
An extended abstract of this work appears in Proceedings of the 5th International Conference (SCN ’06)
(6 – 8 september 2006, Maiori, Italy)
M. Yung Ed., Springer-Verlag, LNCS 4116, Pages 186–200.

A New Key Exchange Protocol Based on MQV

Assuming Public Computations

Sébastien Kunz-Jacques1,2 and David Pointcheval1

1 École normale supérieure, 45 rue d’Ulm, 75005 Paris, France
David.Pointcheval@ens.fr

2 DCSSI Crypto Lab, 51 boulevard de La Tour-Maubourg
F-75700 Paris 07 SP, France

kunzjacq@yahoo.fr

Abstract. Designing authenticated key exchange algorithms is a problem well under-
stood in cryptography: there are established security models, and proposals proved
secure in these models. However, models currently used assume that a honest entity
involved in a key exchange is trusted as a whole. In many practical contexts, the entity
is divided in an authentication device storing a private key and having low computing
power, and a computing device, that performs part of the computations required by
protocol runs. The computing device might be a PC connected to the Internet, and the
authenticating device a smart card. In that case as well in many others, a compromise of
the computing device is to be expected. We therefore propose a variant of the MQV and
HMQV key exchange protocols secure in that context, unlike the original protocols. The
security claim is supported by a proof in a model derived from the Canetti-Krawczyk
one, which takes into account more general rogue behaviours of the computing device.

1 Introduction

Key exchange, together with other basic primitives like encryption and signature,
constitutes a building block of modern cryptography. Key exchange algorithms enable
two parties communicating on an insecure channel to agree on a common secret value.
The Diffie-Hellman algorithm [7] was the first key-exchange algorithm not requiring
a pre-shared static secret between the parties. It does not however enforce parties
authentication, and is therefore vulnerable to man-in-the-middle attacks. After that
seminal paper, many authenticated key-exchange (AKE) protocols were proposed,
some of them with security proofs.

Current security models for key exchange [4, 3, 5, 6] take into account active at-
tackers, and model the secrecy of session keys together with the mutual authentication
property, that is, the assurance for each participant of a protocol run that it talks to
whom it thinks it is talking to.

Our purpose is to motivate a new attack scenario that arises naturally when im-
plementing an AKE protocol. We thus define a security model including this attack
capability and then build a protocol secure given this new constraint. We namely fo-
cus on situations where it is convenient to split an entity performing a run of a key
exchange protocol into an authentication device and an untrusted computing device.
The authenticating device enforces the confidentiality of the authentication data while
some computing operations required by the protocol are carried out by the computing
device. This allows to use an authentication device with little computing power, and
to make computing devices independent from users.

In such a framework, an AKE protocol is expected to mitigate the consequences
of a computing device compromise. Specifically, an attacker that had the opportunity
to interact offline with some authentication devices should not be able to authenticate
itself in subsequent protocol runs.

c© Springer-Verlag 2006.

2

Several applications might benefit from an AKE protocol able to cope with a com-
puting device. Mobile phones include smart cards which store the user authentication
data; the handsets themselves are the computing devices. PCs equipped with a crypto
token have a lot more computing power than the token itself, but may be plagued
by spyware or viruses. New designs can also be devised. For example, using an AKE
protocol secure in our model, one could build authenticated and escrowable end-to-end
encrypted communications in mobile phone networks: the handsets act as the authen-
tication devices and the mobile phone base stations as the computing devices. Session
keys are negotiated between two handsets when a communication is initiated. With
such a setup, the network operator knows session keys and can therefore decipher calls
as required by the law, but is still unable to fake the users authentication.

The security model we define takes into account the capacity for an attacker to
compromise a computing device, in the following strong sense: the attacker performs
itself the operations normally assumed by the computing device, and therefore inter-
acts with the authenticating device as a computing device would do. In that situation,
the attacker can compute session keys, but the the model requires that after an ar-
bitrary number of such interactions, the attacker is unable to fake the identity of the
authenticating device it interacted with. The model is named the public computation

model, because the attacker has both passive and active access to the computation
devices.

MQV, a well-known signature-less AKE protocol, is a good candidate to build a
protocol that is secure in the public computation model, although it was not designed
to take into account such threats. We show that MQV itself [15, 24], or its variant
HMQV [11], are not secure if scalar multiplications are moved into the computing
device; however, only slight changes are required to make MQV secure in that setting.
We present a 4-pass variant of MQV that is provably secure in our model. The security
proof assumes the difficulty of the CDH problem and lies in the random oracle model.

Related Work. The public computation model is analogous to the Canetti-Krawczyk
model [5]. In the latter, access to the computing device would have been granted
through ”Session State Queries”. We chose what seemed a simpler path to remove
the computing device altogether and allow the attacker to interact freely with authen-
tication devices. Instead of performing Session State queries, the attacker therefore
assumes the role the computing device itself. This allows not only access to values in
an honest computing device, but also arbitrary man-in-the-middle scenarios where the
computing device behaves abnormally to gain information about long-term secrets.

In [11], all variants of HMQV including the 3-pass variant HMQV-C are proved
secure in the CK model, assuming intermediate scalar values are stored in protected

memory, that is, out of reach of Session State queries. This is not very satisfactory as
these values are inherently ephemeral. The protocol we propose is designed to overcome
this drawback. Our security proof result can therefore be seen as an extension of what
is proved in [11].

Contrary to [11], it is assumed that the protocol uses a prime-order group. We do
not pretend to eliminate the need for subgroup membership tests when a non prime-
order group is used. As shown in [14], these membership issues can cause subtle errors
in security proofs.

The access of the attacker to the authentication device is very much like the
Access queries of [23], which addresses a problem similar to ours for the Needham and
Shroeder protocol.

3

Overall, the model introduced is a very classical Real-or-Random one. It is built
around two natural notions for key exchange protocols, real partnership and intended
partnership: they designate respectively the relationship between users really exchang-
ing messages and intending to exchange messages. Real partners are “peers” while in-
tended partners are “assumed peers” in the CK model; the “real partnership” relation
comes from the “session IDs” of [4]. To slice proofs into more palatable parts, prop-
erties relevant to un-authenticated key exchange and authenticated key exchange are
covered by two separate security games. As a side effect, it is very simple to specialize
the model to un-authenticated protocols.

The introduction of a “computing device” in key exchange is analogous to some
works on “server-aided computations” aimed at improving the efficiency of RSA sig-
natures [12, 2]. While the resulting protocols were proved insecure [21, 18, 19], our
protocol proposal uses a mix of external help (the computing device) and use-and-
throw coupons to avoid computing scalar multiplications. Coupons are a well-known
trick to improve the efficiency of discrete log based signature schemes [17], which MQV
is related to. We do not provide a general solution for relying on an external device to
compute scalar multiplications like in [8], but rather provide an ad-hoc solution tai-
lored to MQV. [8] could be used to eliminate completely the need for coupons in our
variant of MQV, however it requires to independent computing units in the computing
device, an hypothesis which cannot be easily verified by the authenticating device.

Paper Outline. The paper is structured as follows. First, we review some general
concepts related to the security of key exchange protocols in section 2. In section 3,
we introduce the public computation model. We then review MQV in section 4.1 and
explain why its natural implementation with both an authentication device and a
computing device cannot be secure in that model. The variant of MQV in the public
computation model, MQV-p, is presented in paragraph 4.2. The algorithmic problems
used in the proof and the proof results are summarized in section 5. A sketch of proof
outlining the motivations of some choices of proof techniques is then provided section
6. The proof itself is laid out appendix A.

2 Security Goals and Related Concepts

We build the security notions for key exchange around the concepts of intended partner
and real partner. The real partner of a user U is the user who receives (resp. sends)
the messages sent (resp. received) by U; it is not necessarily known by U. On the other
hand, the intended partner of U, which is defined only in the authenticated case, is the
user U thinks it is talking to. The security of an unauthenticated key exchange protocol
is then expressed as follows: the key resulting from a key exchange must be secret for
anybody except U and its real partner. This is the semantic security property. An AKE
protocol must further satisfy the mutual authentication (MA) requirement: a protocol
run should complete successfully for some user U only if the intended partner of U

matches its real partner. In an AKE protocol, the combination of semantic security
and mutual authentication yields the property that a key computed after a protocol
run completed successfully is shared with the intended partner, and with it only. To
define rigorously these security goals, we need to take a closer look at some general
concepts related to authenticated key exchange.

4

2.1 Session Identifiers

Throughout the paper, we need to put labels on protocol runs. Formally, we could use
a “global” naming scheme, where each run is uniquely identified throughout all runs
performed by all users. This would not have a concrete meaning however, since users
only know about the protocol runs they perform themselves. Therefore we identify
protocol runs by user - session index pairs. This way, we can assume that each user U

engaged in a session (U, s) knows about s.

2.2 Key Material, Session View, Real Partners

For any KE protocol, the moment when a user has enough information to compute
the session key can be defined. In the protocols we consider, we represent this by a
flag, KeyMaterialReceived, that is set to true when the session key can be computed.
The data exchanged required to compute the session key are called the key material.

For some session (U, s), we denote by View(U, s) all the messages sent and re-
ceived by U during session s before KeyMaterialReceived = true, described in a user-
independent way. View(U, s) is only defined when U has set KeyMaterialReceived to
true in session s. The session key is computed by U as a function of its View and its
private key. When View(U, s) = View(U’, s’), we say that sessions (U, s) and (U’, s’)
match, and that U and U’ are real partners for sessions s and s’.

2.3 Intended Partners, Key Acceptance and Mutual Authentication

In an honest protocol run of an authenticated key exchange algorithm, each user
has an intended partner. The intended partner is defined in a protocol-dependent
way but it must be possible to express it as a function of the messages exchanged
during a session and of the public key of the user. This function might not be easily
computable; this happens for example in the case of a protocol including some identity
hiding functionality, like -I and -R variants of SIGMA [10]. When the way to derive
the intended partner identity is not obvious, it should be clearly stated in a protocol
description. Except in these special cases, it is usually straightforward to define the
identity of the intended partner in terms of the messages exchanged during a protocol
run.

During an AKE protocol run, a user acknowledges at some point that it is talking
to its intended partner. In the protocols we describe, this is again materialized by a
flag, KeyAccepted. Therefore a user state in an AKE protocol is defined by the Boolean
values KeyMaterialReceived and KeyAccepted. The mutual authentication property of
an AKE protocol can now be easily defined: a protocol has the MA property if when-
ever a session (U, s) completes successfully (KeyAccepted = true), user U has a real
partner U’ for session s, and it is equal to its intended partner. Note that for U’ to be
U’s real partner for some session s’, View(U’, s’) must be defined, which implies that
KeyMaterialReceived = true for session (U’, s’).

3 Security Model

We define in this section our AKE security model. The security goals are formalized
into games between an attacker E and a simulator S running instances of an AKE
protocol between several users. In these games, E directs the users actions regarding

5

executions of the protocol, and has total control over the messages exchanged between
the users.

E’s capabilities correspond to queries that it can make to S. Queries are listed
in section 3.1. In particular, E can get the long-term private keys corresponding to
legitimate identities in two ways: it can obtain keys of existing users controlled by S

through Corrupt queries, or register its own users through Register queries. The public
computation model therefore allows the presence of users controlled by the attacker
alongside the ones controlled by S. In particular, attacks requiring to dynamically
register a public key, like the one of Kaliski on MQV [9], are within the scope of the
model.

S does not stop simulating a corrupted user. A user that was targeted by a Corrupt

query can therefore be simulated by S and impersonated by E. Therefore a corrupted
user might still be involved in honest protocol runs, managed by S. We name them
honest sessions and session views.

The new attack scenario that we take into account translates into two new queries
available to E, IniAuth and SendAuth, enabling it to interact freely with the authenti-
cation device of any user.

The model is composed of two games: a real-or-random game Gror modeling the
secrecy of the negotiated key, as explained in section 3.3; and a game Gma where the
goal of the attacker is to break mutual authentication, defined in section 3.4.

Differences between the public computation model and the Canetti-Krawczyk
model [5] are as follows:

– Each user is split in two parts: an authentication device and a computing device.
This corresponds somewhat to the “protected” and “unprotected” memory in the
CK model, but is more flexible because the attacker can impersonate a computing
device in an arbitrary way instead of only be granted access to the memory of
honest computing devices.

– Security notions for un-authenticated and authenticated key exchange protocols
are modelled by two separate security games.

– Key secrecy is modeled by a real-or-random game instead of the find-then-guess
game of [5, 4]. The two corresponding security properties are equivalent, but there
is a loss factor linear in the number of sessions from the find-then-guess game to
the real-or-random game [1] in the security bounds obtained.

3.1 Simulation and Attacker’s Queries

E can issue different queries to S to control sessions and messages exchanged by users. It
is also given complete control over messages between users: messages that are supposed
to be sent by users in the real protocol are actually handed over by S to E, along with
the corresponding session identifier. E can send messages to users through Send queries:
Send(U, s,M) sends message M to user U as part of session s.

New sessions are opened through Initiate queries: s = Initiate(IDU, IDU’) tells user U

to initiate a new session with user U’. U is therefore the initiating user of the session.
The attacker is answered a session identifier s that is later used in Send queries. IDU

and IDU’ must match registered identities of users either simulated by S or created by
E through Register queries as described below.

When some user U’ controlled by the simulator receives a message that does not
belong to an existing session, and that can be interpreted as the first message of a
new session, it creates a new session identifier s’ that is handed over to E.

6

E’s attack capabilities are modeled by the following queries:

– Corrupt(U): obtain the long-term private key of U.
– Register(k, IDV): register public key k for identity IDV. The public key may have

already been assigned to some user, however IDV must not match the identity of
an existing user. IDV is the identity of a new legitimate user V controlled by the
attacker. Remark that the model does not require the CA to ask for proofs of
knowledge of the private keys during identity registration.

– t = IniAuth(U) and SendAuth(t,M): these two queries mimic Initiate and Send

queries and model E’s access to authentication devices. An “authentication session
index” t is used to allow and to keep track of concurrent authentication sessions.
In a signed Diffie-Hellman protocol for instance, SendAuth(t,M) would simply
return the signature of message M by user U if the authentication session t has
been opened for user U.

Corrupt queries model long-term key material leakage; Register queries model users
that are created by E, for example when E chooses a public key depending on some
observed data. IniAuth and SendAuth queries model the access to the authentication
device.

3.2 Common Framework for Security Games

In the two games Gma and Gror, S simulates real protocol sessions according to the
queries made by E as in section 3.1. The simulations used in these games differ only
by the value handed over to E when a session completes successfully (KeyAccepted←
true): in game Gma, nothing is given to E whereas in game Gror, a “real-or-random”
value is revealed.

3.3 Semantic Security Game Gror

The real-or-random game Gror models the key secrecy in front of passive attacks. E

wins that game if it manages to distinguish real session keys from random values.
In that game, S first draws a global random bit b. This bit decides whether real

session keys or random values are to be revealed to E, whose goal is to guess b correctly.
If b = 1, a simulation SReal is used: the real session key is revealed to E after a session
completes successfully. If b = 0, the simulation SRandom is performed as follows: first,
S sets up a private random oracle H0. Next, S simulates protocol runs as in SReal.
When a session (U, s) completes successfully with at least one honest matching session
(U’, s’), the value revealed to E is equal to H0(View(U, s)) (remember that a honest
session is a session simulated by S, irrespectively of whether the corresponding user
was corrupted or not.) If the session completes successfully without a honest matching
session, the real key is revealed, as E might be in a position to compute it, for example
because it impersonated U’s real partner for session s.

Let b′ be E’s answer. E’s advantage in game Gror is

Adv ror =

Pb=1[b
′ = 1]− Pb=0[b

′ = 1]

 .

7

3.4 Mutual Authentication Game Gma

Game Gma models the mutual authentication property of the protocol which, together
with the key secrecy property from game Gror, guarantees the resistance to active
attacks of an AKE protocol. In game Gma, E’s goal is to get some user U to end
successfully some session s (KeyAccepted(U, s) = true) while its real partner differs
from its intended partner U’ (including while U has no real partner for that session.)
The targeted session is called the attacked session.

To succeed, E must additionally not perform

– a SendAuth query targeted at the authenticating device of U’ (that is, a SendAuth

query on an authentication session t opened with IniAuth(U’))
– a Corrupt query on U or U’

between the beginning of the attacked session and the moment when U set KeyAccepted

to true in the attacked session.
Since Corrupt queries on the user involved in the attacked session and its intended

partner are banned, the model does not take into account key-compromise imperson-
ation attacks.

3.5 The Public Computation Model in the Un-authenticated Setting

Our model can be adapted very simply to the un-authenticated setting. In that con-
text, only key secrecy can be expected. In an un-authenticated protocol a key is ac-
cepted as soon as it can be computed; in our formalism, KeyAccepted is by definition
equal to KeyMaterialReceived. Key secrecy is then modelled by game Gror alone.

4 MQV Revisited with Public Computations in Sight: MQV-p

The MQV protocol with key confirmation is a well-known authenticated key-exchange
algorithm that is forward-secure and that does not use signatures. It can be compared
with some variants of the MTI protocols [13, 16]. One of the distinctive features of
MQV is however to allow for an efficient split of its implementation between an au-
thentication device and a computing device, as described in the introduction.

Key Confirmation. We consider the MQV variant that includes a key confirmation
round: a key is used only if a value proving that the other party has managed to
compute the session key, the confirmation key, has been received from the other party.
With the conventions of paragraph 2.3, KeyAccepted is set to true only when the correct
key confirmation has been received.

Key Derivation Function. In our protocol descriptions, KDF is a key derivation
function: KDF(i, S) derives a key ki from some secret s. It can classically be constructed
from PRFs and universal hash functions (this is folklore; see for example [20].) In the
proofs, KDF is modeled as a random oracle H1: KDF(i, s) = H1(i||s).

4.1 The MQV Protocol

Let G be a large subgroup of an elliptic curve group over a finite field. G is assumed
to be of prime order p, and P is a generator of G. The private key skU of a user U is
an element of Zp and the corresponding public key pkU is skUP . For Q ∈ G, T (Q) is
the lower half of the x-coordinate of Q. The MQV protocol is depicted on figure 1.

8

Intended Partner Definition. The initiator of a session, Alice, knows who it intends
to talk to before starting a protocol run; therefore the intended partner of Alice is
fixed before the session starts. The intended partner of the responder Bob is set to
the identity received in the first message.

MQV with Public Computations. The natural way to split authentication data
storage and computations in MQV is as follows (see figure 2):

– The authentication device for user U computes pairs (rP, r+T (rP)sU) for random
r ∈ Zp;

– For each protocol run, the computing device requests such a pair (R, s), sends
R to the other party, receives R′, and computes the key material KM = s(R′ +
T (R′)PU’).

In this description, it seems that the authentication device has to perform the scalar
multiplication r → rP which is a costly operation. However, this can be practically
avoided by pre-computing and storing in the authentication device pairs (r, rP) or
even the authentication pairs (rP, r + T (rP)sU) themselves.

This approach however has one major security shortcoming: if a corrupted com-
puting device stores a valid authentication pair (rP, r +T (rP)sU), it can authenticate
as user U indefinitely without interacting with the authentication device anymore.
This is clearly not desired and is a violation of the mutual authentication property in
our security model; see section 3.4.

HMQV. The same difficulty arises with HMQV which uses H(R||IDU’) instead of T (R),
where U’ is the intended partner of U. In any case, the authentication information is
static and can be reused indefinitely.

Alice Bob

KeyMaterialReceived← false

KeyAccepted← false

r
R
← Zq

R = rP
IDA, R

−−−−−−−−−−−−−→ KeyMaterialReceived← false

KeyAccepted← false

r′ R
← Zq

R′ = r′P

sB = r′ + T (R′)skB

KMB = sB(R + T (R)pkA)
KCB = KDF(1, KMB)

sA = r + T (R)skA

R
′

, KCB
←−−−−−−−−−−−−− KeyMaterialReceived← true

KMA = sA(R′ + T (R′)pkB)
If KCB 6= KDF(1, KMA) Stop

KCA = KDF(0, KMA)
KeyMaterialReceived ← true

KCA−−−−−−−−−−−−−→ If KCA 6= KDF(0, KMB) Stop

KSA = KDF(2, KMA) KSB = KDF(2, KMB)
KeyAccepted← true KeyAccepted← true

Fig. 1. An honest execution of the plain MQV protocol

9

Alice auth. device Alice comp. device

KeyMaterialReceived← false

r
R
← Zq

Start(0)
←−−−−−−−− KeyAccepted← false

Bob

R = rP
IDA, R

−−−−−−−−→ − −−−−−−−−−−→
IDA, R

−−−−−−−−→
XA = R′ + T (R′)pkB

R
′

, KCB
←−−−−−−−−

sA = r + T (R)skA
sA−−−−−−−−→ KMA = sAXA

KeyMaterialReceived← true

Check KCB

KCA = KDF(0, FlowA||KMA)
KCA−−−−−−−−→

KSA = KDF(2, FlowA||KMA)
KeyAccepted← true

Fig. 2. Plain MQV honest execution with an authentication token, point of view of Alice

4.2 MQV-p

The main idea to enhance MQV is to introduce some variability that cannot be con-
trolled by the user in authentication tokens. This is performed by making them depend
on the random point of the partner. In MQV-p, the truncation function T (·) is there-
fore replaced by a hash function H whose input consists in the identities of both users
and the two exchanged random points. Unfortunately, applying this simple change to
MQV leads to a three-pass protocol whose proof seems difficult even in the random
oracle model; indeed, in this three-pass protocol, the adversary has partial control on
input values of the oracle whose output we need to program. Because of this, we are
unable to simulate sessions correctly when some private keys are replaced by chal-
lenges (see section A.5.) There are several ways to overcome this issue, either using a
random value revealed later in the protocol, or making the responding user commit
its random point first. These two techniques lead to a 4-pass protocol. Using a ran-
dom value, one obtains the scheme described figure 3. In MQV-p, intended partner
identities are derived as in the MQV protocol.

5 Algorithmic Hypotheses and Security Results

5.1 CDH Problem

On input (xP, yP) ∈R G2, output xyP in G. Succ CDH(t, G) is the maximum success
rate of an attacker against CDH running in time t in group G.

5.2 HCDH problem

HCDH depends on a random oracle H′ having a h-bit output size. On input (X =
xP, Y) ∈R G2, an answer to this HCDH instance is a pair

(R′, x(R′ + H′(R′)Y)) ∈ G2. (1)

SuccHCDH(t, G, qH′) is the maximum success rate of an attacker against HCDH running
in time t in group G, and making at most qH′ H′- queries.

In appendix B, an adversary against HCDH is transformed into one against CDH

by a classical splitting lemma argument, yielding the following inequality:

10

Alice Bob

KeyMaterialReceived← false

KeyAccepted← false

z
R
← {0, 1}u

r
R
← Zq

R = rP
IDA, R

−−−−−−−−−−→ KeyMaterialReceived ← false

KeyAccepted← false

r′ R
← Zq

FlowA = {IDA, R, IDB, R′}
R

′

←−−−−−−−−−− R′ = r′P

sA = r + H(0||z||FlowA)skA

KMA = sA(R′ + H(1||FlowA)pkB)
KCA = KDF(0, FlowA||KMA)
KeyMaterialReceived ← true

z, KCA
−−−−−−−−−−→ FlowB = {IDA, R, IDB, R′}

sB = r′ + H(1||FlowB)skB

KMB = sB(R + H(0||z||FlowB)pkA)
If KCA 6= KDF(0, FlowB ||KMB) Stop

KeyMaterialReceived ← true

If KCB 6= KDF(1, FlowA||KMA) Stop
KCB←−−−−−−−−−− KCB = KDF(1, FlowB ||KMB)

KSA = KDF(2, FlowA||KMA) KSB = KDF(2, FlowB||KMB)
KeyAccepted← true KeyAccepted← true

Fig. 3. An honest execution of 4-pass MQV-p

[SuccHCDH(2t, G, qH′)− 2/p− 2−h]2

4qH′

− 2−h ≤ SuccCDH(t, G). (2)

5.3 Security Bounds for Game Gror and Gma

In the two next theorems, h is the bit-size of the output of H, k is the one of KDF,
u is the bit size of z, nu is the maximal number of users simulated, p is the (prime)
order of G, and texp is the scalar multiplication computation time1.

Theorem 1 If H is modeled as a random oracle, an adversary against the privacy of

the session key of MQV-p in a group G, running in time t and making at most qKDF

KDF-queries, and qs Initiate-queries, has advantage at most

Adv ror(t, G, qKDF, qs) ≤ qKDF qs

[

SuccCDH(t + (2qs + 1)texp, G) +
2q2

s

p

]

.

Theorem 2 If H is modeled as a random oracle, an adversary against the mutual

authentication of MQV-p in a group G, running in time t and making at most qH

H-queries, qKDF KDF queries, and qs Initiate-queries, has advantage at most

Succma(t, G, qH, qKDF, qs)− 2−k ≤ (2 qs n2

u β + qKDF)Succ HCDH(t + 2qstexp, G)

with β = [(1 − qKDF2−k)(1− qH/p)(1 − qH max{2−u, 1/p})]−1.

1 The time to compute a sum of k scalar multiplications, a1, P1, . . . , ak, Pk →
P

aiPi is assumed to
be equal to texp if k is small. This is the case if Shamir’s trick is used.

11

6 MQV-p Security: Sketch of Proof

We are looking for an upper bound for E’s advantage in game Gror and E’s success
rate in game Gma. H and KDF are modeled as random oracles.

6.1 Game Gror

We want to bound |PSReal [b′ = 1]− PSRandom [b′ = 1]|, where b′ is E’s answer, in the con-
text of a passive attack

The idea is to modify SReal and SRandom by inserting a CDH challenge in the
random points exchanged during some selected sessions.

Suppose some user U successfully completes a session s. Because real keys are
revealed both in simulations SReal and SRandom whenever (U, s) has no honest matching
session, E must rely on successful sessions where there is at least one honest matching
session to distinguish between the two simulations. Because KDF is modeled by a
random oracle,

– either E makes at least one KDF-query containing a correct key material for some
pair of honest matching sessions (event QH)

– or it has advantage 0 in distinguishing between simulations SReal and SRandom.

We therefore only need to bound P(QH), in simulation SReal or SRandom. To this
end, transform these simulations as follows: S guesses a session index (U, s) for which
QH occurs and U is the session initiator, and introduces a CDH challenge in the
random points of U for this session, and of one of its honest matching session (U’, s’).
Because U is the session initiator, it sends its random point first, and any real partner
of U receives it before sending its own. Therefore S does not need to guess (U’, s’)
in advance. Key confirmations cannot be properly computed by S; however, random
values can be used as placeholders. Once again, because of the random oracle model
used for KDF, E does not see the change before it performs the right KDF-query.

To extract a CDH answer, S processes all KDF-queries relevant to the target session,
and chooses at random one of the corresponding candidates.

This proof yields a loss factor between P(QH) and the probability of S to break
CDH equal to qsqKDF, because S guesses a target session and chooses a CDH answer
candidate.

It would be tempting to use the CDH random self-reducibility to introduce the
challenge in all simulated sessions and eliminate the factor qs. The problem with this
approach is that it does not allow S to simulate correctly sessions between a user U and
a user U’ impersonated by E. In such a case, S cannot compute the resulting session
key, but E can; in particular, S is not able to decide if a confirmation key output by
E is correct or not2.

6.2 Game Gma

To bound E’s success probability in game Gma, we tie it to the probability of the
simulator of solving the HCDH problem, which itself reduces to CDH (section 5.)

Introducing the HCDH challenge in the simulation of game Gma requires to guess
the first session (U, s) where mutual authentication is defeated, and the intended
correspondent U’ of U for this session. The HCDH challenge is then introduced in the

2 things would be different in a gap group, where S would have access to a DDH oracle.

12

public keys corresponding to these identities. This translates into the final security
bound into a loss factor depending on the number of users simulated and the number
of sessions.

The difficulty with this simulation is to deal with sessions involving U or U’: since
S does not know the private keys of these users, it heavily relies on random oracle
programmability to make consistent simulations.

As for game Gror, it seems a better approach would be to try to extract a HCDH

answer from any session (U, s’) with intended correspondent U’ instead of focusing on
(U, s): this would save the term qs in the final security reduction. There is however an
issue with that idea: in “target” sessions where S tries to extract a HCDH answer, S

is unable to emit correct key confirmations or to check key confirmations sent by E.
Therefore with several target sessions, E could use some of them to test the behavior
of the simulator w.r.t. incorrect key confirmations, thereby distinguishing with arbi-
trary high probability between unmodified game Gma and the game with the HCDH

challenge introduced.

Acknowledgements

The authors were supported in part by the European Commission through the IST
Program under Contract IST-2002-507932 ECRYPT.

References

1. M. Abdalla, P.-A. Fouque, and D. Pointcheval. Password-Based Authenticated Key Exchange
in the Three-Party Setting. In S. Vaudenay, editor, Public Key Cryptography, volume 3386 of
LNCS, pages 65–84. Springer-Verlag, 2005.

2. P. Beguin and J. J. Quisquater. Fast Server-Aided RSA Signatures Secure Against Active Attacks.
In Advances in Cryptology – Crypto’95, volume 963 of LNCS, pages 57–69. Springer-Verlag, 1995.

3. M. Bellare, R. Canetti, and H. Krawczyk. A modular Approach to the design and Analysis of
Authentication and Key Exchange Protocols (extended abstract). In STOC ’98, pages 419–428.
ACM Press, 1998.

4. M. Bellare and P. Rogaway. Entity Authentication and Key Distribution. In Advances in Cryp-
tology – Crypto ’93, volume 773 of LNCS, pages 232–249. Springer-Verlag, 1994.

5. R. Canetti and H. Krawczyk. Analysis of Key-Exchange Protocols and Their Use for Building
Secure Channels. In Advances in Cryptology – Eurocrypt’01, volume 2045 of LNCS, pages 453–474,
London, UK, 2001. Springer-Verlag.

6. R. Canetti and H. Krawczyk. A Universally Composable Notions of Key Exchange and Secure
Channels. In Advances in Cryptology – Eurocrypt’02, volume 2332 of LNCS, pages 337–351,
London, UK, 2002. Springer-Verlag.

7. W. Diffie and M. E. Hellman. New Directions in Cryptography. IEEE Transactions on Informa-
tion Theory, 1976.

8. S. Hohenberger and A. Lysyanskaya. How to Securely Outsource Cryptographic Computations.
In TCC ’05, volume 3378 of LNCS. Springer Verlag, 2005.

9. B. S. Kaliski Jr. An Unknown Key-share Attack on the MQV Key Agreement Protocol. ACM
Trans. Inf. Syst. Secur., 4(3):275–288, 2001.

10. H. Krawczyk. SIGMA: The ’SIGn-and-MAc’ Approach to Authenticated Diffie-Hellman and Its
Use in the IKE-Protocols. In D. Boneh, editor, Proceedings of CRYPTO 2003, volume 2729 of
LNCS, pages 400–425. Springer Verlag, 2003.

11. H. Krawczyk. HMQV: A High-Performance Diffie-Hellman Protocol. In Victor Shoup, editor,
Proceedings of CRYPTO 2005, volume 3621 of LNCS, pages 546–566. Springer-Verlag, August
2005.

12. T. Matsumoto, K. Kato, and H. Imai. Speeding Up Secret Computations with Insecure Auxiliary
Devices. In Advances in Cryptology – Crypto’ 88, volume 403 of LNCS, pages 497–506. Springer-
Verlag, 1988.

13. T. Matsumoto, Y. Takashima, and H. Imai. On Seeking Smart Public-key Distribution Systems.
Transactions of the IECE of Japan, E69:99–106, 1986.

13

14. A. Menezes. Another Look at HMQV. Cryptology ePrint archive, Report 2005/205, available at
http://eprint.iacr.org.

15. A. Menezes, M. Qu, and S. Vanstone. Some New Key Agreement Protocols Providing Mutual
Implicit Authentication. Workshop on Selected Areas in Cryptography (SAC ’95), pages 22–32,
1995.

16. A. Menezes, P. van Oorschot, and S. Vanstone. Handbook of Applied Cryptography. CRC Press,
1996.

17. D. Naccache, D. M’Räıhi, S. Vaudenay, and D. Raphaeli. Can D.S.A. be Improved? Complexity
Trade-Offs with the Digital Signature Standard. In Advances in Cryptology – Eurocrypt’94,
volume 950 of LNCS, pages 77–85. Springer-Verlag, 1994.

18. P. Q. Nguyen and J. Stern. The Bguin-Quisquater Server-Aided RSA Protocol from Crypto ’95
is not Secure. In Advances in Cryptology – Asiacrypt’98, volume 1514 of LNCS, pages 372–379.
Springer-Verlag, 1998.

19. P. Q. Nguyen and J. Stern. The Two Faces of Lattices in Cryptography. In J. Silverman,
editor, Proc. of Cryptography and Lattices Conference, volume 2146 of LNCS, pages 146 – 180.
Springer-Verlag, 2001.

20. O. Chevassut, P.-A. Fouque, P. Gaudry, and D. Pointcheval. Key Derivation and Randomness
Extraction. Cryptology ePrint archive, Report 2005/061, available at http://eprint.iacr.org.

21. B. Pfitzmann and M. Waidner. Attacks on Protocols for Server-aided RSA Computation. In
Advances in Cryptology – Eurocrypt’92, volume 658 of LNCS, pages 153–162. Springer-Verlag,
1992.

22. D. Pointcheval and J. Stern. Security Arguments for Digital Signatures and Blind Signatures.
Journal of Cryptology, 13(3):361–396, 2000.

23. V. Shoup and A. Rubin. Session Key Distribution Using Smart Cards. In Advances In Cryptology
- Eurocrypt’96, volume 1070 of LNCS, pages 321–331. Springer Verlag, 1996.

24. Standard for Efficient Cryptography Website. http://www.secg.org/.

A Security Proof

A.1 Instantiation of the Model

All simulations are parametrized by a group (G,+) of prime order p and generator
P , the number of users simulated nu, the size h of the output of H, the size k of the
output of KDF, the size u of the random value z used by an initiator of a session, the
number qh of H-queries, qKDF of KDF-queries and qs of Initiate-queries. It is assumed
that 2h < p.

As seen in figures 4 and 5, an authentication session has two rounds, and the
answer to the second round differs in the initiator and in the responder case.

This translates as follows into t = IniAuth(U) and SendAuth(t,M) queries: the
input message M can parse as 1||t||c for the first pass, or 2||t||IDU’||R

′ for the second
pass, where c ∈ 0, 1 indicates whether authenticating information for the initiator
(c = 0) or the responder (c = 1) should be answered to E, IDU and IDU’ are valid
identities, and R′ ∈ G. For the first pass, SendAuth outputs values in G; for the
second pass, SendAuth outputs values in Zq (case c = 0) or in Zq × {0, 1}

u (case
c = 1.)

We will use several times Shoup’s lemma: if two games A and B are equivalent
except if some event of probability P occurs, then there is the following bound on the
difference of E’s advantages in game A and B: |Adv A − AdvB | ≤ 2P.

A.2 Simulations S
Real and S

Random

First, the simulator draws nu random secret keys s1, . . . , snu in Zp. All queries are
answered in natural way.

Authentication is managed as follows. First, incorrect sequence of queries result
in S aborting the simulation: an SendAuth(1||t||c) query is invalid if no IniAuth(U)

14

Alice auth. device Alice comp. device

KeyMaterialReceived ← false

r
R
← Zq

Start(0)
←−−−−−−−− KeyAccepted← false

R = rP

Bob

z
R
← {0, 1}u

IDA, R
−−−−−−−−→ − −−−−−−−−−− →

IDA, R
−−−−−−−−→

FlowA = {IDA, R, IDB , R′}
IDB , R

′

←−−−−−−−− ← −−−−−−−−−−−
R

′

←−−−−−−−−
sA = r + H(0||z||FlowA)skA

z, sA
−−−−−−−−→ XA = R′ + H(1||FlowA)pkB

KMA = sAXA

KCA = KDF(0, FlowA||KMA)
KeyMaterialReceived ← true

z, KCA
−−−−−−−−→

Check KCB
KCB←−−−−−−−−

KSA = KDF(2, FlowA||KMA)
KeyAccepted← true

Fig. 4. 4-pass MQV-p honest execution with an authentication token, point of view of Alice

Bob auth. device Bob comp. device

Alice

KeyMaterialReceived← false
IDA, R

←−−−−−−−−

r′ R
← Zq

Start(1)
←−−−−−−−− KeyAccepted← false

R′ = r′P
IDB, R

′

−−−−−−−−→ − −−−−−−−−−− →
R

′

−−−−−−−−→
FlowB = {IDA, R, IDB, R′}

IDA, R
←−−−−−−−− XB = R + H(0||z||FlowB)pkA

z, KCA
←−−−−−−−−

sB = r′ + H(1||FlowB)skB
sB−−−−−−−−→ KMB = sBXB

Check KCA

KeyMaterialReceived← true

KCB = KDF(1, FlowB ||KMB)
R

′

, KCB
−−−−−−−−→

KSB = KDF(2, FlowB ||KMB)
KeyAccepted← true

Fig. 5. 4-pass MQV-p honest execution with an authentication token, point of view of Bob

answered t, an SendAuth(2||t||IDU’||R
′) query is invalid if no SendAuth(1||t||c) was

made, etc.
On query SendAuth(1||t||c), where t corresponds to an authentication session initi-

ated for some user U, a random value r is drawn in Zp, z is drawn in {0, 1}u and the as-
sociation (t, r, z, c) is remembered; rP is answered. On query SendAuth(2||t||IDU’||R

′),
(r +H(0||z||Flow)sU, z) is answered if c = 0, and r +H(1||Flow)sU is answered if c = 1,
with Flow = {IDU, R, IDU’, R

′}.
The key revealed to E when a session (U, s) ends successfully is the real key in

simulation SReal, and H0(View(U, s)) where H0 is a random oracle known only to S in
simulation SRandom.

A.3 Game Gror

Here we compute an upper bound for the maximum probability Adv ror to distinguish
between simulations SReal = SReal

0
and SRandom = SRandom

0
.

As explained in the sketch of proof, we need only to bound the probability for E

to make at least one KDF-query containing a correct key material for some pair of
honest matching sessions (event QH.)

15

Define a game G1
ror where collisions on random points sent by S are excluded. Since

one random point is sent for each session simulated, the probability pc that no collision
occurs satisfies

pc ≥
p(p− 1) . . . (p− qs)

pqs
≥

(

1−
qs

p

)qs

≥ 1−
qs

2

p
.

As a consequence, games Gror and G1
ror cannot be distinguished with advantage above

2 qs
2

p
.

Define a game G2
ror derived from game G1

ror where S tries to solve a CDH challenge
(X,Y). S draws at random a session number 1 ≤ i ≤ qs. Suppose a ith Initiate-query
is performed by E, on users U and U’. This means that U is supposed to initiate a
session with U’ as responder. Then, in the real simulation SReal

2
as in the random one

SRandom
1

, X is sent. Now, we want to introduce Y as the random point of U’ when
it responds to U, that is, in any session where U’ receives as first message {U, X}.
There might be ` ≤ qs such sessions: we use Diffie-Hellman random self-reducibility
and emit random points of the form Y + riP in all of these sessions. If QH occurs,
we know that ` ≥ 1, because there is at least one session (U’, s’) where U’ receives
{U, X}. Key confirmations for the sessions where X or Y has been used are replaced by
H0(Flow) for some private random oracle H0. If QH occurs or if E makes a KDF-query
revealing an inconsistency of the key confirmation generation, a KDF-query of the form
KDF(i||Flow||K) is made, where K is a candidate for the key material of session, and
Flow contains the random points exchanged during the session and allows to identify
the targeted session. The ri are pairwise distinct because collisions are ruled out. A
unique targeted session is therefore identified; because S knows the private keys of U

and U’, and the ri, K yields a unique CDH answer candidate.
S finally chooses at random one CDH answer candidate and outputs it. Taking into

account the scalar multiplications performed, and using Shamir’s trick (so that the
time to compute a sum of several scalar multiplications is equal to texp), we see that
its success probability satisfies

SuccCDH(t + (2qs + 1)texp, G) ≥
Adv ror(t, G, qKDF, qs)

qKDF qs

− 2
q2
s

p
.

Therefore,

Adv ror(t, G, qKDF, qs) ≤ qKDF qs

[

SuccCDH(t + (2qs + 1)texp, G) +
2q2

s

p

]

.

A.4 Game Gma

Let MA-B be the event whose occurring probability Succ ma we want to upper bound:
some session (U, s) ends successfully (KeyAccepted = true) while U has no real partner
for that session or while its real partner does not match its intended partner U’. It
is further required that no SendAuth is performed on the authentication device of U’

between the beginning of session (U, s) and the moment when KeyAccepted to true for
session (U, s).

We define a game G1
ma where an instance of a HCDH problem is introduced in the

first session where the above event occurs.

16

A.5 Auxiliary game G
1

ma

Guess at the beginning of the game an (ordered) pair of users (U,U’), a bit b and
a session index s. A HCDH challenge (X = xP, Y = yP) will be introduced in the
guessed session. Our hope is that the first session where MA-B occurs is (U, s), that it
has intended partner U’, with U as initiator (b = 0), or responder (b = 1.)

Assuming MA-B occurs at least once, our guess is right with probability above
(2qsn

2
u)−1. X = xP and Y = yP are introduced in the public keys of U and U’.

In the next sections, we consider only the case where the guess of S is correct.
Sessions are simulated in different ways depending on the user simulated and on its
intended correspondent. Remark that the choice of the simulation to use can be made
in time since the intended correspondent of an user is defined before that user sends
any message.

User
Simulated

Intended
Correspondent

Session
Index

Simulation Type

U U’ s “Target” session: we will extract the
HCDH answer from it

U Any s’ 6= s Sessions simulated thanks to
random oracle programmabilityU’ Any Any

V 6= U,U’ W 6= U,U’ Any Sessions simulated as usual (private
keys are known by S)

Simulation of the Target Session. (U, s) is simulated as follows: S chooses as in the
unmodified simulation SReal a random r ∈ Zp that defines the random point rP = R
sent by U. A random value z ∈ {0, 1}u is also chosen if b = 0.

Once R is revealed, if b = 0, H-queries of the form H(1||{IDU, R, IDU’, R
′}) are

answered by H′(R′). If b = 1, H-queries of the form H(0||z||{IDU, R, IDU’, R
′}) are

answered by H′(R′).
This simulation of H could fail if some input of the form above is already bound

to some output value of H. This does not occur with probability above qH/p since R
is not known by E before it is revealed.

The game is aborted as soon as a key confirmation is received for session (U, s).

Computation of Key Confirmation for the Target Session. S needs to output
a key confirmation for session (U, s) if U is the initiator of the session: in that case, it is
supposed to produce its key confirmation first. A random value is sent. E’s probability
to detect this is estimated in a later section.

Event MA-B and Key Material Retrieval. Suppose that MA-B occurs on the
target session (U, s). Then U receives a key confirmation KC for session (U, s) which
has no matching session. KC is supposed to be equal to KDF(I) where I includes the
parties identities, the random points exchanged, and the key material KM. Since no
session matches (U, s), no value was bound to KDF(I) by the simulator; therefore if
E did not perform the query KDF(I) itself, KDF(I) is bound to a random value when
KC is received and as a consequence KC is correct with probability only 2−k. Let HQ

be the event “E made the query KDF(I)”.

17

P[{KC = KDF(I)}] = P[{KC = KDF(I)} ∩ HQ] + P[{KC = KDF(I)} ∩ HQc]

= P[{KC = KDF(I)} ∩ HQ] + P[{KC = KDF(I)}|HQc]P[HQc]

≤ P[{KC = KDF(I)} ∩ HQ] + 2−k

Next, with probability ≥ (1− 2−k)
qKDF−1

≥ 1 − qKDF2−k, there is no other KDF-
query whose output is equal to KDF(I). Overall, if MA-B occurs, with probability
(P[{KC = KDF(I)}]−2−k)(1−qKDF2−k), the correct key material KM can be extracted
from the KDF-queries of E.

Informally, the above reasoning shows that when the probability of breaking mu-
tual authentication (event MA-B) is above 2−k, the corresponding key material KM

can be extracted from E’s KDF-queries. Note that 2−k is the success probability of
an attack where a random key confirmation is used: this is why one cannot expect to
extract anything when active attacks succeed with probability 2−k or below.

Answering the HCDH Challenge. S answers the HCDH challenge when the guess
it made about the first session where MA-B occurs was right. In that case, it receives
a random point R′ and a correct key confirmation, from which it extracts the key
material KM = (r + H(J)x) + (R′ + H′(R′)Y) for some known r, J and R′. It can
therefore output the corresponding HCDH answer (R′, x(R′ + H′(R′)Y).

Probability to Detect the Malformed Target Session Key Confirmation.
E has a non-zero advantage in distinguishing between the random key confirmation
produced and a correctly formed one only if it performs a KDF-query containing the
correct value of the key material KM for the target session. Call this event KD. Since we
could define a game G2

ma equal to G1
ma except that one of the KDF-queries targeting

the key confirmation of session (U, s) is chosen at random, and the corresponding
HCDH candidate is extracted and answered,

P[KD] ≤ qKDFSuccHCDH(t′, G, qH)

where t′ is the execution time of S.

Simulation of Other Sessions Involving U or U’. S must be able to simulate
perfectly game G1

ma up to session (U, s) without knowing the discrete logs of the public
keys of U and U’. Specifically, it must be able to

– produce correct key confirmations for sessions involving U or U’,
– answer to SendAuth queries targeted at U or U’.

Corrupt queries on U or U’ do not happen before the end of session (U, s), therefore
they do not need to be simulated.

The other issues are solved using random oracle programmability. SendAuth queries
are simulated as follows: when S receives a SendAuth(1||t||c) query, with t opened for U,
it draws h, s at random in [0, 2−h[, z in {0, 1}u, answers R = sP − hX and remembers
the association (t, c, h, s). On query SendAuth(2||t||IDV||R

′), it sets H(I) = h with
I = 0||z||{IDU, R, IDV, R′} if c = 0 and I = 1||{IDV, R′, IDU, R} if c = 1; S then

18

answers (s, z) if c = 0 and s if c = 1. The same rules apply to U’ with X replaced by
Y .

The same technique can be used to produce a valid key material that can be used to
derive a key confirmation or the session key itself. Therefore when simulating a session
different from the target session, with for example user U as initiator, R = sP − hX
is sent, with s and h random, and as soon as R′ is known, H(0||z||{IDU, R, IDV, R′}) is
bound to h.

The only way this simulation can fail is if some value is already assigned to H(I).

Failures in Simulation of H. When U (or U’) is the responder of a session, S can
bind H(I) to h before U sends R′. Since R′ is chosen at random, and I includes R′,
the probability that H(I) is already assigned some value is below qH/p.

When U or U’ is the initiator of a session, the story is different: R must be sent
first, and only when the random point R′ of the responder is known, it is possible
to perform the binding H(I) = h. However, z is not known to E, therefore it has
probability less than qH2−u to force a binding of H(I).

Remarks about z. The role of the secret value z is to allow session simulation in
that step of the proof. Alternatively, one could have added a first round where the
responder commits its random point, for example by sending Hu(R′) for some u-bit
random oracle Hu. E’s cheating probability is then the probability to find a second
pre-image of Hu(R′), and is still equal to qH2−u.

The probability of a failure occurring in any session is still below qH max(2−u, 1/p),
because each of the qH H-queries can target at most one session.

Putting Everything Together: Bound for Succ ma. Since simulating a session
costs at most two scalar multiplications, the probability Succ HCDH that S breaks HCDH

satisfies
SuccHCDH(t′, G, qH) ≥ 1/α [Succ ma1(t, G, qH , qKDF, qs)− 2−k]

where texp is the time of a scalar multiplication, t′ = t + 2qstexp, and

α =
2 qs n2

u

(1− qKDF2−k)(1− qH/p)(1− qH max(2−u, 1/p))
.

Since

Succma1(t, G, qH , qKDF, qs) ≥ Succma(t, G, qH , qKDF, qs)− P[KD]

≥ Succma(t, G, qH , qKDF, qs)− qKDFSuccHCDH(t′, G, qH)

one gets

Succma(t, G, qH, qKDF, qs)− 2−k ≤ (α + qKDF)Succ HCDH(t + 2qstexp, G).

B HCDH and CDH

In this section, we show that CDH reduces to HCDH using the forking lemma. E is an
attacker against HCDH with advantage Adv (t, qH). We also suppose that E does not
perform twice the same H’-query: this can be achieved by making E memorize past

19

answers. Given a CDH challenge (X = xP, Y), we run E with input (X,Y). Assume E

succeed. Then, it returns (R,Z) such that

Z = x(R + H(R)Y) = H′(R)× xY + xR

Using the forking lemma, we are able to rewind E to form a new successful run
with new values for some random oracle outputs. E’s output (R′, Z ′) satisfies R′ = R.
Then Z ′ −Z = (H′

2 −H′
1)xY , with H′

2 6= H′
1 the two oracle answers on input R in the

two runs. Finally, the answer of the CDH challenge is (H′
2(R)− H′

1(R))−1(Z ′ − Z).
The splitting lemma is as follows [22]:

Lemma 1 (Splitting Lemma) Let P a probability on a product space X × Y and

Q ⊂ X × Y .

Define Q′ =

{

(x, y) ∈ Q

∣

∣

∣

∣

P
y′∈Y

[(x, y′) ∈ A] ≥ P[Q]/2

}

Then P[Q′|Q] ≥ 1/2

With probability less than 2/p, X or Y is equal to 0. In the other cases, CDH(X,Y)
is a generator of G. Then, if R is not among the H′-queries submitted by the attacker,
its probability of success is bounded by 2−h because of the term H′(R) × xY in the
HCDH relation. Overall, with probability ε′ ≥ Adv − 2/p− 2−h, the attacker produces
a correct output (R,Z) and makes the query H′(R). Now, let Qi be the event “E
produces a correct output (Z,R), the i-th H′-query of E being H′(R)”. Let ε′i = P[Qi].
Since E makes a H′-query at most once, the Qi are disjoint and

∑

i≤qH′

ε′i = ε′.

Let us fix i. The whole behavior of the attacker only depends on its random tape
and on the oracle answers. Let us split these inputs into the ones occurring before the
ith oracle answer (x ∈ X) and the ones after and including that answer (y ∈ Y .) Let us
now apply the splitting lemma 1 with Q = Qi. It states that, given u = (x, y) ∈R Qi,
with probability 1/2, we have

P[Qi,x] ≥ ε′i/2 with Qi,x = {(x, y′) ∈ Qi | y
′ ∈ Y }.

Therefore, we can perform two executions of E as follows. The first execution is
random. With probability greater than ε′, it yields a correct answer (R,Z), and H′(R)
is queried on some query of index i. Let x (resp. y) the inputs of E before (resp.
after) the ith query. We run again the same execution with inputs x before query i,
but y′ after query i. With probability 1/2, inputs x of the attacker before query i
are such that P[Qi,x] ≥ ε′i/2. In that case, with probability ε′i/2, E produces again a
correct output (Z ′, R′) and H′(R′) is queried on query i. Since inputs before query i
are equal in both executions, R = R′. Finally, except with probability 1−2−h, answers
H′

1 and H′
2 for H′(R) are different in both executions. If all these conditions are met,

CDH(X,Y) = xY can be easily extracted. Overall, the attacker breaks CDH with
probability

SuccCDH ≥

∑

i≤qH′

(

ε′i
2

)2

− 2−h ≥
1

qH′

ε′2

4
− 2−h

20

because of the general means inequality. Finally, if E runs in time t the attacker against
CDH runs in time 2t and succeeds with probability satisfying

SuccCDH(2t, G) ≥
[Succ HCDH(t, G, qH′)− 2/p− 2−h]2

4qH′

− 2−h.

