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Abstract: Authenticated key exchange protocols allow two participants A and
B, communicating over a public network and each holding an authentication
means, to exchange a shared secret value. Methods designed to deal with this
cryptographic problem ensure A (resp. B) that no other participants aside from
B (resp. A) can learn any information about the agreed value, and often also
ensure A and B that their respective partner has actually computed this value.
A natural extension to this cryptographic method is to consider a pool of par-
ticipants exchanging a shared secret value and to provide a formal treatment
for it. Starting from the famous 2-party Diffie-Hellman (DH) key exchange pro-
tocol, and from its authenticated variants, security experts have extended it to
the multi-party setting for over a decade and completed a formal analysis in the
framework of modern cryptography in the past few years. The present paper
synthesizes this body of work on the provably-secure authenticated group DH
key exchange.

The present paper revisits and combines the full versions of the following four papers:

– E. Bresson, O. Chevassut, D. Pointcheval, and J.-J. Quisquater.
Provably authenticated group Diffie-Hellman key exchange.
In P. Samarati, editor, Proc. of ACM CCS ’01, pages 255–264. ACM Press, November 2001.

– E. Bresson, O. Chevassut, and D. Pointcheval.
Provably authenticated group Diffie-Hellman key exchange – the dynamic case.
In C. Boyd, editor, Proc. of Asiacrypt ’01, volume 2248 of LNCS, pages 290–309. Springer-Verlag, De-
cember 2001.

– E. Bresson, O. Chevassut, and D. Pointcheval.
Dynamic group Diffie-Hellman key exchange under standard assumptions.
In L. Knudsen, editor, Proc. of Eurocrypt ’02, volume 2332 of LNCS, pages 321–336. Springer-Verlag,
May 2002.

– E. Bresson, O. Chevassut, and D. Pointcheval.
The Group Diffie-Hellman Problems.
In H. Heys and K. Nyberg, editors, Proc. of Selected Areas in Cryptography ’02, volume 2595 of LNCS,
pages 325–338. Springer-Verlag, August 2002.

1 Introduction

1.1 Motivation

The idea of modern cryptography is to identify cryptographic problems that
need to be solved and to provide a rigorous treatment for them. An essential
problem in distributed computing (e.g, scientific and conferencing applications,
Grid applications [15, 41]) is the ability to establish a security context within
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which messages sent over the wire are encrypted and authenticated. A cryp-
tographic means to do that is to have the distributed system’s components
exchange a secret value and to use this value to compute the keying material
for a symmetric cipher and a Message Authentication Code [8, 55]. The keying
material is set as the output of a key-derivation function that maps the secret
value to the (bit-string) keys of the symmetric algorithms. All being considered,
the critical step in the establishment of this security context clearly remains the
mechanism for exchanging the secret value. This step is often carried via a DH
key exchange [38] or, in the group scenario through its possible generalizations
(see, e.g., [67, 46, 66, 30]).

The Diffie-Hellman (DH) key exchange, as well as some generalizations, were
initially designed to protect against a passive adversary that only eavesdrops on
messages. However, when it comes to implement these schemes in a distributed
system’s security architecture a much stronger adversary must be taken into
account. Hackers have a great deal of control over our Internet communications.
They can relay, schedule, inject, and alter our messages, or even try to imperson-
ate us via man-in-the-middle attacks. One way to prevent these active attacks is
to add authentication services to the group key exchange protocol. In spite of the
apparent simplicity of adding authentication services to a group key exchange,
it is a task fraught with many complications. Many authenticated key exchange
protocols were later found to be flawed and in some cases the flaws even took
years before being discovered (see for instance [16, 39, 55, 59] and the discussion
in section 1.3 below). One way to avoid many of the flaws is to provide a formal
treatment in the framework of modern cryptography.

Active attacks are even easier to mount and more destructive as middleware
technologies enable the exchange of data among a large number of components
which form a multicast group [3, 17, 14, 70]. These technologies provide asyn-
chronous and reliable communication channels to coordinate the distributed ap-
plication’s components spread on the Internet. Each component shares respon-
sibility for parts of a task and coordinates its efforts with the other components.
In this environment prone to faults (e.g. faults can result from host failures,
network failures, network congestion, CPU load, or malice) creating a security
context —within which messages are protected— is challenging as application’s
components join and leave the multicast group [1, 2, 62]. Accommodating this
dynamic membership means updating the secret value after each change in the
membership of the multicast group. This step is often carried via a dynamic
group DH key exchange [26, 27, 68].

1.2 Contribution

The first contribution of the paper is to provide cryptographic experts with a
provable-security framework to assess the security of authenticated group key
exchange protocols. The framework captures the adversary’s capabilities and
defines the security requirements to satisfy. It is the result of three successive
papers. In the first one [29], we have captured the characteristics of an authen-
ticated key exchange which allows a pool of participants, communicating over
a public network and each holding a pair of public/private keys, to agree on a
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session key — these participants do not share any secrets before hand. In real
life, however, the membership of the group is not built once and for all but is
built incrementally as the network topology evolves [1, 2, 62]. Participants can
indeed join/leave the pool at any time or the pool itself can be split into disjoint
components due to network faults or malice. Thus, in the second paper [26], we
have equipped our framework with this notion of dynamicity in the membership.
This is done by enhancing the framework with additional, atomic1 operations
which enable the group to grow or decrease: an authenticated dynamic group
key exchange allows an existing pool of participants to update the value of their
session key after each change in the membership so that this value is only known
to the members of the newly formed pool. We note that re-running the proto-
col from scratch is always possible, and hence the goal of such operations is to
provide an efficient means to update the existing session key into a new one.
Finally, in [27], we have captured the ability to initiate parallel executions of a
dynamic group key exchange; concurrency is an important feature to consider
when a key exchange is meant for practical use. An authenticated group key
exchange provides a set of participants with an interactive protocol to exchange
a session key and, therefore form a secure group. In real life, however, the par-
ticipants may be part of several pools at the same time and, therefore, may need
to run multiple key exchanges in parallel. Later on these participants may close
one session while keeping the others opened. As this simplistic scenario shows
concurrency introduces technical difficulties in the security analysis since an ad-
versary could inject data extracted from one execution into another one to defeat
the security of this later key exchange. Concurrent executions are more realistic
than sequential ones and must be included in a provable-security framework for
authenticated dynamic group key exchange.

In addition to the formal security model, the second contribution of this work
is to provide engineers with a generic authenticated group DH key-exchange con-
struction which once instantiated leads to the schemes of Bresson et al. [29, 26,
27]. The construction is described in terms of modules that perform the key-
exchange and the authentication operations. The modules can be instantiated
via processes [29, 26] or hardware devices [27] that use tamper detection to not
reveal any information. Embedding the critical cryptographic material in some
hardware cryptographic devices is at least as good as erasing secrets [57, 58,
71]; cryptographers assume and usually do not explicitly state that secrets are
definitively and reliably erased (only the most recent secrets are kept) [37, 48]. In
our security model as described in [27], we have captured the adversary’s ability
to gain access to the internal memory of participants and incorporated in the
framework the action of erasing a secret. The generic authenticated group DH
key-exchange construction achieves in a provably-secure and practical way the
security requirements specified in the framework. Provable-security is reached

1 We do not deal with the cases where participants decide to halt during an execution of the protocol
itself. Our Join and Remove operations are simply formal tools to describe evolutions of a group,
step by step —by one or several members at once— and assuming each of these steps is done
using the appropriate algorithm. Premature halting during execution of such an algorithm is not
considered here (more precisely, it is not considered further than what the adversary can basically
do: block messages and turn into infinite time-out).
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by constructing a reduction showing that, in our formal framework, the scheme
achieves the afore mentioned security requirements under reasonable intractabil-
ity assumptions.

1.3 Related Work

General issues A comprehensive treatment of “Protocols for Authentication
and Key Establishment” can be found in Boyd and Mathuria’s book [23]. In
previous papers [21, 22], Boyd gave an overview of key agreement issues; his
work provides a high-level classification of 2-party and multi-party key agreement
protocols, and a discussion of their security, depending on which class of function
is used to combine the nonces of each party. More bibliography can be found in
the Handbook of Applied Cryptography [55]. It is important to distinguish two
kinds of scenario: in the first one, key distribution (also known as key transport),
the key is chosen by a single party and provided to the participants. In the
case of key agreement (also referred as key exchange), all users participate in
determining the key value. In the present paper, we concentrate exclusively on
(group) key agreement.

Security models for group key agreement In the framework of modern
cryptography one finds a formal model and security definitions for the task of
exchanging a secret value —the so-called session key—. Bellare and Rogaway
proposed a formal model wherein the instances of a player are modeled via or-
acles, the capabilities of the adversary are modeled via queries to these oracles,
and the secrecy of the session key is modeled via the notion of semantic secu-
rity [42]. This model was originally used to analyze the security of methods for
key distribution [11]. In [13], they consider a three-party scenario, in the on-line
TTP (trusted third party) setting, in which an incoercible server is available to
the parties; it has been later extended to the public-key setting by Blake-Wilson
et al. [19, 18] and a specific adaptation was done few years ago by Bellare et al. in
the password-based key exchange setting [10]. Another kind of security models
is based on the multi-party simulatability technique, and was initiated by Bel-
lare, Canetti and Krawczyk [9]; further refinements were proposed by Canetti
and Krawczyk: in [34], they make use of the indistinguishability approach as
proposed in [13] to propose the notion of secure channels; then in [35] they de-
veloped the property of universal composability (UC) of such channels. In 1999,
Shoup [64] provided a technical modification of the original work by Bellare,
Canetti and Krawczyk, in particular he took into account several corruption
models in order to encompass the forward-secrecy property (which states that
knowing long-term keys does not help in compromising previously established
session keys). Our treatment of the authenticated group key-exchange is derived
from the first kind of approach [11, 10]. We provided the first formal security
models and proven secure protocols in our series of papers [29, 26, 27].

Previous work on Group Diffie-Hellman There have been several proto-
cols aiming to generalize the DH key exchange [38] to the multi-party setting.
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These were tackled by Ingemarsson et al. [46], Diffie et al. [66], Burmester and
Desmedt [30], and Steiner et al. [67]. The use of “multiple-decker” exponents
in the protocol of Diffie et al. makes it difficult to reduce the security of the
protocol to the standard DH problem and, therefore, its security is heuristic. In
1996, Steiner et al. proposed a natural extension to DH, named the group DH
key exchange [67] which in 2001 we enhanced with authentication services and
proved it secure [29]. This authentication enhancement and the formal model
for its analysis are at the core of the present work. We note that the works by
Ateniese et al. [4, 5] also aim at adding authentication services to the schemes
by Steiner et al., however the security proof was only informal.

Previous to the work by Steiner et al., Diffie et al. [39] presented the STS
(Station-to-Station) protocol, but this protocol does not cover concurrent ex-
ecutions. Also, the well-known protocol by Burmester and Desmedt [30] is a
very elegant protocol, which interestingly achieves a constant-round complexity.
However, as shown by Just and Vaudenay [49], it does not achieve key authen-
tication.

Dynamicity for group key agreement The notion of dynamicity in the
group membership was pioneered by Steer et al. [66]. Adding members to the
group is easy, but removing them is not. Steiner et al. [68] modified their original
method for group DH key exchange [67, 4] to easily add and remove members
from the group. In addition, Ateniese et al. [4, 5] identified additional, useful
security notions for a group key exchange (such as Perfect Forward-Secrecy,
Contributory, Key Confirmation) and informally show how to enhance [68] with
authentication. The present paper describes our contribution, based on their
works, in order to achieve provable security in dynamic groups [26, 27].

Other researchers have proposed methods for dynamic group DH key ex-
change. Perrig extends the work of one-way function trees (OFT, originally in-
troduced by McGrew and Sherman [54]) to design a tree-based key agreement
scheme for peer groups [60]. However, this work lacked the facilities for handling
group partitions and merges. Further refinements by Kim et al. [51, 52] addressed
these issues but do not specify a rigorous security model for a formal proof.

Protocols’ complexity The schemes we analyze in this paper are directly
derived from those by Steiner et al. and, thus, have linear complexity. For this
reason, it is not reasonable to use them at a large or even medium scale. However,
we emphasize that the main contribution of this work remains the formal model
for provable security, and we insist that many recently proposed schemes for
group key exchange have been analyzed using our model (see, e.g., [50, 24]).

The round complexity of a key agreement protocol becomes critical at a large
scale. The paper by Becker and Wille [7] also gave 1 single round as an optimal
lower complexity bound for multi-party key agreement. Joux used pairings to
design a one-pass 3-party Diffie-Hellman key exchange [47], but generalizing his
construction with multi-linear forms seems to be hard [40]. In 2003, Boyd and
Nieto came up with a round-optimal protocol [24], however, their solution does
not provide forward-secrecy.
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Secret-sharing techniques also give advantage to design methods for group
key exchange. Li et al. [53] proposed the first key-exchange method based on
secret-sharing; by using polynomial-secret-sharing tools Tzeng [69] proposed a
fault-tolerant protocol with constant-round complexity but in which the message-
complexity per user is proportional to the number of users. Later Cachin and
Strobl [31] provide a formal analysis of an (optimal) fault-tolerant scheme, in
the framework of asynchronous reactive systems (such as [32, 61]). On the other
hand, Bresson and Catalano [25] designed a scheme with both message-efficiency
and constant round complexity, but without fault-tolerance.

Using cryptographic hardware protections We note that the use of cryp-
tographic hardware devices for session key distribution was already explore by
Rubin and Shoup [63]. Even though a cryptographic method is proved secure,
security can sometimes be compromised when the method is incorrectly imple-
mented. Cryptographers assume (and usually do not explicitly state) that secrets
are definitively and reliably erased (only the most recent secrets are kept) [37,
48]. In our 2002 paper [27] we incorporate the cryptographic action of erasing a
secret. This allows us to consider forward-secrecy issues: in the strong-corruption
model as defined by Bellare et al. [10], in which the corruption of a player re-
veals his internal state (including “ephemeral” data), one can prevent attacking
the session key before or after the lifetime of these data. When dealing with
the weak-corruption model, in which corruption reveals only the long-term key,
we achieve Perfect Forward Secrecy: knowledge of a long-live key is useless for
obtaining any past session key. Our model assumes these critical data are em-
bedded in some hardware cryptographic devices which are at least as good as
erasing a secret [57, 58, 71]. In other words, we offer a technological choice: either
the previously used data are tamper-protected or they are securely erasable.

1.4 Organization of the Paper

The remainder of the paper is organized as follows. In Section 2, we introduce
the group DH assumptions and show how these assumptions relate to the DH
assumptions. In Section 3, we present our provable-security framework and ab-
stract out the functionalities of the authenticated group DH key exchange. In
Section 4, we describe the AKE1 method for authenticated group DH key ex-
change. In Section 5 we show that it is provably secure in the standard model
under the classical decisional Diffie-Hellman assumption. We finally conclude
the paper.

2 Computational Problems

We first present the notion of group DH distribution and use it to define the
computational and decisional group DH assumptions. Our adversary is time-
constrained which means that all the success probabilities and advantages —
Succ(t, . . .)) and Adv(t, . . .) respectively— represent the maximal probabilities
over all the adversaries running in time t.
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2.1 The Group Diffie-Hellman Distribution

Given G = 〈g〉 a cyclic group of prime order q, n an integer, In the set {1, . . . , n},
P(In) the set of all subsets of In, and Γ a subset of P(In) such that In /∈ Γ , the
Group Diffie-Hellman distribution relative to Γ is defined as follows (with the
convention that

∏
∅ xi = 1):

GDHΓ = {ViewΓ (x1, . . . , xn) |x1, . . . , xn ∈R Zq} ,

where ViewΓ (x1, . . . , xn) =
{(

J, g
Q

j∈J xj
)

J ∈ Γ
}

.

When there is no risk of confusion, we will simply describe the tuple View as
a collection of group elements (rather than a collection of pairs). Since this
distribution is a function of the parameters n and Γ it could be instantiated
with any of the following special forms:

– The Diffie-Hellman distribution: n = 2 and Γ = {{1}, {2}}.
– The basic trigon (see Figure 1): Γ has the following triangular structure Tn

(which is involved in the security of the group DH method [29]):

Tn =
⋃

1≤j≤n

⋃
1≤k≤j

{
{i | 1 ≤ i ≤ j, i 6= k}

}

j = 1 {} S1

j = 2 {1} {2} S2

j = 3 {1, 2} {1, 3} {2, 3} S3

j = 4 (= n− 1) {1, 2, 3} {1, 2, 4} {1, 3, 4} {2, 3, 4} S4

j = 5 (= n) {1, 2, 3, 4} {1, 2, 3, 5} {1, 2, 4, 5} {1, 3, 4, 5} {2, 3, 4, 5} S5| {z }
basic trigon

Fig. 1. GDH-Distribution for the Basic Trigon (Example when n = 5 and Γ = T5)

– The extended trigon (see Figure 2): Γ has the following structure En (which
is involved in the security of the dynamic group DH methods [26, 27]): it is
similar to the above Tn structure but with an extended n− 1-th line.

En =
⋃

1≤j≤n−2

⋃
1≤k≤j

{
{i | 1 ≤ i ≤ j, i 6= k}

}
∪

⋃
1≤k<l≤n

{
{i | 1 ≤ i ≤ n, i 6= k, l}

}
∪

⋃
1≤k≤n

{
{i | 1 ≤ i ≤ n, i 6= k}

}

– The Generalized group Diffie-Hellman distribution: Γ = P(In)\{In} is all
the proper subsets of {1, . . . , n} [20, 56, 67].
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{} S1

{1} {2} S2

{1,2} {1,3} {2,3} S3

{1,2,3} {1,2,4} {1,3,4} {2,3,4} {1,2,5} {1,3,5} {1,4,5} {2,3,5} {2,4,5} {3,4,5} S4

{1,2,3,4} {1,2,3,5} {1,2,4,5} {1,3,4,5} {2,3,4,5} S5| {z } | {z }
basic trigon extension

Fig. 2. GDH-Distribution for the Extended Trigon (Example when n = 5 and Γ = E5)

2.2 The Group Diffie-Hellman Problem

Given an integer n and a structure Γ , a (t, ε)-Group Computational Diffie-
Hellman attacker (G-CDHΓ -attacker for short) for G is a probabilistic Turing
machine ∆ running in time t that given a tuple from GDHΓ , outputs gx1···xn with
probability greater than ε:

Succ
gcdhΓ
G (∆)

def
= Pr

xi

[
∆(ViewΓ (x1, . . . , xn)) = gx1···xn

]
≥ ε.

The G-CDHΓ problem is (t, ε)-intractable if there is no (t, ε)-G-CDHΓ -
attacker for G. The G-CDHΓ -assumption states this is the case for all polyno-
mial t and non-negligible ε, for a family Γ = {Γn}n. If n = 2, we get the well-
known Computational Diffie-Hellman problem, for which we use the straight-
forward notation Succcdh

G (·).

2.3 The Group Decisional Diffie-Hellman Problem

The decisional problem consists, informally, to distinguish between gx1···xn and a
random power gr. To that goal, we either add to the tuple View(xi) the “right”
value or a random one, obtaining two kinds of tuples View$ and View?. Thus it
leads to two additional distributions from the GDH-distribution:

GDH?
Γ = {View?

Γ (x1, . . . , xn) |x1, . . . , xn ∈R Zq} ,

GDH$
Γ =

{
View$

Γ (x1, . . . , xn, r) |x1, . . . , xn, r ∈R Zq

}
,

where

View?
Γ (x1, . . . , xn) = ViewΓ (x1, . . . , xn) ∪ {(In, g

x1···xn)}
View$

Γ (x1, . . . , xn, r) = ViewΓ (x1, . . . , xn) ∪ {(In, g
r)}

Given an integer n and a structure Γ , a (t, ε)-Group Decisional Diffie-Hellman
distinguisher (G-DDHΓ -distinguisher for short) for G is a probabilistic Turing
machine ∆ running in time t that given an element X from either GDH$

Γ or
GDH?

Γ outputs 0 or 1 such that:

Adv
gddhΓ
G (∆)

def
=∣∣∣∣Pr

xi

[
∆
(
View?

Γ (x1, . . . , xn)
)

= 1
]
− Pr

xi,r

[
∆
(
View$

Γ (x1, . . . , xn, r)
)

= 1
]∣∣∣∣ ≥ ε
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The G-DDHΓ -problem is (t, ε)-intractable if there is no (t, ε)-G-DDHΓ -
distinguisher for G. The G-DDH-assumption states this is the case for all poly-
nomial t and non-negligible ε, for a family Γ = {Γn}n. If n = 2, we get the
well-known Decisional Diffie-Hellman problem, for which we use the straight-
forward notation Advddh

G (·).

2.4 The Random Self-Reducibility Property

The Diffie-Hellman problems have the nice property of random self-reducibility.
Certainly the most common is the additive random self-reducibility, which works
as follows. Given, for example, a G-CDHΓ -instance with Γ = {{1}, {2}, {3}, {1, 2},
{2, 3}, {1, 3}}, View = ViewΓ (x1, x2, x3) = (gx1 , gx2 , gx3 , gx1x2 , gx2x3 , gx1x3) for
any x1, x2, x3 it is possible to generate a random instance

View′ = ViewΓ (x1 + r1, x2 + r2, x3 + r3)

= (g(x1+r1), g(x2+r2), g(x3+r3),

g(x1+r1)(x2+r2), g(x2+r2)(x3+r3), g(x1+r1)(x3+r3))

where r1, r2 and r3 are random numbers in Zq, whose solution may help us to
solve View. Indeed, given the solution z = g(x1+r1)·(x2+r2)·(x3+r3) to the instance
View′ it is possible to recover the solution gx1x2x3 to the random instance View:

gx1x2x3 = z · (gx1x2)−r3 · (gx1x3)−r2 · (gx2x3)−r1 · (gx1)−r2r3

· (gx2)−r1r3 · (gx3)−r1r2 · g−r1r2r3 .

However the cost of such a computation may be high; furthermore it is easily
seen that such a reduction works for the Generalized DH-distribution Γ only
and thus its cost increases exponentially with the size of View.

On the other hand, the multiplicative random self-reducibility works for any
form of the GDH-problems in a prime order cyclic group. Given, for example, a
G-CDHΓ -instance with Γ = {{1}, {2}, {1, 2}, {1, 3}}, View = ViewΓ (x1, x2, x3) =
(gx1 , gx2 , gx1x2 , gx1x3) for any x1, x2, x3 it is easy to generate a random instance

View′ = ViewΓ (x1r1, x2r2, x3r3) = (gx1r1 , gx2r2 , gx1r1·x2r2 , gx1r1·x3r3)

where r1, r2 and r3 are random numbers in Z∗
q. And given the solution K ′ to the

instance View′, we directly get the solution K = K ′δ, where δ = (r1r2r3)
−1 mod

q, to the instance View. Such a reduction is efficient and only requires a linear
number of modular exponentiations, but is restricted to prime order groups. The
latter restriction is not so strong since these groups are anyway the usual ones,
where the Diffie-Hellman problems are the most difficult to solve.

2.5 Relations among the Diffie-Hellman Problems

In our paper [28], we state several relations between all these problems.
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Theorem 1 (– Intractability of GDDH). The intractability of the Group
Decisional Diffie-Hellman problem is implied by the intractability of the Deci-
sional Diffie-Hellman problem. If Γ is either the basic trigon or the extended
trigon, then we have:

Adv
gddhΓ
G (t) ≤ (2n− 3)Advddh

G (t′) with t′ ≤ t + n3tG,

where tG is the time needed for an exponentiation in G.

Theorem 2 (– Intractability of GCDH). The intractability of the Group
Computational Diffie-Hellman problem is implied by the intractability of the
Computational Diffie-Hellman problem and the intractability of the Decisional
Diffie-Hellman problem. If Γ is either the basic trigon or the extended trigon,
then we have:

Succ
gcdhΓ
G (t) ≤ Succcdh

G (t′) + (n− 2)Advddh
G (t′) where t′ ≤ t + n3tG.

The proofs of these two theorems are provided in appendix and were orig-
inally published in [28]. More precisely, in the later paper, we have identified
formal criteria allowing us to define “good structures” Γ for which the hybrid
reduction above can actually be performed. The basic and extended trigons do
satisfy these criteria, and are thus considered as appropriate for the reduction
theorem.

3 Model

In this section, we describe our formal model, which is, again, derived from that
by Bellare and Rogaway [11, 13]. The formalism models instances of players via
oracles available to the adversary through queries.

3.1 Players

We fix a nonempty set U of N players that can participate in a group key
exchange protocol P . A player Ui ∈ U can have many instances; we denote
instance t of player Ui as Π t

i with t ∈ N. A given instance can be involved in at
most one execution of P . And for each concurrent execution of P , we consider the
nonempty set I, called the multicast group, made of players instances involved in
that execution. We emphasize that each set I is related to one unique execution
of the protocol2. Finally in a multicast group I of size n, we denote by I1, . . . , In,
the indices of players involved in this group; this allows to translate numbering
of players into numbering of instances involved in a given group.

As in previous works, there is in I a group controller GC(I) who initiates
the addition of players to the multicast group or the removal of players from the
multicast group. The group controller is trusted to do only this; in our protocols,

2 That is, if players U1 and U2 are running two concurrent executions of P , the first one involving
instance Πt

1 of U1 and instance Πt′
2 of U2, the second one involving instance Πs

1 of U1 and instance
Πs′

2 of U2, then there will be two multicast groups to deal with: I = {Πt
1, Π

t′
2 } and I′ = {Πs

1 , Πs′
2 }.
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the group controller is (essentially) the player instance with the highest index
in U (see details in section 4).

To properly deal with security issues, and for the sake of modularity, we will
distinguish two kinds of module each instance is given access to. First, there is
a secure co-processor (the Key Exchange Module — KEM) which performs (in
a tamper-resistant fashion) the cryptographic computations. Second, there is an
authentication device (the Authentication Module — AM) such as a smart card,
which due to its lower computational power, is only in charge of authentication
mechanism.

3.2 Abstract Interface

We define the basic structure of a dynamic group key exchange protocol. A
dynamic group key exchange scheme GKE consists of four algorithms:

– The key generation algorithm GKE.KGen(1`) is a probabilistic algorithm
which on input of a security parameter 1`, provides each player in U with a
long-lived key LLU . The structure of LLU depends on the particular authen-
tication scheme.

The three other algorithms are interactive multi-party protocols between players
in U , which provide each principal in the new multicast group with a new session
key sk.

– The setup algorithm GKE.Setup(J ), on input of a set of instances of players
J , creates a new multicast group I, and sets it to J .

– The remove algorithm GKE.Remove(I,J ) creates a new multicast group
and sets it to I\J .

– The join algorithm GKE.Join(I,J ) creates a new multicast group and sets
it to I ∪ J .

An execution of P consists of running the GKE.KGen algorithm once, and then
many concurrent executions of the three other algorithms. We will also use the
term operation to mean one of the algorithms: GKE.Setup, GKE.Remove or
GKE.Join.

Whenever a membership operation is performed on a multicast group I, we
are going to create a new instance for each player in the resulting multicast
group, say J ; in other words, the multicast group I continues to live (with its
own session key), while the new multicast group J is being constructed. Players
instances in I continue to execute their own processes (e.g., answering the queries
asked by the adversary), and newly created instances run independent processes
in J . We emphasize that the multicast group creation is a monotone process:
once created, a group continues to live until the end of the game. In particular,
if a player joins a group I (therefore creating a group J ) and then leaves the
group J , the resulting multicast group is not I, but a newly created one I ′
(even if its membership is identical to I from the player point of view, they are
made of different instances).
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3.3 Security Model

The adversary A is given access to the oracles and interacts with them via the
queries described below. We explain the capabilities that each kind of query
captures:

These oracles provide the adversary with the ability to initialize a multicast
group via Setup-queries, add players to the multicast group via Join-queries, and
remove players from the multicast group via Remove-queries. By making these
queries available to the adversary at any time we provide it with the ability
to generate concurrent changes in the membership. We also take into account
hardware devices and model their interactions with the adversary via specific
queries.

Queries to Players Instances We define the oracle queries as the interactions
between A and the oracles only. These queries model the attacks an adversary
could mount through the network.

– Send(Π t
U , m): This query models A sending messages to instance oracles. A

gets back from its query the response which Π t
U would have generated in

processing message m according to P .
– Setup(J ), Remove(I,J ), or Join(I,J ): These queries model the adversary
A initiating one of the operations GKE.Setup, GKE.Remove or GKE.Join.
Adversary A gets back the flow initiating the execution of the corresponding
operation.
Note that combined with Send-queries, these 3 operation queries are enough
to model both passive and active attacks. While they only send back the
flow initiating the actual operation, the answer can be forwarded to the
appropriate player, which answer is also forwarded, etc. This way, passive
attacks can be modeled. Of course, the adversary can alter the message
before forwarding it, which models active attacks.

– Reveal(Π t
U): This query models the attacks resulting in the loss of the ses-

sion key computed by oracle Π t
U ; it is only available to A if oracle Π t

U has
computed its session key skt

U (Π t
U has set its flag accept to true). A gets back

skt
U which is otherwise hidden.

Corruption Capabilities The adversary A can bypass the tamper detection
mechanisms [72], through physical or side-channel attacks. Such capabilities are
modeled via the following two queries:

– Corruptam(U): This query models A corrupting the authentication module
(the smart card). A gets back the player’s LL-key.

– Corruptkem(Π t
U): This query models A corrupting the key exchange module

(the secure co-processor). A gets back the private memory of the instance.
This query is only available in the strong-corruption model (see below).

3.4 Security Notions

The main security requirement for a secure group key exchange method to
achieve is “implicit” authentication. In Authenticated Key Exchange (AKE for
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brevity), each party is assured that no other party aside from the intended pool
of players can learn any information about the session key. An additional secu-
rity notion is “explicit” authentication or key confirmation often both referred
to as Mutual Authentication (MA for brevity). MA should not be mistaken for
the liveness property which provides guarantees on the delivery of messages [6,
36]. MA ensures each player that his partners (or pool thereof) have actually
computed the shared session key.

In the following, we only focus on the AKE notion only, since this is the most
important one. Furthermore, classical techniques are known to enhance it with
MA, such as additional key confirmation rounds.

Partnering The partnering captures the intuitive notion that the instances
with which a given instance Π has exchanged messages in executing an oper-
ation, correspond to players with which Π believes it has established a session
key. Another simple way to understand the notion of partnering is that an in-
stance Π ′ is a partner of Π in the execution of an operation, if Π and Π ′ have
directly exchanged messages or there exists some sequence of instances that have
directly exchanged messages from Π to Π ′.

More formally, let us first denote by SIDS(Π) the set of all the significant
flows sent and received by Π before acceptance (flag accept set to true). By sig-
nificant flows, we mean flows with high entropy and thus specific to the execution
of the actual protocol. A first round of nonces is often used to introduce high
entropy and to avoid to make players, from different executions, to be partners.

In an execution of P , we say that two instances Π and Π ′ are directly
partnered if both instances accept and SIDS(Π) ∩ SIDS(Π ′) 6= ∅ holds. We
denote the direct partnering as Π ↔ Π ′.

We also say that instances Π and Π ′ are partnered if they both accept
and if, in the graph GSIDS = (V, E) where V = {Π t

U : U ∈ U , t ∈ N} and
E = {(Π t

U , Π t′

U ′) : Π t
U ↔ Π t′

U ′} the following holds:

∃k > 1, (Π1, Π2, . . . , Πk) with


Π1 = Π,
Πi−1 ↔ Πi for i = 1, . . . , k
Πk = Π ′.

We denote this partnering as Π ! Π ′.
We complete in polynomial time (in |V |) the graph GSIDS to obtain the graph

of partnering: GPIDS = (V ′, E ′), where V ′ = V and E ′ = {(Π t
U , Π t′

U ′) : Π t
U !

Π t′

U ′}, and then define the partner identities for oracle Π as:

PIDS(Π) = {Π ′ : Π ′ ! Π}.

Semantic Security The Test-query. This query, that we denote Test(Π t
U),

models the semantic security of the session key skt
U . It is asked only once in the

following AKE attack game, and is meaningful only if oracle Π t
U is still Fresh at

the end of the game (which informally means that the session key is not trivially
known to the adversary, and it will be defined more formally below). The query
is answered according to a private (i.e., out of A’s view) bit b. If b = 0, a random
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`-bit string is returned; if b = 1, the session key skt
U is returned. We use this

query to define A’s advantage.

AKE Security. The security definition for P takes place in the following game,
denoted Gameake(A, P ). The game is initialized by providing coin tosses to A,
GKE.KGen(·) and any oracle Π t

U and by running GKE.KGen(1`) to set up
players’ LL-keys. A bit b is as well flipped to be later used in the Test-query.
Then, the adversary starts interactions with the players instances: he can ask
Send, Setup, Join, Remove, Reveal queries, as well as, depending on the considered
corruption model, Corrupt-queries; in addition,A can ask at most one Test-query,
but at any time of its choice. When A terminates it outputs a bit b′. We say
that A wins the AKE game if b = b′ and the “Test-ed” instance is still Fresh
(see below). Note, A can trivially win with probability 1/2, and thus we define
A’s advantage by Advake

P (A) = 2× Pr[b = b′]− 1. Protocol P is an (t, ε)-secure
AKE protocol if Advake

P (A) is lower than ε for all adversary A running in time
t.

Freshness As already introduced, the freshness formalizes the fact that the
session key is not obviously known by the adversary through basic means. On
top of this, and because the corruption capabilities of an adversary can make
him learn the session key trivially, the definition is relevant to the notion of
forward-secrecy: forward-secrecy entails that the corruption of a player does not
compromise the previously established session keys. However while a corruption
may have exposed the long-term key of a player it may have also exposed the
player’s internal data3 (for instance, an ephemeral, private GDH exponent). We
hence define several flavors of freshness, depending on which corruptions are
allowed.

1. scenario without any Corrupt-query We say that an oracle Π t
U is Fresh,

in the current execution, (or holds a Fresh sk) if (1) Π t
U has accepted, and

(2) neither him nor his partners has been asked for a Reveal-query.

2. standard corruption model Here the adversary has the ability to make
Corruptam-queries only. We use this model when dealing with (perfect) for-
ward secrecy, which we refer to as fs. We say that an oracle Π t

U is fs-Fresh, in
the current execution, if: (1) Π t

U has accepted, (2) neither Π t
U nor his part-

ners has been asked for a Reveal-query, and (3) no Corruptam-query has been
made (to U or his partners) by A before Π t

U accepted (no Corruptkem-query
is allowed at all).

3. strong-corruption model Here the adversary has the ability to make both
Corruptam and Corruptkem-queries. We use this model when considering strong
forward secrecy, which we refer to as sfs. We say that an oracle Π t

U is sfs-
Fresh, in the current execution, if: (1) Π t

U has accepted, (2) neither Π t
U nor

his partners have been asked for a Reveal-query, and (3) neither Corruptam-

3 Remind that the freshness notion is relative to an instance, not to a player. And in a concurrent
setting, each Join/Remove operation results in creating a new multicast group with a new session
key; that later, however, is typically updated from the previous one using these internal data, and
hence the corruption should distinguish whether these data are revealed or not.
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query has been made (to U or his partners) by A before Π t
U accepted nor a

Corruptkem-query has been made to Π t
U by A.

At an intuitive level, the standard corruption model is to be used when
ephemeral data are protected in a tamper-resistant device: the adversary cannot
see them. On the other hand, considering the strong corruption model allows to
deal with scenarios in which the adversary can obtain ephemeral data, however if
we want to limit the damages of such leakage of information, we need to assume
that these data are securely erased once they are not useful anymore.

Remark 3. In the definition of freshness, one can note that only Reveal-queries
can later change the status of freshness of a key (or an instance): any Corrupt-
query does not change anything when the key is agreed on. However, if the
adversary asks a Reveal-query to the instance, or any of his partners, the instance
is not fresh anymore. This is the reason why it is essential for the partnering
to be a public relation so that the adversary is aware of altering the freshness
when asking a Reveal-query.

4 Authenticated Group Diffie-Hellman Protocol

We describe the authenticated group DH protocol, which was formerly presented
in our previous paper [27]4 under the name AKE1, by splitting it into functions
that help us to implement the GKE abstract interface. These functions specify in
a modular way how cryptographic transformations are performed, and abstract
out the details the transformations. In the following we identify the multicast
group to the set of indices (instances of players) in it. We use a security parameter
` and, to make the description easier, see a player Ui not involved in the multicast
group as if his private exponent xi were equal to 1.

4.1 Overview

The protocol AKE1 consists of the Setup, Remove and Join algorithms. As illus-
trated in Figures 4, 5 and 6, in AKE1 the players are arranged in a ring and the
instance with the highest-index in the multicast group I is the group controller
GC(I): GC(I) = Π t

In
for some t, if n is the size of the multicast group. When

some players ask to join the group the Group Controller initiates the protocol
with the joining players; when some players are leaving, the remaining player
with the highest index is the new Group Controller and performs the broadcast
to update the group key. Even if it is not said precisely in the description of
the algorithms, each instance saves the set of values it receives in the down-flow
broadcast of Setup, Remove and Join: In the subsequent removal of players from
the multicast group, any oracle Π could be selected as the group controller GC
and so will need these values to execute Remove (that is, to generate a new
broadcast from the saved one).

4 The initial formal model in [29, 26] enabled us to propose a first protocol named AKE1. This was
later refined in [27].
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The session-key space SK associated with the protocol AKE1 is {0, 1}`
equipped with a uniform distribution. The arithmetic is in a group G = 〈g〉
of prime order q in which the DDH assumption holds.

4.2 Authentication Module

The Authentication Mechanism Auth supports the following functions:

– Auth.KGen(1k, i, j). This function, from the given security parameter 1k,
generates a pair of keys, which is either a pair of matching public/secret
keys (PKi,SKi) for player Ui, or a symmetric key Kij = PKij = SKij

between a sender Ui and a receiver Uj. The secret keys are never exposed.
– Auth.Sign(i, j,m). This function authenticates a message m between a sender

Ui and a receiver Uj, by using the authentication key SKij. It returns an
authenticated data that is denoted µ = [m]ij.

– Auth.Ver(i, j,m, µ). This function checks whether µ is an authenticator on
message m from a sender Ui to a receiver Uj with respect to the verification
key PKij. The boolean answer is returned.

The two latter functions should of course be called after initializing the keys
via Auth.KGen(·). Then we define the notion of signing oracle. An Auth.Sign-
oracle for messages authentication is an oracle that takes as input two indices i
and j and a message m, and returns an authenticator data µ = [m]ij using the
authentication key generated by Auth.KGen(1k, i, j).

Definition 4 (– Chosen Message, Existential Unforgeability). A (t, q,
ε)-Auth-forger F is a probabilistic Turing machine running within time t that
requests an Auth.Sign-oracle up to q messages (and for any pair of indices), and
outputs (m,µ, i, j) where m is a message authenticated by µ = [m]i,j, and with-
out having queried the Auth.Sign-oracle on message m, with the corresponding
entities (i, j), with probability at least ε. We denote this success probability as
Succcma

auth(t, q), where CMA stands for (adaptive) Chosen-Message Attack. The
Auth scheme is (t, q, ε)-CMA-secure if there is no (t, q, ε)-Auth-forger.

Any appropriate signature scheme Sign or message authentication code MAC
can be used.

4.3 Key Derivation

Informally, a Key Derivation Function (KDF for short) is defined as follows:

– A function KDF, that given a string x sampled from an arbitrary distribution,
together with a uniformly distributed randomizer, outputs a string of a fixed
length.

Clearly, in the random oracle model [12], a hash function is a perfect key
derivation function, however it does not provide the same level of security as
a proof in the standard model [33]. In the standard model, KDF has to be
implemented with more sophisticated tools, such as the left-over-hash lemma [44]
with authenticated randomness, or a deterministic randomness extractor, to
obtain (almost) uniformly distributed values over {0, 1}`.
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4.4 Key-Exchange Module

The Key-Exchange Mechanism supports the following functions. They are essen-
tially performed in the secure co-processor, out of which the ephemeral Diffie-
Hellman exponent should not leak; most of them, however, invoke the Authen-
tication Mechanism functions, which means that communication between these
two devices are assumed. The content of these communications is subject to
attacks when considering the strong corruption model.

The following functions help to build the trigon of successive flows that will
be sent in the protocol, as shown in Figure 3. One may use these functions
to pick a private exponent (gdh picks(·) and gdh picks?(·)), to go through
the lines of the trigon (gdh up(·)), to return the values needed to compute
the key (gdh down(·)), to restart going through the lines (gdh up again(·)),
to return needed values again (gdh down again(·)), and to compute the key
itself (gdh key(·)).

– gdh picks(i). This function generates a new private exponent xi
R← Z?

q. It
also erases any previous exponent x′i. However, note that xi is never exposed.

– gdh picks?(i). This function invokes gdh picks(i) to generate xi but does
not delete the previous private exponent x′i. The latter exponent x′i is only
deleted when explicitly asked for by the instance.

– gdh up(i, j, k, Fl, µ). This function forwards the successive values in the
group by performing the following steps.
1. if j > 0, the authenticity of tag µ on message Fl is checked with Auth.Ver(j, i,

Fl, µ); if the verification fails, the protocol stops.
2. Fl is parsed as a set of intermediate values (I, Y, Z) where I is the

multicast group and

Y =
⋃

k=1,...,i−1

{
Z1/xk

}
with Z = g

Qi−1
k=1 xk .

Then the values in Y are raised to the power of xi and then concatenated
with Z to obtain these intermediate values

Y ′ =
⋃

k=1,...,i−1

{
Zxi/xk

}
∪
{
Z
}

=
⋃

k=1,...,i

{
Zxi/xk

}
=

⋃
k=1,...,i

{
Z ′1/xk

}
,

where Z ′ = Zxi = g
Qi

k=1 xk .

3. Fl′ = (I, Y ′, Z ′) is authenticated, by invoking Auth.Sign(i, k, Fl′) to ob-
tain tag µ′. The flow (Fl′, µ′) is returned.

– gdh down(i, j, Fl, µ). This function prepares the set of values to be broad-
casted by performing the following steps.
1. the authenticity of (Fl, µ) is checked, by invoking Auth.Ver(j, i, Fl, µ); if

the verification fails, the protocol stops.
2. the flow Fl′ is computed as in gdh up, from Fl = (I, Y, Z) but without

the last element Z ′ (i.e., Fl′ = (I, Y ′)).
3. the flow Fl′ is appended tags µ1, . . . , µn by invoking Auth.Sign(i, k, Fl′),

where k ranges in I. The tuple (Fl′, µ1, . . . , µn) is returned.
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j = 1
j = 2
j = 3 (= n− 1)

g gx1

gx2 gx1 gx1x2

gx2x3 gx1x3 gx1x2 gx1x2x3

9=; gdh up

j = 4 (= n) gx2x3x4 gx1x3x4 gx1x2x4 gx1x2x3 gx1x2x3x4
¯

gdh down

| {z } | {z }
Y =⇒ Y ′ Z ⇒ Z′

Fig. 3. Successive flows, when n = 4

– gdh up again(i, k, Fl = (I, Y ′)). This function restarts the process by re-
freshing the i-th line as follows. From Y ′ and the previous random x′i, one can
recover the associated Z ′ (by raising the last component of Y ′ to the power
of x′i). In this tuple (Y ′, Z ′), one replaces the occurrences of the old random
x′i by the new one xi (by raising some elements to the power xi/x

′
i) to obtain

Fl′. The latter is authenticated by computing a tag µ′ via Auth.Sign(i, k, Fl′).
The pair (Fl′, µ′) is returned. From now the old random x′i is no longer needed
and, thus, can be erased.

– gdh down again(i, Fl = (I, Y ′)). This function refreshes the set of values
to be broadcasted as follows. In Y ′, one replaces the occurrences of the old
random x′i by the new one xi, to obtain Fl′. This flow is appended tags
µ1, . . . , µn by invoking Auth.Sign(i, k, Fl′), where k ranges in I. The tuple
(Fl′, µ1, . . . , µn) is returned. From now the old random x′i is no longer needed
and, thus, can be erased.

– gdh key(i, j, Fl, µ) produces the session key sk. First, the authenticity of
the flow (Fl, µ) is checked with Auth.Ver(j, i, Fl, µ). Second, the value α =
g

Q
j∈I xj is computed from the private exponent xi, and the corresponding

value in Fl. Third, sk is defined to be KDF(I‖Fl‖α).

Intuitively, the basic protocol runs as follows. Each successive player will
use gdh picks to get its own private exponent, gdh up to embed it in the
received values and to forward the new values to the next player; this process
starts from an empty set of values. The last player then will use gdh down to
broadcast the sufficient information such that each player can compute the key,
using gdh key. When one (or more) player(s) want(s) to join the group, the last
player in the current group refreshes its private exponent with gdh picks? and
restarts sending successive values via gdh up again. The joining players will
use gdh up to embed their contribution until the last joining player. The latter
will broadcast, as previously, a set of values using gdh down. When one (or
more) player(s) want(s) to leave the group, the highest-index remaining player
refreshes its private exponent with gdh picks? and will use gdh down again
to generate a new broadcast such that the other remaining players can compute
the key (via gdh key) and then set the accept flag to true. A more formal
description is given below.
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4.5 Setup(I)

This algorithm consists of two stages: the up-flow and the down-flow (see Fig-
ures 3 and 4). Remind that Ii denotes the index (in U) of the i-th oracle instance
involved in I. Let n be the number of instances in I.

Smart

AM 1 AM 2 Cards AM 3 AM 4

holds s1 holds s2 holds s3 holds s4

l l l l
Secure

KEM 1 KEM 2 Co-pro- KEM 3 KEM 4

gdh picks(1) gdh picks(2) cessors gdh picks(3) gdh picks(4)
→ x1 → x2 → x3 → x4

l l l l
U 1 U 2 U 3 U 4

accept← 0 accept← 0 accept← 0 accept← 0

gdh up(1, 0, 2, I‖g, ∅)
(Fl1,µ12)−−−−−−−−−−−−−→

gdh up(2, 1, 3, Fl1, µ12)
(Fl2,µ23)−−−−−−−−−−−−−→

gdh up(3, 2, 3, Fl2, µ23)
(Fl3,µ34)−−−−−−−−−−−−−→

gdh down(4, 3, Fl3, µ34)

←−−−−−−−−−−U4 broadcasts
←−−−−−−−−−−−−−−−−−−−−− (Fl4, µ41,

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− µ42, µ43, µ44)

gdh key(1, 4, gdh key(2, 4, gdh key(3, 4, gdh key(4, 4,
Fl4, µ41) Fl4, µ42) Fl4, µ43) Fl4, µ44)

accept← 1 accept← 1 accept← 1 accept← 1

Fig. 4. Algorithm Setup. A practical example with 4 players I = {U1, U2, U3, U4}.

One starts with the convention I0 = 0, Fl0 = (I, {g}) and µ0,i = ∅. Then, on
the up-flow, each oracle Π t

Ii
for i = 1, . . . , n invokes gdh picks(Ii) to generate

its private exponent xIi
and then (only if i ≤ n−1) invokes gdh up(Ii, Ii−1, Ii+1,

Fli−1, µi−1,i) to obtain both flow Fli and tag µi,i+1. Then, Π t
Ii

forwards (Fli, µi,i+1)
to the next oracle in the ring. The down-flow takes place when GC(I) receives the
last up-flow. Upon receiving this flow, GC(I) invokes gdh down(In, In−1, Fln−1,
µn−1,n) to compute both Fln and the tags µ1, . . . , µn. GC(I) broadcasts (Fln, µ1,. . . ,
µn). Finally, each oracle Π t

Ii
invokes gdh key(Ii, In, Fln, µi) and gets back the

session key skt
Ii

(and accepts the session).
To illustrate this, assume U2, U4 and U6 do run the algorithm. We have then

I1 = 2, I2 = 4, I3 = 6; we slightly abuse the notation and denote for all of
them the session by t so that I = {Π t

2, Π
t
4, Π

t
6}. The protocol starts by having
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Smart

AM 1 AM 2 Cards AM 3 AM 4

holds s1 holds s2 holds s3 holds s4

l l l l
Secure

KEM 1 KEM 2 Co-pro- KEM 3 KEM 4

holds x1 ∈ Z?
q holds x2 ∈ Z?

q cessors holds x3 ∈ Z?
q holds x4 ∈ Z?

q

gdh picks?(3)
→ x′3

l l l l

U 1 U 2 U 3 U 4

accept← 0 accept← 0 accept← 0 accept← 0

Previous set of values is Fl4 = {I, gx2x3x4 , gx1x3x4 , gx1x2x4 , gx1x2x3}

gdh down again(3, Fl4)
(Fl′3,µ31,µ33)

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
gdh key(1, 3, Fl′3, µ31) gdh key(3, 3, Fl′3, µ33)

New set of values is Fl′3 = (I\J , {gx′
3

24 , gx1
24 }), where g24 = gx2x4

accept← 1 accept← 1

Fig. 5. Algorithm Remove. A practical example with 4 players: I = {U1, U2, U3, U4} and J = {U2, U4}.
The new multicast group is I = {U1, U3} and GC = U3.

Π t
2 choosing x2 and, from (2, 0, 4, (I, {g}), ∅), generates Fl1 = (I, {g, gx2}) to-

gether with an authenticator µ12. The second player instance Π t
4 chooses x4 and

generates from (4, 2, 6, Fl1, µ12) the values Fl2 = (I, {gx4 , gx2 , gx2x4}) and µ23. Fi-
nally Π t

6 generates the broadcast via gdh down(6, 4, Fl2, µ23) = Fl3, µ31, µ32, µ33

where Fl3 = (I, {gx4x6 , gx2x6 , gx2x4}). The instance Π t
2 and Π t

4 compute the ses-
sion key as gdh key(2, 6, gx4x6 , µ31) and gdh key(4, 6, gx2x6 , µ32), respectively5.
Here the session key is computed from the common secret gx2x4x6 .

4.6 Remove(I, J )

This algorithm consists of a down-flow only (see Figure 5). Let n be the size
of I and m be the size of I\J . The group controller GC(I ′) of the new set
I ′ = I\J invokes gdh picks?(I ′m) to get a new private exponent and then
gdh down again(I ′m,Fl′) where Fl′ is the saved previous broadcast; the func-
tion makes use of both exponents (the newly generated one and the old one) but
erases the old one at the end. GC(I ′) obtains a new set of intermediate values
from which it simply deletes the elements related to the removed players (in

5 To be correct, the function gdh key(·) takes as a third input the entire set of values Fl, but here
we wrote only the value that the player is going to use, to make the mechanism clearer.
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the set J ) and updates the multicast group to be I ′. This produces the new
broadcast flow Flm with some tags µ1, . . . , µm. Upon receiving the down-flow,
Π t

I′i
invokes gdh key(I ′i, I ′m, Flm, µi) and gets back the session key skt

I′i
(and

accepts the session). Here, is the reason why an oracle must store its private
exponent and only erase its internal data when it leaves the group.

To illustrate this, assume U6 wishes to leave the group built in the pre-
vious example. The new multicast group is now I ′ = {Π t

2, Π
t
4}. The group

controller for I ′ is Π t
4. It first chooses a new exponent x′4 without erasing the

previous x4. From the saved broadcast Fl′ = (I, {gx4x6 , gx2x6 , gx2x4}), and using
gdh down again(4, Fl′) it generates a “full” new broadcast {gx′4x6 , gx2x6 , gx2x′4}
from which it deletes the term to be used by Π t

6 (the leaving member). The new
broadcasted values are thus Fl2 = (I ′, {gx′4x6 , gx2x6}), together with some au-
thenticators µ1, µ2. The other player Π t

2 can recover the common secret gx2x′4x6

with its old exponent x2: that is, it does not have to pick a new exponent. Also
note that the leaving player “left” its own exponent in the common secret, but
cannot use it to get the session key.

4.7 Join(I, J )

This algorithm also consists of the two stages: up-flow and down-flow (see Fig-
ure 6). Let n be the size of I and m be the size of I ∪ J . On the up-flow,
the group controller GC(I) of the old group invokes gdh picks?(In), and then
gdh up again(In, j, Fl′) where Fl′ and j = Π t

J1
are respectively the saved pre-

vious broadcast and the index of the first joining player. It updates I into I ′,
and forwards the result to the first joining player. From that point in the execu-
tion, the protocol works as the algorithm Setup, where the (temporary) group
controller of the new group I ′ = I ∪ J is the highest index player in J , that is
Π t

J|J |
: the joining players will use gdh up until the group controller; the latter

will use gdh down to perform the broadcast.
Again, to illustrate this, assume U1 and U3 wish to join the group built in the

previous example. The new multicast group is now I ′ = {Π t
1, Π

t
2, Π

t
3, Π

t
4}. The

group controller for I was Π t
4. So it first chooses a new exponent x′′4 without eras-

ing the previous x′4. From the saved broadcast Fl′′ = (I, {gx′4x6 , gx2x6}), and using
gdh up again(4, 1, Fl′′) it generates a “fresh” up-flow Fl2 = (I ′, {gx′′4x6 , gx2x6 ,
gx2x′′4x6}) together with µ23, and forwards these values to Π t

1. Then Π t
1 picks x1

and, using gdh up(1, 4, 3, Fl2, µ23), produces Fl3 = (I ′, {gx1x′′4x6 , gx1x2x6 , gx2x′′4x6 ,
gx1x2x′′4x6}) and µ34. The latter picks x3 and, using gdh down(3, 1, Fl3, µ34),
generates the broadcasted values {gx1x3x′′4x6 , gx1x2x3x6 , gx2x3x′′4x6 , gx1x2x′′4x6}.

5 Analysis of Security

In this section, we assert that the protocol AKE1 securely establishes a session
key. We refine the notion of forward-secrecy to take into account two modes
of corruption and use it to define two notions of security. We show that when
considering the standard corruption mode the protocol AKE1 is secure under
standard assumptions. This proof can in turn be adapted to cope with the
strong-corruption mode.
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Smart

AM 1 AM 2 Cards AM 3 AM 4

holds s1 holds s2 holds s3 holds s4

l l l l
Secure

KEM 1 KEM 2 Co-pro- KEM 3 KEM 4

holds x1 ∈ Z?
q holds x2 ∈ Z?

q cessors holds x3 ∈ Z?
q

gdh picks?(3) gdh picks(4)
→ x′′3 → x′4

l l l l
U 1 U 2 U 3 U 4

accept← 0 accept← 0 accept← 0 accept← 0

Previous set of values is Fl′3 = {I, gx2x′
3x4 , gx1x2x4}

gdh up again(3, 4, Fl′3, µ
′
33)

(Fl′′3 ,µ′′
34)

−−−−−−−−−−−−−→
gdh down(4, 3, Fl′′3 , µ′′34)

U4 broadcasts (Fl′4, µ
′
41, µ43, µ44) ←−−−−−−−−−−−−−

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

New set of values is Fl′4 = {I ∪ J , g
x′′
3 x′

4
24 , g

x1x′
4

24 , g
x1x′′

3
24 }, where g24 = gx2x4

gdh key(1, 4, Fl′4, µ41) gdh key(3, 4, Fl′4, µ43) gdh key(4, 4, Fl′4, µ44)
accept← 1 accept← 1 accept← 1

Fig. 6. Algorithm Join. A practical example with 4 players: I = {U1, U3}, J = {U4} and GC = U3.
The new multicast group is I = {U1, U3, U4}.

5.1 Security Results

A theorem asserting the security of some protocol measures how much com-
putation and interactions helps the adversary. One sees that AKE1 is a secure
AKE protocol provided that the adversary does not solve the group decisional
Diffie-Hellman problem G-DDH, or forges an authentication tag. These terms
can be made negligible by appropriate choice of parameters for the group G and
authentication mechanisms. The other terms can also be made “negligible” by
an appropriate instantiation of the key derivation functions.

Theorem 5 (– AKE Security in the Standard Corruption Model). Let
A be an adversary against protocol P , running in time T , allowed to make at
most Q queries (Setup, Join, Remove, Send, Corruptam). The adversary is also
restricted to not ask Corruptkem-queries. Let n be the number of players (among
the N total number of players) involved in the operations which lead to the group
on which A makes the Test-query. Then we have:

Advake
P (A) ≤ 2nQ · Adv

gddhΓ
G (T ′) + 2N(N − 1) · Succcma

auth(T, Q) + 2nQ · δ
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where δ denotes the distance between the output of KDF(·) and the uniform
distribution over {0, 1}`, T ′ ≤ T + QnTexp(k), where Texp(k) is the time of
computation required for an exponentiation modulo a k-bit number, and Γ = En

corresponds to the elements adversary A can possibly learn (the extended trigon,
see Figure 2):

En =
⋃

1≤j≤n−2

⋃
1≤k≤j

{
{i | 1 ≤ i ≤ j, i 6= k}

}
∪

⋃
1≤k<l≤n

{
{i | 1 ≤ i ≤ n, i 6= k, l}

}
∪

⋃
1≤k≤n

{
{i | 1 ≤ i ≤ n, i 6= k}

}
Note 6. If the authentication means is a signature scheme (the verification is
independent of the recipient), the security result becomes

Advake
P (A) ≤ 2nQ · Adv

gddhΓ
G (T ′) + 2N · Succcma

sign(T,Q) + 2nQ · δ.

Furthermore, we assume we know n, the number of players involved in the
operations which lead to the group on which A makes the Test-query. It is indeed
not a uniform reduction, but with an additional linear factor N , the reduction
can be made uniform, first guessing n.

When we talk about the “players involved in the operations which lead to the
group on which A makes the Test-query”, we mean a player an instance of whom
has joined the group at least once since its setup. As an illustrative example,
assume a multicast group is initialized by Setup(Π t

2, Π
t
4, Π

t
6), then Π t

6 leaves,
then Πs

1 , Π
s
3 join, and the Test-query is asked to any of them Πs

1 , Π
t
2, Π

s
3 , Π

t
4.

Then the number of players that have been involved so far is n = 5, even if the
size of the Test-ed group is 4. Note that we have n ≤ N : a player which joins,
leaves, then joins again is counted only once (though different instances of the
player have to be considered).

5.2 Proof of the Main Theorem

Let A be an adversary that can get an advantage ε in breaking the AKE secu-
rity of protocol P within time t, assuming n players have been involved in the
protocol. Let b and b′ be defined as in Section 3, namely the bit underlying the
answer to the Test-query and the bit output by the adversary, respectively. We
denote the event b = b′ by Guess.

Proof overview Intuitively, and in order to reduce the security to the G-DDH-
problem, the flows sent by the players’ instances in the crucial session (the one
in which the session key will be Test-ed) will be somehow “replaced” by the lines
of the extended trigon D (so that distinguishing the key from a random value
corresponds to solving the G-DDH-problem). This replacement is viewed as
successive modifications to the original game: we incrementally define a sequence
of games starting at G0 and ending up at G5. We define in the execution of Gi−1

and Gi a certain “bad” event Ei and show that as long as Ei does not occur
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the two games are identical6; bounding the probability that the “bad” event
happens helps in relating successive games. In our proof the difficulty consists
in replacing the flows with simulated values without changing the adversary’s
view “too much”.

In our model, the adversary’s capabilities are viewed as queries. These queries
are answered by a simulator ∆. First of all, one may notice that Setup, Join and
Remove-queries are essentially similar to Send-queries: in every case, an oracle
instance is activated and must generate an outgoing message to either start
a protocol execution or to continue it. Then the role of ∆, on receiving such
kind of query, is to simulate the correct outgoing flow. The Corrupt-query is
also straightforward to simulate by having ∆ choosing all authentication keys
by itself. The Reveal-query is the really problematic one, as soon as flows are
simulated using values for which the discrete logarithm is not known (from the
G-DDH instance).

Also, in order to answer the queries, the simulator ∆ will make use of several
auxiliary inputs: in particular it will use two integers c0 and i0 (that will be
introduced in game G2) as well as an instance D of size n of the G-DDH
problem: D is drawn according to the distribution GDH?

Γ (this auxiliary data
will be introduced in game G3), or GDH$

Γ (when we move to the game G4),
where Γ = En. The integers c0 and i0 will help ∆ to embed D’s lines at the
right place and at the right moment. For simplicity, we informally present the
auxiliary inputs here, but they will be formally defined only in the games in
which they are necessary. Before those games, ∆ simply ignores them.

Detailed proof We now describe each successive game. The core of the proof
is in game G3, in which ∆ actually uses instance D to replace the real flows with
the simulated ones.

Game G0 This game G0 is the real attack Gameake(A, P ), where ∆ simulates
all the players and then all the queries knowing the authentication keys, and
choosing the random coins. At the beginning of this game we set the bit b at
random. By definition, we have:

Advake
P (A) = 2 Pr[Guess0]− 1 (1)

Game G1 The game G1 is identical to G0 except that we abort if a forgery for
the authentication mechanism is detected before any Corrupt-query: this happens
when a valid tag appears in a flow (say, the adversary asks a Send(Π, (Fl, µ))
query, with Auth.Ver(Fl, µ) = 1), while the pair (Fl, µ) has not been produced
by any instance (i.e., was not generated by ∆ itself in answer to a previous
query). We define the forgery event Forge. Using a well-know lemma we get:

|Pr[Guess0]− Pr[Guess1]| ≤ Pr[Forge]. (2)

6 This technique has been formalized by Shoup [65]. The point is in choosing the “bad” event.
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Lemma 7 (– Probability of Event Forge).

Pr[Forge] ≤ N(N − 1)× Succcma
auth(T ). (3)

Proof. The proof uses a standard hybrid argument.

In this protocol, all the flows are authenticated by the sender. When the
forgeries are excluded, active attacks are excluded too: only replay attacks are
still possible. Of course, the adversary can also delay or reorder messages, then
∆ only handle them if they are still meaningful: since they are signed, it knows
which exponents they contain.

Game G2 Game G2 is the same as game G1 except that we make the simulation
abort if certain conditions are not satisfied. Once the simulation does not abort
(this implying a loss in the probabilities), we are thus ensured that the conditions
are indeed satisfied in the next games. The reason why we abort might appear
unclear in this game (indeed, there are purely formal here), but will become
clear in the future games.

More precisely, we make use of the simulator’s auxiliary input: a random
index i0 ∈ [1, n] and a random integer c0 ∈ [1, Q]. The value c0 is a guess for the
number of operations that will occur before the Test-ed session is built (remind
that Q is an upper-bound for the total number of queries), while i0 is a guess
for the player instance who will send the broadcast flow of the “Test-ed” session.
More precisely, it is its order in the list of the involved players in the series of
operations that lead to the Test-ed group. Intuitively, c0 and i0 are thought to be
as follows: if the c0-th operation7 is Join or Setup, then the simulator hopes that
the i0-th player involved will be the last joining player, otherwise the simulator
hopes it will be the group controller’s index. In the execution of the game, if
the Test-ed session is not the one completed with the c0-th operation, or if the
corresponding broadcast flow is not operated by the i0-th player, the simulator
outputs “Fail” and sets b′ randomly. Let E2 be the event that these guesses
are not correct. It can be noticed that the value c0 and i0 are chosen uniformly
and at random in [1, Q] and [1, N ] respectively. The probability of E2 is thus
1− 1/NQ. Using the fact that E2 and Guess1 are independent, we have:

Pr[Guess2] = Pr[Guess2 |E2] Pr[E2] + Pr[Guess2 | ¬E2] Pr[¬E2]

=
1

2
Pr[E2] + Pr[Guess1] (1− Pr[E2])

Pr[E2] = 1− 1

NQ

Therefore,

Pr[Guess2]−
1

2
=

1

NQ

(
Pr[Guess1]−

1

2

)
. (4)

7 By the “k-th operation”, one means the k-th operation (Setup, Join or Remove) that has been
initiated by A for building the Test-ed group. In a concurrent setting, the original groups continue
to live whenever a membership change initiates a new group, and therefore a tree structure appears
where nodes are the groups: a new operation creates a child. The value k is thus the depth of the
Test-ed group.
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Game G3 Game G3 is the same as game G2 except that we slightly modify
the way the queries made by A are answered; for this reason, we will use the
fact that the guesses in game G2 were correct: the Test-ed session is built by
the c0-th operation and the corresponding broadcast has been sent by the i0-th
player. Based on this information, ∆ can correctly make use of the instance D
to build the flows and answer the queries. Recall that the simulator ∆ gets as
an auxiliary input an instance D of size n from GDH?

Γ , where Γ is the extended
trigon En.

Formally, the instance D plus its solution can be rewritten using the “lines”,
as follows.

D = View∗
En

(x1, x2, . . . , xn)

= {S1, S2(x1, x2), . . . , Sn−2(x1, . . . , xn−2), Sn−1(x1, . . . , xn−2, xn−1),

Sn(x1, x2, . . . , xn−1, xn)} ∪ {gx1...xn}

wherein:

– S1 = {g};
– for 2 ≤ j ≤ n − 2 and j = n, Sj(x1, x2, . . . , xj−1, xj) is the set of all the

g
Q

k xk , where k respectively enumerates the j − 1-tuples one can build from
{1, . . . , j};

– but Sn−1(x1, x2, . . . , xn−2, xn−1) is the set of all the g
Q

k xk , where k respec-
tively enumerates the n − 2 tuples one can build from {1, . . . , n} (and not
only from {1, . . . , n− 1}, as above, hence the extension).

Main ideas of this game. We now show how, based on the two values i0
and c0, the simulator is able to simulate the game many randomized instances,
generated by (multiplicative) random self-reduction, from GDH?

Γ such that the
Test-ed key is (a known power of) the GDH secret value gx1...xn relative to D.
That is all the elements of Sn (except the ones which correspond to removed
players) will have been embedded into the protocol during the c0-th operation,
which leads to the Test-ed group.

The basic principle is that, whenever a Setup operation (for the Join and
Remove operations, the technique follows similarly) is initiated on a group I, ∆
uses line S1 for the first up-flow (which is always the same), S2(x1, x2) for the
second one, etc. If the cardinality of I is greater than n− 1, subsequent players
instances will be simulated using exponents yi chosen by ∆ itself, so that it can
still compute the further session keys, from Sn−1(x1, x2, . . . , xn−2, xn−1) and the
known yi. While doing so, ∆ maintains a list L (history) of involved players in
I as well as the associations between the first n players in I and the indices of
embedded exponent xi, and between additional players and known exponents yi.
Indeed, for all the known and unknown exponents, the simulation must remain
consistent, and always use the same exponent for an instance. More precisely,
for each group constructed, or under construction (when an operation has been
initiated), a sub-list of triples is maintained: the triples are of the form (i, j, x),
where i is the index of the player (at most one triple exists for each player in
a sub-list), j is the index of the embedded exponent xj or ⊥ if no exponent is
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embedded. In the former case, x is the randomization of xj (see below), and in
the latter case, x is the known exponent yi.

Random self-reducibility. In order to handle concurrent executions of the
protocol, ∆ makes use of the (multiplicative) random self-reducibility of the
GDH problem: any new instance with index i in the list L use a new randomized
exponent x′i = rixi. To that goal, ∆ stores in list L, as many sublists as there are
existing groups; and in each of these sublists, it stores up to n of these random
“blinding” exponents ri that keep trace of how the random self-reducibility was
applied to the input instanceD = ViewEn(x1, x2, . . . , xn) to get the new one D′ =
ViewEn(r1x1, r2x2, . . . , rnxn), specific to the current group. More precisely, each
time (an instance of) a player is assumed to pick at random a private exponent,
∆ proceeds as follows. If the player’s instance is associated (through list L) to
an unknown exponent xi, a random ri is chosen in Z?

q and stored, meaning that
random self-reducibility is to be applied to D by (formally) replacing xi with
rixi; if the player is not associated with any GDH exponent, a random, fresh
exponent yi is chosen in Z?

q and stored in L. Of course, when a player instance
is requested (by the protocol) to re-use a previous private exponent, ∆ does
not pick anything, but use L to perform the adequate computation, using the
adequate elements from instance D.

Since ∆ knows the authentication keys, and with the specific form of the
extended trigon, ∆ can easily simulate answers to all the queries: a new exponent
is either a new randomized exponent x′i = rixi for an unknown xi from D or a
chosen yi, the flows can be generated from the lines Si and the random values
r1, . . . , rn stored in L. But some subtleties have to be detailed:

First difficulty. If, ∆ embeds all the elements of Sn into the protocol execution
the first time the size of the multicast group is n, ∆ is not able to compute the
session key value sk needed to answer to the Reveal-queries that can occur before
c0. More exactly, ∆ would have then to use the value gx1···xn , but we want to
avoid this before c0, in order to reduce the security to distinguishing this value
from random.

Second difficulty. ∆ needs to know in advance which player instance will
send the last broadcast, in order not to embed the value gx1···xn prematurely in
the flows themselves; this value must be embedded in the Test-ed session key
only. Without caution, in particular if the i0-th player is involved in the group
at some time but then leave the group, we do not want that this temporary
membership leads to embedding an exponent of instance D; this player must be
simulated using instance D at the c0-th operation only. Otherwise there may be
n unknown exponents x1 through xn embedded in the view and the secret value
may be exposed in one of the flows.

Third difficulty. Assuming we manage to embed the GDH instance D exactly
on time, when the Test-query is asked, and not before. One difficulty remains if
we want to be able to perform the simulation. In effect, after having received a
challenge (the answer to the Test-query), the adversary may continue to initiate
some operations before terminating; if we do not want to expose the value gx1···xn

during these future sessions, we need to be able to “go backward” and to simulate
the flows with less than n exponents again.
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How to overcome these points. In light of the previously identified difficulties,
one can summarize the strategy of ∆ as follows:

Embed the successive elements of instance D (after some randomization)
in the protocol flows in the order wherein the players join the group, until
n − 1 players have been involved and except for instances of the i0-th
player; during the c0-th operation (creation of the Test-ed group), embed
the last elements of instance D via the broadcast operated (hopefully) by
the i0-th player; and after that operation, simulate the flows using line
Sn−1 only, with session keys in line Sn.

This last point, however, leads us to consider the extended trigon rather than
the basic one, simply because we cannot know in advance which (n − 1)-tuple
of exponents will be involved in future session simulations.

We now show this strategy allows ∆ to deal with situations where n players
are involved in the group before c0, and are added and removed repeatedly.
To prevent all the exponents xi to be embedded prematurely, it is sufficient
to prevent one single player of using such exponents, by simulating this player
with a private exponent yi that ∆ chooses by itself. But in order to have all
the exponents involved in the session key of the Test-ed group, it is necessary
to know who will be the last player to contribute (that is, which player will
broadcast the last down-flow). Thus the “guess” made on a player index i0.

Detailed steps of the simulation. We give some more details on what ∆ is
doing at each step: before c0, at c0, after c0. We will make intensive use of two
counters k and η, specific to each group: any operation Setup, Join or Remove
initiates a new group, and then each group structure owns counters k and η.
In case of a Setup operation, the counters k and η are initialized to 0, for the
two other operations, the new group keep the same values for k and η as the
previous group.

First, at any time, and for any operation different from the c0 + 1-th:

– for any new player Ui (never involved since the last Setup), if the index
k < n − 1 and η 6= i0 − 1, ∆ increments both k and i0, picks a randomizer
rk and thus uses x′k = rkxk as exponent for this player. The tuple (i, k, rk)
is stored in L for this group. This tuple will never be removed, even when
the player leaves the group, but may be updated.
This way, the up-flow or the broadcast flow involves a random self-reduction
of the k-th line in the basic trigon: Sk(r1x1, . . . rkxk) where all elements
are put to power

∏
yi for all the (i,⊥, yi) in L for this group. Similarly,

the session key is derived from one element from the k + 1-th line (where
k + 1 ≤ n).

– for any new player Ui (never involved since the last Setup), when the index k
is already equal to n− 1, or η = i0− 1, ∆ increments i0 and picks a random
exponent yi for this player. The tuple (i,⊥, yk) is stored in L for this group.
This tuple will never be removed, even when the player leaves the group,
but may be updated.
This case is to ensure that we are not going to use (random self-reduced)
line Sn of the trigon prematurely.
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– for a player Ui already involved since the last Setup, one can get (i, k, y) from
L. In the case k = ⊥, x′k = yk = y can be used again, unless a new random
has to be picked up. In such a case, ∆ picks a new random exponent y′k and
thus uses x′′k = y′k as exponent for this player. The tuple (i,⊥, y′k) is used for
updating L for this group.

Otherwise, x′k = rkxk can be used again, unless a new random has to be
picked up. In such a case, ∆ picks a new randomizer r′k and thus uses x′′k =
r′kxk as exponent for this player. The tuple (i, k, r′k) is used for updating L
for this group.

When the c0-th operation occurs, the last broadcast flow is operated by the
above i0-th player, who now embeds some elements from the line Sn of the
trigon; this means, in particular, that this player is always associated to the last
exponent of instance D. It follows that the corresponding session key (which is
the Test-ed key) is the G-CDHΓ value gx1...xn relative to D, blinded by some
(known) random exponents: all the ri and the yi. ∆ then answers the Test-query
as in the real protocol, according to the value of bit b.

After c0, however, ∆ also needs to be able to answer to all queries and more
specifically the Reveal-queries (adversary A may keep playing the game for more
rounds). More precisely, we want ∆ to do so without using the secret GDH value
gx1···xn . To this aim, ∆ has to un-embed the elements of Sn from the protocol
(in order to reduce the number of exponents taken from the instance D) and it
does it in the operation that occurs at c0 + 1.

Technically speaking, this is feasible by having the initiator of the c0 + 1-th
operation choose a fresh private exponent yi (and not simply blind his corre-
sponding exponent in the instance D with a fresh randomizer). However de-
pending on which player8 performs that operation, ∆ may not be able to do it
without going “out” of the basic trigon (but anyway with only n− 1 exponents
involved). This is the reason why the line Sn−1 has to contain all the possible
(n− 2)-tuples: extension of the basic trigon.

Therefore, for any player Ui initiating the c0 + 1-th operation, ∆ decrements
k, picks a random exponent yi for this player. The tuple (i,⊥, yk) is used to
update L for this group.

This way, the up-flow or the broadcast flow involves a random self-reduction
of the n − 1-th line in the extended trigon and the session key is derived from
one element from the n-th line.

For all the subsequent operations (before a new Setup), k = n− 1 and thus
∆ will use random private exponents for all the players, keeping all the xi but
one in the flows9. Therefore, the future session keys will still be derived from the
n-th line, but the broadcasts may involve any element in the extended n− 1-th
line.

8 Note this is not obviously (an instance of) the i0-th player, even if the latter did perform the
previous broadcast.

9 Another solution would have been to guess which player performs the operation at c0 + 1. With
this second guess j0, the extension of the trigon would have contained all the n−2 tuples but those
containing both i0 and j0.
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A comprehensive example of simulation Here we provide a complete exam-
ple of how ∆ can correctly handle a set of executions of the protocol, according
to the strategy described above. We represent the simulation by ∆ in the case
n = 4 and according to the following “guesses”: c0 = 4, i0 = 2. The instance
D is {(), (gx1 , gx2), (gx1x2 , gx1x2 , gx2x3), (gx1x2x3 , gx1x2x4 , gx1x3x4 , gx2x3x4)}. Players’
private exponents which are fully simulated by ∆ are denoted yi, will the ran-
domizers are denoted ri. We note that U2 (who performs the broadcast in the
crucial session) will be associated with unknown exponent x4 at that time only.
Before that, U2 is associated to a fully-controlled exponent y2. As a consequence,
indices are a bit tricky to follow, since U1 is associated with x1, U3 with x2 and
U4 with x3 (but y4 after the crucial query).

Setup{U1, U2, U3} c = 1, I = {1, 2, 3}

U 1 U 2 U 3 U 4

g, gr1x1

−−−−−−−−−−−−−−−−→ gy2 , gr1x1 , gr1x1y2

−−−−−−−−−−−−−−−−−−→
gy2r2x2 , gr1x1r2x2 , gr1x1y2

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
SK = (gx1x2)r1r2y2 is known to ∆

The adversary first builds a group with the following successive queries:
Setup{U1, U2, U3}, Send(U2, m1), Send(U3, m2), Send(U1, m3), Send(U2, m3). To
answer the first query, ∆ simulates player U1, associating his values with the
first term gx1 in instance D; that is ∆ add (1, 1, r1) to the first sublist; it can
thus construct the message m1, which is made of the first flow and the appropri-
ate authentication data. Then the adversary asks Send(U2, m1). The simulator
processes this query as follows: since the player being simulated is Ui0 but this
Setup is not the c0-th operation, U2 is simulated with a fully controlled exponent:
∆ chooses y2 by itself and add (2,⊥, y2) to the current sublist. Finally, when
the generated flow m2 is sent to U3 via the appropriate query, ∆ processes it by
associating U3 with the second term of instance D (modulo some known ran-
domizer r3): the tuple (3, 2, r2) is added to the sublist. The computed broadcast
can thus be addressed to U1 and U2 (simulation is straightforward there). The
sublist for this execution is then: {(1, 1, r1), (2,⊥, y2), (3, 2, r2)}.

Remove{U2} c = 2, I = {1, 3}

U 1 U 2 U 3 U 4

gy2r′2x2 , gr1x1y2

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
SK = (gx1x2)r1r′2y2 is known to ∆

To remove a player from the existing group, the adversary first asks a Remove{U2}
query. The simulator can easily simulates the group controller to build a well-
formed broadcast: indeed, ∆ just refreshes the randomizer for U3. The sublist for
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this group then becomes {(1, 1, r1), (2,⊥, y2), (3, 2, r
′
2)}. The broadcast is sent to

U1 via a Send-query, and that latter is easily processed by ∆ to compute the
session key from gx1x2 and the data in L = {(1, 1, r1), (2,⊥, y2), (3, 2, r

′
2)}.

Join{U4} c = 3, I = {1, 3, 4}

U 1 U 2 U 3 U 4

gy2r′′2 x2 , gr1x1y2 , gr1x1y2r′′2 x2

−−−−−−−−−−−−−−−−→
gy2r′′2 x2r3x3 , gr1x1y2r3x3 , gr1x1y2r′′2 x2

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
SK = (gx1x2x3)r1r′′2 r3y2 is known to ∆

In this step the adversary add a new player to the group, with Join{U4}.
The simulator ∆ will thus generate flows that will be sent successively from U3

(the group controller) to U4 (the joining player) and thereafter broadcasted by U4

(newly group controller) to all other members. The up-flow is computed by ∆ us-
ing a refreshed randomizer r′′2 and the broadcast is constructed by associating U4

to the next term of instance D: thus a tuple (4, 3, r3) will be added to the sublist.
The sublist representing this execution is L = {(1, 1, r1), (2,⊥, y2), (3, 2, r

′′
2), (4, 3, r3)}.

Here we can see the aforementioned first difficulty: if we had (in the Setup op-
eration) associated U2 with a term of the GDH instance, the session key here
would have involved the secret value gx1x2x3x4 , and ∆ would have not be able to
answer a possible Reveal-query.

Join{U2} c = 4, I = {1, 2, 3, 4}

U 1 U 2 U 3 U 4

gy2r′′2 x2r′3x3 , gr1x1y2r′3x3

←−−−−−−−−−−−−−−−−
gr1x1y2r′′2 x2 , gr1x1y2r′′2 x2r′3x3

U4

Test-query guessed now

gr4x4r′′2 x2r′3x3 , gr1x1r′′2 x2r′3x3 , gr1x1r4x4r′3x3 , gr1x1r4x4r′′2 x2

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
broadcast sent by U2

SK = (gx1x2x3x4)r1r′′2 r′3r4 is derived from the DH secret

Note that c = c0 = 4. Here U2 joins the group again. Before this step, it was
not associated with one exponent xi from D, to prevent premature exposure of
the GDH secret. However this time, the simulator has to inject the last expo-
nent: player U2 will thus be associated with the last exponent x4, and the current
sublist will contain a tuple (2, 4, r4). Note that, knowing the value of y2, the sim-
ulator was able to remove it when injecting x4 instead. The scenario illustrates
the afore mentioned second difficulty: why ∆ needs to guess which player will
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perform the crucial broadcast. In effect the up-flow sent by U4 (current group
controller) to U2 (joining member) must not contain the last exponent x4, oth-
erwise the secret GDH value is exposed. Thus Ui0 is the only player that can be
associated with x4 in the Test-ed session. Consequently his identity must have
been guessed before in order to perform a special treatment in earlier sessions.
The current sublist here is {(1, 1, r1), (2, 4, r4), (3, 2, r

′′
2), (4, 3, r

′
3)}.

Remove{U1, U2} c = 5, I = {3, 4}

U 1 U 2 U 3 U 4

gr1x1r4x4y4 , gr1x1r4x4r′′2 x2

←−−−−−−−−−−−−−−−−−−−−
SK = (gx1x2x4)r1r′′2 r4y4 is known to ∆ again

This scenario explains the third difficulty: why the instance D must follow
the “extended trigon” distribution. Because the c0 + 1-th operation removes U2

from the group (thus making him inactive), ∆ cannot update in the sublist the
tuple (2, 4, r4) which is relative to U2; the only exponent that can be refreshed is
that of the group controller U4 when sending the broadcast. This means that ∆
will dissociate U4 from the unknown (randomized) exponent x3 and use a fully
controlled exponent y4 instead. As a consequence, a term derived from gx1x4

appears in the broadcast, and that is why ∆ needs the extended trigon as his
auxiliary input (remind that no such term appears in the basic trigon). The
sublist used by ∆ is {(1, 1, r1), (2, 4, r4), (3, 2, r

′′
2), (4,⊥, y4)}.

Join{U2} c = 6, I = {2, 3, 4}

U 1 U 2 U 3 U 4

gr1x1r4x4y′4 , gr1x1r4x4r′′2 x2 , gr1x1r4x4r′′2 x2y′4
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− U4

gr1x1r′′2 x2y′4 , gr1x1r′4x4y′4 , gr1x1r′4x4r′′2 x2

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
SK = (gx1x2x4)r1r′′2 r′4y′4 is known to ∆

This last operation is mainly for completeness. From now on, the simulator
will never use exponent x3 again: only terms derived from x1, x2 and x4 will be
used (with session keys derived from the (known) value gx1x2x4). Therefore, when
simulating the answers to the queries for U2, ∆ simply refreshes the randomizer
r4; the corresponding sublist is {(1, 1, r1), (2, 4, r

′
4), (3, 2, r

′′
2), (4,⊥, y′4)}.

The simulation is therefore indistinguishable from the game G2:

Pr[Guess2] = Pr[Guess3]. (5)
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Game G4 Game G4 is the same as game G3 except that the simulator is now
given as an auxiliary input an instance D of size n from GDH$

Γ , where Γ is the
extended trigon En:

D = View$
En

(x1, x2, . . . , xn, r)

= {S1, S2(x1, x2), . . . , Sn−2(x1, . . . , xn−2), Sn−1(x1, . . . , xn−2, xn−1),

Sn(x1, x2, . . . , xn−1, xn)} ∪ {gr}

Therefore, in case b = 1, it uses the value gr to answer the Test-query. Note this
value is used only to answer the Test-query and is never used elsewhere in the
simulation described above. In such game, the Reveal-queries can be answered
exactly the same way as in the previous game. Straightforwardly, distinguishing
between games G3 and G4 is at most as hard as solving the G-DDHΓ -problem:

|Pr[Guess3]− Pr[Guess4]| ≤ Adv
gddhΓ
G (T ′). (6)

The running time of simulator in games G3 and G4 is essentially the same
as in the first game, except that each query may imply computation of up to
n exponentiation needed for the multiplicative random self-reducibility: T ′ ≤
T + nQTexp(k), where Texp(k) is the time needed to perform an exponentiation
modulo a k-bit number.

Game G5 Game G5 is the same as G4, except that the Test-query is answered
with a completely random value, independently of b. It is then straightforward
that Pr[Guess5] = 1/2. Let δ be the distance between the output of KDF(·) and
the uniform distribution, we have:

|Pr[Guess5]− Pr[Guess4]| ≤ δ. (7)

Conclusion Putting all together equations (2), (3), (4), (5), (6), (7), we get

Pr[Guess0] = Pr[Guess0 ∧ Forge] + Pr[Guess0 ∧ ¬Forge] ≤ Pr[Forge] + Pr[Guess1]

≤ Pr[Forge] + nQ

(
Pr[Guess2]−

1

2

)
+

1

2

≤ Pr[Forge] + nQ

(
Pr[Guess5] + Adv

gddhΓ
G (T ) + δ − 1

2

)
+

1

2

≤ Pr[Forge] + nQ
(
Adv

gddhΓ
G (T ) + δ

)
+

1

2
.

The theorem then follows from lemma 7. ut

Remark Recall that this proof is considering an adversary that is restricted
not to ask Corruptkem-queries. When dealing with strong-corruption we have to
answer to all the Corruptkem-queries made by the adversary along the games but
we can only do so if we know the private exponents involved in the games —
these exponents must be given to A on Corruption queries—. To reach this aim,
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we can no longer benefit from the random self-random reducibility property of
G-DDH and have to “guess” the moments at which the adversary will initiate
the operations leading to the Test-ed group. Unfortunately, reductions carried
out in such a way add an exponential factor in the size of the multicast group:
indeed for each of the n players, we will have to guess (among up to Q messages
sent) the flow that will be involved to build the Test-ed key; the loss in the
probability is thus O(Qn).

6 Conclusion

In the present paper we have provided a formal model and security definitions, as
well as methods, for authenticated group Diffie-Hellman key exchange. Our work
should allow cryptographic experts to properly analyze the security of a group
key exchange protocol, to address in a rigorous way the security requirements a
given method aims to achieve, and to come up with provably secure protocols.
The proposed model is sufficiently generic to be adapted to many cryptographic
scenarios well-suited for key exchange in a group.

In addition, we have performed a security analysis a protocol suite already
proposed for dynamic group Diffie-Hellman key exchange; we have enhanced
it with authentication services, proposed a modular implementation that can
be used to abstract out the use of cryptographic devices, and exhibit a formal
security proof under standard computational assumptions.

This paper, we hope, will enable security architects to pick a method based
not only on its efficiency but also on its (provable) security.
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A Proofs of theorems 1 and 2

A.1 Preliminaries

Remind the GDH-distribution associated to a structure Γ made of proper subsets
of In = {1, . . . , n}:

GDHΓ = {DΓ (x1, . . . , xn) |x1, . . . , xn ∈R Zq} ,

where DΓ (x1, . . . , xn) =
{(

J, g
Q

j∈J xj
)

J ∈ Γ
}

.

The γ function denotes the cardinality of any structure Γ :

– for Tn, we have τn = γ(Tn) =
∑n

i=1 i = n(n + 1)/2 since the i-th “line” of
this structure has exactly i elements.

– the cardinality of En is εn = γ(En) = γ(Tn)+
(

n−2
n

)
−n+1 = n2−n+1 since

the extension of the n−1-th line of this structure has exactly
(

n−2
n

)
− (n−1)

elements.
– it is also worthwhile to mention that the cardinality of the Generalized one

is 2n − 2.

The later is exponential in n, while the two others are quadratic.
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Good Structure Families Our goal is to prove that the hardness of the
G-DDHΓ -problem can be reduced to that of the DDH one. Given an indexed
family Γ = {Γn}, we proceed by induction over n: we prove that solving the
G-DDHΓn-problem reduces to solving the G-DDHΓn−1-problem. The intuitive
(and simple) idea is to replace, in an instance of Γn, all occurrences of x1x2 by an
independent variable x12, so that the number of variables decreases by one, while
the computational distance increases by at most Advddh. However, re-mapping
the new variable x12 to a variable in Γn−1 assumes that the subsets defining the
Γ family are well suited for that. To do so, we examine the re-mapping of mod-
ified subsets in Γn into subsets of Γn−1. For any indexed structure Γ = {Γn}n,
we consider an auxiliary structure Γ̂ = {Γ̂n}n, where Γ̂n is built from the set
{0, 3, . . . , n + 1} in the same way Γn is built from the set In through the map
1→ 0, 2→ 3, . . . , n→ n + 1.

Definition 8 (– Good Structure Family). A family Γ = {Γn}n is good if
for any integer n greater than 3 the following four conditions are satisfied:

1. ∀J ∈ Γn, {1, 2} ⊆ J ⇒ J12 ∪ {0} ∈ Γ̂n−1

2. ∀J ∈ Γn, 1 /∈ J, 2 ∈ J ⇒ J2 ∈ Γ̂n−1

3. ∀J ∈ Γn, 1 ∈ J, 2 /∈ J ⇒ J1 ∈ Γ̂n−1

4. ∀J ∈ Γn, 1 /∈ J, 2 /∈ J ⇒ J ∈ Γ̂n−1

where for any J , we denote by J1, J2 and J12 the sets J\{1}, J\{2} and J\{1, 2}
respectively.

In other words, this means that

Γn ⊆
{

J0 ∪ {1, 2} J ∈ Γ̂n−1, 0 ∈ J
}⋃{

J ∪ {2}, J ∪ {1}, J J ∈ Γ̂n−1, 0 6∈ J
}

,

where for any J , we denote by J0 the set J\{0}.

Note 9. The basic trigon T = {Tn} and extended trigon E = {En} are good
structure families.

Note 10. In [56] it is proved that the generalized (Decisional) Diffie-Hellman
problem is polynomially equivalent to DDH. While it is straightforward that
the generalized structure is a good one, we mention that our generic technique
described in this section could not be used to establish such reduction for the
generalized structure, due to the exponential size of that latter.

Group Random Distributions For proving our result, we need to alter Group
Diffie-Hellman tuples, introducing some randomness. This leads to the group
random (GR) distributions in which some elements are independently random
in the group Diffie-Hellman distributions.

First we split the tuples in two parts:

DΓn(x1, . . . , xn) =
{(

J, g
Q

j∈J xj
)

J ∈ Γn, {1, 2} * J
}

∪
{(

J, g
Q

j∈J xj
)

J ∈ Γn, {1, 2} ⊆ J
}

=
{(

J, g
Q

j∈J xj
)
{1, 2} * J

}
∪
{(

J, gx1x2
Q

j∈J12
xj

)
{1, 2} ⊆ J

}
.
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We can now define an additional distribution:

GRΓn = {VΓn(x1, . . . , xn, α) |x1, . . . , xn, α ∈R Zq} ,

where (recall that J12 is the set J\{1, 2})

VΓn(x1, . . . , xn, α) =
{(

J, g
Q

j∈J xj
)

J ∈ Γn, {1, 2} * J
}⋃{(

J, gα
Q

j∈J12
xj

)
J ∈ Γn, {1, 2} ⊆ J

}
.

Similarly to what is done for the Group Diffie-Hellman distributions, we de-
fine the two tuples V?

Γn
(x1, . . . , xn, α) and V$

Γn
(x1, . . . , xn, α, r), the extensions of

VΓn(x1, . . . , xn, α) where one appends {(In, g
αx3···xn)} and {(In, g

r)} respectively.
Then,

GR?
Γn

=
{
V?

Γn
(x1, . . . , xn, α) |x1, . . . , xn, α ∈R Zq

}
,

GR$
Γn

=
{
V$

Γn
(x1, . . . , xn, α, r) |x1, . . . , xn, α, r ∈R Zq

}
.

Note 11. We notice that under the constraint α = x1x2, for any x1, . . . , xn, r ∈R

Zq, one would have,

VΓn(x1, . . . , xn, α) = DΓn(x1, . . . , xn)

V?
Γn

(x1, . . . , xn, α) = D?
Γn

(x1, . . . , xn)

V$
Γn

(x1, . . . , xn, α, r) = D$
Γn

(x1, . . . , xn, r)

and thus,
GRΓn ≡ GDHΓn GR?

Γn
≡ GDH?

Γn
GR$

Γn
≡ GDH$

Γn
.

Definition 12 (– Group Random Adversaries). A Group Computa-
tional Random- or (t, ε)-GCRΓn-attacker in G is a probabilistic Turing machine
∆ running in time t such that

Succ
gcrΓn
G (∆) = Pr

xi,α

[
∆(VΓn(x1, . . . , xn, α)) = gαx3···xn

]
≥ ε.

A Group-Decisional-Random- or (t, ε)-GDRΓn-distinguisher in G is a probabilis-

tic Turing machine ∆ running in time t such that its advantage Adv
gdrΓn
G (∆)

defined by∣∣∣∣ Pr
xi,α

[
∆
(
V?

Γn
(x1, . . . , xn, α)

)
= 1
]
− Pr

xi,α,r

[
∆
(
V$

Γn
(x1, . . . , xn, α, r)

)
= 1
]∣∣∣∣

is greater than ε.

A.2 Proof of theorem 1

Now we provide a reduction of the Decisional Diffie-Hellman (DDH) problem to
the group Decisional Diffie-Hellman (GDDH) problem, but for the good struc-
ture families only. We first (re)state the theorem more formally.
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Theorem 1. Let G be a cyclic multiplicative group of prime order q and
tG the time needed for an exponentiation in G. For any good structure family
Γ = {Γn}n of cardinality γ = {γn}n and any integer n, we have:

Adv
gddhΓn
G (t) ≤ (2n− 3)Advddh

G (t′) where t′ ≤ t + tG

n∑
i=3

γi.

The proof results, by induction, from the following two lemmas 13 and 14
which lead to

Adv
gddhΓn
G (t) ≤ Adv

gddhΓn−1

G (t + γntG) + 2Advddh
G (t + γntG).

However before to prove it let’s plug in some numerical values for the time
of computation:

– for the structure of basic trigon Tn, the time t′ is less than t + n3tG/3;
– for the structure of extended trigon En, the time t′ is less than t + 2n3tG/3.

Lemma 13 (– Relating GDDH and GDR). For any integer n and any
structure Γn, we have

Adv
gddhΓn
G (t) ≤ Adv

gdrΓn
G (t) + 2Advddh

G (t + γntG).

Proof. We consider an adversary A against the G-DDHΓn problem. Such an
adversary, on input a distribution depending on a bit b, replies with a bit b′

which is a guess for b. We assume that A runs in maximal time t, in particular it
always terminates, even if the input comes from neither GDH?

Γn
nor from GDH$

Γn
.

Then we define the following two games: G0, G1 and consider the event Si in
game Gi as b = b′.

Game G0 In this game, we are given a Diffie-Hellman triple (A, B, C) = (gx1 ,
gx2 , gx1x2). Then we choose at random (x3, . . . , xn) in Z∗

q and compute (within
time O(γntG)) a tuple Un which follows the distribution GDHΓn , as follows

Un =
{(

J, g
Q

j∈J xj
)

J ∈ Γn, 1 /∈ J, 2 /∈ J
}⋃{(

J, A
Q

j∈J1
xj

)
J ∈ Γn, 1 ∈ J, 2 /∈ J

}
⋃{(

J, B
Q

j∈J2
xj

)
J ∈ Γn, 1 /∈ J, 2 ∈ J

}
⋃{(

J, C
Q

j∈J12
xj

)
J ∈ Γn, {1, 2} ⊆ J

}
.

Then if b = 1, one appends to Un the value Cx3···xn ; and if b = 0, one appends to
Un a value gr, where r is a random exponent: the computed tuple follows exactly
the distribution GDH?

Γn
(resp. GDH$

Γn
) if b = 1 (resp. b = 0). Thus by definition,

if we feed the attacker A with this tuple, we have

Pr[S0] =
Adv

gddhΓn
G (A) + 1

2
.
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Game G1 It is the same as game G0 except that we are given a tuple (A, B, C) =
(gx1 , gx2 , gα), where α is a random exponent. It is easy to see that the tuple given
to the attackerA follows the distribution GR?

Γn
(resp. GR$

Γn
) if b = 1 (resp. b = 0).

Then,

Pr[S1] =
Adv

gdrΓn
G (A) + 1

2
≤ Adv

gdrΓn
G (t) + 1

2
.

Also, the difference in the probability distributions in the two games is upper-
bounded by:

Pr[S0] ≤ Pr[S1] + Advddh
G (t + γntG).

The lemma follows. ut

Lemma 14 (– Induction Step). For any good structure family Γ = {Γn} and
any integer n, we have

Adv
gdrΓn
G (t) ≤ Adv

gddhΓn−1

G (t + γntG).

Proof. We consider a GDRΓn-distinguisher A running in time t and we use it
to built a G-DDHΓn−1-distinguisher. To reach that goal, we receive as input a

tuple drawn from either GDH?
Γn−1

or GDH$
Γn−1

. We use A to guess the underlying
bit b. In the given tuple, we denote by (In−1, un−1) the last value and by Un−1

the first values of this input tuple:

Un−1 =
{(

J, g
Q

j∈J xj
)

J ∈ Γn−1

}
= DΓn−1(x1, . . . , xn−1) ∈ GDHΓn−1

un−1 = gx1...xn−1 if b = 1, or gr if b = 0.

First, we split the tuple Un−1 in two blocks, depending whether 1 ∈ J :

Un−1 =
{(

J, gx1
Q

j∈J1
xj

)
J ∈ Γn−1, 1 ∈ J

}
∪
{(

J, g
Q

j∈J xj
)
J ∈ Γn−1, 1 /∈ J

}
.

Then we write this tuple by renaming the variables x1, . . . , xn−1 to be respec-
tively X0, X3, . . . , Xn. It then follows that the elements of Un−1 are indexed by
the elements of Γ̂n−1 rather than Γn−1:{(

J, gX0
Q

j∈J0
Xj

)
J ∈ Γ̂n−1, 0 ∈ J

}
∪
{(

J, g
Q

j∈J Xj
)
J ∈ Γ̂n−1, 0 /∈ J

}
.

Now we pick at random two values X1, X2 in Z∗
q and use them to construct the

following tuple, in which the last block in the above equation is used to derive
the last three blocks of Wn−1:

Wn−1 =
{(

J, gX0
Q

j∈J0
Xj

)
J ∈ Γ̂n−1, 0 ∈ J

}
⋃{(

J, gX2
Q

j∈J Xj
)
J ∈ Γ̂n−1, 0 /∈ J

}
⋃{(

J, gX1
Q

j∈J Xj
)
J ∈ Γ̂n−1, 0 /∈ J

}
⋃{(

J, g
Q

j∈J Xj
)
J ∈ Γ̂n−1, 0 /∈ J

}
.
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Remember that Γ is a “good” structure family:

Γn ⊆
{

J0 ∪ {1, 2} J ∈ Γ̂n−1, 0 ∈ J
}⋃{

J ∪ {2}, J ∪ {1}, J J ∈ Γ̂n−1, 0 6∈ J
}

.

It follows that one can build the following tuple Vn which is also included in
Wn−1:

Vn =
{(

J, gX0
Q

j∈J12
Xj

)
J ∈ Γn, {1, 2} ⊆ J

}
⋃{(

J, g
Q

j∈J Xj
)
J ∈ Γn, {1, 2} * J

}
.

We note that
Vn = VΓn(X1, . . . , Xn, X0) ∈ GRΓn .

Then Vn is appended (In, un−1) and given toA. The latter returns a bit b′ that we
relay back as an answer to the original G-DDHΓn−1 problem. The computation
time needed to properly generate Vn from the input Un−1 is at most γntG.

Thus, we have

Adv
gddhΓn−1

G (t + γntG) ≥ Adv
gdrΓn
G (t).

The lemma follows. ut

Putting all together, we obtain:

Adv
gddhΓn
G (t)≤ Adv

gdrΓn
G (t) + 2Advddh

G (t + γntG)

≤ Adv
gddhΓn−1

G (t + γntG) + 2Advddh
G (t + γntG)

≤ Advddh
G

(
t +

n∑
i=3

γitG

)
+ 2

n∑
i=3

Advddh
G

(
t +

n∑
j=i

γjtG

)

≤ (2n− 3)Advddh
G (t′) where t′ ≤ t + tG

n∑
i=3

γi.

A.3 Proof of theorem 2

Now we show the GCDH is a standard assumption by relating it to both the
CDH and the DDH.

Theorem 2. Let G be a cyclic multiplicative group of prime order q and
tG the time needed for an exponentiation in G. For any good structure family
Γ = {Γn}n of cardinality γ = {γn}n and any integer n, we have:

Succ
gcdhΓn
G (t) ≤ Succcdh

G (t′) + (n− 2)Advddh
G (t′) where t′ ≤ t +

n∑
i=3

γitG.

As for the previous theorem, the result comes, by induction, from both

Succ
gcdhΓn
G (t)≤ Succ

gcrΓn
G (t) + Advddh

G (t + γntG)

Succ
gcrΓn
G (t)≤ Succ

gcdhΓn−1

G (t + γntG).
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We consider an adversary A against the G-CDHΓn problem. Such an adver-
sary, on input a tuple drawn from the GDHΓn distribution, replies with a single
value which is a guess for the corresponding secret. We assume that A runs in
maximal time t, in particular it always terminates, even if the input does not
come from GDHΓn .

We then define a sequence of games G0, G1, . . . . In each game, given a
triple (A, B, C) and n − 2 random elements (x3, . . . , xn) in Z∗

q (which are not
necessarily known), we consider Si as the event that the adversary A outputs
Cx3···xn .

Game G0 In this game, we are given a Diffie-Hellman triple (A, B, C) = (gx1 ,
gx2 , gx1x2). Then by randomly choosing (x3, . . . , xn) we can compute:

Un =
{(

J, g
Q

j∈J xj
)

J ∈ Γn, 1 /∈ J, 2 /∈ J
}⋃{(

J, A
Q

j∈J1
xj

)
J ∈ Γn, 1 ∈ J, 2 /∈ J

}
⋃{(

J, B
Q

j∈J2
xj

)
J ∈ Γn, 1 /∈ J, 2 ∈ J

}
⋃{(

J, C
Q

j∈J12
xj

)
J ∈ Γn, {1, 2} ⊆ J

}
.

It is easy to see that Un = DΓn(x1, . . . , xn), and thus follows exactly the distri-
bution GDHΓn . Then the tuple Un is provided to the adversary. By definition,
since Cx3···xn = gx1···xn , we have

Pr[S0] = Succ
gcdhΓn
G (A).

Game G1 It is the same as game G0 except that we are given a tuple (A, B, C) =
(gx1 , gx2 , gα), where α is a random element in Z∗

q. We then perform the same
operations as in game G0 to obtain a tuple which follows the distribution GRΓn :
Un = VΓn(x1, . . . , xn, α). This tuple is provided to the adversary, which computes
gαx3...xn . By definition, we have:

Pr[S1] = Succ
gcrΓn
G (A) ≤ Succ

gcrΓn
G (t).

In both games the computation time needed for generating the tuple from
the input a triple (A, B, C) is at most (γn−1)tG where tG is the time required for
an exponentiation in G. Another exponentiation is needed to compute Cx3···xn .
Clearly the computational distance between the games is upper-bounded by
Advddh

G (t + γntG), then:

Succ
gcdhΓn
G (A) ≤ Succ

gcrΓn
G (t) + Advddh

G (t + γntG).

Game G2 It is the same as game G1 except that we choose x1 and x2 by
ourselves. Therefore (A, B, C) = (gx1 , gx2 , gα) where x1 and x2 are known, but
α is not. The remaining of this game is distributed exactly as in the previous
one, so Pr[S2] = Pr[S1].
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Game G3 It is the same as game G2 except that we do not know the elements
(x3, . . . , xn). Instead, we are given an instance Un−1 of the G-CDHΓn−1 problem,
built from the (unknown) exponents (α, x3, . . . , xn), where α is the same than
the underlying (hidden) exponent in C. By operating as in the previous section,
granted the property of good structure family, we can complete the given tuple by
using x1 and x2 (which are known) to obtain a tuple Vn following the distribution
GRΓn .

The variables are distributed exactly as in the previous game, so we have
Pr[S3] = Pr[S2]. Note that since we do not know x3, . . . , xn, we are no longer
able to decide whether the value the adversary outputs is Cx3···xn . But it is not
a problem since the two games are perfectly identical.

Anyway, since Cx3···xn = gαx3···xn is the Diffie-Hellman secret associated to
the given G-CDHΓn−1 instance, the adversary outputs Cx3···xn with probability

at most Succ
gcdhΓn−1

G (t + γntG):

Pr[S3] ≤ Succ
gcdhΓn−1

G (t + γntG).

Putting all these together gives us

Pr[S0] = Succ
gcdhΓn
G (A) ≤ Pr[S1] + Advddh

G (t + γntG)

≤ Pr[S3] + Advddh
G (t + γntG) ≤ Succ

gcdhΓn−1

G (t + γntG) + Advddh
G (t + γntG)

Since it is true for any adversary running within time t,

Succ
gcdhΓn
G (t) ≤ Succ

gcdhΓn−1

G (t + γntG) + Advddh
G (t + γntG).

By induction, it follows:

Succ
gcdhΓn
G (t)≤ Succ

gcdhΓn−1

G (t + γntG) + Advddh
G (t + γntG)

≤ Succ
gcdhΓn−2

G (t + (γn + γn−1)tG)

+Advddh
G (t + (γn + γn−1)tG) + Advddh

G (t + γntG)

≤ . . .

≤ Succcdh
G

(
t +

n∑
i=3

γitG

)
+

n∑
i=3

Advddh
G

(
t +

n∑
j=i

γjtG

)

≤ Succcdh
G (t′) + (n− 2)Advddh

G (t′) where t′ ≤ t +
n∑

i=3

γitG.

ut


