, if they want to trace a user on several signatures.

2 Preliminaries

2.1 Definition

We use similar notations as [BSZ05], for the BSZ model for group signatures, since traceable signatures
are a natural extension to the latter. We follow the original model from traceable signatures with some
improvements, but with similar notations and terminology. In a traceable signature scheme, there
are several users, which are all registered in a PKI. We thus assume that any user Ui owns a pair
(usk[i], upk[i]) of secret and public keys, certified by the PKI. There are several authorities:

– the group manager, also known as Issuer : it issues certificates for users to grant access to the
group.

– the Opener, (which is the same party as the group manager in [LY09], but we prefer to separate
the roles as in [BSZ05], since this is a stronger model): it is able to open or trace any signature.
The former means that it can learn who is the actual signer of a given signature while the latter
decides, on a given signature and an alleged signer, whether the signature has really been generated
by this signer or not. It is also able to delegate the latter tracing capability but for specific users
only. To this aim, it reveals a trapdoor to a Sub-Opener. The latter gets the ability to trace a
specific user only (decide whether the signer associated to the trapdoor is the actual signature of
a signature) without learning anything about the other users.

In the initial model, users also have the capability to Claim a signature, i.e. they are able to publicly
confirm they are the author of a given signature. We enhance the functionalities with a Deny algorithm,
that allows a user to prove that he is not the actual author of a given signature. Both are combined in
a Step algorithm, with Step-in and Step-out procedures to confirm and deny a signature respectively,
using the signing key only.

A traceable signature scheme is defined by a sequence of (interactive) protocols, TS = (Setup, Join,
Sig,Verif,Open,Reveal,Trace,Step):

In some security models, there is an additional party called “Judge” that verifies all the claims.
But since all the following proofs are publicly verifiable, this player is not required here.

– Setup(1k): It generates the global parameters, the public key pk and the private keys: the master
secret key msk for the group manager, and the opening key skO for the Opener.

– Join(Ui): This is an interactive protocol between a user Ui (using his secret key usk[i]) and the
group manager (using his private key msk). At the end of the protocol, the user obtains a signing
key sk[i], and the group manager adds the user to the registration list, storing some information
in Reg. We note I the set of registered users.
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– Sig(pk, i,m, sk[i]): This is a protocol expected to be made by a registered user i ∈ I, using his own
signing key sk[i]. It produces a signature σ on the message m.

– Verif(pk,m, σ): Anybody should be able to verify the validity of the signature, with respect to the
public key pk. This algorithm thus outputs 1 iff the signature is valid.

– Open(pk,m, σ, skO): If σ is valid, the opener, using skO, outputs a user i assumed to be the author
of the signature with a publicly verifiable proof ΠO of this accusation.

– Reveal(pk, i, skO): This algorithm, with input skO and a target user i, outputs a tracing key tk[i]
specific to the user i, together with a proof ΠE confirming this tk[i] is indeed a tracing key of the
user i.

– Trace(pk,m, σ, tk[i]): Using the sup-opener key tk[i] for user i, this algorithm outputs 1 iff σ is a
valid signature produced by i, together with a proof ΠsO confirming the decision.

– Step(pk,m, σ, sk[i]): Using the user’ secret key sk[i], this algorithm outputs 1 iff σ if a valid signature
produced by i, together with a proof Πc confirming the claim.
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Figure 1. An Improved Traceable Signature Scheme

2.2 Security Notions

Before being secure, the scheme must be correct. We thus first explain how it works, and then we
define the security model.

Correctness. The correctness notion guarantees that honest users should be able to generate valid
signatures, those notions are direct extensions of the classic ones with an additional authority and
also consistency between open, trace and step algorithms. More precisely the correctness guarantees
that

– a message signed by an honest user i should
• successfully pass the verification process;
• open to i;
• lead to a positive answer for the trace and step procedures under user i’s related keys;

– as the traceability property of group signatures, for any valid signature σ, the opening algorithm
should designate some user. And the latter should be accepted by the trace and step procedures;

In the following experiments that formalize the security notions, the adversary can run the Join
protocol, either passively (receives only public values, as seen by an eavesdropper) or actively (receives
all the values, as the legitimate user):
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– either through the joinP-oracle (passive join), which means that it creates an honest user for whom
it does not know the secret keys: the index i is added to the HU (Honest Users) list;

– or through the joinA-oracle (active join), which means that it interacts with the group manager
to create a user it will control: the index i is added to the CU (Corrupted Users) list.

Note that when the adversary is given the master key (the group manager is corrupted) then the
adversary does not need access to the joinA oracle since it can simulate it by itself, to create corrupted
users (that are not necessarily in CU). After a user is created, the adversary plays the role of corrupted
users, and can interact with honest users, granted some oracles:

– corrupt(i), if i ∈ HU, provides the specific secret key of this user. The adversary can now control
it during the whole simulation. Therefore i is moved from HU to CU;

– sig(i,m), if i ∈ HU, plays as the honest user i would do in the signature process to generate a
signature on message m. Then (i,m, σ) is appended to the list S of generated signatures;

– open(m,σ), if (m,σ) is valid, returns the identity i of the signer. Then (i,m, σ) is appended to
the list O of opened signatures;

– reveal(i), if i ∈ HU, returns the tracing key tk[i] for the user i. Then i is appended to the list R
of the revealed users;

– tr(i,m, σ), if i ∈ HU and (m,σ) is valid, returns 1 iff i is the signer who made σ on m is i. Then
(i,m, σ) is appended to the list T of traced signatures;

– step(i,m, σ), if i ∈ HU, plays as the honest user i would do to step in/out of the signature σ on
message m.

Note that for a corrupted user i, with the secret key sk[i], the adversary can run itself the Step and
Trace procedures, and or course sign too. We thus have the following sets:

– I, the set of registered users, and HU, CU the honest and dishonest users respectively;

– S, the list of generated signatures (i,m, σ), and S[m] = {i|(i,m, σ) ∈ S};
– O, the list of opened signatures (i,m, σ), and O[m] = {i|(i,m, σ) ∈ O};
– R, the list of revealed users i;

– T , the list of traced signatures (i,m, σ), and T [m] = {i|(i,m, σ) ∈ T }.

A signature is identified by a user-message pair and not σ itself in those sets because we do not
expect for strong unforgeability, also known as non-malleability [SPMLS02]. In our instantiations,
signatures will be malleable, and even re-randomizable: it is easy for anyone to produce a new valid

signature σ′ from a previous one σ, but on the same message. To this end we note σ
(i,m)
≡ σ′. The

subsequent relaxation on the security has already been used in [LY09] for traceable signatures.

Soundness. This is the main security notion that defines two unforgeability properties. The security
games are shortened thanks to the correctness which implies that the opening, the tracing and the
stepping processes are consistent:

– Misidentification, which means that the adversary should not be able to produce a non-trivial
valid signature that could not be opened to a user under its control. The adversary wins if Open
either accuses an unknown user or has an invalid proof, so returning ⊥. (see Figure 2 (a));

– Non-Frameability, which means that the adversary should not be able to produce a non-trivial
valid signature corresponding (that opens) to an honest user even if the authorities are corrupted
(see Figure 2 (b));

TS is Sound if, for any polynomial adversary A, both advantages AdvMisI
TS,A(k) and AdvnfTS,A(k) are

negligible. The first notion (Misidentification) guarantees traceability (the Open algorithm always
succeeds on valid signatures) but also honest users cannot be framed when the group manager is
honest. The second one (non-frameability) is somewhat stronger since it allows the group manager to
be corrupted, but would not guarantee by itself traceability.
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(a) Experiment ExpMisI
TS,A(k)

(pk,msk, skO)← Setup(1k)
(m,σ)← A(pk : joinP, joinA, corrupt, sig, reveal)
IF Verif(pk,m, σ) = 0, RETURN 0
IF Open(pk,m, σ, skO) = ⊥, RETURN 1
IF ∃j 6∈ CU ∪ S[m],

Open(pk,m, σ, skO) = (j,Π)
RETURN 1

ELSE RETURN 0

AdvMisI
TS,A(k) = Pr[ExpMisI

TS,A(k) = 1]

(b) Experiment ExpnfTS,A(k)

(pk,msk, skO)← Setup(1k)
(m,σ)← A(pk,msk, skO : joinP, corrupt, sig)
IF Verif(pk,m, σ) = 0 RETURN 0
IF ∃i ∈ HU \ S[m],

Open(pk,m, σ, skO) = (i,Π)
RETURN 1

ELSE RETURN 0

AdvnfTS,A(k) = Pr[Expnfnf,A(k) = 1]

Figure 2. Security Notions: Soundness

Anonymity. We now address the privacy concerns. For two distinct signers i0, i1, chosen by the ad-
versary, the latter should not have any significant advantage in guessing if the issued signature comes
from i0 or i1. We can consider either a quite strong anonymity notion (usually named full-anonymity)
where the adversary is allowed to query the opening oracle (resp. tracing, stepping) on any signatures,
excepted signatures that are equivalent to the challenge signature with respect to the signers i0 or i1;
or the classical anonymity notion, where open, tr and of course reveal are not available to the adver-
sary. TS is anonymous if, for any polynomial adversary A, the advantage AdvanonTS,A(k) is negligible (see
Figure 3).

Experiment ExpanonbTS,A(k)

(pk,msk, skO)← Setup(1k)
(m, i0, i1)← A(FIND, pk,msk : joinP, corrupt, sig, open∗, tr∗, reveal∗, step∗)
σ ← Sig(pk, i,m, sk[ib])
b′ ← A(GUESS, σ : joinA, joinP, corrupt, sig, open∗, tr∗, reveal∗, step∗)
IF i0 /∈ HU \ (R∪ T [m] ∪ O[m] ∪ S[m]) OR i1 /∈ HU \ (R∪ T [m] ∪ O[m] ∪ S[m]) RETURN 0
ELSE RETURN b′

AdvanonTS,A(k) = Pr[Expanon−1
TS,A (k) = 1]− Pr[Expanon−0

TS,A (k) = 1]

Figure 3. Security Notions: Anonymity (open∗ = tr∗ = reveal∗ = step∗ = ∅) and Full-Anonymity (open∗ = open, tr∗ =
tr, reveal∗ = reveal, step∗ = step)

2.3 Cryptographic Tools

Pseudo Random Function. We will use a variation of the Dodis-Yampolskiy VRF [DY05], intro-
duced in [CHL05]. It basically states that for a polynomial number of scalars zi, and a pair (g, gx) ∈ G2

1,
the values g1/(x+zi) look random and independent. We will use this property to build our identifiers.
In the proof of anonymity, the simulator will be able to choose the zi prior to any interaction with the
adversary so we rely in the framework where the VRF is secure under the q − DDHI assumption.

Certification. Since our new primitive is quite related to group signatures, we now introduce the
BBS-like certification [BBS04] proposed by Delerablée and Pointcheval [DP06], in order to achieve
non-frameability. The system needs a pairing-friendly system (G1,G2,GT , p, e), and a generator k of
G1. During the setup, the group manager chooses two additional independent generators g1 and g2, of
G1 and G2 respectively, and a master secret key msk = γ ∈ Zp. It sets pk = (g1, k, g2, Ω = gγ2 ). During
the join procedure, the authority chooses an xi for the user, and they choose together yi (so that it is
unknown to the group manager, but known to the user: his secret key). After an interactive process,
the user gets his certificate, (gxi1 , g

xi
2 , yi, Ai = (kgyi1 )1/(γ+xi)), where the verification consists in

e(Ai, Ωg
xi
2 ) = e(k, g2)× e(g1, g2)yi e(gxi1 , g2) = e(g1, g

xi
2 ).

Signature. We use a slight variant of Waters signature [Wat05,BFPV11], in the SXDH setting: Given
three generators (g1, k1, g2) ∈ G2

1 ×G2, a public key pk = (gz1 , g
z
2), the secret key z, to sign a message
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m, a user simply needs to pick a random scalar r and compute (kz1 · F(m)r, gr2). Here, F is the Waters
function defined as F(m) = u0Πu

mi
i , where (ui) are independent generators of G1. The verification

simply consists in checking if e(σ1, g2) = e(k1, pk2) · e(F(m), σ2).

Groth-Sahai Commitments. We will follow the Groth-Sahai methodology for SXDH-based com-
mitment in the SXDH setting. The commitment key consists of u ∈ G 2×2

1 and v ∈ G 2×2
2 . There exist

two initializations of the parameters either in the perfectly binding setting, or in the perfectly hiding
one. Those initializations are indistinguishable under the SXDH assumption which will be used in the
simulation. We note C(X) a commitment of a group element X. An element is always committed in
the group (G1 or G2) it belongs to. If one knows the commitment key in the perfectly binding setting,
one can extract the value of X, else it is perfectly hidden. We note C(1)(x) a commitment of a scalar
x embedded in G1 as gx1 . If one knows the commitment key in the perfectly binding setting, on can
extract the value of gx1 else x is perfectly hidden. The same things can be done in G2, if we want to
commit a scalar, embedding it in G2.

Proofs. Under the SXDH assumption, the two initializations of the commitment key (perfectly binding
or perfectly hiding) are indistinguishable. The former provides perfectly sound proofs, whereas the
latter provides perfectly witness hiding proofs. A Groth-Sahai proof, is a pair of elements (π, θ) ∈
G2×2

1 ×G2×2
2 . These elements are constructed to help verifying pairing relations on committed values.

Being able to produce a valid pair implies knowing plaintexts verifying the appropriate relation.

We will use three kinds of relations:

– pairing products equation which require 4 extra elements in each group;

– multi-scalar multiplication which require 2 elements in one group and 4 in the other;

– quadratic equations which only require 2 elements in each group.

If some of these equations are linear, some of the extra group elements are not needed, which leads to
further optimizations.

3 Traceable Signature

3.1 Our Scheme

We first describe our construction, without anonymity. The latter security property will be achieved
granted commitments and proofs of validity, that will be easy and efficient since everything fits withing
the Groth-Sahai methodology.

Setup(1k): The system generates a pairing-friendly system (G1,G2,GT , p, e). One chooses independent
generators (g1, k1, g2) of G2

1 ×G2. One also chooses independent generators in G1 to be able to define
the Waters function F , as described in the previous section. We furthermore define commitment
parameters (u,v) using the perfectly binding procedure. These are the global parameters.

The group manager chooses a scalar γ
R← Zp for the master key msk = γ, and computes Ω = gγ2 .

The opener produces a (perfectly binding) setup of Groth-Sahai commitment keys: he knows (α1, α2)
for a binding setup with u′ = (u′1,u

′
1
α1),v′ = (v′1,v

′
1
α2). We actually note E this instantiation as

it will be used as an encryption that fits into Groth-Sahai methodology. Intuitively group elements
committed/encrypted under this instantiation can be decrypted by the opener, which will be required
for Ai and tk[i]. We will note C when we commit with the system commitment base (u,v) defined in
the global parameters, (which will be alternatively binding or hiding in the security proof, but binding
only in the real-life). In order to use Groth-Sahai methodology without any extra concern, we may
pay attention to always have in a same equation, elements in the same group committed within the
same base. (i.e. , an equation where all elements in G1 are committed thanks to u′, and all in G2

thanks to v perfectly fits into the methodology). The public key (with the global parameters) is then
pk = (g1, g2, k1, Ω,u,v,u

′,v′).
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Join(Ui): In order to join the system, a user Ui, with a pair of keys (usk[i], upk[i]) in the PKI, interacts
with the group manager (similarly to [DP06]):

– Ui chooses a random y′i ∈ Zp, computes and sends Y ′i = g
y′i
1 , an extractable commitment of y′i with

a proof of consistency. Actually the trapdoor of the commitment will not be known to anybody,
except to our simulator in the security proof to be able to extract y′i.

– The group manager chooses a new xi ∈ Zp and a random y′′i
R← Zp, computes and sends y′′i ,

Ai = (k1Y
′
i Y
′′
i )1/(γ+xi) and Xi,2 = gxi2 where Y ′′i = g

y′′i
1 ;

– Ui checks whether e(Ai, Ωg
xi
2 ) = e(k1, g2) × e(g1, g2)

y′i+y
′′
i . He can then compute yi = y′i + y′′i .

And so we have e(Ai, ΩXi,1) = e(k1, g2) × e(g1, g2)yi . He produces a commitment of tk[i] = gyi2 :
ei = E(gyi2 ) and a proof of consistency πJ [i], and signs (gyi1 , Ai, Xi,2, ei, πJ [i]) under usk[i] into si.

– The group manager verifies si under upk[i] and the given proof, and appends the tuple (i, upk[i], Xi,
gyi1 , Ai, ei, πJ [i], si) to Reg. He can then send the last part of the certificate Xi,1 = gxi1 .

– Ui thus checks, if he did receive gxi2 before (i.e. if e(Xi,1, g2) = e(g1, Xi,2)), and then owns a valid
certificate (Ai, Xi, yi), where sk[i] = yi is known to him only. The secrecy of yi will be enough for
the overall security. Note that if Xi,1 is invalid, one can ask for it again. In any case, the group
manager cannot frame the user, but just do a denial of service attack, which is unavoidable. We
expect the Reg array to be constantly certified, i.e. , we expect the Group Manager to sign every
rows. (This will only be required in our step in/out process)

At this stage, Reg = {(i, upk[i], Xi, g
yi
1 , Ai, ei, πJ [i], si)}, and sk[i] = yi.

Sig(pk,m, sk[i]): When a user i wants to sign a message m, he computes the signature of m under his

private key sk[i]. First, he creates an ephemeral ID, ID(yi, z) = g
1/(z+yi)
1 , and publishes σ :

(σ0 = ID(yi, z), σ1 = Xi, σ2 = yi, σ3 = Ai, σ4 = (gz1 , g
z
2), σ5 = kz1F(m)s, σ6 = gs2)

that satisfy the relations:

e(σ0, σ4,2g
σ2
2 ) = e(g1, g2) e(σ1,1, g2) = e(g1, σ1,2)

e(σ3, Ωσ1,2) = e(k1, g2)× e(g1, gσ22 ) e(gσ21 , g2) = e(g1, g
σ2
2 )

e(σ5, g2) = e(k1, σ4,2)× e(F(m), σ6) e(σ4,1, g2) = e(g1, σ4,2)

Basically, σ0 is a certificate of the public key σ4, and (σ5, σ6) is a Waters’ signature of m under
this key. As explained above, for the sake of clarity, we started with a non-anonymous scheme. To
achieve anonymity, some of these tuples are thereafter committed/encrypted, but only those that can
be linked to a user. As shown in the equations σ2 is a scalar, but needs to be committed in both
groups, which will be perfect for the following proofs as it will be enough to extract both gy1 and gy2
(see the computational assumption in the next section):

σ = (σ0, C(σ1), C(σ2), E(σ3), σ4, σ5, σ6)

We add the corresponding Groth-Sahai proofs to prove the validity of the previous pairing equations.
The second (Xi is well-formed) and third (Ai is well-formed) ones are pairing products, so need 4
elements in each group, the first one (ID is well formed) is a Linear Pairing Product, so needs only 2
extra elements in G1, the fourth one (the same yi is committed in two bases) is a quadratic equation
and so can be proven with 2 elements in each group. The two last ones do not use any committed data
and so can be directly checked. Overall we will need 21 group elements in G1 and 16 in G2, which is
far under the 83 required in the Libert-Yung construction. Especially if we consider elements in G1 to
be half the size of those in G2 (as often done in standard implementations).

Verif(pk,m, σ): One simply has to verify if all the pairing equations hold.

Open(pk,m, σ, α): The Opener just opens the commitment of Ai in σ3, and then outputs a Groth-Sahai
proof of knowledge of an α such that e(σ3,1, g2) = e(Ai, g2).e(σ3,2, g

α
2 ). He checks si, and depending

on its consistency blames the user Ui or the Group Manager or ⊥. This is a linear multi-scalar
multiplication in G1 and so the proof Π is composed of only 1 group element in G1 and is publicly
verifiable.
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Reveal(pk, i, α): The Opener verifies πJ [i], and si in Reg and uses α to decrypt ei and extracts the
tracing key: tk[i] = gyi2 . He then send it to the sub-opener together with a publicly verifiable proof
showing that tk[i] is a valid decryption of ei. (Again a linear MS but in G2 this time).

Trace(pk,m, σ, tk[i]): The Sub-Opener picks δ
R← Zp and outputs a blinded tuple (c1 = tk[i]δ, c2 =

σδ4,2, c3 = gδ2) and the target user i. Anyone can then check the validity of the tuple that should satisfy:

e(gyi1 , c3) = e(g1, c1) and e(σ4,1, c3) = e(g1, c2)

and then know the result of the trace process from the test e(σ0, c2c1) = e(g1, c3). We recall that gyi1
is included in Reg[i] and is thus considered public.

Step(pk,m, σ, sk[i]): To step in or out, a user picks a random δ, and publishes a similar blinded tuple

(c1 = gδyi2 , c2 = σδ4,2, c3 = gδ2) and i. Anyone can then check the validity of this tuple as above:

e(gyi1 , c3) = e(g1, c1) and e(σ4,1, c3) = e(g1, c2)

and then if the step is in or out with: e(σ0, c2c1)
?
= e(g1, c3).

Another way to step in or out of a given signature, less efficient but which induces the knowledge
of yi: a user just does the same thing as a sub-opener, together with either an extra signature involving
his private key or a bit-per-bit proof of knowledge of yi. This adds an extra-property outside the scope
of our model, which proves that the step in/out has really been initiated by the user itself (and not a
tracing authority).

3.2 Security

Computational Assumptions. Our protocol will work with a pairing-friendly elliptic curve, of prime
order:

– G1,G2 and GT are multiplicative cyclic groups of finite prime order p, and g1, g2 are generators
of G1,G2;

– e is a map from G1×G2 to GT , that is bilinear and non-degenerated, such that e(g1, g2) is generator
of GT .

Definition 1 (Advanced Computational Diffie-Hellman [BFPV11]).
Let us be given two cyclic groups (G1,G2) of prime order p with (g1, g2) as respective generators and e
an admissible bilinear map G1×G2 → GT . The CDH+ assumption states that given (g1, g2, g

a
1 , g

a
2 , g

b
1),

for random a, b ∈ Zp, it is hard to compute gab1 .

Definition 2 (Symmetric external Diffie-Hellman [BBS04]). Let G1,G2 be cyclic groups of
prime order, e : G1 × G2 → GT be a bilinear map. The SXDH assumption states that the DDH as-
sumption holds in both G1 and G2.

Definition 3 (q-Decisional Diffie-Hellman Inverse in G1). Let G1 be a cyclic group of order p

generated by g1. The q-DDHI problem consists, given (g1, g
γ
1 , ..., g

γq

1 , D), in deciding whether D = g
1/γ
1

or not.

Definition 4 (q-Hybrid Hidden Strong Diffie-Hellman in G1,G2). Let G1,G2 be multiplica-
tive cyclic groups of order p generated by g1, g2 respectively. The q-HHSDH problem consists, given
(g1, k, g2, g

γ
2 ) and several partly hidden tuples (gxi1 , g

xi
2 , yi, (kg

yi
1 )1/(γ+xi))i∈[1,q], in computing (gx1 , g

x
2 , g

y
1 ,

gy2 , (kg
y
1)1/γ+x) for a new pair (x, y).

About that last assumption: intuitively, under KEA, it can be reduced to a standard q − SDH
(Under KEA, the reduction to q− SDH is similar to the one in [DP06]). It follows the idea of the BB-
SDH introduced in [BCC+08]. However, in our construction neither the scalar given is the one involved
directly in the SDH part, nor we give a second group element raised to the power γ. Therefore this
new assumption seems to remain reasonable.
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Correctness. Correctness of our scheme is guaranteed by the perfect soundness of the Groth-Sahai
proofs in the signature and in the output of procedures Open, Trace and Step.

Anonymity. We now study the anonymity property, but do not address the full-anonymity.

Theorem 5. If there exists an adversary A that can break the anonymity property of the scheme,
then there exists an adversary B that can break the `−DDHI problem in G1 or the SXDH assumption,
where ` is the maximal number of signing queries for a user.

Proof. Let us assume that an adversary is able to break the anonymity property of our scheme. It
means than in the anonymity game, he has a non-negligible advantage ε > 0 to distinguish G(0) where
b = 0 from G(1) where b = 1. We start our sequence of games from G(0), denoted G0. We first replace
this game by G1, where we make some simulations that are perfectly hiding: The simulator B is given
a challenge A = (g, gy, . . . , gy

`
) ∈ G`+1

1 and D = g1/y, for an unknown y. B first chooses different

random values z∗, z1, . . . , z`−1 ∈ Z`p, which completely define the polynomial P =
∏`−1
i=1(X + zi), of

degree ` − 1. Granted the above challenge, B can compute g1 = gP (y), and the rest of the public key
is computed as in a normal scheme. In particular, one knows the master secret key γ.

The future challenge user i0 will virtually have yi0 = sk[i0] = y− z∗. B can compute gyi0 = gy1/g
z∗
1

(from the input A without using y, even if we know it here). The public certificate (in the Reg list) for
the challenge user is (g

xi0
1 , g

xi0
2 , gy1/g

z∗
1 , (k1g

y
1/g

z∗
1 )1/(γ+x)), plus some proofs and signatures. B is also

given Groth-Sahai commitment keys and encryption keys (decryption keys are unknown, hence the
classical notion of anonymity and not full-anonymity). This setup is indistinguishable from the real
one since all the keys are generated as in the real game. Because of the knowledge of the master secret
key, B simulator easily answers any join queries, both active and passive. But has to guess i0, which
is correct with probability 1/n, where n is the total number of passive join queries. It can also answer
any corruption, that should not happen for the challenge user, even if we know y in this game.

As he is able to know all x′is and all y′is for registered users (except the challenge one), he will be
able to answer signing queries as users would do. For the challenge user, on the j-th signing query,

he computes σ0 = g
1/(sk[i]+zj)
1 = g

∏
i 6=j(y+zi), that can be done from the challenge input A, the rest

is done as in the real game using y and zj as ephemeral random. For the challenge signing query, he

does the same has above with the ephemeral value z∗, and the expected ID is g
1/(sk[i]+z∗)
1 = gP (y)/y =

gQ(y)g
∏

(zi)/y, where Q = (
∏`
i=1(X+zi)−

∏
(zi))/X is a polynomial of degree `−1 and thus gQ(y) can

be computed from the instance. He thus outputs σ0 = gQ(y) ·D
∏

(zi). Since D = g1/y, the signature is
similar to the above one, and so is indistinguishable from a real signature.

We then modify the game, into G2, where we initialize Groth-Sahai commitment keys in a perfectly
hiding setting with the trapdoor, to allow the simulator to cheat in the proofs. Then all the proofs are
simulated. This game is indistinguishable from the previous one under the SXDH.

In G3, for the challenge user signing queries, we use random commitments and ciphertext for
σ1, σ2, σ3. The commitments were already random, because of the perfectly hiding setting, but a
random ciphertext is indistinguishable from the real one under the semantic security of the encryption
scheme, the SXDH assumption.

In G4, we do not know anymore y, that we did not use anymore anyway, and thus this game is
perfectly indistinguishable from the previous one. In G5, D is a random value, which is indistinguish-
able from the real one under the ` − DDHI assumption as we only have a polynomial number of zi
in input like in the Dodis-Yampolskiy PRF: the challenge signature does not depend anymore on the
challenge user.

To complete the proof, we should make the same sequence again, starting from G′0 that is G(1),
up to G′5, that is perfectly indistinguishable from G5, hence the computational indistinguishability
between G′0 = G(1) and G0 = G(0). ut

Soundness. Within the soundness analysis, we prove traceability (misidentification) and non-frameability.

Theorem 6. If there exists an adversary A against the soundness of the scheme, then we can build
an adversary B that can either break the Q − HHSDH, the Q′ − HSDH or the CDH+ computational
problems, or the 1-DDHI or the SXDH decisional problems, where Q is maximal number of users, and
Q′ is the maximal number of signing queries for a user.
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Note that the 1-DDHI is equivalent to the Decisional Square Diffie-Hellman, since we have a sequence
(g1, g

γ
1 , g

δ
1) where one has to decide whether δ = 1/γ, which can be written (G = gγ1 , G

α = g1, G
β = gδ1),

where α = 1/γ, and β = δ/γ, and one has to decide whether δ = 1/γ, and thus whether β = α2.

Proof. Non-frameability and misidentification are very closely related, we will treat both simultane-
ously, there are three ways to cheat the soundness of our scheme : either by creating a new certificate
(G1) which induces a misidentification attack, or by using an existing certificate but on a new message
(G2a,2b) which breaks the non-frameability.

We study the security of the unencrypted version of our scheme (because of the perfect soundness
of the Groth-Sahai proofs in the perfectly binding setting, and extractability of the commitments).
We will construct three different games, in the first one, we assume the adversary is able to forge a
signature by generating a new certificate (a new tuple (σ1, σ2, σ3)) in (G1), in the second one (G2a)
the adversary is able to forge a new σ0 and so break the tracing or step procedure, in the last game
(G2b) the adversary forges a new Waters signature (a new tuple (σ4, σ5, σ6)).

(G1): Let us be given a Q−HHSDH challenge (g1, k, g2, Ω), (gxi1 , g
xi
2 , yi, Ai)i∈[[1,Q]]. We build an adversary

B able to solve this challenge, from A that breaks the soundness of our scheme by generating a new
tuple (σ1, σ2, σ3). B generates the commitment keys and the encryption keys, so that he knows
the trapdoor, and publishes the group public key (g1, g2, k, Ω, E). To answer the i-th join queries,
if this is an active join, B extracts y′i and adapts his y′′i so that y′i + y′′i = yi, if it is a passive join,
B directly chooses yi. As he knows the decryption key, he can give the opening key skO to the
adversary.
After at most Q join queries, A is able to output a new signature with a new certificate tuple with
non-negligible probability. As mB knows the trapdoor of the commitment scheme, he can obtain
(gx1 , g

x
2 , g

y
1 , g

y
2 , A = (kgy1)1/(γ+x)) and so he is able to answer the challenge Q− HHSDH instance.

(G2a): Let us be given a Q − HSDH challenge (g1, g2, g
y
2) and (gti1 , g

ti
2 , ID(y, ti) = g

1/(y+ti)
1 )i∈[[1,Q]]. We

build an adversary B answering this challenge, from an adversary A breaking the soundness of
our scheme by forging a new ID.
B generates a new γ, skO, he then gives msk = γ, skO to A, together with the public key
(g, g1, g2, Ω = gγ2 , E). B can answer any joinP queries as he knows msk, the user on which we
expect the attack (the challenge user) will have a certificate corresponding to one with y as a
secret key. (Specifically tk[i] = gy2). A can corrupt any user, if he tries to corrupt the challenge
user, the simulation fails. As all uncorrupted user looks the same, with non-negligible probably the
simulation continues. Thanks to the challenge tuple, B can answer to at most Q signing queries
for challenge user (each time using a new ID).
After at most Q signing queries, A succeeds in breaking the non-frameability with non-negligible
probability by generating a new ID, on an uncorrupted user. As uncorrupted users are indistin-
guishable, with non negligible probability this user is the challenge one, and so B is able to produce

a new tuple (gt1, g
t
2, g

1/(t+y)
1 ), which breaks the Q− HSDH assumption.

(G2b): Let us be given an asymmetric Waters public key (pk = (gt1, g
t
2) for the global parameters

(g1, g2, k1,F). We build an algorithm B that break this signature, and thus the CDH+ prob-
lem, from an adversary A breaking the non-frameability property of our scheme by reusing an
existing ID with the corresponding certificate, but on a new message.
In the first game, B knows the discrete logarithm value t, generates a new γ, skO, he then gives
msk = γ, skO to A, together with the public key (g1, g2, k1, Ω = gγ2 , E). B can answer any joinP
queries as he knows msk, and extract the secret keys from the extraction keys of the commitment
scheme, one of those uncorrupted user is expected to be our challenge user, with secret key y, the
one A has to frame.
B can answer any signing queries. On one of them for our challenge user, say on m, he will use
the above t as ephemeral Waters public key (for the z), and thus computes a σ0 = ID(y, t) with
the corresponding Groth-Sahai proof. This way A now possesses a valid signature on m, with
σ4 = (gt1, g

t
2), σ5 = kt1F(m)s, σ6 = gs2. With non-negligible probably A breaks the non-frameability

of our scheme, by hypothesis A does it by reusing an existing σ0, . . . , σ4, as uncorrupted users are
indistinguishable, A frames our challenge user with non-negligible probability, and as he makes a
finite number of signing queries, he will use with non-negligible probability σ4 = (gt1, g

t
2).
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Therefore, with non-negligible probability A outputs a new valid signature on m′ with σ4 =
(gt1, g

t
2), this means we have (σ4, σ5, σ6) such that

e(σ4,1, g2) = e(g1, σ4,2) e(σ5, g2) = e(k1, σ4,2) · e(F(m′), σ6),

and so B can outputs a valid forgery on the Waters challenge for the public key (gt1, g
t
2). But in

this game, we know t.
In a second game, we replace the Groth-Sahai setup into the hiding one, so that the proofs can
be simulated, and namely without using t when proving the validity of σ0. This is indistinguish-
able from the previous game under the SXDH assumption. In a third game, we replace σ0 by a
random value, still simulating the proofs. As explained in the anonymous proof, a random ID is
indistinguishable from the real one under the DDHI problem. Furthermore, here there is only one
element, hence the 1-DDHI assumption. In this last game, one does not need to know t anymore,
and thus the signature forgery reduces to breaking the asymmetric CDH+.

Now let A be an adversary against the soundness of our scheme with an advantage ε. If with
probability greater than ε/3, A breaks the misidentification property of the scheme, then we can run
the game G1, else if with probability greater than ε/3, A breaks the non-frameability property with
a new ID, then we can run the game G2a, else A breaks the non-frameability property with a new
Waters component and so we run the game G2b. So if there exists an adversary against the soundness
of our scheme, we can break with non-negligible probability one of the previous problems. ut

In the DLin Setting. The description and the proofs in the DLin setting are deferred to the Appendix A.
But let us compare the number of elements required in the signature:

SXDH DLin

Uncommitted elements (3,2) 5
Committed elements (6,4) 15
ID proof (2,0) 3 (LPP)
Xi proof (4,4) 3
Ai proof (4,4) 9
Yi proof (2,2) 3 (LPP)

So we end up with 35 group elements in G instead of the 21 in G1 and 16 in G2 with SXDH in
the asymmetric setting. As explained before the result with SXDH is equivalent to approximately 29
elements in DLin only, because of the different lengths of the group elements.

4 List Signature

4.1 Definition

We will once again use similar notations as [BSZ05]. In a list signature scheme, there are several users,
which are all registered in a PKI. We thus assume that each user Ui owns a pair (usk[i], upk[i]) certified
by the PKI. In standard implementation there is only one authority: The group manager, also known
as Issuer : it issues certificates for users to grant access to the group. (Technically, we can still use an
Opener, it will work exactly as before, however for the sake of clarity we will skip this part to lighten
our construction.)

A List Signature scheme is thus defined by a sequence of (interactive) publicly verifiable protocols,
LS = (Setup, Join,Sig,Verif,Match):

– Setup(1k), where k is the security parameter. This algorithm generates the global parameters of
the system, the public key pk and the private keys: the master secret key msk given to the group
manager.

– Join(Ui): this is an interactive protocol between a user Ui (using his secret key usk[i]) and the
group manager (using his private key msk). At the end of the protocol, the user obtains a signing
key sk[i], and the group manager adds the user to the registration list, storing some information
in Reg[i].
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(a) Experiment ExpufLS,A(k)

(pk,msk)← Setup(1k)
(t, (mi, σi)i∈[[1,n]])← A(pk,msk : joinP, corrupt, sig)
IF ∃iVerif(pk,mt, t, σt) = 0, RETURN 0
IF ∃i 6= j,Match(pk,mi, t,mj , t, σi, σj) = 1

RETURN 0
IF n > #CU + S(t), RETURN 1
ELSE RETURN 0

AdvufLS,A(k) = Pr[ExpufLS,A(k) = 1]

(b) Experiment Expanon−b
LS,A (k)

(pk,msk)← Setup(1k)
(m, t, i0, i1)← A(FIND, pk : joinA, joinP, corrupt, sig)
σ ← Sig(pk, ib,m, t, {sk[ib]})
b′ ← A(GUESS, σ : joinA, joinP, corrupt, sig)
IF i0 ∈ CU OR i1 ∈ CU RETURN ⊥
IF (i0, ∗) ∈ S(t) OR (i1, ∗) ∈ S(t) RETURN ⊥
ELSE RETURN b′

Figure 4. Security Notions for List Signatures

– Sig(pk, i,m, t, sk[i]}): this is a (possibly interactive) protocol expected to be made by a registered
user i, using his own key sk[i]. It produces a signature σ on the message m at the timeframe t .

– Verif(pk,m, t, σ): anybody should be able to verify the validity of the signature, with respect to
the public key pk. This algorithm thus outputs 1 if the signature is valid, and 0 otherwise.

– Match(pk,m1, t1,m2, t2, σ1, σ2): This outputs outputs 1 iff t1 = t2 and σ1 and σ2 were produced
by the same user.

4.2 Security Notions

Before being secure, the scheme must be correct. The correctness notion guarantees that honest users
should be able to generate valid signatures.

In the following experiments that formalize the security notions, the adversary can run the Join
protocol,

– either through the joinP-oracle (passive join), which means that it creates an honest user for whom
it does not know the secret keys: the index i is added to the HU (Honest Users) list;

– or through the joinA-oracle (active join), which means that it interacts with the group manager
to create a user it will control: the index i is added to the CU (Corrupted Users) list.

After a user is created, the adversary can interact with honest users, granted some oracles:

– corrupt(i), if i ∈ HU, provides the specific secret key of this user. The adversary can now control
it during the whole simulation. Therefore i is added to CU;

– sig(pk, i,m, t), if i ∈ HU, plays as the honest user i would do in the signature process to generate a
signature on message m during the time-frame t. Then (i,m, t) is appended to the list S (generated
signatures).

Soundness. This is the main security notion, see Figure 4 (a): An adversary can produce at most one
valid signature per time-frame per corrupted player. LS is Sound if for any polynomial adversary A,
the advantage AdvufLS,A(k) is negligible.

Anonymity We now address the privacy concerns, see Figure 4 (b). Given two honest users i0 and
i1, the adversary should not have any significant advantage in guessing which one of them has issued
a valid signature. LS is anonymous if, for any polynomial adversary A, the advantage AdvanonLS,A(k) =

Pr[Expanon−1LS,A (k) = 1]− Pr[Expanon−0LS,A (k) = 1] is negligible.

4.3 Our Instantiation

The protocol is quite the same as before except for two things, z is no longer chosen at random, but
is simply a scalar corresponding to the time-frame t, and we can no longer use kz1 as a private Waters
key, but hy1 is private. Once again, we will focus on the SXDH instantiation:

Setup(1k): The system generates a pairing-friendly system (G1,G2,GT , p, e). One also chooses inde-

pendent generators (g1, g2, k1) of G2
1×G2. The group manager chooses a scalar γ

R← Zp for the master
key msk = γ, and computes Ω = gγ2 . The public key is then pk = (g1, g2, h1, k1, Ω).
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Join(Ui): In order to join the system, a user Ui, with a pair of keys (usk[i], upk[i]) in the PKI, inter-
acts with the group manager, similarly to the previous scheme, so that at the end, the user owns a
certificate {i, upk[i], Xi = (gxi1 , g

xi
2 ), gyi1 , Ai}, where xi is chosen by the group manager but yi is cho-

sen in common, but private to the user, while still extractable for our simulator in the proof. Then,
Reg[i] = {i, upk[i], Xi, g

yi
1 , Ai}, whereas sk[i] = yi.

Sig(pk,m, t, sk[i]): When a user i wants to sign a message m during the time-frame t, he computes the

signature of m under his private key sk[i]: First, he will create his ephemeral ID, ID(i, t) = g
1/(t+yi)
1 ,

and computes

σ = (σ0 = ID(i, t), σ1 = Xi, σ2 = yi, σ3 = Ai, σ4 = gs2, σ5 = hyi1 F(m)s).

The relations could be verified by:

e(σ0, g
t
2g
σ2
2 ) = e(g1, g2) e(σ1,1, g2) = e(g1, σ1,2)

e(σ3, Ωσ1,2) = e(k1, g2)× e(g1, gσ22 ) e(σ5, g2) = e(h1, g
σ2
2 )× e(F(m), σ4)

In order to get anonymity, before publication, some of these tuples are thereafter committed, together
with the corresponding Groth-Sahai proofs, to prove the validity of the previous pairing equations

σi = (σ0, C(σ1), C(σ2), C(σ3), σ4, σ5)

Match(pk,m, t,m′, t′, σ, σ′): This algorithm return 1 iff t = t′ and σ0 = σ′0.

4.4 Security Analysis

The security of this scheme can be proven in a similar way to the previous one. The main difference
between the two schemes comes from σ5 where we cannot use t but a the private value yi that appears
in some other equations. This hardens a little the security proof of the anonymity where we have to
change the last game so that we randomize, at the same time, both σ0 and σ5. But since the DDHI
assumption clearly implies the DDH one, and as the adversary can only make a limited number of
signature queries, he will only be able to work on a polynomial number of time-frames t and so we
can still use the Dodis-Yampolskiy VRF. The security analysis can be found in the Appendix B. The
proof of unforgeability remains quite the same.

5 Conclusion

We have exhibited a new way to build traceable signatures in the standard model. It requires around
40% of the elements used in the previous schemes. We also strengthen the security model of traceable
signatures: we have separated the opener from the group manager, which eases the non-frameability;
we also have extended the claim procedure, by creating a way to step-out (deny) in addition to the
step-in (confirmation). To the best of our knowledge, this is the first step-out group signature scheme
in the standard model.

Our identifier techniques also answers a problem opened 4 years ago, by creating the first List
Signature scheme in the Standard model: granted our new unique ID technique, we get a provably
secure list signature scheme.

Our solutions are quite efficient. If we consider the DLin implementation (to compare with the
previous one): 35 group elements, with 256-bit prime groups, we end up with a bit more than one
kilo-byte signature, which is rather small (especially in the standard model, whereas we are using
Groth-Sahai proofs.). At a first glance, many pairing computations may be involved in the verification
of n signatures. However, using batching techniques from [BFI+10], it can be reduced to a quite
reasonable number. Namely, around 50 pairing computations only will be required for a single signature
verification.
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A DLin Traceable Signature Scheme

A.1 Assumptions

Definition 7 (Decision Linear Problem in G [BBS04]). Let G be a cyclic group of order
p generated by g. The DLin assumption states that the two distributions (u, v, w, ua, vb, wc) and
(u, v, w, ua, vb, wa+b) are computationally indistinguishable for random group elements u, v, w ∈ G
and random scalars a, b, c ∈ Zp.

Our scheme can easily be adapted in the DLin setting, instead of working in two different groups,
we only need one, most of the previous assumptions can be adapted by stating that g1, g2 are two
independent generators of a group G.

A.2 Description

Setup(1k): The system generates a pairing-friendly system (G,GT , p, e). One also chooses independent
generators (f, g, k) of G3.

The group manager chooses a scalar γ
R← Zp for the master key msk = γ, and computes Ω = gγ .

The opener produces a computationally binding Groth-Sahai environment with α as an opening key.
Commitments in this setting will be noted E . Technically they are double linear encryption and so fit
well in the methodology. The public key is then pk = (f, g, k,Ω, E).
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Join(Ui): In order to join the system, a user Ui, with a pair of keys (usk[i], upk[i]) in the PKI, interacts
with the group manager (similarly to [DP06]):

– Ui chooses a random y′i ∈ Zp, computes and sends Y ′i = gy
′
i , an extractable commitment of y′i with

a proof of consistence. Actually the trapdoor of the commitment will not be known to anybody,
except to our simulator in the security proofs.

– The group manager chooses a new xi ∈ Zp and a random y′′i
R← Zp, computes and sends y′′i ,

Ai = (kY ′i Y
′′
i )1/(γ+xi) and Xi,2 = gxi where Y ′′i = gy

′′
i ;

– Ui checks whether e(Ai, Ωg
xi) = e(k, g)× e(g, g)y

′
i+y
′′
i . He can then compute yi = y′i + y′′i . He signs

Ai under usk[i] into si for the group manager and produces, and a commitment of fyi under E
with a proof showing it is well-formed. At this step, he also sign a part of Reg[i] as in the SXDH
version.

– The group manager verifies si under upk[i] on the messageAi, and appends the tuple (i, upk[i], Xi, Ai)
to Reg[i]. He can then send the last part of the certificate Xi,1 = fxi .

– Ui thus checks, if he did receive fxi before (i.e. if e(Xi,1, g) = e(f,Xi,2)), and then owns a valid
certificate (Ai, Xi, yi), where sk[i] = yi is known to him only. Once again, the secrecy of yi will
be enough for the overall security. Note that if Xi,1 is invalid, one can ask for it again. In any
case, the group manager cannot frame the user, but just do a denial of service attack, which is
unavoidable.

At this step Reg[i] = {i, upk[i], Xi, Ai, ei, πJ [i], si}, whereas sk[i] = yi.

Sig(pk,m, sk[i]): When a user i wants to sign a message m, he computes the signature of m under his
private key sk[i]:

First, he will create his ephemeral ID, ID(yi, z) = f1/(z+yi), and publishes σ:

σ0 = ID(yi, z), σ1 = Xi, σ2 = (fyi , gyi),
σ3 = Ai, σ4 = (fz, gz), σ5 = kzF (m)s, σ6 = gs

Verifying the relations:

e(σ0, σ4,2σ2,2) = e(f, g) e(σ1,1, g) = e(f, σ1,2)

e(σ3, Ωσ1,2) = e(f, g)× e(f, σ2,2) e(σ1,2, g) = e(f, σ2,2)

e(σ5, g) = e(k, σ4,2)× e(F (m), σ6) e(σ4,1, g) = e(f, σ4,2)

In order to get anonymity, some of these tuples are thereafter committed as group elements.

σi = (σ0, C(σ1), C(σ2), E(σ3), σ4, σ5, σ6)

With the corresponding Groth-Sahai proofs, to prove the validity of the previous pairing equations.
The second one is a pairing product, so need 9 group elements in each group, the first, third and
fourth are Linear Pairing Product, so needs only 3 extra elements in G. The last ones do not use any
committed data and so do not need any extra elements.

Verif(pk,m, σ): One simply has to verify if all the pairing equations hold.

Open(α,m, σ): The Opener just opens the commitment of Ai in σ3, and then outputs a Groth-Sahai
proof of knowledge of α.

Reveal(pk, i, α): The Opener verifies πJ [i] and uses α to decrypt ei and extracts the tracing key:
tk[i] = fyi . He then send it to the sub-opener together with a publicly verifiable proof showing that
tk[i] is a valid decryption.

Trace(pk,m, σ, tk[i]): The Sub-Opener picks β
R← Zp and outputs (tk[i]β, σβ4 , f

β), where anyone can
use Reg[i] to check if e(gyi , fβ) = e(g, tk[i]β). Anyone can then check the validity of the output tuple

and if e(σ0, σ
β
4 tk[i]β) = e(fβ, g).
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Step(pk,m, σ, sk[i]): To step in or out of a given signature, a user just does the same thing as a
sub-opener.

B List Signature Scheme

The security can be proven quite like before. There are a few changes, in the anonymity we have
an extra term with some information on yi, in the simulation we can not directly hide σ5 as before,
however we can put any random values in the certificate part, and program k1 to still be able to
conclude the reduction to the DDHI as long as we only work on a polynomial number of time-frames.

The soundness property is easier to achieve than the previous one, being able to sign twice in the
same time-frame implies to be able either to generate two different ID for the same t, and so implies
to work with two different yi, and so to have two certificates, either to sign another message with the
same user and to break the Waters unforgeability.

Theorem 8 (Anonymity). If there exists an adversary A that can break the anonymity property of
the scheme, then there exists an adversary B that can break the `−DDHI problem in G1 or the SXDH
assumption, where ` is the maximal number of signing queries for a user.

Proof. Let us assume that an adversary is able to break the anonymity property of our scheme. It
means than in the anonymity game, he has a non-negligible advantage ε > 0 to distinguish G(0) where
b = 0 from G(1) where b = 1. We start our sequence of games from G(0), denoted G0. We first replace
this game by G1, where we make some simulations that are perfectly hiding: The simulator B is given
a challenge A = (g, gy, . . . , gy

`
) ∈ G`+1

1 and D = g1/y, for an unknown y. B first chooses different

random values z∗, z1, . . . , z`−1 ∈ Z`p, which completely define the polynomial P =
∏`−1
i=1(X + zi), of

degree ` − 1. Granted the above challenge, B can compute g1 = gP (y), and the rest of the public key
is computed as in a normal scheme. In particular, one knows the master secret key γ. We also define
k1 = Dα, h1 = kβ1 for a chosen α, β.

The future challenge user i0 will virtually have yi0 = sk[i0] = y− z∗. B can compute gyi0 = gy1/g
z∗
1

(from the input A without using y, even if we know it here). It will also be able to compute σ5 =
h
yi0
1 F(m) = Dαβ(y−z∗)F(m) = gαβF(m)/Dαβz∗ – when D = g1/y). The public certificate (in the Reg

list) for the challenge user is (g
xi0
1 , g

xi0
2 , gy1/g

z∗
1 , (k1g

y
1/g

z∗
1 )1/(γ+x)), plus some proofs and signatures. B

is also given Groth-Sahai commitment keys and encryption keys (decryption keys are unknown, hence
the classical notion of anonymity and not full-anonymity). This setup is indistinguishable from the
real one since all the keys are generated as in the real game. Because of the knowledge of the master
secret key, B simulator easily answers any join queries, both active and passive. But has to guess i0,
which is correct with probability 1/n, where n is the total number of passive join queries. It can also
answer any corruption, that should not happen for the challenge user, even if we know y in this game.

As he is able to know all x′is and all y′is for registered users (except the challenge one), he will
be able to answer signing queries as users would do. For the challenge user, on the j-th timeframe

signing query, he computes σ0 = g
1/(sk[i]+zj)
1 = g

∏
i6=j(y+zi), that can be done from the challenge

input A, the rest is done as in the real game using y and zj as ephemeral random with each time
an additional random s. For the challenge signing query, if it happens in an already used timeframe
then he aborts, else he does the same has above with the ephemeral value z∗, and the expected ID

is g
1/(sk[i]+z∗)
1 = gP (y)/y = gQ(y)g

∏
(zi)/y, where Q = (

∏`
i=1(X + zi) −

∏
(zi))/X is a polynomial of

degree `− 1 and thus gQ(y) can be computed from the instance. He thus outputs σ0 = gQ(y) ·D
∏

(zi)

and σ5 = gαβF(m)/Dαβz∗ . Since D = g1/y, the signature is similar to the above one, and so is
indistinguishable from a real signature.

We then modify the game, into G2, where we initialize Groth-Sahai commitment keys in a perfectly
hiding setting with the trapdoor, to allow the simulator to cheat in the proofs. Then all the proofs are
simulated. This game is indistinguishable from the previous one under the SXDH.

In G3, for the challenge user signing queries, we use random commitments, ciphertext for σ1, σ2, σ3.
The commitments were already random, because of the perfectly hiding setting, but a random cipher-
text is indistinguishable from the real one under the semantic security of the encryption scheme, the
SXDH assumption.
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In G4, we do not know anymore y, that we did not use anymore anyway, and thus this game is
perfectly indistinguishable from the previous one.

In G5, D is a random value, which is indistinguishable from the real one under the ` − DDHI
assumption as we only have a polynomial number of zi in input like in the Dodis-Yampolskiy PRF:
the challenge signature does not depend anymore on the challenge user, since σ0 is random because
of the random D, and σ5 is random and independent because of the additional randomness α.

To complete the proof, we should make the same sequence again, starting from G′0 that is G(1),
up to G′5, that is perfectly indistinguishable from G5, hence the computational indistinguishability
between G′0 = G(1) and G0 = G(0). ut


