
An extended abstract of this work appears in Proceedings of the 5th International Conference (SCN ’06)
(6 – 8 september 2006, Maiori, Italy)
M. Yung Ed., Springer-Verlag, LNCS 4116, Pages 156–172.

About the Security of MTI/C0 and MQV

Sébastien Kunz-Jacques1,2 and David Pointcheval1

1 École normale supérieure, 45 rue d’Ulm, 75005 Paris, France
David.Pointcheval@ens.fr

2 DCSSI Crypto Lab, 51 boulevard de La Tour-Maubourg
F-75700 Paris 07 SP, France

kunzjacq@yahoo.fr

Abstract. The main application of cryptography is the establishment of secure chan-
nels. The most classical way to achieve this goal is definitely the use of variants of the
signed Diffie-Hellman protocol. It applies a signature algorithm on the flows of the basic
Diffie-Hellman key exchange, in order to achieve authentication. However, signature-less
authenticated key exchange have numerous advantages, and namely from the efficiency
point of view. They are thus well-suited for some constrained environments. On the
other hand, this efficiency comes at the cost of some uncertainty about the actual se-
curity.
This paper focuses on the two most famous signature-less authenticated key exchange
protocols, MTI/C0 and MQV. While the formal security of MTI/C0 has never been
studied, results for the plain MQV protocol are still debated. We point out algorithmic
assumptions on which some security proofs can be built in the random oracle model.
The stress is put on implementation aspects that must be properly dealt with in order
to obtain the expected security.
Some formalizations about authenticated key exchange, and the generic model, are of
independent interest.

Key words: Key Exchange, MTI, MQV, Diffie-Hellman, Security Proof.

1 Introduction

Since the introduction of the Diffie-Hellman protocol in the seminal paper [13], key
exchange has played a prominent role in public-key cryptography. It provides two
entities communicating on an insecure channel with a common secret value, which
can thereafter be used to setup a secure channel. The plain Diffie-Hellman protocol
does not provide entity authentication and is therefore vulnerable to “man-in-the-
middle” attacks. A classical way to overcome this weakness is to authenticate the
flows with strong authentication mechanisms, such as message authentication codes
(MAC) or signature schemes (as for instance in the Station-To-Station protocol [14]).

A few proposals apply weaker authentication techniques, which are specific to the
key agreement method. Whereas they are signature-less, they provide both strong
authentication (the so-called “mutual authentication”) and strong secrecy (the so-
called “forward-secrecy”). Furthermore, since no signature computations/verifications
are needed, they are quite efficient.

This paper focuses on some of these “signature-less protocols”. The most well-
known algorithms in that category are the MTI family [19, 21] and MQV [20, 27]. More
specifically, among the MTI family, we focus on MTI/C0, which is the only variant
of the MTI family that can be expected to provide the forward-secrecy. MQV was
proposed as a solution to overcome some security weaknesses of MTI/C0. However, one
can remark that attacks against the “basic MTI/C0” protocol can be easily prevented
when proper and classical safeguards (eg. key confirmation rounds) are added.

As a conclusion, we show that when properly set-up, that is, in a suitably chosen
group and with a proper key derivation mechanism, both MTI/C0 and MQV are

c© Springer-Verlag 2006.

2

secure authenticated key exchange protocols, and even achieve forward-secrecy. We
focus on the 3-pass variants of these protocols because no two-pass protocol achieves
mutual authentication: the first message can always be replayed by an active attacker.
Some two-pass protocols are analyzed in [15, 18].

Related work. Key exchange is closely related to authentication, as illustrated by
the “man-in-the-middle attacks”. A very general model for these two problems was
introduced by Bellare and Rogaway [7]. Bellare, Canetti and Krawczyk [3] followed a
different path, by providing a general tool to transform a protocol secure when com-
munications are authenticated into a new protocol secure against an active adversary
(able to alter messages). Among other applications, this framework can be applied to
the “authenticated key exchange” (AKE) problem.

An extensive comparison of the security properties of some signature-less AKE
protocols can be found in [9]; however, no security proof is provided. On the other
hand, [8] provides security analyzes of several authenticated variants of the Diffie-
Hellman scheme. For such studies, a formal security model is required. We thus review
the strongest one, based on the seminal work of Bellare and Rogaway [7], and various
extensions from [1, 2, 8].

The security of MQV was recently analyzed and a “hashed” variant, HMQV, was
proved [17]. We focus on the plain MQV protocol, and show that proper key derivation
is enough to overcome its security weaknesses, like the Unknown Key Share attack of
Kaliski [16]. As for MTI/C0, no formal security result was available to our knowledge.

Security Model. Informally, we want to model resistance of a key exchange protocol
against active and adaptive attackers. The required security properties are:

– Semantic security. If an execution of the protocol successfully terminates be-
tween a user A and its intended correspondent B, no one but A and B should
possess any information about the key agreed upon;

– Mutual authentication. A user A engaged in a key exchange session accepts
(actually gets a session key) with B only if it is indeed speaking to B;

– Forward secrecy. The disclosure of some user’s private keys does not compromise
(the semantic security of) previously negotiated keys.

By “active and adaptive attackers”, as in [7], we mean that the attacker E has
entire control of the communication network, and thus controls all flows between
users. Therefore, there is no canonical definition of the partner of some user that runs
the protocol. Partnership is defined with the help of views of the exchanged messages
between two users. Since we consider forward-secrecy, E is also allowed to (adaptively)
corrupt users, which then provide her with their long-term private keys.

More formally, the attacker plays a real-or-random game with a simulator, in which
it succeeds if it distinguishes between true negotiated keys and random values. This
game models the semantic security (and even the forward-secrecy, if the corruption
of players is allowed). Strictly speaking, not mutual authentication, but only implicit

authentication is guaranteed: when A negotiates a key with B, only A and B can
compute the key, however from the point of view of A, there is no guarantee that
B did compute the key or even that B was involved in the exchange at all. Key
confirmation rounds are however well-known to enhance semantic security into mutual
authentication [5, 11].

3

Note that the classical definition of the semantic security involves a find-then-guess
game [7, 4]. In this paper, we use a real-or-random game, which is both stronger [2]
and simpler to handle.

Contributions. Proofs are performed in the random oracle model [6] and rely on
custom variants of the Diffie-Hellman problem: f -RCDH for MQV and 2-3-CDH for
MTI/C0. f -RCDH is a rather non-standard problem, and might well be weaker than
plain CDH; however we show that the f -RCDH intractability hypothesis is equivalent
to the semantic security of MQV, which gives a strong motivation to introduce this
new algorithmic problem (while the reduction of f -RCDH to MQV is performed in the
random oracle model, the reduction of MQV to f -RCDH is in the standard model) .
On the other hand, 2-3-CDH is a rather natural extension of CDH, but we only show
that 2-3-CDH intractability hypothesis is at least as strong as the semantic security
of MTI/C0.

Since new assumptions are always questionable, besides the security analysis, a
large part of the paper is devoted to study the two new problems 2-3-CDH and f -

RCDH. In particular, we build on generic group results to provide arguments towards
the actual hardness of both problems: they are hard in the generic sense. Moreover, f -

RCDH is shown to be equivalent to the classical CDH, under the additional assumption
that the truncation function f used in MQV can be modeled as a random oracle. This
motivates the replacement of this function of MQV by a proper hash function, as
performed in [17].

For this analysis, we construct a simple and new tool of independent interest that
allows one to check whether a particular variant of the Diffie-Hellman problem is hard
in the generic sense or not.

Organization. The paper is organized as follows. Section 2 introduces a common
framework for signature-less authenticated key exchange protocols. Many different
protocols, among which MTI variants and MQV, can be plugged into that frame-
work. MTI/C0 and MQV are presented in section 3, together with the corresponding
algorithmic hypotheses, 2-3-CDH and f -RCDH. A sketch of the security proof is pre-
sented in section 4, while the full proof is postponed to appendix B. Next, in section 5,
the new algorithmic assumptions are analyzed. Finally, we sum up in section 6 the
key design choices that help make a signature-less key exchange protocol secure. The
security model, which is the classical one, is reviewed in appendix A.

2 A Framework for Signature-Less Authenticated Key Exchange

We describe a general framework, in order to deal with signature-less authenticated
key exchange protocols. Users are assumed to own public/private key pairs, and the
public keys are supposed to be authentic and known to any party of the system.

First, we need some description of the view that a user (A or B) has of the messages
exchanged during a session, since this will define the partnership relation.

Session Flow, Partners. We denote by Flow(U, i) the bit-string encoding the mes-
sages seen by user U ∈ {A,B} during session i, up to the key material agreement. It is
assumed that

Flow(A, i) = Flow(B, i) ⇐⇒
{

no message between A and B was
altered in any way during session i

}

4

A and B are said to be partners in a session i if Flow(A, i) = Flow(B, i). Informally, if
A and B are partners in session i, they share the same key at the end of the session,
and the converse should hold except with negligible probability.

Key Material Agreement. Let us now describe a key agreement between two users
A and B. In a preliminary phase, one of the users asks the other party to initiate a
key negotiation. From the cryptographic standpoint, the only interest of this phase is
that the messages exchanged ends up in the session flow like the rest of the exchange:
as a consequence, we can assume that the identities of A and B are contained in the
session flows.

This phase of the protocol allows A and B to agree on common secret key material
from which both the session key and key confirmations are derived:

– A chooses at random an element rA in some space R. Some function ϕ of rA is
sent to B. The function ϕ might additionally take as input A’s private/public key,
and B’s public key. We name MA all this long term key material available to A.

– B performs the same operation towards A.
– A and B both derive some key material KM through another operation ψ satisfy-

ing1 a kind of commutativity property

KM = ψ(ϕ(rA,MA), rB,MB) = ψ(ϕ(rB,MB), rA,MA).

Key Confirmation. When a user U ∈ {A,B} has computed KM, it can compute
the common key K ∈ K and the key confirmations KC(U’) for any partners U’ (and
himself) by

K = H(KM‖0‖Flow(U)) KC(U’) = H(KM‖1‖IDU’‖Flow(U))).

In this relation, the flows consist of the messages up to and including the exchange
of random elements, H is a h-bit hash function (assumed to behave like a random
oracle). Both A and B can compute the two key confirmations KC(A) and KC(B). But
A sends KC(A) to B, while B sends KC(B) to A. Each user checks the value sent by
the other and rejects the key if this value is incorrect.

3 Formalization of MTI/C0 and MQV

For both MTI/C0 and MQV, G is a cyclic group of prime order p, and g is a generator
of G. All random elements are drawn uniformly in the sets mentioned.

3.1 MTI/C0

The private key su of a user U is a random element in Z
?
p and the corresponding public

key equals Ku = gsu .

1 ψ might reject some values of its first input: the relation holds only when neither ϕ(rA,MA) nor
ϕ(rB,MB) is rejected

5

Key Material Agreement. A (resp. B) draws a random element ra (resp. rb) in
Z

?
p. A then computes Ra = Kb

ra and sends it to B, while A computes Rb = Ka
rb and

sends it to A. The key material KM is then computed by each user according to the
relation

KM = grarb = Ra
rb/sb = Rb

ra/sa

Note that if one of the received values (Ra or Rb) is equal to 1, the recipient aborts
the protocol. Thus, using the framework of section 2, we have

ϕ(ra,Ma = (sa,Ka,Kb)) = Ra = Kra

b

and ψ(Ra, rb,Mb = (sb,Ka,Kb)) =

{

abort if Ra = 1

R
rb/sb
a otherwise

2-out-of-3 Computational Diffie-Hellman Problem. In order to prove the se-
curity of MTI/C0, we clearly need to make the assumption that the Computational
Diffie-Hellman problem is intractable: given gx and gy, it is hard to compute gxy for
random elements x, y ∈ Zp. In order to deal with active attacks, we also need another
computational hardness hypothesis that is an extension of the above CDH:

2-out-of-3 Computational Diffie-Hellman.

Given X = gx and Y = gy, for random x, y ∈ Zp, compute a pair
(Z, T) of elements in G, where Z 6= 1 and T is the CDH value of X,
Y and Z: T = Zxy.

First, it is clear that 2-3-CDH is at most as difficult as CDH. Indeed, if an adversary
manages to compute h = gxy, (gz , hz) is a correct 2-3-CDH answer for any choice
of z ∈ Z

?
p. Moreover, it is not more difficult than the inverse-DH because by setting

Z = g1/y where Y = gy, (Z,X) is a correct answer. As a consequence, a tight reduction
from 2-3-CDH to CDH would imply a tight reduction from Inv-CDH to CDH.

In a cyclic group of composite order, the probability in breaking 2-3-CDH is not
smaller than 1/ω, where ω is the size of the smallest non-trivial subgroup of G. Indeed,
an attacker can always choose at random two elements (Z, T) of order ω and then,
since the order of T ′ = CDH(X,Y,Z) divides ω, and since there is only one subgroup
of order ω in the cyclic group G, T = T ′ with probability 1/ω.

In groups of prime order where the discrete logarithm is hard, which our analysis
focuses on, it seems reasonable to expect that no adversary can break 2-3-CDH in
polynomial time and with a non-negligible probability. Let us denote by Succ CDH(t)
and Succ 2-3-CDH(t), for the maximum winning probability of an attacker running in
time t against CDH and 2-out-of-3 Computational Diffie-Hellman in G, respectively.
The probability is averaged over all possible challenges (X,Y) and over the randomness
of the attacker.

2-3-CDH and Active Attacks. In the next section, we show that the intractability
of 2-3-CDH is enough to guarantee the security of MTI/C0. Conversely, solving 2-3-

CDH does not seem to be enough for an attacker to impersonate a user in a MTI/C0
session.

6

3.2 MQV

In the specification of MQV, we have a function f from G → Zp. In the actual
description of MQV [20, 27], G is a prime order subgroup of an elliptic curve group
over a finite field Fq, where q is a n-bit prime; for P = (x, y) ∈ G, x, y ∈ [0, q − 1],
f(P) = x mod 2dn/2e + 2dn/2e.

In the following, we use the multiplicative notation for the group G.
The private key su of a user U is a random element in Zp and the corresponding

public key equals Ku = gsu .

Key Material Agreement. A (resp. B) draws a random element ra (resp. rb) in Zp.
Then A computes Ra = gra and sends it to B. Similarly, B computes Rb = grb and
sends it to A. The key material KM is then computed by each person according to the
relation

KM = g(ra+f(gra)sa)(rb+f(grb)sb) =
(

Ra ×Ka
f(Ra)

)(rb+f(Rb)sb)

=
(

Rb ×Kb
f(Rb)

)(ra+f(Ra)sa)
.

Therefore ϕ(ra,MA = (sa,Ka,Kb)) = gra = Ra

and ψ(Ra, rb,MB = (sb,Ka,Kb)) =
(

Ra ×Ka
f(Ra)

)(rb+f(grb)sb)
.

f-Randomized Computational Diffie-Hellman Problem. As for MTI/C0, we
need a new assumption, derived from CDH, for proving the security of MQV. It de-
pends on the function f , hence the notation f -RCDH. As shown below, f -RCDH must
be hard for MQV to withstand active attacks. We also show in section 5.1 that the
intractability of RCDH can be reduced to the one of CDH under some additional
assumptions on f .

f -RCDH

Given X = gx and Y = gy, for randomly chosen x, y ∈ Zp, find
R,Z ∈ G such that Z = Rx × gf(R) xy.

With r = logg R (which the attacker does not need to know), the above relation

rewrites Z = gx(r+f(R)y).
As for any computational problem, Succ f-RCDH(t) is the maximum winning prob-

ability of an adversary running in time t against f -RCDH in G, averaged over X, Y
and the random tape of the adversary.

Note that f -RCDH is not more difficult than CDH, because knowing h = gxy =
CDH(X,Y), one can answer a valid pair (Z,R), by choosing R = gr and Z = Xrhf(R).

f -RCDH and Active Attacks. Solving f -RCDH allows to impersonate the responder
(denoted by B in our description) in a MQV session: given the public keys KA, KB

of A and B and the random value RA sent by A, B can be impersonated to A using

a correct f -RCDH answer (RB,KM) to the challenge (X = RA ×Kf(RA)
A

, Y = KB).
Indeed, if RB is used as the random value sent to A, then the resulting key material
is KM. Note that no random oracle hypothesis is used here.

7

4 Sketch of Proof

As explained in the introduction, we follow the real-or-random model, as described
in appendix A. In this scenario, the attacker E plays against a simulator S and has
complete control of the exchanges between user instances. The simulator S draws a
random bit b at the beginning of the game and E’s goal is to guess this bit b. The
attacker E can perform Test and Corrupt queries to obtain respectively session keys
and long-term private keys of users. Before any Corrupt query occurs, the answers of
Test queries depend on b: they are either the real keys (if b = 1) or random values
(if b = 0). In both cases, the answers to two queries asked to partners in a session are
the same. After a Corrupt query occurs, Test queries are answered by the real keys
only. After getting long-term private keys, the adversary is indeed able to compute the
session keys itself. Furthermore, forward-secrecy only considers the semantic security
of keys agreed before any corruption.

Note that Test queries can only be asked to users who actually hold a session key,
and thus after reception of a correct key confirmation at the end of the protocol run,
so that they are “convinced” that they actually share a session key with their intended
partner.

The proof is performed with the now classical game technique [26, 25]. The first
game is the real game in which we want to upper bound the success probability of E.

First, session flow collisions are ruled out. This is easy, because not all the ran-
domness of the exchanged values in a protocol run is controlled by the attacker: at
least one of the two values exchanged at the beginning of a run is properly drawn in
G by S, and the collision probability between two sessions is therefore upper-bounded
by 1/p. Informally, in the remaining game executions, session keys are uncorrelated
because of the random oracle hypothesis and the inclusion of the session flow in key
derivations.

Next, the attacker key confirmations that are correct “by chance”, i.e. although
the right query was not made to the random oracle, are refused. There are not too
many of them if the output size of H, h, is large enough.

Active attacks before Corrupt queries are then artificially blocked. This is per-
formed by refusing key confirmations not originating from the simulator.

Because correct key confirmations produced with incorrect oracle inputs are al-
ready forbidden, E sees the difference between this new game and the previous one
only if it manages to produce a correct oracle input for a key confirmation. To show
that this happens with negligible probability, an instance of a custom problem is in-
troduced in the public keys of two users, such that the oracle input corresponding to
a key confirmation is the answer to this challenge.

After this crucial step, we are in a game where no active attack can be performed
in sessions before Corrupt queries. A CDH challenge is finally introduced in one of
these sessions; key confirmations and the final key are simulated by random values.
Again because of the random oracle hypothesis, E has to solve the CDH problem to
be able to ask a relevant question to the oracle, in order to gain some advantage in
guessing b or observing inconsistencies in key confirmations.

We could use the Diffie-Hellman random self-reducibility to introduce a CDH chal-
lenge in all sessions before a Corrupt query, thereby gaining a factor qs in the security
reduction. However, in a concurrent model, many sessions can be “pending” when the
first Corrupt query occurs; these sessions require a special simulation. The simulator

8

would therefore have to guess correctly the set of pending sessions, leading to a loss
factor 2qs . This is why the challenge is only introduced in one session.

For simplicity, we limited the scope of the model and the proof (appendices A
and B) to a two-user setting. However, since the identities of both parties are included
in the session flows and in all key derivations, the generalization of the proof to a n-user
setting is straightforward.

Finally, we prove that E’s advantage in distinguishing real keys from random ones
within time t in a prime-order group G having p elements is bounded by

2qH × (SuccP(t, G) + qsSuccCDH(t, G)) +
q2s
p

+ qs2
−h.

where SuccP = Succ 2-3-CDH for MTI/C0 and Succ P = Succ f-RCDH for MQV.

5 Intractability Results

5.1 f -RCDH and CDH are Equivalent for a Random Oracle f

In this section, we prove that if the function f of f -RCDH can be modeled by a random
oracle, f -RCDH is equivalent to CDH. We already know that f -RCDH reduces to CDH

without any special assumption (see section 3.2). For the converse implication, we
suppose E is an attacker against f -RCDH that has advantage Adv (t, qf), where qf is
the number of E’s f -queries. Given a CDH challenge (X,Y), we get it as a f -RCDH

challenge and assume that E returns (R,Z) such that

Z = CDH(X,R × Y f(R)) = CDH(X,Y)f(R) × CDH(X,R).

Then we can replay part of that successful run and change the function f at the
crucial query R to induce the attacker into producing another correct answer (Z ′, R)
to the challenge, with a different value f ′(R). Then Z ′/Z = CDH(X,Y)f ′(R)−f(R),
which easily leads to CDH(X,Y).

To compute a lower-bound for the success probability of this technique, we need
the following splitting lemma [22]:

Lemma 1 (Splitting Lemma) Let P a probability on a product space X × Y and

Q ⊂ X × Y .

Define Q′ =

{

(x, y) ∈ Q
∣

∣

∣

∣

P
y′∈Y

[(x, y′) ∈ A] ≥ P[Q]/2

}

Then P[Q′|Q] ≥ 1/2

Let p
c

be the collision probability of f and p
max

be the guessing probability of
f mod p, i.e. the maximum probability of any output value of f mod p, with #G = p.
If the output of f is a random uniform h-bit string with 2h < p, p

c
= p

max
= 2−h.

We suppose without loss of generality that each query is submitted at most once by
the attacker. With probability less than 2/p, X or Y is equal to 1. In the other cases,
CDH(X,Y) is a generator of G. Then, if R is not among the f -queries submitted
by the attacker, its probability of success is bounded by p

max
because of the term

CDH(X,Y)f(R) in the f -RCDH relation. Overall, with probability Adv
′ ≥ Adv −2/p−

p
max

, the attacker produces a correct output (R,Z) and makes the query f(R). Now,

9

let Qi be the event “E produces a correct output (Z,R), the i-th f -query of E being
f(R)”. Let Adv

′
i be the probability of Qi. Then

∑

i≤qf

Adv
′
i = Adv

′.

Let us fix i. The whole behavior of the attacker only depends on its random tape
and on the oracle answers. Let us split these inputs into the ones occurring before the
ith oracle answer (x ∈ X) and the ones after and including that answer (y ∈ Y). Let us
now apply the splitting lemma 1 with Q = Qi. It states that, given u = (x, y) ∈R Qi,
with probability 1/2, we have

P[Qi,x] ≥ Adv
′
i/2 with Qi,x = {y′ ∈ Y |(x, y′) ∈ Qi}.

Therefore, we can perform two executions of E as follows. The first execution is
random. With probability greater than Adv

′, it yields a correct answer (R,Z), and
f(R) is queried on some query of index i. Let x (resp. y) the inputs of E before (resp.
after) the ith query. We run again the same execution with inputs x before query i,
but y′ after query i. With probability 1/2, inputs x of the attacker before query i are
such that P[Qi,x] ≥ Adv

′
i/2. In that case, with probability Adv

′
i/2, E produces again

a correct output (Z ′, R′) and f(R′) is queried on query i. Since inputs before query i
are equal in both executions, R = R′. Finally, except with probability 1− p

c
, answers

f1 and f2 for f(R) are different in both executions. If all these conditions are met,
CDH(X,Y) can be easily extracted. Overall, since the probability to be in case i is
qi = Adv

′
i/Adv

′, the attacker breaks CDH with probability

SuccCDH ≥ Adv
′/2

∑

i

[

qi Adv
′
i/2

]

− p
c

= 1/4
∑

i

[

Adv
′
i
2
]

− p
c
≥ Adv

′2

4qf
− p

c

because of the Cauchy-Schwarz inequality. Finally, if E runs in time t the attacker
against CDH runs in time 2t and succeeds with probability not less than

SuccCDH(2t) ≥ [Succ f-RCDH(t, qf)− 2/p− p
max

]2

4qf
− p

c
.

This proof of equivalence between f -RCDH and CDH shows that replacing the
function f of MQV by a cryptographic hash function can improve the security of
MQV, while not much impairing its performance. This is a case for HMQV [12],
where each term f(R)sA +R in the key material is replaced by H(R||B)sA +R with
H a hash function modeled by a random oracle.

5.2 Generic Group Model

Generic groups were introduced in [24]: a generic group is a group (G,+) whose
elements are represented randomly. Thus an algorithm E working in a generic group
G does not perform group computations itself, but rather makes queries to oracles
that answer with representations, in some set I, of the results. Two representations
are equal if and only if the corresponding elements are equal. In the sequel, G = Zp

and I = [0, p − 1]. Through the group oracle, E can multiply existing elements, and
introduce new random elements.

10

Elements of G represent logarithms, and the representation of some x corresponds
to gx. In a generic group, nothing can be learned from gx, except log equality: if
gx = gy, x = y.

We define a Generic group problem that enables to study variants of the com-
putational Diffie-Hellman problem in that model. An adversary E plays against a
generic group. Some multivariate polynomial ϕ(X1, . . . , Xk, Y1, . . . , Y`) is fixed. Some
coefficients of ϕ might depend in an arbitrary way of E’s behavior. For values of
x1, . . . , xk chosen by the simulator, and knowing gx1 , . . . , gxk , the goal of E is to com-
pute Y1 = gy1 , . . . , Y` = gy` such that ϕ(x1, . . . , xk, y1, . . . , y`) = 0.

All elements manipulated by E are linear polynomials in x1, . . . , xk and some new
random elements xk+1, . . . introduced through the group oracle. Let us call Pi the
polynomial corresponding to yi. Pi is a random variable. Then we have the following

Theorem 1 Let d = deg(ϕ) and Pm be an upper bound for the probability

Pm = P[ϕ(X1, . . . , Xk, P1(X1, . . . , Xk), . . . , P`(X1, . . . , Xk)) = 0]

Then the probability that E wins after qG queries satisfies

Succ (qG) ≤ Pm +
(3qG + k + 2)2

2p
+
d

p

For example, the plain CDH problem corresponds to ϕ(x1, x2, y1) = x1x2 − y1; in
that case, Pm = 0 because for any linear expression y1 in x1 and x2, and possibly
other variables, ϕ 6= 0.

Proof

We define a game corresponding to the challenge of E.

Generic Group Game 0. A simulator S chooses x1, . . . , xk randomly in Gk, outputs
the corresponding representations r1, . . . , rk to E. E has access to an oracle σ that,
on input (a, b, r, r′) ∈ Z

2 × I2, answers with the representation of ax + bx′, where
r is the representation of x and r′ the representation of x′. The connection between
representations and elements of G is managed by the simulator through a list L of pairs
(x, r) associating an element with its representation. A representation r in a σ-query
input does not need to correspond to an element of G in L; if it does, the corresponding
element is used, otherwise a random element x is drawn by the simulator in G and
bound to r, that is, (x, r) is added to L. The same rule applies for the answer to
the query: if ax + bx′ = x′′ with (x′′, r′′) ∈ L, r′′ is answered. Otherwise, a random
representation r′′, not yet bound to any element of G, is chosen in G, (x′′, r′′) is added
to L, and the answer to the σ query is r ′′. Overall, each σ-query adds at most 3 pairs
to L.

Initially, L = {(0, rz), (1, re), (x1, r1), . . . , (xk, rk)}; E is given rz, re, r1, . . . , rk. E’s
goal is to output r′1, . . . , r

′
` corresponding to y1, . . . , y` in G that, together with the

xi’s, cancel ϕ. The last ` queries of E are assumed to be of the form σ(1, 0, r ′i,). E has
won if ϕ(x1, . . . , xk, y1, . . . , y`) = 0 where (yi, r

′
i) ∈ L.

Generic Group Game 1. In Game 1, random values in G are replaced by unknowns
Xi. Representations of elements correspond to linear combinations of these unknowns
with coefficients in Zp, or polynomials in Zp[X1, . . . , Xn, . . .], as follows.

11

Initially, L = {(0, rz), (1, re), (X1, r1), . . . , (Xk, rk)}; E is given rz, re, r1, . . . , rk.
When E performs a σ-query using a representation r not yet bound to any element of
G, instead of choosing a new random element in G, the simulator introduces a new
unknown Xi. In a query (a, b, r, r′), if r represents a polynomial F and r ′ represents
F ′ (F and F ′ are either new unknowns or polynomials coming from L), the simulator
first computes F ′′ = aF + bF ′. As before, if (F ′′, r′′) is in L, r′′ is answered, and
otherwise a random representation is chosen among the ones not yet appearing in L.
All polynomials in L are affine.

Before stopping the game, E outputs r ′1, . . . , r
′
` through σ-queries as in game 0. E

wins if
ϕ(X1, . . . , Xk, P1, . . . , P`) = 0

where (Pi, r
′
i) ∈ L.

Difference between E’s success probabilities in game 0 and game 1. In game
1, representations of different polynomials P1, P2 always differ, while in game 0 they
differ if and only if P1(x1, . . . , xk) 6= P2(x1, . . . , xk).

Let F1 = 0, F2 = 1, F3 = X1, . . . , Fn be the polynomials of L at the end of the
game: n is bounded by 3qG + k + 2. Note that ∆i,j = Fi − Fj 6= 0 for i 6= j. We need
the following lemma from [23]:

Lemma 2 Let p be a prime and F a m-variable polynomial with coefficients in Zp,

of total degree d. Then the probability that a random value of Z
m
p is a root of R is at

most d/p.

The probability that one of the ∆i,j cancels at some specific value x = (x1, . . . , xk)
is therefore bounded by n2/2p.

Assuming no ∆i,j cancels in x, game 2 perfectly simulates game 1. However,
the success criterion in game 2 is stricter than in game 1. The probability that
ψ(X1, . . . , Xk) = ϕ(X1, . . . , Xk, P1, . . . , P`) 6= 0 but ψ(x) = 0 for the polynomials
P1 = Fi1 . . . , P` = Fi` chosen by E among L is bounded by d/p. Indeed, if ψ 6= 0, it is
of degree ≤ d because the Pi are linear, and vanishes in x with probability ≤ d/p.

Overall,

|Succ 1 − Succ 0| ≤
(3qG + k + 2)2

2p
+
d

p
.

Finally, in game 1, E wins if and only if ϕ(X1, . . . , Xk, P1, . . . , P`) = 0. This hap-
pens with probability Pm.

�

5.3 2-3-CDH and the Generic Group Model

Our 2-3-CDH problem corresponds to the polynomial ϕ(x1, x2, y1, y2) = x1x2y1 − y2.
Indeed, the answer (Z, T) to the 2-3-CDH challenge (X = gx, Y = gy) is supposed to
satisfy T = Zxy. This is equivalent to the above equation provided X = gx1 , Y = gx2 ,
Z = gy1 and T = gy2 . Since Z 6= 1, a valid answer of the adversary is such that y1 is a
non-zero affine polynomial and ϕ 6= 0, therefore Pm = 0. Therefore, using k = 2 and
d = 2, theorem 1 yields

Succ 2-3-CDH(qG) ≤ (3qG + 4)2

2p
+

2

p
= 9× q2G

2p
+ 12× qG

p
+

10

p
.

12

5.4 f -RCDH and the Generic Group Model

For our f -RCDH problem, ϕ(x1, x2, y1, y2) = x1(f(r)x2 + y1) − y2, where r is the
representation of y1. This case is a little bit more complicated than for 2-3-CDH,
because ϕ depends on E’s answers through the term f(r).

Let ψ(X1, X2, . . .) = X1(f(r)X2 + P1(X1, X2, . . .))− P2(X1, X2, . . .) where the Pi

are the polynomial representations of the Yi. Unknowns Xi for i > 2 represent random
values in the group introduced by E. We want an upper bound on P[ψ = 0] at the end
of the game.

We know that deg(ψ) ≥ 2 as soon as f(r)X2 + P1 is not constant. Either r was
chosen by the adversary and P1 = Xi with i > 2, or P1 is an affine polynomial chosen
by the adversary through some sequence of computations and r is random. In the first
case f(r)X2 + P1 is not constant. In the second case, r is a random uniform value in
I\I ′, where I ′ = {r1, . . . , rn} and the ri are the other representations already in L at
the time of the query producing r. The best E can do is to set P1 to −uX2 where u
is the most likely output of f for a random input x in I\I ′.

Let p
max

(I ′) = maxi∈I\I′ P[f(x) = i|f(x) /∈ I ′]: f(r)X2 + P1 is constant with
probability less than p

max
(I ′). Overall if p

max
(n) is a uniform bound over I ′ of p

max
(I ′)

for #I ′ ≤ n, Pm ≤ np
max

(n) and theorem 1 yields with n = 3qG + 4

Succ f-RCDH(qG) ≤ np
max

(n) +
n2

2p
+

2

p

Discussions about the Maximum Probability pmax. In the specification of
MQV [27], f is the truncation of the ` = blog2(p)/2c + 1 LSBs of its input. Let
α =

⌈

p/2`
⌉

. Then every element in [0, 2`−1] is the image of at most α elements in I,
therefore p

max
(0) ≤ α/p. If n elements are removed in I, p

max
(n) ≤ α/(p − n), and

therefore if n ≤ p/2,

p
max

(n) ≤ p/2` + 1

p− n ≤ 2
p/2` + 1

p
= 2

(

2−` +
1

p

)

≤ 2

(

1√
p

+
1

p

)

.

Overall, with MQV, the winning probability of E against f -RCDH satisfies

Succ f-RCDH(qG) ≤ 9 q2G
2p

+
18 qG
p

+
18

p
+

6 qG√
p

+
8√
p

As long as n = 3 qG + 4 ≤ p/2, this last hypothesis being perfectly sensible for
cryptographic purposes.

6 Key Exchange Implementation Choices

Our security proof highlights the importance of several implementation choices when
working with Diffie-Hellman-like key exchange algorithms:

– Work in a prime order group G. In our case, the computational problem re-
lated to MTI/C0, 2-3-CDH, has a security that depends on the size of the smallest
non-trivial subgroup of G. As for f -RCDH, if G has non-trivial subgroups, trade-
offs can be devised to force the common key to belong to some subgroup of G;
the proof of hardness of f -RCDH in a composite-order generic group would yield
a bound depending on the size of the largest prime order subgroup of G.

13

– Use the session flow, including parties identities, to derive keys. This
“freezes” active attacks by de-correlating keys between users and sessions. Note
that this is not specific to the signature-less case: an unknown key-share attack
can be devised against STS because it does not follow this principle [10]. Including
the user identities is of course crucial in a setting with more than two users.

– Confirm the keys. Without key confirmations, an adversary against a signature-
less protocols can impersonate a user during the key negotiation, and then wait
for a long-term key leakage to compute the session key. On the contrary, a key
confirmation prevents the other party to output material enciphered with the
session key before it is sure that its partner actually knows the key.

Acknowledgements

The authors were supported in part by the European Commission through the IST
Program under Contract IST-2002-507932 ECRYPT.

References

1. M. Abdalla, O. Chevassut, and D. Pointcheval. One-time Verifier-based Encrypted Key Exchange.
In S. Vaudenay, editor, Public Key Cryptography, volume 3386 of LNCS, pages 47–74. Springer-
Verlag, 2005.

2. M. Abdalla, P.-A. Fouque, and D. Pointcheval. Password-Based Authenticated Key Exchange
in the Three-Party Setting. In S. Vaudenay, editor, Public Key Cryptography, volume 3386 of
LNCS, pages 65–84. Springer-Verlag, 2005.

3. M. Bellare, R. Canetti, and H. Krawczyk. A modular Approach to the design and Analysis of
Authentication and Key Exchange Protocols (extended abstract). In STOC ’98, pages 419–428.
ACM Press, 1998.

4. M. Bellare, A. Desai, E. Jokipii, and P. Rogaway. A Concrete Security Treatment of Symmetric
Encryption: Analysis of the DES Modes of operation. In Proceedings of the 38th Symposium of
Foundations of Computer Science, pages 394 – 403. IEEE Computer Security Press, 1997.

5. M. Bellare, D. Pointcheval, and P. Rogaway. Authenticated Key Exchange Secure Against Dic-
tionary Attacks. In B. Preneel, editor, Advances in Cryptology – Eurocrypt 2000, volume 1807 of
LNCS, pages 470–484. Springer-Verlag, 2000.

6. M. Bellare and P. Rogaway. Random Oracles are Practical: A Paradigm for Designing Efficient
Protocols. In Proceedings of the 1st ACM Conference on Computer and Communications Security,
pages 62 – 73. ACM Press, 1993.

7. M. Bellare and P. Rogaway. Entity Authentication and Key Distribution. In Advances in Cryp-
tology – Crypto ’93, volume 773 of LNCS, pages 232–249. Springer-Verlag, 1994.

8. S. Blake-Wilson, D. Johnson, and A. Menezes. Key Agreement Protocols and their Security
Analysis. In Cryptography and Coding, volume 1355 of LNCS, pages 30–45. Springer Verlag,
1997.

9. S. Blake-Wilson and A. Menezes. Authenticated Diffie-Hellman Key Agreement Protocols. In
Selected Areas in Cryptography, pages 339–361, 1998.

10. S. Blake-Wilson and A. Menezes. Unknown Key-Share Attacks on the Station-to-Station (STS)
Protocol. In Public Key Cryptography, pages 154–170, 1999.

11. E. Bresson, O. Chevassut, D. Pointcheval, and J.-J. Quisquater. Provably Authenticated Group
Diffie-Hellman Key Exchange. In ACM Conference on Computer and Communications Security,
pages 255–264. ACM Press, 2001.

12. R. Canetti and H. Krawczyk. Analysis of Key-Exchange Protocols and Their Use for Building
Secure Channels. In Advances in Cryptology – Eurocrypt’01, volume 2045 of LNCS, pages 453–474,
London, UK, 2001. Springer-Verlag.

13. W. Diffie and M. E. Hellman. New Directions in Cryptography. IEEE Transactions on Informa-
tion Theory, 1976.

14. W. Diffie, P. van Oorschot, and M. Wiener. Authentication and Authenticated Key Exchanges.
Design, Codes and Cryptography, 2(2):107–125, 1992.

14

15. I. R. Jeong, J. Katz, and D. H. Lee. One-Round Protocols for Two-Party Authenticated Key
Exchange. In Applied Cryptography and Network Security 2004 Proceedings, volume 3089 of
Lecture Notes in Computer Science, pages 220–232. Springer, 2004.

16. B. S. Kaliski Jr. An Unknown Key-share Attack on the MQV Key Agreement Protocol. ACM
Trans. Inf. Syst. Secur., 4(3):275–288, 2001.

17. H. Krawczyk. HMQV: A High-Performance Diffie-Hellman Protocol. In Victor Shoup, editor,
Proceedings of CRYPTO 2005, volume 3621 of LNCS, pages 546–566. Springer-Verlag, August
2005.

18. K. Lauter and A. Mityagin. Security Analysis of KEA Authenticated Key Exchange. Cryptology
ePrint archive, Report 2005/265, available at http://eprint.iacr.org.

19. T. Matsumoto, Y. Takashima, and H. Imai. On Seeking Smart Public-key Distribution Systems.
Transactions of the IECE of Japan, E69:99–106, 1986.

20. A. Menezes, M. Qu, and S. Vanstone. Some New Key Agreement Protocols Providing Mutual
Implicit Authentication. Workshop on Selected Areas in Cryptography (SAC ’95), pages 22–32,
1995.

21. A. Menezes, P. van Oorschot, and S. Vanstone. Handbook of Applied Cryptography. CRC Press,
1996.

22. D. Pointcheval and J. Stern. Security Arguments for Digital Signatures and Blind Signatures.
Journal of Cryptology, 13(3):361–396, 2000.

23. J. T. Schwartz. Fast Probabilistic Algorithms for Verification of Polynomial Identities. J. ACM,
27(4):701–717, 1980.

24. V. Shoup. Lower Bounds for Discrete Logarithms and Related Problems. In W. Fumy, editor,
Advances in Cryptology – Eurocrypt 2000, volume 1233 of LNCS, pages 256–266. Springer Verlag,
1997.

25. V. Shoup. A proposal for an ISO standard for public key encryption, 2001. Cryptology ePrint
report 2001/112.

26. V. Shoup. OAEP reconsidered (Extended Abstract). In J. Kilian, editor, Advances in Cryptology
– Crypto’01, volume 2139 of LNCS, pages 239 – 259. Springer-Verlag, 2001.

27. Standard for Efficient Cryptography Website. http://www.secg.org/.

A Security Model

The security requirements are formalized in a Real-or-Random game between an at-
tacker E and a simulator S simulating two users A and B. H is modeled by a random
oracle. However, we do not use the random oracle programmability ; therefore it is only
assumed that H is “black-box”. H can be seen as a random oracle that is outside
the attacker but also outside the simulator. Each time E “presses the button” to get
a hash value of some message, S gets the input message together with the hash value
chosen by the oracle. The image space of H is K, the key space.

At the beginning of the game between S and E, S draws a random bit b uniformly;
b decides whether random values or actual keys will be shown to E. The goal of E is
to correctly guess the value of b.

Simulation and Attacker’s Queries. E can issue the following queries to S to
control sessions and messages exchanged by A and B:

– j = Initiate : initiate a new session. The attacker receives a string that is a
session ID used in Test and Send queries.

– Send(U,M, j): send message M to user U for session j.

Messages that are supposed to be sent by A or B in the real protocol are actually
given by S to the attacker E, along with the index of the session which the messages
belong to.

Additionally, E can perform the following queries:

15

– Test(U, j): obtain the session key negotiated after session j from user U (U = A

or B);
– Corrupt(U): obtain the long-term private key of U = A or B.

Each of the Send, Test, and Corrupt queries models a different attack: Send

queries allow E to perform Man-in-the-Middle attacks by altering, deleting or inserting
messages between A and B, Test queries model session key material leakage, while
Corrupt queries model long-term key material leakage.

A Test(U, j) query is answered as follows: if U did not accept the key negotiation of
session j (see “Accepted keys” below), an error is returned. Otherwise, U has computed
a key k and E gets the following answer:

– if a Corrupt query was issued before the Test query, the key k is returned;
– if no Corrupt query has been issued so far, the answer depends on b: if b = 1,
k is returned; if b = 0, a random value H ′(Flow(U, i)) ∈ K is returned, for some
private random oracle H ′ simulated by the simulator.

Notice that the answer to Corrupt queries in the random case (b = 0) does not
depend on the user on which the query was performed if A and B are partners for the
session, as in the real case.

E wins the game if at some point it outputs its answer b′ with b′ = b. E’s advantage

is then
Adv =



Pb=1[b
′ = 1]− Pb=0[b

′ = 1]


 .

We are looking for an upper bound for Adv , depending on its running time t, its
number of H-queries qH and its number of Initiate queries qs.

Accepted keys. Suppose A and B negotiate a key. If the agreement succeeds, at
some point, A will start using the key, which might then leak (this is modeled by Test

queries). A should not use the key before it is convinced that it actually shares the
key with B and B only. To capture this notion, we say that A (or B) accepts (the
key negotiation) when it is convinced of the authenticity of the computed key, and
authorize Test query only on accepted keys.

B Security Proof

B.1 Overview

We name the real game between the attacker and the simulator Game 0. Game 1 is
equal to game 0 except that the simulator aborts as soon as it observes two session
flows in two different sessions that are identical. We then study a derived game 1’
that allows us to prove that before a Corrupt query occurs, E is unable to perform
an active attack. We can therefore replace game 1 with game 3, which is identical to
game 1 except that key confirmations on sessions tampered with by the attacker are
refused regardless of their actual correctness.

Knowing that we do not have to deal with active attacks before Corrupt queries,
we are then able to build a Game 4 that connects E’s advantage to the difficulty of
the CDH problem.

B.2 The Original Game 0

Game Initialization. S generates uniformly at random a bit b, two long-term private
keys sa and sb and the corresponding public keys.

16

Session Simulation. Sessions are simulated according to the protocols described in
section 3. Since H is modeled by a Random Oracle, besides the queries described in
the appendix A, E can perform H-queries. Test queries on keys accepted before any
Corrupt query occurs are answered by

H(KM||0||Flow(U)) if b = 1 and H ′(0||Flow(U)) if b = 0

for some private random oracle H ′. However, a Test query on a key accepted after
a Corrupt query is always answered with the “real” response H(KM||0||Flow(U)).
Corrupt queries are answered by the corresponding long-term private key.

At this stage, since collisions may happen on outputs of H, a key confirmation
might be accepted even if the correct query was not submitted by the attacker to the
oracle.

Advantage in Game 0. in Game 0 the advantage of E is |Adv 0| where

Adv 0 = Pb=1[b
′ = 1]− Pb=0[b

′ = 1].

B.3 Game 1: Ruling Out Colliding Sessions

Game 1 is equal to Game 0 except if Flow(U, i) = Flow(V, j) for some i < j (one can
have U = V or U 6= V). In that case, S aborts the simulation.

Since the session flow seen from some user U contains at least one random value
computed by S, the one emitted by U, if a flow collision occurs, S must have generated
two equal random values inG. For one session pair {i, j}, this happens with probability
1/#G. During qs sessions, this happens with probability α ≤ q2

s/2p. Therefore Game
1 is indistinguishable from Game 0 with probability greater that 1 − α. Considering
that E wins if S aborts because of a collision, one has for some −1 ≤ ε1 ≤ 1,

Adv 1 = (1 − α)Adv 0 + α |ε1|

and
|Adv 1 − Adv 0| ≤ α(|ε1|+ |Adv 0|) ≤ 2α ≤ q2

s/p

B.4 Game 2: Demanding the Correct Oracle Query for Key
Confirmations

Assume the adversary produces a key confirmation KC for a session of flow Flow and
of master secret KM. Assume also that it did not make the correct H-query H(I)
corresponding to KM. There are two possibilities:

– Either H(I) is not fixed yet because the H-query I was never performed by S. In
that case, the key confirmation produced is correct with probability 2−h.

– Or the H-query I was performed by the S before. It was necessarily when comput-
ing a key confirmation of some previous session. Moreover this previous session is
not the current one since the two key confirmations exchanged in a session differ.
Since Flow is included in I, this means that two sessions flows collide, but session
collisions were blocked in game 1.

In game 2, before S accepts a key confirmation, it checks that a H-query with the
correct input was made to generate it; if not, the key confirmation is rejected. The
reasoning above shows that advantages of E in game 1 and in game 2 satisfy

|Adv 2 − Adv 1| ≤ qs2−h

17

B.5 Game 2’: Ruling Out Active Attacks

In this section, we replace game 2 by a game 2’ where we arbitrarily forbid active
attacks before the first Corrupt query of the adversary. This is performed by refusing
any key confirmation in sessions that are not fully passive.

We show that except with small probability, the observations of any arbitrary
adversary E in game 2’ are consistent. Because of this, if we change game 2 into a
game 3 where active attacks before the first Corrupt query are arbitrarily blocked, no
polynomial-time adversary can tell the difference between game 2 and game 3.

One may wonder why we need to introduce two different games to rule out active
attacks, game 2’ and 3. The game of actual interest is game 3, while game 2’ is only
studied to show that some event in game 3, the observation by the adversary of an
inconsistency in the simulation, cannot happen.

Game 2’ Overview. In game 2’, the goal of the simulator is to compute an answer
to a 2-3-CDH-challenge (for MTI/C0) or an f -RCDH-challenge (for MQV). The input
of the challenge is introduced in the public keys of the users KA = gsa and KB = gsb .
As a consequence, the simulator cannot answer Corrupt queries. Therefore it simply
aborts if the adversary outputs a Corrupt query2.

Another consequence is that the simulator is not able to answer consistently to
all the queries of the attacker. Moreover, the simulator refuses key confirmations in
non-passive sessions: this might yield other inconsistencies in the simulation.

Our goal is to show that the probability of the adversary to perform an observation
showing any inconsistency in the simulation is connected to the success probability of
the simulator.

Answers to H-queries. H is simulated by a random oracle as in game 2.

Session Simulation. In game 2’, a passive session of index i is simulated as follows:

A B

gx −−−−−−→
←−−−−−− gy

R1 = Hkc(IDA||Flow(A)) −−−−−−→
←−−−−−− R2 = Hkc(IDB||Flow(B))

where Hkc is a random oracle independent from H. In case of an active attack, the
session flow is described by one of the two following diagrams (since the simulation is
symmetric, it can always be assumed that A is attacked):

A B A B

gx −−−−−−→ ←−−−−−− Y
←−−−−−− Y or gx −−−−−−→

R1 = Hkc(IDA||Flow(A)) −−−−−−→ ←−−−−−− R′

←−−−−−− R′

2 If no Corrupt query was performed, the game can also end normally when the adversary answers
to its challenge; in that case the answer of the attacker is of no interest for the simulator and is
discarded.

18

In the second active case, since the key confirmation output by the adversary is re-
jected, there is no key confirmation output by the simulator. In both active cases,
there is no accepted session key, so no Test query can be performed by the adversary
on the session.

In the passive and active cases, although the simulator does not generate values
according to the protocol, the distribution of these values is the same as in the real
game.

Answers to Test queries. A Test query on user U and session i is answered (on
passive sessions only) by Ht(Flow(U, i)), where Ht is a random oracle independent
from H and Hkc. Notice that the joint distribution of answers to Test queries is
correct: they are uniformly distributed, answers corresponding to different sessions
are independent (because the hash input includes session flows which are different
because flows cannot collide), and answers of both users in the same passive session
are equal (because in that case, flows are equal).

Consistency between H-queries, Test queries and key confirmations. To
be consistent with game 2, key confirmations produced by the simulator in game 2’
should satisfy KC(U) = H(S‖1‖U‖Flow(U, i)) for some user U in some session i, where

S = g
sasb
xy for MTI/C0 and S = g(f(gx)sa+x)(f(gy)sb+y) for MQV. Unfortunately, the

simulator is not able to compute that value. As a consequence, it is not able to generate
consistent key confirmations; the same problem holds for Test queries. This is why
key confirmations and answers to H-queries are simulated by independent random
oracles.

Extracting an answer to the challenge of the simulator. When the game
stops, either after a Corrupt query or after E’s answer, the simulator tries to extract
an answer its challenge from H-queries performed by E in the following way.

The formatting of aH-query indicates whether it corresponds to a key confirmation
or a Test query, and the target session index. Incorrectly formatted queries can be
discarded, since they are just random values independent of the rest of the simulation.
Consider H-queries corresponding to a key confirmation or a Test query on some
session i.

Let y denote the g-log of Y . The simulator knows y iff session i is passive. Since the

H-query contains a candidate for S = g
xy

sasb (MTI/C0) or S = g(f(gx)sa+x)(f(gy)sb+y)

(MQV), the simulator always has access to x, Y and S. It can therefore compute the
pair

v =
(

g
y

sasb , gy
)

(MTI/C0) or v =
(

gy, gsa(f(gy)sb+y)
)

(MQV)

and v a candidate answer for the challenge (KA,KB) (notice that in the MTI/C0 case,
one necessarily has gy 6= 1).

A remark about static attacks. The knowledge of h = CDH(KA,KB) allows one to
impersonate A to B, or B to A, during a MTI/C0 session: suppose E sends hα to A,
and receives r from A. Then the common key rα can be computed by E. For each users
pair (A,B), CDH(KA,KB) therefore plays the role of a common secret key. However,
this does not contradict the security proof since such a behavior of E would allow S to
retrieve h; and indeed, h is not easier to compute than an ephemeral CDH challenge.
From a practical standpoint, it does not seem easier to extract h from a crypto device
than sa or sb and this attack model therefore has a little impact.

19

Answer to the Challenge. The simulator discards irrelevant H-queries, chooses
uniformly at random one of the remaining queries, and answers a corresponding guess
for the answer.

Success Probability. We are in one of the two following situations:

– either all the H-queries output by E are incorrect. Then game 2’ perfectly simu-
lates game 2, because key confirmations output by E would also have been refused
in game 2.

– or the simulator breaks its CDH-like challenge with probability 1/qH .

If β is the probability that E makes an observation allowing it to distinguish between
game 2 and game 2’, then β ≤ qHSuccP where SuccP = Succ 2-3-CDH for MTI/C0
and SuccP = Succ f-RCDH for MQV. Game 2’ is indistinguishable from game 2 with
probability greater than 1− β.

Because of this result, game 3, which is equal to Game 1 except that key confirma-
tions produced by E before the first Corrupt query are rejected, can be distinguished
from game 1 with probability β ≤ qHSuccP. Therefore, as in section B.3, one can show
that

|Adv 3 − Adv 2| ≤ 2qH × SuccP.

Game 4 Overview.

– There is no real challenge for the attacker anymore3, and Adv 4 = 0.
– The goal of the simulator is to solve a CDH problem instance X = gx, Y = gy. X

and Y are introduced in the random elements exchanged in one session completed
before a Corrupt query occurs (the “challenge session”).

– The challenge session is chosen at random at the beginning of the game. If a
Corrupt query occurs before it ends, the game is aborted.

– In other sessions, everything is perfectly simulated with values known from the
simulator as in game 2. For instance, key confirmations output by the simulator
and answers to Test queries are computed using the public oracle H with the
same inputs as in the real case (b = 1) of game 2.

– As in game 3, key confirmations on sessions tampered with by the attacker before
a Corrupt query occurs are rejected.

– In the target session, key confirmations (resp. answers to Test queries) on user U,
session i, are answered as in game 3 by a private oracle Hkc(U||Flow(U, i)) (resp
Ht(Flow(U, i)).

– The simulator uses public keys of known g-log (as required in order to answer
Corrupt queries).

The target session (of index i) is passive and looks like this for MTI/C0:

Xr/b −−−−−−→
←−−−−−− Y s/a

R1 = Hkc(IDA||Flow) −−−−−−→
←−−−−−− R2 = Hkc(IDB||Flow)

3 one could choose a bit b privately at random to have a “challenge”, and consider that the adversary
wins its challenge if its answer b′ is equal to b; however, this amounts to say that by construction
in game 4, the winning probability of E is 1/2, or its advantage is 0.

20

for MQV, we would have:

Xr −−−−−−→
←−−−−−− Y s

R1 = Hkc(IDA||Flow) −−−−−−→
←−−−−−− R2 = Hkc(IDB||Flow)

where r and s are uniformly independently distributed random values.
Other sessions can be passive or active. They are simulated as in game 2.

Answer of the Simulator to its Challenge. As for game 2’, let qH be the number
of H-queries related to key confirmations or Test queries on sessions before a Corrupt

query. The simulator can derive from any such query a candidate for CDH(X,Y) (see
the passive case in game 2’). Therefore when E gives its answer to the challenge,
which is discarded, the simulator chooses one of the qH H-queries and answers the
corresponding candidate for gx y. If E performed no H-query, the simulator simply
outputs a random value.

We argue as in B.5 to show that either the simulator has at least one correct
candidate for CDH(X,Y) for one of the sessions before any Corrupt query, or the
attacker does not distinguish between game 3 and game 4. With probability above
1/qs, the session concerned is the target session.

– If no candidate is equal to CDH(X,Y), the values observed by E are independent
from Test queries answers and key confirmations both in game 3 and in game 4.
Therefore the simulation is perfect.

– If at least one candidate is equal to CDH(X,Y), the simulator has probability
greater than 1/(qHqs) to output the correct answer to its challenge.

The probability of E to make an observation allowing it to distinguish between
game 3 and game 4 is therefore upper-bounded by qHqsSuccCDH and Adv 4 = 0. Finally,

|Adv 3| ≤ 2qHqs × SuccCDH.

Putting everything together, one gets

|Adv 0| ≤ 2qH × (SuccP + qsSuccCDH) +
q2s
p

+ qs2
−h.

where SuccP = Succ 2-3-CDH for MTI/C0 and Succ P = Succ f-RCDH for MQV.

