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Abstract In order to increase the security for authenticated key exchange protocols,
various authentication means can be used together. In this paper, we introduce a security
model for multi-factor authenticated key exchange, which combines a password, a secure
device, and biometric authentications. We thereafter present a scheme, that can be
proven secure, in the random-oracle model.

1 Introduction

1.1 Motivation

Authentication is definitely one of the most important goal of modern cryptography.
In order to avoid mistakes and impersonations during access control we can use various
authentication means, possibly all together, that uniquely identify someone: a secret
information, a biometric or user’s belongings are the most well-known examples of such
authentication factors for human beings. They represent the three classes of human
authentication factors generally admitted, namely:

– something you know (as a secret password),
– something you have (as an unclonable secure device with a secret key),
– something you are (as a biometric).

Brainard et al. [15] have recently proposed a fourth authentication means: someone you

know, also called the social networking. However we focus in this paper on the classical
“three-factor authentication” technique, involving the three above factors. They are
all subject to various types of attacks, notably attacks that cannot be avoided using
cryptographic techniques only, but require external security protections:

– the password can be recovered through social engineering (phishing [29] or mal-
wares), and thus users have to be careful when they enter it;

– the device can be stolen, open or cloned, and thus the device must be protected
using tamper-resistant techniques;

– the biometric can be copied, and thus the sensor has to be able to correctly detect
whether the controlled biometric is a real one, corresponds to the human-being
under control, and to certify it.

Combining the three factors in the same authentication protocol could increase the
security since the adversary would have to break the three protections in order to
win. However, involving the three factors does not necessarily requires the adversary
to break all the protections in order to break the scheme, if the latter is not well
designed: a security model for authentication based on a secret key, on a password
and on a biometric, all together, has to be provided, in order to be able to formally
prove that the design is correct.

In addition to simple authentication (access control), in case of success, the two
parties may be interested in coming up with a common ephemeral secret key to es-
tablish a secure channel [8,17,19]. We are thus interested, not only in authentication,
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but in Authenticated Key Exchange [4,8]. In the following we focus on such AKE pro-
tocols, combining the three above authentication means. This basically means that
if the three authentication verifications simultaneously succeed, then the 2 parties
should come up with a session key that is semantically secure (indistinguishable from
a truly random key to any other party), otherwise nobody learns anything.

Issues raised by PKI-based [8,17,18] and password-based [6,14,16] AKE are now
well understood, and several solutions are known. The PKI/public-key setting is def-
initely the easiest case, since signatures [28] can be used to authenticate the flows, or
alternatively the ability to decrypt, using an asymmetric encryption scheme [26,31].
In the password-based setting, one has to take care of the (off-line) dictionary at-
tacks [9]. We indeed cannot avoid the on-line dictionary attack, which consists in
trying to impersonate one party with a random password, and do it again, until the
correct password is used. We thus want to prove that this is the best attack. Note
that in many cases, such attacks can be prevented or damages can be reduced with
appropriate techniques (delays after a failure, limited number of failures, etc).

However, biometric-based authentication raises quite different issues. First of all,
biometric cannot be assumed a secret information. Indeed, recovering a fingerprint
from the object someone has just touched is an easy task, or getting an image of
the iris simply requires a camera. That is why considering biometric as a truly secret
information and treating it the same way as a private key is not reasonable in practice,
even if this scenario has often been assumed in the literature [30,24,12,13,23].

On the other hand, if the biometrics are public, how do we prevent an adversary
from impersonating an honest user? The only way to use biometrics for authentication
is to guarantee that the biometric template comes from a real living human being and
not from a fake copy. Several technical solutions have been elaborated to guarantee this
(authenticated channels, various biometric features controlled at the same time, sensor
under human supervision, . . . ). The assumption that biometrics really come from the
living human being under control is called the liveness assumption. It also implies that
all computations made from the biometric data are done honestly. This assumption is
not only useful for authentication, it is compulsory to ensure authentication security.
This is a strong, but necessary, assumption. Practical solutions exist to achieve, but
are out of the scope of the this paper.

Secondly, and more importantly from a technical point of view, two measurements
of the same biometric lead to different templates. Since a specific template cannot
be reproduced, a matching mechanism has to be used to compare two templates and
determine if they come from the same biometric or from two different persons. The
matching can for example be based on a simple threshold on the distance between
the candidate template and the reference template (as it is the case for iris [20]).
However all known matching systems are not foolproof: they introduce two possible
errors, “false acceptance” (when the system accepts someone it should not) and “false
rejection” (when the system does not recognize someone it should). Therefore, an AKE
protocol based on biometrics has to deal with these measurement errors and make
this matching possible, but should not increase significantly the “false acceptance”
and “false rejection” rates.

Finally, biometrics can be used to unequivocally identify an individual and are
often linked with other personal information in the database. Since these databases
can be vulnerable to internal or external adversaries, the privacy of the database is a
classical requirement. Even if we already noticed that they cannot be considered as
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private information, biometric templates are critical data, especially when they are
gathered in a database. Privacy is thus a major concern here.

1.2 Related Works

As already mentioned, literature about PKI-based and password-based AKE is rich
of many results [8,17,18,6,14,16].

Dealing with biometric measurement errors is a much more challenging task and
two dedicated tools were formalized by Dodis et al. [24]: secure sketches and fuzzy
extractors. They allow, from an erroneous biometric measurement and public infor-
mation, to always generate the same biometric template and random bitstring respec-
tively. These tools were improved and allowed to design biometric-based AKE [24,12,13].
However, these tools rely on the assumption that biometrics are private information,
which we do not allow in this paper.

Several efforts were taken to design authentication protocols were the matching is
made on the client side [3]. But in client-side protocols the client sensor must record
a reference biometric template for the user(s), which can be heavy if numerous people
use the same sensor.

Despite all the efforts taken for 1-factor authentication or AKE protocols, litera-
ture does not tell much on multi-factor authentication protocols. In [11], an encoding
for fingerprints is proposed, which is thereafter included in the design of a two-factor
authentication protocol. Their fingerprint encoding has the property that two mea-
surements of the same fingerprint leads to the same encoding, despite the errors. They
make good use of it, since no matching is needed anymore and they can use classical
cryptographic tools. They propose to use zero-knowledge proofs of knowledge [27], so
that the database cannot have any information about the biometric template that
it records. They assume that the biometric is private, however their protocol can be
proven secure even if biometric template is public. This protocol has nice features, but
it heavily relies on the fact that thanks to their encoding, they get rid of errors. There
is not such encoding for all biometrics and this protocol is therefore very restrictive.
Furthermore, it achieves authentication only, but does not help to establish a secure
channel.

1.3 Our Solution

We propose a Multi-Factor based AKE (MFAKE) which preserves database privacy.
From three factors (a password, a high entropy secret key and a biometric template)
the protocol generates a common semantically secure secret key, in order to establish
a secure channel. The protocol is designed so that the matching is made on the server
side and is adapted for a matching based on a simple threshold on the distance between
the candidate template, and a reference template. Therefore, it is particularly well-
suited to iris which is efficiently encoded on 1024-bit string, but can also apply on
some other biometric techniques, with appropriate encoding.

Derived from PKI-AKE, PAKE and biometric-based AKE security models, we
first define a new and clear security model for MFAKE protocols, which combines all
the corresponding security properties. We chose to extend the Real-or-Random model,
since the latter is strictly stronger than the Find-then-Guess model in the password-
based setting [1]. The model allows the adversary to make several corruptions, on
the secret key, the password, or the sensor. And despite two corrupt queries, the
new keys should still remain semantically secure: in this model a protocol is provably
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as secure as the strongest remaining factor. Furthermore, our model also deals with
the forward-secrecy, which means that, even when all the authentication means are
corrupted, a session key established before the last corruption remains semantically
secure. However, note that we only consider client-authentication (Test-queries will
be allowed to the server only, in the formal security model below). This can be seen
as a strong limitation, but it is not in practice: if the password and the secret keys
are compromised, an adversary can easily play the role of the server, since there is
no more secret (the biometric is public and the liveness assumption is valid on the
client side only), whatever the protocol is. Authentication of the server to the client
could be satisfied, until the two secret information related to the client (secret key
and password) are compromised, but we do not address it in this model.

Then we also provide a protocol that is secure, according to this model, in the
random-oracle [7]. This protocol records an encrypted version of the biometric tem-
plate on the server side. Therefore privacy of the database (and thus of all the biometric
templates) is preserved, even to the server, and thus even if the server is compromised.
The protocol is proven to have a tight security proof: when the password is the last
factor not to be corrupted, on-line dictionary attacks are the most efficient attacks
that can be mounted; when the biometric is the last one, the adversary probability to
be accepted is nearly equal to the false-acceptance probability; when the secret key is
still private, the security level is quite strong since it requires the adversary to break
the Diffie-Hellman problem [22].

2 Security Model

In this section, we describe the security model for multi-factor authenticated key
exchange (later denoted MFAKE). This model is built upon the usual password-
authenticated key exchange security model [8,6], in the Real-or-Random indistin-
guishability framework [5,1].

2.1 Notation

We first explain the notation and the assumptions about the authentication means.

Participants, Sessions and Partnering. In a MFAKE, participants are either
clients C or a unique, trusted server S. The server and every client can activate several
instances at a time, in order to run several sessions concurrently. The instance i of the
entity U , where U is a client or the server, is denoted as Π i

U . This instance includes
three variables, initialized as null:

– pidi
U : the partner identifier which is the instance with whom Π i

U believes it is
interacting,

– sidi
U : the session identifier, in practice it can be the transcript seen by Π i

U (con-
catenation of the received/sent flows, excepted the last one).

– acci
U : a boolean variable which is fixed at the end of the session and denotes

whether the instance Π i
U goes in an accepted state or not.

The two instances Π i
U and Πj

U ′ are said to be partners if the following conditions are
fulfilled:

1. pidi
U = Πj

U ′ and pid
j
U ′ = Π i

U ;

2. sidi
U = sid

j
U ′ 6= null;



5

3. acci
U = acc

j
U ′ = 1.

Long-Lived Keys. Each client C owns a tuple tC = (DC , skC , pwdC), where DC is
a probability distribution for his biometric, while skC and pwdC are a high-entropy
private key and a low-entropy password respectively. The server holds a list of tuples
tS = 〈tS [C]〉, where tS[C] is a transformed-tuple of tC . More precisely, when the client
C enrolls in the system, he generates a biometric template WC , according to the dis-
tribution DC , as well as two private data skC and pwdC . The tuple tS[C] is then an
(injective) transformation of (WC , skC , pwdC).

Biometric Templates. As explained above, for each client C, DC defines the proba-
bility distribution of his biometric (fingerprint, face, iris, etc). In order to be relevant
for authentication, we have to make some assumptions about the matching process,
and more precisely about the encoding and the Hamming distance, since we will use
this distance in the matching decision:

– on the one hand, the distance between two templates WC and W ′
C of the same

biometric is low with great probability. More concretely, there is a threshold t,
such that for any C,

Pr[WC ← DC ,W
′
C ← DC : dH(WC ,W

′
C) ≤ t] ≥ 1− εfr.

The subscript fr stands for “false rejection”.

– on the other hand, for any pair of distinct clients C 6= C′, the distance between
WC and WC′ is high with great probability. More precisely, there exist a threshold
τ ≥ t, such that for any C 6= C′,

Pr[WC ← DC ,WC′ ← DC′ : dH(WC ,WC′) > τ ] ≥ 1− εfa.

The subscript fa stands for “false acceptance”.

We assume that for all the clients C, the biometric distribution DC is public. Under
the liveness assumption explained below the biometric acceptance will guarantee that
the client is like the intended client.

Private Data. The private key component skC is chosen uniformly in a set of private
keys Keys, where Keys is assumed to be very large (with high entropy), such that
1/#Keys is negligible. It will be stored in a secure device. The acceptance of this
private key, with respect to a public key, will guarantee that the client has the device.

On the opposite, the password component pwdC is chosen in a fixed low-entropy
dictionary Dict ⊂ Z

⋆
p, according to the probability distribution Dpwd. We denote by

Dpwd(q) the sum of the probability of the q most probable passwords according to
Dpwd. The knowledge of the password will guarantee that the client knows it.

Liveness Assumption. Since we assume the biometric to possibly be public (the op-
posite assumption is not reasonable in practice), then the liveness assumption [32,21],
though quite strong, is necessary. It prevents the attacker from making replay attacks
and from altering the computations made by the sensor. The liveness assumption im-
plies that the biometric is fresh, comes from a real living person (and not using a fake
biometric feature), and that the computations are made from this biometric honestly.

To model this assumption, a computation oracle Compute(Π i
C ,W

′, sk, pwd) is used:
according to the state of the client instance Π i

C , from the secrets sk, pwd and a random
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value of W ′, it computes honestly the message which would have been generated by
C with these inputs, following the protocol.

As it models an attempt of the attacker to authenticate using its own biometric, W ′

has to be chosen according to a (wrong) distribution D, such that Pr[W ′ ← D,WC ←
DC : dH(W ′,WC) > τ ] ≥ 1− εfa.

With the liveness assumption for the client C, we consider that all the messages
involving the biometric, claimed to be sent by C, have been previously generated by
the computation oracle.

Corruption. As explained below, the adversary will be allowed to corrupt a client C,
by learning the password pwdC (phishing), by getting the private key skC (side-channel
attack on the device), or by breaking the above liveness assumption (attack on the
sensor).

2.2 Semantic Security

Adversarial Capabilities and Goals. The semantic security of the key is modeled
using the Real-or-Random paradigm [5,1]. At the beginning of the game, the challenger
chooses a random bit b which determines its behavior when answering Test-queries
during the game (it provides either real keys or random keys to the adversary). The
adversary may interact with protocol instances through several oracles, and at the end
of the game, she sends a bit b′. If b = b′, she wins, otherwise, she looses. The available
queries are as follows:

– Send(m,Π i
U ): this query allows the adversary to play with the instances, by in-

tercepting, forwarding, modifying or creating messages. The output of this query
is the answer generated by instance Π i

U to the message m. As stated above, if

pidi
S = Πj

C is the client instance with whom the server believes to talk, if the
liveness assumption still holds for the client C (no corruption) and if the compu-
tation of m involves the biometric, then m has to have been previously generated
through a Compute(Πj

C ,W
′, sk, pwd) query.

– Reveal(Π i
U ): this query models the leakage of information about the session key

agreed on by the parties. For example, if it is misused afterward. Therefore, if no
session key is defined for this instance, or if the instance (or its partner) has been
tested (see below), then the output is ⊥. Otherwise, the oracle outputs the session
key computed by the instance Π i

U .
– CorruptKey(C, a): this query models corruption capabilities of the adversary. She

can indeed steal/break one or several authentication factors of clients.
• If a = 1, the oracle outputs the password pwdC of C;
• if a = 2, the oracle outputs the secret key skC of C;
• if a = 3, the attacker is now allowed to submit any message involving the

biometry, without asking the computation oracle Compute before. It models
the attack against the liveness assumption.

Note that in the following, we will restrict to non-adaptive corruptions: no cor-
ruption can be performed during a session, but before a new session starts.

To formally model the semantic security with respect to client authentication,
the adversary can ask Test-queries, but to the server only: we are interested in the
privacy of the key established with the real server only. We only consider adversaries
whose goal is to impersonate a client to the server. Of course, to achieve this goal,
the adversary may try to impersonate the server to the client in order to learn some
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information about the long-lived keys of the client. But only a client impersonation
will be considered as a successful attack:

– Test(Π i
S): if Π i

S is not fresh (see below), then output ⊥, otherwise the oracle sends
• the session key of instance Π i

S (that is Reveal(Π i
S)), if b = 1 – the real case;

• a random key from the same domain, if b = 0 – the random case.

Freshness. The freshness notion basically defines session keys that are not trivially
known to the adversary. Since we will focus on the freshness of the server only, we say
that the session key of instance Π i

S is fresh if:

– upon acceptance, C (corresponding to the partner of Π i
S) was not fully corrupted.

This means that strictly less then 3 CorruptKey-queries had been asked to the
client C;

– no Reveal-query has been sent to either Π i
S or its partner.

Semantic Security. Let denote by Succ the event that the adversary A correctly
guesses the bit b used by the challenger during the above attack game. The mfake-

advantage advmfakeP (A) and the advantage function of the protocol P are respectively:

advmfakeP (A) = 2 · Pr[Succ]− 1, advmfakeP (t,Q) = max
A

{

advmfakeP (A)
}

,

where the maximum is over all the attackers with time-complexity at most t and
number of queries at most Q.

Forward-Secrecy. Forward-secrecy means that as soon as a session key is securely
generated (semantically secure), it will remain secure even after corruption. In order to
capture this security level, the model must allow the adversary to perform Test-queries,
even when the 3 CorruptKey-queries have been asked, but on sessions completed before
the full corruption of the client. One can also consider that upon acceptance, a session
is fresh if less than 3 CorruptKey-queries have been asked.

Client Authentication. We also usually model an attack against the unilateral au-
thentication of the client to the server by considering sessions where the server accepts,
but without any client-partner. Let denote by Succ the event that a server instance
accepts with no partner instance of the client (with the same partial transcript).

The auth-success SuccauthP (A) and the success function of the protocol P are
respectively:

SuccauthP (A) = Pr[Succ], SuccauthP (t,Q) = max
A

{

SuccauthP (A)
}

,

where the maximum is over all the attackers with time-complexity at most t and
number of queries at most Q.

3 Description of the Protocol

The complete description of our protocol is provided Figure 1. It assumes a common
setup, with parameters (u, v, p, g, q), where g is an element of order q in Z

⋆
p, and

generates the subgroup G. Then, u and v are random elements in G. We also model
H as a random oracle [7].

The server stores all the data corresponding to user C, provided during the enroll-
ment phase:
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– the public key h = gxC , related to the high-entropy secret xC ;
– an El Gamal encryption [25] of the reference biometric template WC = (Wi)i≤N

—where Wi is the i-th bit of WC and N the number of bits— under the public
key h = gxC , that is tuple of pairs (gri , hrigWi)i;

– the password pwdC ∈ D ⊂ Z
⋆
q.

One can note that the server actually does not know the biometrics of the clients since
they are encrypted under keys chosen by the clients.

C : (W ′

C = (W ′
i )i, skC = xC, pwd

C
) S :

`

(gri , hrigWi)i, h = gxC , pwd
C
, C

´

C

b
$
← Zq and B = gb, B∗ = B · vpwdC

C, B
∗

−−−−−−→

S , (gsi)i, A
∗

←−−−−−−−−

For 1 ≤ i ≤ N,

r′i
$
← Zq and compute

gsi = gr′
i · gri , hsigWi = hr′i · hrigWi

a
$
← Zq, A = ga, A∗ = A · upwdC

For 1 ≤ i ≤ N,

compute H(K′
i) = α′

i‖β
′
i‖k

′
i with:

KC =
“

A∗

upwdC

”b

, Ki
C = (gsi)xC · gW ′

i

K′

i =S
‚

‚

‚
C

‚

‚

‚
(gsi)i

‚

‚

‚
A∗

‚

‚

‚
B∗

‚

‚

‚
Ki

C

‚

‚

‚
KC

‚

‚

‚
pwd

C

‚

‚

‚
i

(α′

i)i
−−−−−−→

(βi)i
←−−−−−−

For 1 ≤ i ≤ N, H(Ki) = αi‖βi‖ki with:

KS = ( B∗

vpwdC
)a, Ki

S = hsi · gWi

Ki =S
‚

‚

‚
C

‚

‚

‚
(gsi)i

‚

‚

‚
A∗

‚

‚

‚
B∗

‚

‚

‚
Ki

S

‚

‚

‚
KS

‚

‚

‚
pwd

C

‚

‚

‚
i

If #{i : αi 6= α′

i} ≤ t

Then acc = 1, K = lsbk

“

‖i : αi=α′
i
ki

”

Else acc = 0, K
$
← {0, 1}k, βi

$
← {0, 1}ℓ

If #{i : βi 6= β′

i} ≤ t

Then acc = 1, K′ = lsbk

“

‖i : αi=α′
i
k′

i

”

Else acc = 0, K′ $
← {0, 1}k

Figure 1. Our MFAKE Protocol

For authenticating himself, the client C owns an ephemeral biometric template
W ′

C = (W ′
i )i; the long-term private key xC ; and the password pwdC ∈ D ⊂ Z

⋆
q.

The protocol guarantees that, if the ephemeral template W ′
C is close enough to the

reference template WC (who you are), if the private key xC corresponds to the public
key h (what you have), and if the passwords are the same (what you know), then the
server accepts the client, and they agree on an ephemeral common secret K ′ = K.

We namely want to prove that unless the three authentication factors have been
corrupted, no adversary can impersonate a client to the server. And all the keys
actually agreed on between a client and the server are semantically secure, even after
corruptions (forward-secrecy).

Basically, (B∗, A∗) corresponds to the Password-Authenticated part (similar to
EKE [9,2]); for each i, (h, gsi) is a Diffie-Hellman key agreement which leads to the
key gxC ·si , with xC used for authentication. Note that the si are rerandomized every
time, so that the Diffie-Hellman key exchange is not static. The bit Wi (or W ′

i for
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the client) of the biometric template is used as a mask and we obtain gxC ·si · gWi

(gxC ·si · gW ′
i for the client). If for most of i the masks Wi and W ′

i are equal, then for
most of i the authenticators α′

i and verifiers αi will be equal also, as well as βi and β′
i,

and ki and k′
i.

To define the partnership in our protocol, we have to precise that the sid is equal
to the first two flows ((C, B∗), (S, (gsi)i, A

∗)).

4 Security of the Protocol

Before stating the security result, let us remind the computational assumption on
which the security will rely.

Computational Diffie-Hellman Problem. Let G be a cyclic group of order q.
Let g be a generator of G, let (x, y) be two integers uniformly chosen in Zq. The com-
putational Diffie-Hellman problem states that, given (gx, gy), it is difficult to compute
gxy = CDHg(g

x, gy).
Let A be a CDH-adversary with running time at most T . We denote by Succcdh

g (A)

the probability that A succeeds in computing gxy from (gx, gy) and by Succcdh
g (T ) =

maxA{Succcdh
g (A)} where the maximum is taken over all the adversaries with running-

time at most T .

Biometric. We remind that for any client C and any adversary which uses a true
biometric W ′, we have Pr[dH(W ′,WC) > τ ] ≤ 1−εfa where τ is an integer greater than
t. The protocol does not increase the false-rejection probability but it does increase
the false-acceptance probability, due to the additional check on the αi = α′

i equalities.
The increasing is upper-bounded by

Pr
[

#{i : α′
i 6= αi} ≤ t | dH(W ′,WC) > τ

]

≤

( τ
τ−t

)

2ℓ(τ−t)
.

A protocol session between two honest entities is correct if for all i, Ki = K ′
i is

equivalent to αi = α′
i or βi = β′

i. It fails if there is an index i such that Ki 6= K ′
i and

αi = α′
i or βi = β′

i. As there are at most t indexes i such that Ki 6= K ′
i the probability

that an honest protocol session is not correct is upper bounded by 2t Pr[αi = α′
i : Ki 6=

K ′
i] which is equal to 2t/2ℓ.

Theorem 1. Let us consider the above protocol P over a group of prime order q,
where the dictionary of passwords is equipped with the distribution D ⊂ Z

⋆
q. Let A

be an adversary against the semantic security within a time bound T , with less than

qsession Send-queries and asking less than qh queries to the random oracle. Then we

have

advmfakeP (A) ≤ 2
∑

C

D(qC) + 4q2
h · Succcdh

g (T + 4τe) +
q2
session

q
+

2qh

q

SuccauthP (A) ≤
∑

C

D(qC) + 2q2
h · Succcdh

g (T + 4τe) +
q2
session

2q
+

qh

q

+qsession

(

εfa +

( τ
τ−t

)

2ℓ(τ−t)
+

N t · (2ℓ − 1)t

2ℓN (t− 1)!

)

where τe denotes the computational time for one exponentiation and qC the number of

active sessions the adversary ran against client C.



10

Proof. The proof consists of a sequence of games:

Game 0. This is the real attack game, against the protocol. We are interested in the
two following events:

– S0 (for semantic security) which occurs if the adversary correctly guesses the bit
b chosen at the beginning of the game.

– A0 (for client authentication), which occurs if a server instance accepts with no
partner instance of the client (with the same transcript).

Actually in any game Gn, we study the event An, and the event Sn. Note that

advmfake (A) = 2Pr[S0]− 1, Succauth (A) = Pr[A0].

Therefore

advmfakeP (A) = 2Pr[Sn]− 1 + 2(Pr[S0]− Pr[Sn]) ≤ 2Pr[Sn]− 1 + 2

n−1
∑

i=0

∆i

SuccauthP (A) = Pr[An] + (Pr[A0]− Pr[An]) ≤ Pr[An] +

n−1
∑

i=0

∆i,

if we denote by ∆i the distance between games Gi and Gi+1.

Game 1. In this game, we simulate the random oracles (H, but also an additional
function H ′ that will appear in the game G3) as usual by maintaining lists ΛH and
ΛH′ . We also simulate all the instances, as the real players would do, for the Send-
queries and the Reveal and Test-queries. From this simulation, we see that the game
is indistinguishable from the real attack: ∆0 = 0.

Note that since the probability distributions of the biometrics are public, we draw
a random reference template for each client, to be used/known by the server. And
when needed (simulation of a client), we can draw a random biometric according to
the (public) probability distribution of the client’s biometric.

Game 2. In order to guarantee independence of the sessions, we cancel games in
which some collision on the session transcripts ((C, B), (S, A∗, (gsi)i)) appear. Since
transcripts involve at least one honest party, (A∗, (gsi)i) or B∗ is truly uniformly
distributed. Therefore the collision probability is upper bounded by q2

session/2q, where
qsession is the number of sessions: ∆1 ≤ q2

session/2q.

Game 3. We now replace the generation of the authenticators and session keys with
a private oracle H ′ instead of H, for all the sessions that are fresh (which can be
tested: involving a server so that the intended client is not fully corrupted), and also
for all the sessions involving a client (but no server) for which the password and the
secret key are unknown (none of the 1-CorruptKey and 2-CorruptKey-queries has been
asked): instead of using the public oracle H, we use the private oracles H ′, on Ki and
K ′

i computed as

Ki = S
∥

∥

∥
C
∥

∥

∥
(gsi)i

∥

∥

∥
A∗
∥

∥

∥
B∗
∥

∥

∥
gWi

∥

∥

∥
i K ′

i = S
∥

∥

∥
C
∥

∥

∥
(gsi)i

∥

∥

∥
A∗
∥

∥

∥
B∗
∥

∥

∥
gW ′

i

∥

∥

∥
i.

As already explained, we have chosen a random reference biometric template for each
user. And when needed, we can draw a random biometric according to the (public)
probability distribution of the client’s biometric. Thus we can include gWi or gW ′

i in
the above public computations, in order to make Ki and K ′

i possibly different, even
for compatible biometric templates.
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We do not use none of KC , Ki
C , KS and Ki

S anymore, therefore we can omit their
computations. Besides, we do not use A and B anymore, therefore we can change the

computations of A∗ and B∗ by a∗
$
← Zq, A∗ = ga∗

and b∗
$
← Zq, B∗ = gb∗ . Lastly, since

we do not use neither the password nor the secret key, we can choose them at the last
moment: for the password-corrupt query (1-CorruptKey) or for the secret key-corrupt
query (2-CorruptKey), or at the very end of the game only (when the adversary gives
her answer).

However, when a client is fully corrupted (adversary against the server) or the
adversary plays against a client from which she knows the password and the secret
key, the keys Ki and K ′

i are computed normally and we use the public oracle H again.
Note that we restrict to non-adaptive corruptions, and thus, when a session starts,

we know the corruption status of a client. Then, requests to the Compute-oracle will
also focus on such a session for which we know the corruption status, since the bio-
metric is only involved in the third round. The latter oracle indeed has to know how
to perform the simulation of K ′

i, using either H or H ′.
The games G2 and G3 are indistinguishable unless some specific hash query is

asked (for a session made before the last CorruptKey-query): if the adversary asks
either

S
∥

∥

∥
C
∥

∥

∥
(gsi)i

∥

∥

∥
A∗
∥

∥

∥
B∗
∥

∥

∥
Ki

C

∥

∥

∥
KC

∥

∥

∥
pwdC

∥

∥

∥
i or S

∥

∥

∥
C
∥

∥

∥
(gsi)i

∥

∥

∥
A∗
∥

∥

∥
B∗
∥

∥

∥
Ki

S

∥

∥

∥
KS

∥

∥

∥
pwdC

∥

∥

∥
i,

for some transcript ((C, B∗), (S, A∗, (gsi)i)), and some index i, to the H function,
whereas the H ′ function has been used by the simulator. We denote by AskH3 such
an event. Note that, it can be decided whether this event happened only when the
password and the secret key have both been chosen.

In this game, for all clients, the (αi)i, the (βi)i and the key are computed from
a private random oracle. Therefore, whatever the bit b involved in the Test-query,
the answer is random, and independent for all the sessions, unless some transcript
((C, B∗), (S, A∗, (gsi)i)) appeared twice, but this has already been excluded in game
G2. Therefore we have:

∆2 ≤ Pr[AskH3] and Pr[S3] =
1

2
.

Similarly, the only possibility for the adversary to authenticate against a true server
instance is to guess the αi at random or to use the Compute-oracle, unless some
transcript ((C, B∗), (S, A∗, (gsi)i)) appeared twice.

If she tries to guess the αi at random, since |αi| = ℓ, then her probability to succeed
is upper-bounded by:

1

2Nℓ
·

t
∑

k=0

(

N

k

)

(2ℓ − 1)k ≤
N t · (2ℓ − 1)t

2ℓN (t− 1)!
,

If she uses the Compute-oracle, all the α′
i and βi are generated through a trusted

computation oracle and since the adversary uses her own biometric W ′, which is,
with high probability, quite different from the client biometric WC , her probability to
succeed is exactly the false-acceptance probability computed earlier.

As a consequence,

Pr[A3] ≤ qsession

(

εfa +

(

τ
τ−t

)

2ℓ(τ−t)
+

N t · (2ℓ − 1)t

2ℓN (t− 1)!

)

.
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Game 4. Our goal is now to upper-bound the probability of event AskH3. We denote
by AskH4 the same event in this game and have AskH3 ≤ AskH4 + ∆3. In this game,
we receive a Diffie-Hellman pair (X = gx, Y = gy), and we will try to show that the
probability of event AskH is related to the probability of computing the Diffie-Hellman
value of (X,Y ). We set u = X and v = Y . We furthermore cancel games in which, for
a transcript ((C, B∗), (S, A∗, (gsi)i)), which both

– was generated before a password-corrupt query to the client C was made

– comes from an execution involving the adversary, against either an instance of the
client C or the server S

there are two tuples (A∗, B∗,CDHg(A
∗/upwdk , B∗/vpwdk), ik), with two different pass-

words pwd0 and pwd1 and two, possibly different, indexes i0 and i1, such that

S
∥

∥

∥
C
∥

∥

∥
(gsi)i

∥

∥

∥
A∗
∥

∥

∥
B∗
∥

∥

∥
Kik

S

∥

∥

∥
CDHg(A

∗/upwdk , B/vpwdk)
∥

∥

∥
pwdk

∥

∥

∥
ik

is in ΛH .

Distance. We first easily show that ∆3 ≤ q2
h · Succcdh

g (T + 3τe). To this aim, we re-
mind that the distance we study comes from the fact we have canceled games in which,
for some specific transcript ((C, B∗), (S, A∗, (gsi)i)) —which was generated before a
password-corrupt query to the client C was made and which comes from an execu-
tion involving the adversary, against either an instance of the client C or the server
S—, there are two tuples (A∗, B∗,CDHg(A

∗/upwdk , B∗/vpwdk), ik), with two different
passwords pwd0 and pwd1 and two, possibly different, indexes i0 and i1, such that

S
∥

∥

∥
C
∥

∥

∥
(gsi)i

∥

∥

∥
A∗
∥

∥

∥
B∗
∥

∥

∥
Kik

S

∥

∥

∥
CDHg(A

∗/upwdk , B/vpwdk)
∥

∥

∥
pwdk

∥

∥

∥
ik

is in ΛH .

If such a pair exists, then for k = 0, 1: CDHg(A
∗/upwdk , B∗/vpwdk) is equal to

CDHg(A
∗, B∗) · CDHg(u

−1, B∗)pwdk · CDHg(A
∗, v−1)pwdk

CDHg(u, v)pwd2
k

.

Since we simulated either A∗ or B∗, knowing the discrete logarithms, we can extract
CDHg(X,Y ). Let us show it when B∗ = gb∗ , it works similarly when we know A∗ = ga∗

:
since the two passwords are different and non-zero,

CDHg(X,Y ) =
CDHg(A

∗/upwd0, B∗/vpwd0)1/pwd0(pwd1−pwd0)

CDHg(A∗/upwd1, B∗/vpwd1)1/pwd1(pwd1−pwd0)
· (A∗)−b∗/pwd0pwd1 .

Conclusion. In order to conclude with the computation of Pr[AskH4], we distin-
guish the events when the transcript ((C, B∗), (S, A∗, (gsi)i)) comes from an execution
between:

– two instances of C and S, or an instance of C or S and the adversary but the flows
are all oracle-generated, this event is denoted by AskH-Passive4;

– an instance of C and the adversary, where at least one flow is not oracle-generated,
this event is denoted by AskH-withC4;

– an instance of S and the adversary, where at least one flow is not Compute-oracle-
generated, this event is denoted by AskH-withS4;
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Assume that there is a tuple (A∗, B∗,D = CDHg(A
∗/upwd, B∗/vpwd)) such that

S
∥

∥

∥
C
∥

∥

∥
(gsi)i

∥

∥

∥
A∗
∥

∥

∥
B∗
∥

∥

∥
K ′

C

∥

∥

∥
D
∥

∥

∥
pwd

∥

∥

∥
i or S

∥

∥

∥
C
∥

∥

∥
(gsi)i

∥

∥

∥
A∗
∥

∥

∥
B∗
∥

∥

∥
K ′

S

∥

∥

∥
D
∥

∥

∥
pwd

∥

∥

∥
i

is in ΛH , for any password pwd of the adversary’s choice.

If the corresponding transcript ((C, B∗), (S, A∗, (gsi)i)) comes from an execution
between instances of C and S, it means that both A∗ and B∗ have been simulated
(and the adversary was only passive). In this case, we know the discrete logarithms
a∗ and b∗, and

CDHg(A
∗/upwd, B∗/vpwd) =

ga∗b∗ · (va∗

ub∗)pwd

CDHg(v, u)pwd2 .

Since pwd is non-zero in Zq, it can be inverted modulo q and then,

CDHg(X,Y ) =

(

ga∗b∗ · va∗·pwd · ub∗·pwd

CDHg(A∗/upwd, B∗/vpwd)

)1/pwd2

.

Therefore Pr[AskH-Passive4] ≤ qh × Succcdh
g (T + 4τe).

If the corresponding transcript ((C, B∗), (S, A∗, (gsi)i)) comes from an execution
between an instance of C and the adversary, where at least at one flow is not oracle-
generated, it means that B∗ has been simulated and the other has been generated
by the adversary. We know that either the secret key-corrupt query or the password
corrupt query has not been asked (otherwise the simulation was performed using H
in game G3).

– Assume that the secret key-corrupt query has not been made before this session,
then xc and h are unknown to the adversary. Then it is quite hard to compute
hsi = (gsi)xC (no information at all): qh/q.

– If the secret key-corrupt query has been made, it implies that the password-corrupt
query has not been made. Due to the games which were canceled in this game,
there is at most one password pwd such that there exists an index i, 1 ≤ i ≤ N ,
such that:

S
∥

∥

∥
C
∥

∥

∥
(gsi)i

∥

∥

∥
A∗
∥

∥

∥
B∗
∥

∥

∥
KS

∥

∥

∥
KS

∥

∥

∥
pwd

∥

∥

∥
i

is in ΛH . In other words, for every transcript, there is only one password which
can be tested by the adversary:

∑

C D(qC).

If the corresponding transcript ((C, B∗), (S, A∗, (gsi)i)) comes from an execution
between instances of S and the adversary, where at least at one flow is not Com-

pute-oracle-generated, it means that (A∗, (gsi)i) has been simulated and B∗ has been
generated by the adversary. Since the server accepted a non-Compute-oracle-generated,
it means that the biometric corrupt query has been made for the corresponding client
C. Thereafter, the same analysis, according to the secret key-corrupt status and the
password-corrupt status, as above can be done.

We can thus conclude with

Pr[AskH4] ≤
∑

C

D(qC) +
qh

q
+ qh · Succcdh

g (T + 4τe).
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5 Discussion

5.1 Optimality and Tightness

The authentication probability upper bound presented in Theorem 1 has two leading
terms which are

qS

(

εfa +

(

τ
τ−t

)

2ℓ(τ−t)
+

N t · (2ℓ − 1)t

2ℓN (t− 1)!

)

and
∑

C

D(qC).

If ℓ is large enough, then the last two terms in the parenthesis are negligible, that
is why we focus on the two terms which cannot be made negligible even with larger
parameters: qS ·εfa and

∑

C D(qC). We claim that our scheme is optimal and the security
result is tight: these two terms could not be avoided, with any better protocol.

Let us consider the following adversary: A asks for both a password and a secret
key corrupt queries and then tries to authenticate using her own biometric. Every
time she tries to authenticate, her success probability is equal to the false acceptance
probability. Thus, her global success probability is approximately equal to qS ·εfa. This
attack is generic, independent of any specific protocol, and therefore this shows that
the first upper bound cannot be avoided by any cryptographic means.

Secondly, let us consider the adversary which asks for all the secret key-corrupt
and (liveness assumption) biometric-corrupt queries, against all the clients: the system
is now protected by the passwords only. Thereafter, for each client C, she makes qC
impersonation attempts with the server, using the qC most probable passwords. For
every client C, the success probability is upper-bounded by D(qC), therefore the global
success probability is approximately equal to

∑

C D(qC) (it shows that the best attack
consists in trying the most probable passwords against as many clients as possible).
Once again, the adversary is generic and independent of any protocol. Therefore, this
bound cannot be avoided either.

The other terms being negligible, our global upper-bound against authentication is
tight, and our protocol optimal. The same way, one can show optimality and tightness
for the semantic security.

5.2 Practical Parameters

Let us see what it gives with practical values. An iris scan is usually encoded over
N = 1024 bits and t = 300 is considered as a good threshold for the Hamming distance
between two measurements of the same biometrics. With such parameters, the false
acceptance rate is estimated to 2−14. For a similar false rejection rate, we can assume
τ = 400 as a reasonable threshold. In this case, if ℓ ≥ 4 then

(

τ
τ−t

)

2ℓ(τ−t)
+

N t · (2ℓ − 1)t

2ℓN (t− 1)!
≤

(400
100

)

2400
+

23000

22896(299)!
≤

2321

2400
+

2104

22033
≤ 2−78.

Note that ℓ is the length of the authentication tags. The shorter they are, the more
efficient the protocol is, from a communication point of view. Can we reduce this
value ℓ? Consider an adversary that has corrupted both the password and the secret
key. With very high probability (greater than εfa) the Hamming distance between a
measurement of the adversary biometric and a client reference biometric is approx-
imately 512 and so there are 512 indices i such that αi = α′

i. If ℓ = 1 there are
approximately 512/2 other αi and α′

i which are equal, that is, there are 768 indices
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i for which αi = α′
i and the adversary is able to impersonate the client. Therefore, if

ℓ = 1, with probability greater than the false acceptance probability an adversary can
authenticate.

This means that ℓ must be greater than 2, and the previous bound shows that
ℓ = 4 is a good choice. However if one wants to guarantee the correctness of an honest
execution (for all the indices i, αi = α′

i and βi = β′
i if and only if the biometric bits are

the same), then a good solution is to choose a greater ℓ. If ℓ = 24, an honest execution
succeeds with probability 2−14 ≈ εfa.

Another solution to guarantee the correctness of an honest session is to add a
distillation step [10] after the protocol. Distillation allows two entities, with two secret
keys with small Hamming distance, to agree on a common secret key, at the price of
revealing some of the bits of the original secret keys. With a distillation step, one can
choose ℓ = 4. Even if the resulting secret is shorter than the original ones, this is not
a problem in our case, since the original ones are quite large. The distillation step
also allows to prevent some denial-of-service attacks where the adversary flips some
of the α′

i (this is possible only if the liveness assumption is broken) or βi. If for this i,
Ki = K ′

i then with high probability the two entities will generate two different secret
keys, whereas they both accept (a few modifications might not flip the decision), and
then think that they share the same secret key. With a classical key confirmation, this
attack can be detected, and the affected sessions identified. However the advantage of
the distillation is that it allows to correct the errors introduced by the adversary or
due to hazard, and then to avoid replaying the protocol once more.

5.3 Conclusion

In this paper, we defined a quite strong security model, since it allows a lot of infor-
mation leakage for the adversary. It guarantees that the adversary has to break all the
protections to impersonate a client. Namely, as long as the secret key is not recovered
from the secure device, one can show that the success probability of the adversary
against our scheme is negligible. As the unclonable device is probably the strongest
and the most realistic protection, we can say that our protocol is quite secure.
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