Strong Password-Based Authentication in TLS using the Three-Party Group Diffie-Hellman Protocol

Michel Abdalla¹, Emmanuel Bresson², Olivier Chevassut³, Bodo Möller⁴, and David Pointcheval¹

¹ Département d’Informatique, École normale supérieure, Paris, France
² Cryptology department, CELAR Technology Center, Bruz Cedex, France
³ Lawrence Berkeley National Laboratory, Berkeley, CA, USA
⁴ Horst Görtz Institute for IT Security, Lehrstuhl für Kommunikationssicherheit, Ruhr-Universität Bochum, Bochum, Germany

Abstract. The Internet has evolved into a very hostile ecosystem where “phishing” attacks are common practice. This paper shows that the three-party group Diffie-Hellman key exchange can help protect against these attacks. We have developed password-based ciphersuites for the Transport Layer Security (TLS) protocol that are not only provably secure but also believed to be free from patent and licensing restrictions based on an analysis of relevant patents in the area.

Keywords: Password Authentication, Group Diffie-Hellman Key Exchange, TLS.

1 Introduction

An increasing number of distributed systems on the Internet are using open source software. For example, widely fielded open source software products within their respective categories are the Linux operating system, the Apache web server, the Mozilla Firefox web browser, the OpenOffice.org office suite, the OpenSSL toolkit for secure communication over the Internet, and finally the Globus toolkit¹ for building grid systems and applications over the Internet. Open source software is based on the recognition that when programmers can read, redistribute, and modify the source code for a piece of software, the software evolves. People improve it, people adapt it, people fix bugs. And this can happen at a speed that, if one is used to the slow pace of conventional software development, seems astonishing.² This process not only produces better software but also frees users from paying royalties for running the software, for modifying and maintaining it to their liking, and even re-distributing it. At the same time the Internet has grown into an extremely hostile ecosystem.

For various open-source based Internet applications, it is highly desirable to have a cryptographic technology that allows users to securely identify themselves using short (memorable) password. The obvious approach is to use the OpenSSL implementation of the TLS protocol’s unilateral-authentication mode [27] and add a straightforward password check: the server sends its X.509 certificate for explicit verification, then the user sends his password through the TLS secure channel. This is what happens in most of today’s “secure” WWW applications [25]. This approach, however, provides a false sense of security because the privacy of the user’s password is lost if the server is actually not authentic (“phishing” attacks), and, hence, anything protected through the password could get compromised. The password can be exposed when a user accepts a bogus server certificate, which usually takes just a single click of the mouse.

This is not all—security is in fact totally dependent on the X.509 public-key infrastructure used for server authentication: any party with a certificate apparently issued to the legitimate server can potentially obtain the password from the client. A single trusted Certification Authority (CA) that is malicious or careless could do lot of damage! Sending a one-time password in place of the fixed

¹ The Globus Alliance, http://www.globus.org/
² Open Source Initiative, http://www.opensource.org/
password would not help either since the bogus server could then use this password to impersonate
the user.

The secure way for the user to identify himself is to tie his authentication to the TLS secure
channel using some variant of the strong Password-based Authenticated Key Exchange (PAKE)
primitive [1, 4, 17, 21, 24, 26, 29–31, 33–35, 37, 39, 43–45]. This primitive come in various flavors that
have patent claims on them [9, 14, 32, 46] and/or are not supported by formal security arguments [35,
43–45]. The very first PAKE patent is due to Bellovin and Merritt, and is currently owned by
Lucent Technologies. The Bellovin and Merritte patent entitled “Cryptographic Protocol for Secure
Communications” was filed with the U.S. Patent Office in 1991 and granted in 1993 [9], and with
the European Patent Office in 1992 and granted in 2002 [14]. It was also filed in various other
countries such as Australia, Japan, and Canada [10, 12, 13]. This patent is a major roadblock to
the adoption of a PAKE primitive by open source software.

A free software implementation of a patented PAKE primitive does not necessarily help either.

The Secure Remote Protocol (SRP) from Stanford University [45, 46], used either as a standalone
library3 or directly implemented in open source products4, may be considered problematic in that
agreeing to the terms and conditions of the License Agreement Form’s Indemnity clause is man-
dated5:

5. Indemnity
5.1 LICENSEE agrees to indemnify, hold harmless, and defend STANFORD, UCSF-Stanford Health Care
and Stanford Hospitals and Clinics and their respective trustees, officers, employees, students, and
agents against any and all claims for death, illness, personal injury, property damage, and improper
business practices arising out of the use or other disposition of Inventions(s), Licensed Patent(s), or
Software by LICENSEE.

A patent is an obstacle to the implementation of a PAKE primitive in open source software unless
a patent grant permits it. When SUN Microsystems Laboratories, for example, contributed elliptic-
curve technology to OpenSSL, SUN also added a “patent peace” license provision to clarify its
license grant [40] (patent issues are not explicitly addressed by the OpenSSL license). However, we
do not have to passively wait many years for PAKE patents [9, 14, 32, 46] to expire6 when “phishing”
attacks over the Internet are developing at a furious rate. In the present paper we argue that it is
indeed possible to develop PAKE-ciphersuites in TLS that achieve strong security notions and were
written in attempt to be free from patent and licensing restrictions.

Examining the first claim of Bellovin and Merritt European Patent entitled “A Cryptographic
Protocol for Secure Communications” [14] reveals that this patent describes the steps for generating
a cryptographic key between two parties A and B:

A method for communicating among plural parties at least a party A and a party B, each having access to
an authentication signal [...]:

- a) A forms signal X based on a first signal RA and transmits signal X to B;
- b) B receives signal X from A, and in response forms response signal Q based on a second signal RB,
 and transmits signal Q to A;
- c) A receives signal Q from B;
- d) B generates the cryptographic key based on RB and X; and
- e) A generates the cryptographic key based on RA and Q

Claims 2 through 7 make this more specific, for example by using Diffie-Hellman public values for
certain signals.

3 Source code for the SRP protocol, http://srp.stanford.edu/download.html
6 The Bellovin and Merritt U.S. patent, for example has a duration of seventeen years from the date of issuance
which was 1993, thus it would expire August 31, 2010. U.S. patent law has since changed to have a patent term of
twenty years from the date of filing.
Contributions The present paper takes into account the aforementioned constraints to develop provably secure PAKE-ciphersuites in TLS that are believed to not infringe the claims of Bellovin and Merritt European patent [14]. This Bellovin and Merritt patent only involves two parties Alice and Bob. We have specified a protocol for TLS authentication that uses a 3-party (dynamic) group Diffie-Hellman key exchange [18–20] with the third party being the helper. The helper party could be implemented by using an additional CPU or special-purpose cryptographic hardware such as an accelerator card, connected to the server. (The ciphersuites could as well have been defined the other way around with a user-side helper; however, it would cost an additional exponentiation which may not be well suited to low-powered devices.)

In this paper, we present a high-level description of these ciphersuites, and a security analysis in the tradition of provable security. By analogy to Abdalla et al.’s simple open key exchange ciphersuites [1], we named ours the 3-party group Simple Open Key Exchange (TLS-3SOKE) since they run between two players (client and server) where the TLS server consists of two parties. Using 3SOKE for TLS combines the following three advantages over previous PAKE-ciphersuites in TLS [43, 44]:

1. TLS-3SOKE achieves strong security notions in the random oracle model under the computational Diffie-Hellman assumption in the formal model of Abdalla et al. [3]. The use of the random oracles, however, is very limited since we only model a hash function as a random oracle during the extraction of the pre-master secret from the Diffie-Hellman result. The password is used in the key derivation process so that the forward-security of TLS-3SOKE can be proved in concurrent executions and without having to restrict the size of the dictionary.

2. TLS-3SOKE is computationally efficient since it can work in an appropriate subgroup of the multiplicative group of a prime field without requiring a “safe prime” or even over elliptic curves or in other groups. Thus, the computations for 3SOKE can use smaller exponents than those required for [43, 44]. (The protocol described in [43] does not need safe primes, but it does not solely work in the subgroup. Rather, it involves an exponentiation to map arbitrary elements of \mathbb{Z}_p^* to subgroup elements: the smaller the subgroup, the larger the exponent for this exponentiation. 3SOKE, in contrast, uses only the subgroup.) The 3-party group ciphersuites cost only one more exponentiation on the server side than Abdalla et al.’s 2-party simple open key exchange ciphersuites [1] and the Bellovin and al.’s EKE protocol.

3. TLS-3SOKE does not require conveying the user identity in the very first TLS handshake messages (known as ClientHello). This feature (also present in [1, 43], but not in [44]) provides additional protocol flexibility: the user does not have to specify a user identity and password before a SOKE ciphersuite has actually been negotiated, so these values can be chosen depending on the server identity transmitted by the server.

The 3SOKE ciphersuites for TLS (TLS-3SOKE) are essentially unauthenticated (dynamic) 3-party group Diffie-Hellman ciphersuites where the client’s Diffie-Hellman ephemeral public value is encrypted under the password shared with the server; the encryption primitive is a mask generation function computed as the product of the message with a constant value raised to the power of the password. Full TLS handshakes negotiating a 3SOKE ciphersuite require modifications to the usual TLS handshake message flow to achieve security: the usual Finished messages of the TLS protocol, which are sent under the newly negotiated cryptographic parameters (after ChangeCipherSpec), are replaced by Authenticator messages, which are similar in meaning to the Finished messages, but must be sent under the old cryptographic parameters (namely, before ChangeCipherSpec)—that is, typically (in the case of an initial handshake) unencrypted. Also, while usually the client sends its Finished message first, here the server has to send its Authenticator message first. The client can only send its Authenticator message after having verified the server’s Authenticator
message (to avoid dictionary attacks since otherwise a rogue server could try a brute force attack on the client’s password [43]).

Organization of the Paper The paper is organized as follows. In Section 2 we present the mechanics of the 3SOKE ciphersuite for TLS (TLS-3SOKE). In Section 3, we analyze TLS-3SOKE in the framework of provable security to show that the ciphersuite indeed achieves strong notions of security. This treatment involves specifying the formal model, defining the appropriate security notions and algorithmic assumptions, and finally exhibiting a reduction from TLS-3SOKE to the computational Diffie-Hellman problem. In Section 4, we conclude the paper by discussing the use of TLS-3SOKE in the United States.

Related Work on Provable Security The first formal model of security to analyze Password-based Authenticated Key Exchange (PAKE) primitives is due to Bellare et al. [6] and was over the years refined to lead to the strong model of Abdalla et al. [3]. In this model interactions between the client and server, and the adversary occurs only via oracle queries. These queries indeed model the capabilities of the adversary in real attacks (see literature for more details [3, 6, 22].) Schemes proven secure in the model of Abdalla et al. are also secure in the model of Bellare et al. [6]; however, the reverse is not necessarily true due to the non tightness of the security reduction.

A PAKE is a key exchange [28, 42] with one [36] or two flows [15, 16] encrypted using the password as a common symmetric key. Bellare et al. [6, 8], Boyko et al. [17], and MacKenzie [17, 38] proposed and proved secure various PAKE structures. These structures were later proved forward-secure under various computational assumptions [2, 21, 22, 34]. Instantiations for the encryption primitive were either a password-keyed symmetric cipher or a mask generation function computed as the product of the message with the hash of a password, until Abdalla et al. proposed the Simple PAKE (SPAKE)-structure with a new mask generation function computed as the product of the message with a constant value raised to the power of the password [1, 4]. Whereas earlier mask generation functions need a full-domain hash function into the group, SPAKE provides high flexibility in the choice of groups (e.g., this makes it easy to work with elliptic curves).

Security researchers have also tried to use their PAKE structures for TLS authentication [1, 43, 44]. These cryptographic algorithms, however, are not supported by formal security arguments, and/or have patent claims of various breadth in certain countries [9–14, 46].

2 TLS-3SOKE Ciphersuites

Figure 1 illustrates the full TLS handshake for the case of our TLS ciphersuites. Since the abbreviated handshake for resuming a previously negotiated session is performed exactly as in other TLS ciphersuites, we only discuss the details of the full handshake.

2.1 The Handshake

Choose Ciphersuite The client and the server negotiate the ciphersuite to use and exchange nonces.

a) The client sends its list of supported ciphersuites, including our TLS ciphersuites, in the TLS initial **ClientHello** message. It includes a nonce N_c. (In the TLS specification, this nonce is known as ClientHello.random.)

b) The server specifies the ciphersuite to be used, selected from the client’s list, by using a TLS **ServerHello** message. It also includes a nonce N_s (known as ServerHello.random).
Note. Each 3SOKE ciphersuite specifies a symmetric encryption algorithm (AES-CBC with either 128-bit or 256-bit keys) to use once the handshake has completed, similar to other ciphersuites. The protocol specification also provides for an integrity algorithm (HMAC-SHA1 with the current versions of TLS). Also, appropriate prime-order groups are standardized in the ciphersuite specification; they are equipped with two generators g and U that have been generated verifiably pseudo-randomly to provide assurance that no-one knows $\log_g U$ (see [5]). For this verifiably pseudo-random parameter generation, a simple variant of the hash-based procedure intended for standardization for the Digital Signature Standard [41, Appendix A.1] is used: The parameters are derived from a seed bitstring, which is also provided by the specification. (TLS-3SOKE will always use these standardized groups. The server cannot specify an alternative group since this would impose a noticeable additional burden on the client for verifying such parameters on the fly.)

Compute Diffie-Hellman Secret

a) First, the helper generates the random private exponent x_1 and computes the public key $Y_1 = g^{x_1}$. The helper hands the public key over to the server.

b) The server generates the random private exponent x_2 and computes the public key $Y_2 = \{g^{x_1}, g^{x_2}, g^{x_1x_2}\}$. The public key is sent to the client in the form of a ServerKeyExchange message along with the server’s identity.

c) If the server holds a private key and certificate suitable for signing, then in specific ciphersuites the server additionally sends this certificate to the client in a Certificate message. In this case, the ServerKeyExchange message additionally contains a signature on the ephemeral Diffie-Hellman public key made with the server’s long-term key—similar to non-anonymous standard Diffie-Hellman ciphersuites in TLS (cf. [27, Section 7.4]).

d) The server then sends an empty message in the form of a ServerHelloDone to indicate that the “hello” phase is completed.

e) If the server has sent a Certificate message, the client verifies the signature.

f) The client generates its random private exponent x_3 and computes its public key $Y_3 = g^{x_1x_3}$. This is precisely the dynamic group Diffie-Hellman key exchange protocol\footnote{For [23], no patent application was filed outside of the United States.} [18, 19, 23] wherein the third player calls the deletion algorithm to remove the helper from the 3-party group. (Alternatively the client could have chosen not to remove the helper from the group but to form the group consisting of the helper, the server, and the client. In this case, and as specified in the patent application [23], the public key would be $Y_3 = \{g^{x_1x_2}, g^{x_2x_3}\}$.) Then the client encrypts the public key (using a password) as the product of the key with the password-based mask: $Y_3^\star = Y_3 \times U^{pw}$. The client encapsulated its name and the encrypted value in the ClientKeyExchange message which is sent out.

g) The two parties can now compute the common Diffie-Hellman secret $Z = g^{x_1x_2x_3}$ from the values received in the messages ClientKeyExchange and ServerKeyExchange.

Note. In the protocol description, C and S are strings giving the client identity and server identity, respectively (i.e., a user name and a server or “realm” name). The password for the user denoted by C is a string pw. Observe that the client identity C and the password pw are not used within the protocol before the server has chosen the ciphersuite and transmitted the server identity S. This means that a user only needs to provide C and pw after seeing that a handshake with S is going on. For example, HTTP servers might required password-based ciphersuites only for specific subtrees of their URL space by requesting a TLS renegotiation if necessary, and the server identity might depend on the specific URL.
A detail not shown in the figure is that the server, with its ServerKeyExchange message, will also send an index into the list of standardized groups for our ciphersuite (such as 0, 1, 2, ... for standardized 1024-bit, 1536-bit, 2048-bit, ... prime moduli with appropriate subgroups). The client should display the server’s choice of group to the client, and the user should provide his password only if he agrees with the group.

Note that when the client receives Y_2 from the server and when the server receives Y_3^* from the client, it is implicit that the respective recipient performs a group membership test: it is a fatal TLS handshake failure if Y_2 or Y_3^* is not a group member.

Compute Pre-Master Secret and Authentication Key

a) The parties extract the randomness in the Diffie-Hellman result to form the pre-master secret as: $\text{PreMasterSecret} = \text{Hash}(C, S, pw, Y_2 || Y_3^* || Z)$.

b) The pre-master secret is used as a means to derive the authentication key AuthKey used by the parties to perform the mutual authentication; we define $\text{AuthKey} = \text{PRF}_1(\text{PreMasterSecret}, N_c || N_s)$. This key derivation is performed based on the standard TLS pseudo-random function PRF (see [27, Section 5]). The key derivation function $\text{PRF}_1(\text{PreMasterSecret}, z)$ used here is specific to 3SOKE ciphersuites; its value is obtained as $\text{PRF}(\text{PreMasterSecret}, \text{"authentication key"}, z)$.

Note. Here the randomness extractor function $\text{Hash}(z_1, z_2, z_3, z_4)$ is defined as a function with multiple inputs. The reason for this is that while we assume that group elements can be represented as fixed-length strings, the same does not hold for the strings C, S, and pw. A function $\text{Hash}_1(z)$ in a single input can be used to implement Hash by defining

$$\text{Hash}(z_1, z_2, z_3, z_4) = \text{Hash}_1(\text{SHA1}(z_1) || \text{SHA1}(z_2) || \text{SHA1}(z_3) || z_4).$$

The function $\text{Hash}_1(z)$, in turn, can be instantiated by using

$$\text{SHA1}(\text{constant}(0)||z) || \text{SHA1}(\text{constant}(1)||z) || \ldots.$$

Other ways to instantiate Hash_1 are discussed in [7].

Compute Authenticators

a) Both parties use AuthKey to produce the authenticators Auth_C and Auth_S. More precisely, the authenticator is set as a MAC on “finished_label || hash of handshake”, in which finished_label is the string “client finished” or “server finished”, depending on which party is sending the respective message, and where hash of handshake denotes the hash of the concatenation of all the handshake messages sent so far in both directions exactly as would be used for the Finished message in other TLS ciphersuites (i.e., the MD5 hash concatenated with the SHA-1 hash). The server sends its Authenticator message first.

b) The client first checks the server’s authenticator, and, if it is correct, sends its own Authenticator, and then proceeds to the ChangeCipherSpec message.

c) The server subsequently checks the client’s authenticator, and, if correct, replies by sending a ChangeCipherSpec message as well.

Note. Usual TLS ciphersuites send Finished messages for authentication after switching to the newly negotiated key material (KeyBlock) in the TLS record layer (which event is indicated by a ChangeCipherSpec message). This approach, however, would violate the security notion that 3SOKE ciphersuites are designed to achieve. Instead, 3SOKE ciphersuites make use of
7

Authenticator messages; the client does not send its **Authenticator** and **ChangeCipherSpec** before it has verified the server’s **Authenticator**, and the server delays its **ChangeCipherSpec** until it has verified the client’s **Authenticator**. Note that the **Authenticator** message does not undergo any processing using the **KeyBlock**, since it precedes the **ChangeCipherSpec**; this is different from the handshake in other TLS ciphersuites where **Finished** is sent in an TLS record processed under key material **KeyBlock** (see [27, Section 7.4]).

Compute Master Secret and Key Material The material **KeyBlock** is the bit string assigned to the Initialization Vectors (IVs), MAC secrets, and encryption keys which will protect the application sensitive messages. **KeyBlock**, exactly as in other TLS ciphersuites, is obtained indirectly, in two steps:

a) Both parties compute a common **MasterSecret**, using a function $\text{PRF}_2(\text{PreMasterSecret}, z)$ that is defined as $\text{PRF}(\text{PreMasterSecret}, \text{“master secret”}, z)$.

b) The **MasterSecret** is then used to obtain **KeyBlock** as a function $\text{PRF}_3(\text{MasterSecret}, z)$, which is defined as $\text{PRF}(\text{MasterSecret}, \text{“key expansion”}, z)$. This two-stage derivation process is used by TLS session resumption: a new connection with new client and server nonces N_c and N_s can continue to use a previously negotiated **MasterSecret** and derive a new **KeyBlock**.

Note. Another change from the standard TLS handshake message flow, besides having **Authenticator** sent before **ChangeCipherSpec**, is that for 3SOKE the server and not the client provides its authentication message first. This is necessary to protect clients against dictionary attacks: if the client was to make the start, its **Authenticator** message could be used by a malicious server that does not know pw to try out different passwords in an off-line attack, looking which one results in the **Authenticator** message as observed.

2.2 The Nitty-Gritty Details

Password derivation Remember that the protocol should allow using one out of a set of different groups (the client likely wants to see the group being used before typing his password). So for group i, of order q_i, the effective password pw may be defined in the form $pw_i = \text{hash}(i \parallel \text{password}) \mod q_i$.

The password string password actually should be hashed before being used as an exponent pw. If the protocol is changed again to use (C, S, pw) instead of just password to derive the exponent, we obtain a security improvement in practice in that a client can use the same password (string) with multiple servers and yet the respective secrets (effective passwords) will be different. (However, every server could then run a dictionary attack to recover the common underlying password.)

Exponent derivation Since the password pw appears as an exponent in the computations for TLS-3SOKE ciphersuites, some additional hash is needed to obtain this exponent from the password string password. In the protocol description, we do not care about details of the hash and simply use the hash result pw (in the exponent space) as the “effective password” instead: anyone knowing pw is actually able to impersonate the client or the server, and the security proof shows that attacking the protocol reduces to finding pw. In other words, at the protocol level, pw is the password needed for authentication and password is just a way to remember it.

Using U^{pw} as the effective password A possible variant of 3SOKE is as follows. From the description in Section 2.1, it can be noticed that, if we modify the input to Hash to use U^{pw} instead of pw, the server does not really have to store pw, it can store just U^{pw} instead. Here U^{pw} becomes
the “effective password” because the client too only needs U^{pw} in its computations (whereas the physical user, of course, will still memorize and type the short password). Unfortunately, the security proof for this new scheme cannot be reduced to the CDH problem, because knowledge of the password pw used in the query to the random oracle Hash is needed to perform the reduction. There are, however, ways to circumvent this problem. We describe the most natural ones here.

One way is to assume small (polynomial-sized) dictionaries such that pw can be extracted from the value U^{pw} using an exhaustive search algorithm. With pw in hand the proof can then be performed as before. Such solution is, however, quite constraining from the computational point of view (N exponentiations are needed). Also note that when restricting to polynomial-sized dictionaries, one must avoid U^{pw} being known by the adversary, since otherwise a trivial off-line attack can be mounted.

Another way to preserve provable security while using U^{pw} in the Hash is to use a random oracle \mathcal{G} when computing pw from the password string password: that is, the effective password is $U^{\mathcal{G}(\text{password})}$. In this latter case, one could make use of the calls to the random oracle \mathcal{G} to obtain the value pw in order to complete the proof. Briefly speaking, for a given value θ being used as input to the random oracle Hash, we have to test for each π output by \mathcal{G} whether $\theta = U^{\pi}$. Thus, the impact on the reduction would be an increase in the total computational time by an additive factor $q_{\mathcal{G}} \cdot \tau_{e}$, where $q_{\mathcal{G}}$ denotes the total number of calls to the the random oracle \mathcal{G} and τ_{e} denotes the computational time for an exponentiation in \mathcal{G}.

3 Provable Security Results

3.1 Model and Security Notions for 2-Party

Model A password-based authenticated key-exchange protocol P runs between a client $C \in \text{client}$ and a server $S \in \text{server}$. Both the client and the server can have several instances involved in distinct, possibly concurrent executions of the protocol. (An instance i, often termed oracle, of a client or a server is referred to as P^{i}.) A client C holds a password pw_{C} and a server S holds the derived password $pw_{S}[C]$ for this client [6]. (Protocols wherein $pw_{S}[C] = pw_{C}$ are called symmetric; in general, $pw_{S}[C]$ may differ from pw_{C}. The value pw_{C} and $pw_{S}[C]$ are often termed the long-lived keys of the client and the server respectively.) Each password pw_{C} is drawn from the dictionary Password of size N according to the uniform distribution and, therefore, is a low-entropy string.

AKE Security In order to define the privacy (semantic security) of the session key, often termed authenticated key exchange (AKE) security, we consider a game wherein the protocol P is executed in the presence of the adversary \mathcal{A}. In this game $\text{Game}^{\text{ake}}(\mathcal{A}, P)$, we draw a password pw from Password, provide coin tosses to the adversary, and give the adversary access to the oracles via the following three oracle queries:

- **Execute(C^{i}, S^{j}):** The output of this query consists of the messages exchanged during the honest execution of the protocol. This models passive attacks.
- **Send(P^{i}, m):** The output of this query is the message that the instance P^{i} would generate upon receipt of message m. A query **Send**(P^{i}, “start”) initializes the key exchange protocol, and thus the adversary receives the initial flow that the initiator would send to the receiver. This models active attacks.
- **Test(P^{i}):** This query tries to capture the adversary’s ability to distinguish real keys from random ones. In order to answer it, we need a private random coin b (unique for the whole game) and then forward to the adversary either the session key sk held by P^{i} if $b = 1$ or a random key of the same size if $b = 0$. We emphasize that the adversary is allowed to ask several **Test**-queries.
The goal of the advers
define the advantage $\text{Adv}_{\mathcal{F}}^\text{prf}(D, q) = |\Pr_k[1 \leftarrow D^f] - \Pr_f[1 \leftarrow D^f]|$, where D is a distinguisher, with an oracle access to either a random instance f_k in the given family F or a truly random function f in $F_{m,n}$, and must distinguish the two cases with at most q queries to the function oracle. We say that such a family is a (q, ε, t)-PRF if for any distinguisher asking at most q queries to the oracle, its advantage is less than ε, after a running time bounded by t.

MAC A Message Authentication Code, say $\text{MAC} = (\text{MAC} \cdot \text{Sign}, \text{MAC} \cdot \text{Verify})$, is made of the two following algorithms, with a secret key sk uniformly distributed in $\{0,1\}^\ell_M$:

- The **MAC generation algorithm** $\text{MAC} \cdot \text{Sign}$. Given a message m and secret key $sk \in \{0,1\}^\ell_M$, $\text{MAC} \cdot \text{Sign}$ produces an authenticator μ. This algorithm might be probabilistic.
- The **MAC verification algorithm** $\text{MAC} \cdot \text{Verify}$. Given an authenticator μ, a message m and a secret key sk, $\text{MAC} \cdot \text{Verify}$ tests whether μ has been produced using $\text{MAC} \cdot \text{Sign}$ on inputs m and sk.

The classical security level for MAC is to prevent existential forgeries, even for an adversary which has access to the generation and the verification oracles. We denote by $\text{Succ}^{\text{mac}}(t, q)$ the maximum success probability of a forger running within time t and making at most q queries to the $\text{MAC} \cdot \text{Sign}$ oracle.

3.3 Security Results

Theorem 1 (FS-AKE Security). Let us consider protocol from Section 2.1 over a group of prime order q, where Password is a dictionary of size N, equipped with the uniform distribution. Let A be an adversary running within a time bound t that makes less than q_{active} active sessions with the parties and q_{passive} passive eavesdropping queries, and asks q_{hash} hash queries. Then we have, first $\text{Succ}_{\text{3SOKE}}^{\text{auth}}(A)$ upper bounded by

$$
\frac{2q_{\text{active}}}{N} + \frac{(4q_{\text{session}}q_{\text{hash}} + q_{\text{session}} + 1)q_{\text{hash}} \times \text{Succ}^{\text{cdh}}(t + 2\tau_e)}{2^M} + 2q_{\text{hash}}^2 \times \frac{\text{Succ}^{\text{mac}}(t, 0)}{2^q} + 2q_{\text{session}} \times \text{Adv}_{\mathcal{F}}^\text{prf}(t, 2)
$$

and then $\text{Adv}_{\text{3SOKE}}^{\text{fs}}(A)$ upper-bounded by

$$
\frac{6q_{\text{active}}}{N} + 2(3q_{\text{session}}q_{\text{hash}} + q_{\text{session}} + 1)q_{\text{hash}} \times \text{Succ}^{\text{cdh}}(t + 2\tau_e) + 6q_{\text{hash}}^2 \times \frac{\text{Succ}^{\text{mac}}(t, 0)}{2^M} + 8q_{\text{session}} \times \text{Adv}_{\mathcal{F}}^\text{prf}(t, 2)
$$

where τ_e denotes the computational time for an exponentiation in G.

Proof. We are interested in the event S, which occurs if the adversary correctly guesses the bit b involved in the Test-queries. We furthermore consider server (unilateral) authentication: event A is set to true if a client instance accepts, without any server partner. Let us remember that in this attack game, the adversary is allowed to use Corrupt-queries.
Game G_0: This is the real protocol, in the random-oracle model:

$$\text{Adv}_{\text{3SOKE}}^{\text{fx}}(\mathcal{A}) = 2\Pr[\mathcal{S}_0] - 1 \quad \text{Adv}_{\text{3SOKE}}^{\text{auth}}(\mathcal{A}) = \Pr[\mathcal{A}_0].$$

Let us furthermore define the event $\mathcal{S}_w/r(A) = S \land \neg A$, which means that the adversary wins the Real-Or-Random game without breaking authentication.

Game G_1: In this game, we simulate the hash oracles (Hash, but also an additional hash function $\text{Hash}' : \{0,1\}^* \rightarrow \{0,1\}^\ell$ that will appear in the Game G_3) as usual by maintaining hash lists A_{Hash} and $A_{\text{Hash}'}$ with all the queries-answers asked to the hash functions. We also simulate all the instances, as the real players would do, for the Send-queries and for the Execute, Test and Corrupt-queries.

Game G_2: We cancel games in which some collisions appear on the transcripts (C, S, Y_2, Y_3^*), and on the master secrets. Regarding the transcripts, the distance follows from the birthday paradox since at least one element of each transcript is generated by an honest participant (at least one of them in each of the q_{active} active attacks, and all of them in the q_{passive} passive attacks). Likewise, in the case of the master keys, a similar bound applies since Hash is assumed to behave like a random oracle (which outputs ℓ-bit bit-strings):

$$\Pr[\text{Coll}_2] \leq \frac{q_{\text{active}}^2}{2q} + \frac{q_{\text{passive}}^2}{2q^3} + \frac{q_{\text{hash}}^2}{2^{2+\ell}}.$$

Game G_3: In this game, we show that the success probability of the adversary is negligible in passive attacks via Execute-queries. To do so, we modify the way in which we compute the pre-master secret PreMasterSecret in passive sessions that take place before or after a Corrupt-query. More precisely, whenever the adversary asks a Execute-query, we compute the pre-master secret PreMasterSecret as $\text{Hash}'(C, S, Y_2, Y_3^*)$ using the private oracle Hash' instead of the oracle Hash. As a result, it holds that any value of PreMasterSecret computed during a passive session becomes completely independent of Hash and Z, which are no longer needed in these sessions. Please note that the oracle Hash is still being used in active sessions.

The games G_3 and G_2 are indistinguishable unless the adversary \mathcal{A} queries the hash function Hash on $(C, S, pw, Y_2, Y_3^* || Z)$, for such a passive transcript: this (bad) event is denoted AskH-Passive-Exe. In order to upper-bound the probability of this event, we consider an auxiliary game G_3', using a $\text{CDH}_{g,G}(U, V)$ as input, in which the simulation of the players changes—but the distributions remain perfectly identical (therefore, $\Pr[\text{AskH-Passive-Exe}_3] = \Pr[\text{AskH-Passive-Exe}'_3]$): Since we do not need to compute Z for the simulation of Execute-queries, we can simulate Y_2 as g^{x^*}, V, V^{x^*} and Y_3^* as g^{y^*}, for known values of x^* and y^*. This implicitly sets x_2 to be $\log g, V$, and U is still used for the mask. If event AskH-Passive-Exe occurs, the value $Z = \text{CDH}_{g,G}(g^{x^*}/U^{pw}, V)$ can be extracted from A_{Hash}, by simply choosing at random among the q_{hash} elements. Since this value equals $V^{y^*}/\text{CDH}_{g,G}(U, V)^{pw}$, the values y^* and pw are known, and the computation of $\text{CDH}_{g,G} (U, V)$ is assumed to be difficult, we get the following upper-bound:

$$\Pr[\text{AskH-Passive-Exe}_3] \leq q_{\text{hash}} \times \text{Succ}_{g,G}^{\text{cdh}}(t + 2\tau_e).$$

Game G_4: In this game, we consider passive attacks via Send-queries, in which the adversary simply forwards the messages it receives from the oracle instances. More precisely, we replace Hash by Hash' when computing the value of PreMasterSecret whenever the values (C, S, Y_2, Y_3^*) were generated by oracle instances. Note that we can safely do so due to the absence of collisions in the transcript. Like in G_3, any value PreMasterSecret computed during such passive sessions becomes completely independent of Hash and Z.
As in previous games, we can upper-bound the difference in the success probabilities of A in games G_4 and G_3 by upper-bounding the probability that A queries the hash function Hash on $(C, S, pw, Y_2 \parallel Y_3^* \parallel Z)$, for such a passive transcript; we call this (bad) event AskH-Passive-Send. Toward this goal, we consider an auxiliary game G_5, in which the simulation of the players changes slightly without affecting the view of the adversary. In this simulation, we are given a $\text{CDH}_{g, G}$-instance (U, V), and choose at random one of the $\text{Send}(S, \text{“start”})$-queries being asked to S and we reply with $Y_2 = \{g^{x^*}, V, V^{x^*}\}$ for a known, random x^*. On the client side, we change the simulation whenever it receives as input a message that was generated by a server instance, by computing Y_3^* as g^{y^*} for a known, random y^*. If the event AskH-Passive-Send occurs and our guess for the passive session is correct (the adversary simply forwarded the messages), then we can extract $Z = \text{CDH}_{g, G}(g^{y^* / U^{pw}}, V) = V^{y^*} / \text{CDH}_{g, G}(U, V)^{pw}$ from A_{Hash}. Similarly to above, we get:

$$\Pr[\text{AskH-Passive-Send}_4] \leq q_{\text{session}} \times \text{Succ}^{\text{cdh}}_{g, G}(t + 2\tau_e).$$

Game G_5: In this game, we make one of the most significant modifications. We replace the oracle Hash by the private oracle Hash' whenever the input to this query contains an element that was not generated by an oracle instance and no Corrupt-query has occurred. More precisely, if either the value $Y_2 = \{Y_2^{(1)}, Y_2^{(2)}, Y_2^{(3)}\}$ or Y_3^* in the Hash-query $(C, S, pw, Y_2 \parallel Y_3^* \parallel Z)$ was generated by the adversary, with $Z = \text{CDH}_{g, G}(Y_3^*/U^{pw}, Y_2^{(2)})$, then we reply to this query using $\text{Hash}'(C, S, Y_2 \parallel Y_3^*)$ as long as no Corrupt-query has occurred. Note that we can check the value Z since we know pw and at least x_2 or x_3. Clearly, the games G_5 and G_4 are indistinguishable as long as A does not query the hash function Hash on an input $(C, S, pw, Y_2 \parallel Y_3^* \parallel Z)$, for some execution transcript $(C, S, Y_2 \parallel Y_3^*)$. We denote this (bad) event by AskHbC-Active. Thus,

$$|\Pr[A_5] - \Pr[A_4]| \leq \Pr[\text{AskHbC-Active}_5]$$

$$|\Pr[S_{w/t}A_5] - \Pr[S_{w/t}A_4]| \leq \Pr[\text{AskHbC-Active}_5].$$

Game G_6: In this game, we replace the pseudo-random functions by truly random functions for all the sessions in which the value of PreMasterSecret has been derived with the private oracle Hash'. Since the value PreMasterSecret that is being used as the secret key for the pseudo-random function is independently and uniformly distributed, the distance can be proven by a classical sequence of hybrid games, where the counter is on the pre-master secrets. That is, each time a new pre-master secret is set, we increment the counter. Then, $\Pr[S_{w/t}A_6] = 1/2$.

$$|\Pr[A_6] - \Pr[A_5]| \leq q_{\text{session}} \times \text{Adv}^{\text{prf}}(t, 1)$$

$$|\Pr[S_{w/t}A_6] - \Pr[S_{w/t}A_5]| \leq q_{\text{session}} \times \text{Adv}^{\text{prf}}(t, 2).$$

Game G_7: In this game, we exclude collisions on MAC keys for all the sessions in which the pre-master secret PreMasterSecret has been derived with the private oracle Hash' (which event is denoted CollPRF). For these sessions, the MAC keys of length ℓ_M are independently and uniformly distributed (because the PRF were replaced by random functions), so the probabilities differ from those in the previous game by at most:

$$\Pr[\text{CollPRF}_7] \leq q_{\text{hash}}^2 / 2^{\ell_M}.$$
a valid forgery for another random key. Thus, by randomly choosing the two indices for the hash queries, we get the following upper-bound:

$$\Pr[\text{Coll}_M^8] \leq q_{\text{hash}}^2 \times \text{Succ}_{\text{mac}}^{\text{active}}(t, 0).$$

Before proceeding with the rest of the analysis, we split the event \(\text{AskHbC-Active}\) into two disjoint sub-cases depending on whether the adversary impersonates the client (and thus interacts with the server) or the server (and thus interacts with the client). We denote these events \(\text{AskHbCwS}\) and \(\text{AskHbCwC}\), respectively. Also we denote by \(q_{\text{fake-server}}\) (respectively, \(q_{\text{fake-client}}\)) the number of sessions in which the adversary impersonates the server (resp., the client). Obviously, one has \(q_{\text{fake-server}} + q_{\text{fake-client}} \leq q_{\text{active}}\).

Game \(G_9\): In this game, we focus on \(\text{AskHbCwC}\) only. We now reject all the authenticators sent by the adversary for all the sessions in which the pre-master secret \(\text{PreMasterSecret}\) has been derived with the private oracle \(\text{Hash}'\): \(\Pr[A_9] = 0\). In order to evaluate the distance between the games \(G_9\) and \(G_8\), we consider the probability of the event \(\text{AskHbCwC}\), in which the adversary succeeds in faking the server by sending a valid authenticator to the client before a \(\text{Corrupt}\)-query.

To evaluate the probability of event \(\text{AskHbCwC}\), we note that, up to the moment in which a \(\text{Corrupt}\)-query occurs, no information on the password \(pw\) of a user is revealed to the adversary, despite the fact that the password is still used in the computation of \(Y_3^*\). To see that, note that, for any given transcript \((C, S, Y_2\|Y_3^*)\) in which \(Y_3^*\) was created by an oracle instance and for each password \(pw\), there exists a value \(x \in \mathbb{Z}_n\), such that \(Y_3^* = gxU^{pw}\), which is never revealed to the adversary. Moreover, since we have removed collisions on the pre-master secrets, on the MAC keys, and on the MAC values, there is at most one password that can lead to a valid authenticator. As a result, the probability that the adversary succeeds in sending a valid authenticator in each of these sessions is at most \(1/N\). Thus, we get

$$\Pr[\text{AskHbCwC}_9] \leq \frac{q_{\text{fake-server}}}{N}.$$

Game \(G_{10}\): We finally concentrate on the success probability of the adversary in faking the client. What we show in this game is that the adversary cannot eliminate more than one password in the dictionary by impersonating a client. To do so, we first upper-bound the probability that, for some transcript \((C, S, Y_2\|Y_3^*)\) in which \(Y_2\) was created by server instance, there are two hash queries in \(A_{\text{hash}}\) such that one has \((Y_2, Y_3^*, pw_0, Z_0 = \text{CDH}_{g,G}(Y_3^*/U^{pw_0}, Y_2))\) and \((Y_3^*, Y_2, pw_1, Z_1 = \text{CDH}_{g,G}(Y_3^*/U^{pw_1}, Y_2))\). We denote this event \(\text{CollH}\).

In order to upper-bound the probability of event \(\text{CollH}\), we consider an auxiliary game in which the simulation of the players changes slightly without affecting the view of the adversary. The goal is to use the adversary to help us compute the computational Diffie-Hellman value of \(U\) and \(V\). In this simulation, we choose at random one of the \(\text{Send}(S, \text{"start"})\)-queries being asked to \(S\) and we reply with \(Y_2 = \{g^x, V, V^x\}^*\) in the hope that this is the session which leads to a collision in the transcript. For all other sessions, \(Y_2\) is simulated as \(\{g^{x_1}, g^{x_2}, g^{x_1+x_2}\}\). Now, let us assume that the event \(\text{CollH}\) happens. If our guess for the \(\text{Send}(S, \text{"start"})\)-query was correct, then we can extract the value \(\text{CDH}_{g,G}(U, V)\) as \((Z_1/Z_0)^u\), where \(u\) is the inverse of \((pw_0 - pw_1)\), by simply guessing the indices of the two hash queries involved in the collision. We note that \(u\) is guaranteed to exist since \(pw_0 \neq pw_1\). It follows that

$$\Pr[\text{CollH}] \leq q_{\text{session}}q_{\text{hash}}^2 \times \text{Succ}_{\text{cdh}}^{\text{active}}(t + \tau_e).$$

When the event \(\text{CollH}\) does not happen, for each transcript \((C, S, Y_2\|Y_3^*)\) in which \(Y_2\) was created by server instance, there is at most one password value \(pw\) such that the tuple \((Y_2, Y_3^*, Z = \)
CDH_{g,G}(Y_3^*/U^{nw},\hat{Y}_2)) is in \Lambda_{\text{Hash}}. As a result, the probability of the adversary in impersonating a client reduces to trying one password at a time. Thus,

$$\Pr[\text{AskHbCw}S_{10}] \leq \frac{q_{\text{fake}} - q_{\text{client}}}{N} + q_{\text{session}}q_{\text{hash}}^2 \times \text{Succ}_{\text{cdh}}^{g,G}(t + \tau_e).$$

Since \Pr[A_{10}] = 0, this concludes the proof of Theorem 1. \qed

4 Discussions and Recommendations

This paper describes efficient and provably secure ciphersuites for password-based authentication in the TLS protocol. It is a first attempt at drafting provably secure PAKE ciphersuites for TLS that are believed to not infringe existing patents [9, 14, 32, 46]; however, further investigation would be needed before this technology can be used within the United States completely without fear of infringement. Also, in the same vein as SUN Microsystems Laboratories’s contribution to OpenSSL, contributing the TLS-3SOKE technology to OpenSSL would require a license grant permit from the Lawrence Berkeley National Laboratory—which is not a commercial enterprise and whose main purpose is not to make a profit.

At the time of this writing, it is not totally clear that the steps defined by the claims of Bellovin and Merritt U.S. Patent involve only two parties [9]. Claim #1 through #24 appear to define the steps of the 2-party encrypted Diffie-Hellman key exchange, but use the phrase “a plurality of parties”. In typical U.S. patent law usage, a “plurality” refers to two or more. However, in the context of the patent specification, only Alice and Bob are mentioned. It should be noted that a review of the patent file history tells us that the U.S. patent required two office actions, which resulted in the amendment of all the claims. Thus, only literal infringement would be possible under current U.S. patent law. Furthermore in their corresponding European patent [14], Bellovin and Merritt were forced to explicitly call out the two parties, Alice and Bob. Arguably, the European limitations of using only Alice and Bob could be used as an estoppel argument in the U.S. case, to infer that only two parties are ever used. If this argument were successful, then three-or-more party would not infringe the U.S. Bellovin and Merritt patent.

Another argument could be made regarding the validity of the U.S. patent looking at U.S. claim #1. Here, Bellovin and Merritt transmits a signal to one of the parties, but the “receiving a response signal” step never states who sends the response signal. In present-day patent practice, this could be viewed as “indefinite”, which could lead to an invalid and potentially unenforceable patent:

A method for generating a cryptographic key to a first symmetric key cryptosystem by using an authentication signal, said authentication signal being available to a plurality of parties, said method compromising the steps of:

- forming an outgoing signal by encrypting at least a portion of an excitation signal with a second symmetric key cryptosystem using a key based on said authentication signal, said excitation signal being based on first signal R_A;
- transmitting said outgoing signal to one of said parties;
- receiving a response signal, Q, in response to said outgoing signal; and
- generating said cryptographic key based on said first signal and on said response signal.

Alternatively, the “receiving a response signal” element could be interpreted in the context of the Bellovin and Merritt patent specification to only mean an interchange between Alice and Bob, with no third party involved.

The arguments made above could give an impression of weakness or fear of invalidity in the patent, thus perhaps making it less likely that a patent owner would attempt to enforce the patent.
Before the open source community at large can benefit from the ciphersuites presented in this paper, investigations should also be performed in various other countries (e.g., Australia, Japan, Canada [10, 12, 13]) where the Bellovin and Merritt patent was also filed.

It should also be noted that the U.S. Bellovin and Merritt patent expires on August 31, 2010 after which no patent infringement issue remains in the United States.

Acknowledgments

The authors want to thank Dr. Joseph R. Milner, a Patent Attorney at Lawrence Berkeley National Laboratory, for suggesting this paper, for invaluable discussions on the patents (and licensing issues), and for providing us with the Discussions and Recommendations Section.

The authors want to thank Abdelilah Essiari for developing and implementing a prototype of this protocol within the OpenSSL open-source implementation of TLS. His work has provided us with a meaningful practical feedback.

The first and fifth authors have been supported in part by the European Commission through the IST Program under Contract IST-2002-507932 ECRIPT. The third author was supported by the Director, Office of Science, Office of Advanced Scientific Computing Research, Mathematical Information and Computing Sciences Division, of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098. This document is report LBNL-59947. See http://www-library.lbl.gov/disclaimer.

References

5. Michel Abdalla, Emmanuel Bresson, Olivier Chevassut, Abdelilah Essiari, Bodo Möller and David Pointcheval. Simple Open Key Exchange (SOKE) ciphersuites for password authentication in TLS. Work in progress, to be published as Internet Draft. 2006.

Client C
(password pw)

Server S
(password pw)

Main CPU S_2

Helper S_1

accept ← false

Choose ciphersuite:

choose $N_c \leftarrow \{0, 1\}^*$

ClientHello: $(N_c, . . .)$

ServerHello: $(N_s, . . .)$

choose $N_s \leftarrow \{0, 1\}^*$

Compute Diffie-Hellman secret:

ServerKeyExchange: (S, Y_2)

ServerHelloDone

choose $x_2 \leftarrow \mathbb{Z}_q$

$Y_2 \leftarrow \{Y_1, g^{x_2}, Y_1^{x_2}\}$

$Y_1 \leftarrow g^{x_1}$

choose $x_3 \leftarrow \mathbb{Z}_q$

compute $Y_3 \leftarrow Y_1^{x_3}$

encrypt $Y_3^* \leftarrow Y_3 \times U^{pw}$

ClientKeyExchange: (C, Y_3^*)

decrypt $Y_3 \leftarrow Y_3^* / U^{pw}$

Compute pre-master secret and authentication key:

$Z = Y_3^{x_2} = (Y_1^{x_2})^{x_3}$

PreMasterSecret = Hash(C, S, pw, $Y_2||Y_3^*||Z$)

AuthKey = PRF$_1$(PreMasterSecret, $N_c||N_s$)

Compute authenticators:

$Auth_C = MAC\cdot Sign_{AuthKey}(\text{"client finished"}, . . .)$

$Auth_S = MAC\cdot Sign_{AuthKey}(\text{"server finished"}, . . .)$

Abort if verification fails. Else:

accept ← true

Authenticate:

$Auth_C$

$Auth_S$

$ChangeCipherSpec$

Abort if verification fails. Else:

accept ← true

Compute master secret and key material as in standard TLS:

MasterSecret = PRF$_2$(PreMasterSecret, $N_c||N_s$)

KeyBlock = PRF$_3$(MasterSecret, $N_s||N_c$)

Secure Channel

Fig. 1. The full handshake for TLS-3SOKE ciphersuites.