
Full version of the extended abstract, which appeared in
the proceedings of the Fourth Conference on Security in Communication Networks 2004
(8 – 10 september 2004, Amalfi, Italy)
C. Blundo and S. Cimato Eds. Springer-Verlag, LNCS 3352, pages 33–47.

On the Security Notions

for Public-Key Encryption Schemes

Duong Hieu Phan and David Pointcheval

École normale supérieure – Dépt d’informatique
45 rue d’Ulm, 75230 Paris Cedex 05, France.

{duong.hieu.phan,david.pointcheval}@ens.fr

Abstract. In this paper, we revisit the security notions for public-key encryption, and
namely indistinguishability. We indeed achieve the surprising result that no decryption
query before receiving the challenge ciphertext can be replaced by queries (whatever
the number is) after having received the challenge, and vice-versa. This remark leads to
a stricter and more complex hierarchy for security notions in the public-key setting: the
(i, j)-IND level, in which an adversary can ask at most i (j resp.) queries before (after
resp.) receiving the challenge. Excepted the trivial implications, all the other relations
are strict gaps, with no polynomial reduction (under the assumption that IND-CCA2

secure encryption schemes exist.) Similarly, we define different levels for non-malleability
(denoted (i, j)-NM.)

Keywords: public-key encryption, semantic security, non-malleability, pseudo-random
functions.

1 Introduction

Relations between security notions for public-key encryption scheme have been deeply
studied, namely in the recent papers of Bellare et al. [2] and of Bellare and Sahai [4].
These papers are based on the seminal works of Goldwasser and Micali [8] which
defined the notions of polynomial security, or indistinguishability denoted IND; Noar
and Yung [12] and Rackoff and Simon [14], which introduced stronger scenarios of
attacks, and Dolev, Dwork and Noar [5, 6] which proposed a stronger security notion:
the non-malleability.

It is now clear that the security notions (indistinguishability and non-malleability)
have to be studied under specific attacks: the basic scenario in the public-key setting in
the chosen-plaintext attacks (CPA), but more interesting situations are captured by the
chosen-ciphertext attacks. Chosen-ciphertext attacks have been split in two families,
for historical reasons explained below, the non-adaptive ones (denoted CCA1) and the
adaptive ones (denoted CCA2.) In both cases, the adversary has access to a decryption
oracle. In the former case, this access is limited until the challenge ciphertext is known,
while the latter case allows an unlimited access (with the natural restriction not to
ask the challenge ciphertext.)

In this paper, we consider more concrete cases by introducing the (i, j)-IND se-
curity level, in which an adversary can ask at most i (j resp.) queries before (after
resp.) receiving the challenge ciphertext. The reason for such a more precise notation,
than just IND-CCA1 thus captured by (poly(·), 0)-IND and IND-CCA2 captured by
(poly(·),poly(·))-IND, is that we can prove that no decryption query before receiving
the challenge can be replaced by queries (whatever the number is) after having re-
ceived the challenge, and vice-versa. Indeed, excepted the trivial implications, all the
other relations between the (i, j)-IND security levels are strict gaps, with no polyno-
mial reduction (under the basic assumption that IND-CCA2 secure encryption schemes
exist.)

c© Springer-Verlag 2004.

2

As an application, we introduce a new kind of attack, we call the post-challenge
chosen-ciphertext attack, denoted CCAO2 (for chosen-ciphertext attacks in the 2nd
stage only.) This new scenario completes the above picture with the (0,poly(·))-IND

security notion. Furthermore, from a practical point of view, it models very realistic
situations since it limits the control the adversary may have on the “a priori” distri-
bution of the plaintexts, but it also encompasses situations where the adversary starts
the attack when it becomes aware of the importance of a specific ciphertext (after the
latter is generated and sent.)

Even if it seems clear that the CCA1 security model has been introduced because
the authors [12] failed at achieving the CCA2 level [14], it is still studied, and considered
as a goal to be achieved. However, it seems more realistic to consider scenarios where
the adversary has not so much control on the challenge plaintexts: they could just
be chosen right after having received the identity and the public-key of the target
decryptor. Therefore, the messages m0 and m1 should be chosen before having access
to any oracle.

1.1 Related Work

In the early 80s, people formally defined the security notions for cryptographic prim-
itives (namely, for signature [10, 11], and for encryption [8] with the notions of poly-
nomial security, or indistinguishability denoted IND.) While these notions did not
evolve so much for signatures since adaptive chosen-message attacks were introduced,
stronger notions appeared later for encryption, namely after the zero-knowledge con-
cept [9].

Indistinguishability was indeed defined in the basic scenario only, where the ad-
versary has just access to the public information, and can thus encrypt any plaintext
of its choice, hence the name of chosen-plaintext attacks (denoted CPA.) Naor and
Yung [12] introduced the notion of chosen-ciphertext attacks. However, their solution
based on non-interactive zero-knowledge proofs of membership, without the recent
non-malleable NIZK or simulation-soundness [15] notions. Therefore, they could not
simulate correctly the decryption oracle after the adversary had received the challenge
ciphertext. As a consequence, they restricted the chosen-ciphertext attacks to be non-
adaptive, in the sense that the decryption queries could not depend on the challenge
ciphertext (a.k.a. lunchtime attacks, denoted CCA1.) Rackoff and Simon [14] extended
this notion, with an unlimited access to the decryption oracle (excepted on the chal-
lenge ciphertext), denoted CCA2, and provided a candidate granted the non-interactive
zero-knowledge proofs of knowledge.

The above improvements were about the attack model, but then also appeared a
relaxed goal for the adversary: the non-malleability [5, 6]. In [2], Bellare et al. provided
comparisons between all the resulting security notions, but just between the large
classes IND/NM combined with CPA, CCA1 or CCA2.

1.2 Contributions

Adaptive chosen-ciphertext attacks (CCA2) are clearly the strongest scenario in the
framework of the complexity theory, using perfect oracles and polynomial reductions,
or even exact reductions. However, this notion can be considered as a very strong
notion. In the real life, which motivated the exact/concrete security [3, 1, 13] (vs.
asymptotic or polynomial framework), the adversary may be limited in the number
of queries it can ask to the decryption oracle, and then the scheme can be designed

3

to resist such a specified number of queries. Therefore, it’s worth considering the
exact/concrete security notions. We thus introduce two classes of security notions:
(i, j)-IND and (i, j)-NM, or even more precisely (t, i, j)-IND and (t, i, j)-NM secure
schemes, which resist (in the indistinguishability sense or non-malleability sense) to
adversaries which can make exactly i (j resp.) decryption queries before (after resp.)
receiving the challenge within time t.

First, we consider the relations inside each class of security. At a first glance,
one could think that a query in the second stage is much more important than a
query in the first stage (since then, queries may depend on the challenge ciphertext,
and this would justify the consideration of CCA1 and CCA2 only in chosen-ciphertext
scenarios.) Surprisingly, we show that no query before receiving the challenge can be
replaced by queries (whatever the number is) after having received the challenge, and
vice-versa: a query before, helps to correctly choose the messages m0 and m1.) This
remark leads to a strict and more complex hierarchy for security notions in the public-
key setting: excepted the trivial implications, all the other relations are strict gaps,
with no polynomial reduction.

As an illustration, we introduce post-challenge chosen-ciphertext attacks (denoted
CCAO2.) In this scenario, the adversary has access to the decryption oracle, but after
the challenge ciphertext is known only. From the above result, we show that any
security notion (IND or NM) under these attacks (CCA1 and CCAO2) are independent.
Furthermore, we show that CCA1 + CCAO2 does not necessarily yield CCA2.

2 Security Model

Let us review the main security notions for public-key encryption, but also more
theoretical notions, which will be useful for exhibiting gaps, such as the pseudo-random
function families.

2.1 Public-Key Encryption

A public-key encryption scheme π is defined by the three following algorithms:

– The key generation algorithm G. On input 1k, where k is the security parameter,
the algorithm G produces a pair (pk, sk) of matching public and private keys.

– The encryption algorithm E . Given a message m (in the space of plaintexts M)
and a public key pk, Epk(m) produces a ciphertext c (in the space of ciphertexts
C) of m. This algorithm may be probabilistic (involving random coins r ∈ R) it
is then denoted Epk(m; r).

– The decryption algorithm D. Given a ciphertext c ∈ C and the secret key sk, Dsk(c)
gives back the plaintext m ∈M.

2.2 Security Notions

As already noted, the fundamental security notions are the indistinguishability and
the non-malleability.

Definition 1 (Indistinguishability). Let π = (G, E ,D) be an encryption scheme.
Let us consider a two-stage probabilistic adversary A = (A1,A2) whose running time

4

is bounded by t. We define the advantage of A against the indistinguishability of π as
follows:

Advind
π (A)

def
=

∣

∣

∣

∣

2× Pr
b,r

[

(pk, sk)← G(1k), (m0,m1, s)← A1(pk),
c = Epk(mb, r), b

′ = A2(m0,m1, s, c) : b′ = b

]

− 1

∣

∣

∣

∣

.

We insist above on that A1 outputs two messages m0 and m1 such that |m0| = |m1|.
As usual, we define by Advind

π (t) the maximum advantage over all the adversaries A
whose running time is bounded by t. Then we say that π is (t, ε)-IND secure if Adv ind

π (t)
is less than ε.

Definition 2 (Non-malleability). Let π = (G, E ,D) be an encryption scheme. Let
us consider a two-stage probabilistic adversary A = (A1,A2) whose running time is
bounded by t. We define the advantage of A against the non-malleability of π by:

Advnm
π (A)

def
= Succnm

π (A)− Succnm,$
π (A),

where the two successes use the same probability distribution, for a distribution of
plaintexts M and a binary relation R, generated by

(pk, sk)← G(1k), (M, s)← A1(pk);
m, m̃←M ; c← Epk(m, r); (R, y)← A2(M, s, c);x ← Dsk(y)

and

Succnm
π (A)

def
= Pr[y 6= c ∧ x 6= ⊥ ∧ R(x,m)]

Succnm,$
π (A)

def
= Pr[y 6= c ∧ x 6= ⊥ ∧ R(x, m̃)].

We also define by Advnm
π (t) the maximum advantage over all the adversaries A whose

running time is bounded by t. Then we say that π is (t, ε)-NM secure if Advnm
π (t) is

bounded by ε.

This definition models the above intuition about non-malleability (the adversary
cannot output a second ciphertext so that the corresponding plaintexts are mean-
ingfully related.) This is a particular case of the general definition used in [2, 4],
and denoted CNM(k), in which the adversary could output a vector of ciphertexts
(y1, . . . , yk) of the plaintexts (x1, . . . , xk) and a relation R so that R(x1, . . . , xk,m)
holds more often than R(x1, . . . , xk, m̃). A discussion is provided in Section 3.3.

2.3 Attack Models

For a public-key encryption, the adversary has access, as anybody, to the encryption
key. It can thus encrypt any plaintext of its choice. Hence the basic attack is called
“Chosen Plaintext Attack”, or in short CPA. But the adversary may also have access
to more information, and namely some decryptions. This is modeled by an access to
the decryption oracle.

Definition 3 (Lunchtime Attacks). An adversary is called a non-adaptive chosen-
ciphertext adversary, (or a lunchtime adversary, denoted by CCA1-adversary) if it can
access the oracle before the challenge ciphertext is known only.

5

Definition 4 (Adaptive Attacks). An adversary is called an adaptive chosen-
ciphertext adversary (denoted by CCA2-adversary) if it can access the oracle whenever
it wants, that is before and after the challenge ciphertext is known, with the sole re-
striction not to use it on the challenge itself.

These two attack models are the classical ones, but for historical reasons. For more
generality, we introduce a more precise definition with a (i, j)-CCA adversary which
can ask at most i queries (resp. j queries) before the challenge ciphertext is known
(after resp.)

Definition 5 (Chosen-Ciphertext Attack). An adversary is called an (i, j) chos-
en-ciphertext adversary (denoted by (i, j)-CCA adversary) if it can access the oracle,
up to i times before the challenge ciphertext is known, and up to j times after, still
with the restriction not to use it on the challenge itself.

Notation. An encryption scheme π = (G, E ,D) is said to be (t, ε)-XXX-YYY secure
if for any YYY-adversary A against the security XXX within running time t, where
XXX can be either IND or NM, and YYY can be either CPA, CCA1, CCA2, or (i, j)-
CCA, the advantage of A is bounded by ε. In the latter case, in short, we say that π
is (t, ε, i, j)-IND secure (resp. (t, ε, i, j)-NM secure) if for any (i, j)-CCA adversary A
whose running time is bounded by t, Advind

π (A) ≤ ε (resp. Advnm
π (A) ≤ ε.)

2.4 Trapdoor One-Way Permutations

Some constructions below will need the existence of a trapdoor one-way permutation.
Informally, for such a permutation which can be inverted granted the trapdoor, it
should be hard to invert without the latter:

Definition 6 (One-Way Permutation). Let f : {0, 1}` → {0, 1}` be a permu-
tation, and let us consider the adversary A against the one-wayness. We define the

success probability of A for inverting f by: Succow
f (A)

def
= Prx[A(f(x)) = x]. As above,

we also denote by Succow
f (t) the maximal success over all the adversaries whose run-

ning time is bounded by t. Therefore, we say that f is (t, ε)-OW if Succow
f (t) is bounded

by ε.

2.5 Pseudo-Random Functions

The notion of pseudo-random functions [7] requires that any adversary, accessing an
oracle Ob, which is either a truly random function F (in case b = 0) or a random
instance FK in the family F = (FK) (in case b = 1), cannot guess the actual bit b.
The advantage of such an adversary is defined by:

Definition 7 (Pseudo-Random Functions).

Adv
prf
F

(A) = 2× Pr
b,F,K

[O0 = F,O1 = FK ,AOb = b]− 1.

We also denote by Adv
prf
F

(t, n) the maximal advantage over all the adversaries whose
running time is bounded by t, which makes less than n queries to the oracle. Finally,
we say that a family F is a (ε, t, n)-PRF if Adv

prf
F

(t, n) is bounded by ε.

6

3 Concrete Security

In this section, we show some non-intuitive gaps in the (i, j)-IND class: a decryption
query in the first stage cannot be postponed to the second stage, and reversely. As a
consequence, we are interested by a possible comparison of the importance of queries
in the first stage and in the second stage. In the following, we formally prove that
allowing one more query in the first stage gives a different strength to an adversary
than allowing it as many queries as it wants in the second stage. We do the same for
an additional query in the second stage, which cannot be compared with even many
queries in the first stage.

3.1 Preliminaries

To this aim, we need a new intractability problem, which can hopefully be related
to a classical PRF one. Furthermore, we denote below by PRP the analogous notion
as PRF, when the functions are permutations. Similarly, we denote by Adv

prp
G

(A) the
advantage with which an adversary can distinguish a permutation, randomly drawn
from the pseudo-random permutation family, and a truly random permutation. Note
that the inverse is not available (i.e., we do not consider the super pseudo-randomness.)

Definition 8. For any function (or permutation) G and any two-stage adversary
A = (A1,A2), we denote by Succ

m,n
G (A) the success probability for A2(v, s) to output

Gn(v), for a given random value v, and a working tape s transmitted by A1, when A1

was limited to m queries to G, and A2 is limited to n− 1 queries.

Succ
m,n
G (A) = Pr[v

R
←M; s← AG

1 : AG
2 (v, s) = Gn(v)].

As before, we denote by Succ
m,n
G (t) the maximal success probability over all the ad-

versaries whose running time is bounded by t.

Proposition 9. For any function/permutation G randomly drawn from a pseudo-
random function/permutation family G into a set of cardinality larger than {0, 1}`, we
have:

Succ
m,n
G (t) ≤ Adv

prf
G

(m + 2n− 1, t) +
mn + 1

2`
.

Proof. We prove that for any adversary A against the above “one-more evaluation”,
we can design a PRF-adversary B such that Succ

m,n
G (A) ≤ Adv

prf
G

(B). Our adversary
B simulates A’s view as follows: whenever A queries G, B asks the same query to Ob

and forwards the answer to A (at most m + n− 1 queries.) Eventually, A outputs x.
B successively queries the oracle Ob to get y = On

b (v). If x = y, B outputs its guess
b′ = 1, otherwise B outputs b′ = 0.

– when b = 1, B actually accesses in fact G and therefore y = On
b (v) = Gn(v),

whenever A outputs the correct value Gn(v). B always wins the game when A
wins. Since b′ = 1 means x = y:

Adv
prf
G

(B | b = 1) = 2Pr[x = y | b = 1]− 1 = 2Succ
m,n
G (A)− 1.

– when b = 1, the value y = On
b (v) that B computes is perfectly random and

independent of the view of A unless A1 has asked one of the values Oi
b(v) (for

0 ≤ i < n) to the oracle. We therefore have

Adv
prp
G

(B | b = 0) = 2Pr[x = y | b = 0]− 1 ≤ 2×

(

mn

2`
+

1

2`

)

− 1.

7

Combining the two cases, with a random bit b, we get the result. ut

The following simple proposition will be used several times in the future.

Definition 10. Let π = (G, E ,D) be a public-key encryption scheme. Let f be a
permutation onto M modeled by the two oracles f and f−1. We define the new
encryption scheme π(f) = (G(f), E (f),D(f)) by

M(f) =M R(f) = R C(f) = C

Algorithm G(f)(1k) Algorithm E
(f)

pk(f)(m, r) Algorithm D
(f)

sk(f)(c)

(pk, sk)← G(1k) pk||f ||f−1 def
= pk(f) sk

def
= sk(f)

pk(f) ← pk||f ||f−1 return Epk(f(m), r) return f−1(Dsk(c))

sk(f) ← sk

return (pk(f), sk(f))

Proposition 11. For any encryption scheme π = (G, E ,D) and for any permutation
f (so that f and f−1 are efficient), π and π(f) have a similar indistinguishability level
whatever the kind of attack:

Advind-yyy
π (t) ≤ Adv

ind-yyy

π(f) (t + 2Tf + qdTf−1) ≤ Advind-yyy
π (t + (2 + qd)(Tf + Tf−1)),

where Tf (and Tf−1 resp.) is an upper-bound of the time required to evaluate f (and
f−1 resp.)

Proof. We first prove that if π(f) is secure then π is secure too. We insist here that
both f and f−1 are efficiently computable and are included in the public key. Let us
consider an adversary A = (A1,A2) against π, we build an adversary B = (B1,B2)
against π(f): whenever A makes a decryption query c to the oracle Dsk, B makes the

same query to the decryption oracle D
(f)

sk(f) . B receives the answer m and forwards

f(m) to A. When A1 outputs two candidates m0 and m1, B1 computes f−1(m0) and
f−1(m1). Finally, when A outputs its guess b′, B forwards this value. It is clear that
the advantage of B is exactly the advantage of A, while its running time needs extra
time for two evaluations of f and qd evaluations of f−1, where qd is the number of
decryption queries:

Advind-yyy
π (t) ≤ Adv

ind-yyy

π(f) (t + 2Tf + qdTf−1).

Since π = π(f)(f−1), and both f and f−1 are public and efficient, one easily con-
cludes. ut

3.2 Each Query is Important

In this section, we show that each query, before receiving the challenge or after having
received it, has its own role. This means that no query before receiving the chal-
lenge can be replaced by queries (whatever the number is) after having received the
challenge, and vice-versa.

Theorem 12. Under the assumption that IND-CCA2 secure encryption schemes exist,
for any pair of integers (m,n), there is an encryption scheme that is (m,N)-IND secure
and (M,n)-IND secure, but not (m + 1, n + 1)-IND secure, whatever M and N are.

8

Proof. We first assume that there exists an IND-CCA2 secure encryption scheme π =
(G, E ,D), which is thus (i, j)-IND for any pair (i, j). We also need a trapdoor one-way
permutation f onto M. The encryption scheme π(f) is therefore IND-CCA2 secure,
when the trapdoor for computing f−1 is included in the public key. We modify π(f)

into a new encryption scheme π′ = (G′, E ′,D′) which is not (m + 1, n + 1)-IND secure
anymore, but still both (m,N)-IND secure and (M,n)-IND secure. Note that a main
difference comes from the fact that the trapdoor for f−1 is now in the private key
only. The scheme π′ = (G′, E ′,D′) works as follows:

– We denote by IM a specific element of M and we note pM = f−1(IM).

– We fix two families, a pseudo-random function family F = {FK : K ∈ {0, 1}k}
and a pseudo-random permutation family G = {GK : K ∈ {0, 1}k}, from the set
C into C. We furthermore assume that the cardinality of C is larger than 2`.
For sake of simplicity, we use the same key sets, domain and range sets for F and
G, but this is not necessary.

Then, the intuition behind the construction is that m + 1 decryption queries in the
first stage will help to determine a specific plaintext µ. It has the specificity that, in
the second stage, it will be possible to check after n + 1 decryption queries whether a
given ciphertext actually encrypts µ or not.

Algorithm G ′(1k) Algorithm E ′pk′(µ, r)

(pk, sk)← G(1k) pk||f ||IM ||m||n
def
= pk′

IM
R
←M,Kf ,Kg

R
← {0, 1}k ϕ← f(µ)

pk′ ← pk||f ||IM ||m||n return 0||Epk(ϕ, r)||ε
sk′ ← sk||f−1||Kf ||Kg

return (pk′, sk′)

Algorithm D′
sk′(b||c||z)

sk||f−1||Kf ||Kg
def
= sk′

1. if (b = 0 ∧ z = ε) return f−1(Dsk(c))
2. if (b = 1 ∧ z = ε) return FKf

(c)

3. if (b = 2 ∧ z = ε) return GKg(c)
4. if (b = 1 ∧ z = F n

Kf
(c) ∧ D(c) = Gm

Kg
(IM)) return f−1(Gm

Kg
(IM))

otherwise, return ⊥

In the above scheme, µ = f−1(Gm
Kg

(IM)) is the crucial plaintext the adversary

should send as a challenge, because with a ciphertext 0‖c‖ε of this plaintext µ, and
the knowledge of F n

Kf
(c), one can derive a second ciphertext of µ (and thus break

both the non-malleability and the IND-CCA2 security level), using the fourth case in
the decryption oracle.

Lemma 13. π′ is not (m + 1, n + 1)-IND secure.

Proof. The following (m+1, n+1)-IND adversary A = (A1,A2) can successfully attack
π′:

9

– In the first stage, A1 asks 2||IM ||ε to D′
sk′ and gets GKg(IM). Then for i = 1 to

m−1, A1 asks 2||Gi
Kg

(IM)||ε to D′
sk′ and finally gets Gm

Kg
(IM), after m decryption

queries. It then computes by itself c = Epk(G
m
Kg

(IM), r) (since pk is part of pk′)

and asks 0||c||ε to D′
sk′ to get m0 = f−1(Gm

Kg
(IM)). It randomly chooses a second

different candidate m1 6= m0, and outputs (m0,m1), after exactly m+1 decryption
queries.

– In the second stage, A2 receives the challenge ciphertext y = 0||c?||ε, where c? =
E(mb, r). A2 asks 1||c?||ε to D′

sk′ and gets FKf
(c?). Then, for i = 1 to n− 1, the

adversary asks 1||F i
Kf

(c?)||ε and finally gets F n
Kf

(c?) after n decryption queries.

As a last query, it asks 1||c?||F n
Kf

(c?) to D′
sk′ . If the answer is m0, the adversary

returns 0, otherwise (in which case the answer is ⊥), the adversary returns 1.

It is easy to see that the value returned by the adversary is always equal to b. ut

Lemma 14. π′ is (m,N)-IND secure: for t′ ≤ t + 2Tf and qd ≤ m + N ,

Adv
(m,N)-ind

π′ (t) ≤ Advind-cca2
π (t′ + qdTf + 2Tf−1)

+2×

(

Succow
f (t′) + (m + 2)× Adv

prp
G

(2m− 1, t′)

+Adv
prp
G

(qd, t
′) + Adv

prf
F

(qd, t
′) + (m + 2)× 2−`

)

.

Proof. Since π is IND-CCA2 secure, it is also the case for π(f). We then prove that
an (m,N)-IND adversary A against π′ can be used by an adversary B to break the
IND-CCA2 security level of π(f) with a similar advantage.

Before presenting this adversary, let us claim the following proposition, which proof
is straightforward.

Proposition 15. Providing FKf
, GKg , f , f−1 and the decryption oracle D

(f)

sk(f) of

π(f), one can perfectly simulate the decryption D ′
sk′ of π′.

Game G0: In this game, our adversary B is provided the decryption oracle D ′
sk′ .

It is thus not a π(f) adversary yet. Anyway, it can easily simulate the view of the
adversary A, granted the oracle access to D ′

sk′ . When A1 outputs the candidates
(m0,m1), B1 forwards them, as its own output. On the challenge ciphertext c, B2

runs A2(0||c||ε). When A2 outputs its guess b′ for the bit b involved in the challenge,
B2 forwards it as its own guess. We denote by S0 the event b′ = b. We clearly have:
Pr[S0] = Pr[B = b] = Pr[A = b].

Game G1: We modify a little bit B1, so that it aborts if a bad case occurs. We
define gm = Gm

Kg
(IM). When A1 outputs (m0,m1), B1 computes by itself f0 = f(m0)

and f1 = f(m1). If gm is one of f0 or f1, or appears in a decryption query of the form
1‖c‖z (i.e., gm = D(c), see case 4), then B aborts the game, outputting a random guess,
otherwise, it continues as in the previous game. We denote by EventGM the above bad
event that f0 = gm, f1 = gm or gm appears in a decryption query: |Pr[S1]−Pr[S0]| ≤
Pr[EventGM].
Let us evaluate the probability of this event. To this aim, we consider two situations,
since A1 is allowed to ask at most m decryption queries:

– A1 asks m queries of the form 2‖c‖ε, which are answered by GKg (c) (see case 3.)
Then B1 does not use any query to f−1 to simulate the answers of the decryption
queries of A1. We can thus build an invertor for f : we give every private informa-
tion to B, except the trapdoor for inverting f . When event EventGM happens, B

10

has inverted f on the random element gm (since IM is random and GKg is a public
permutation, and thus Gm

Kg
) without making any query to f−1. Indeed, using the

private informations, one can compute gm, and then one can check which one of
m0 or m1 is the pre-image of gm by f .

– A1 asks at most than m − 1 queries of the form 2‖c‖ε. Event EventGM means
that gm is one of f0 or f1, or appears in a decryption query of the form 1‖c‖z.
This time, we can build an adversary against the PRP property of the family G:
we give every private information to B, except Kg, but an oracle access to GKg .
When event EventGM happens, gm is one of f0 or f1, or appears in a decryption
query of the form 1‖c‖z (note that gm = D(c), which can be computed since now
B knows sk.) By randomly outputting f0, f1 or D(c) from one of the m decryption
queries of the form 1‖c‖z, after at most m − 1 queries to GKg , with probability
of 1/(m + 2), we get gm = Gm

Kg
(IM), for a random input IM .

Regrouping these two cases, we have:

Pr[EventGM] ≤ Succow
f (t + 2Tf) + (m + 2)× Succ

0,m
GKg

(t + 2Tf)

≤ Succow
f (t + 2Tf) + (m + 2)× Adv

prp
G

(2m− 1, t + 2Tf) +
m + 2

2`
.

Game G2: In this game, we still exclude event EventGM, and thus B does not need
to check gm, and thus to compute it either. B is no longer provided with D ′

sk′ , but

D
(f)

sk(f) only. By the Proposition 15, B can use this decryption oracle D
(f)

sk(f) to perfectly

simulate D′
sk′ , thanks to the access to FKf

, GKg , f and f−1. The only situation that
B cannot simulate is when A2 asks for 1||c||z because B cannot ask the decryption
oracle on its challenge c. Fortunately, in such a case, B can safely answer ⊥ (since we
excluded event EventGM): Pr[S2] = Pr[S1].

Game G3: In this game, we replace the permutation GKg by a truly random
permutation. Whenever B needs to use GKg (for simulating decryptions), it uses G:
|Pr[S3]− Pr[S2]| ≤ Adv

prp
G

(qd, t + 2× Tf).

Game G4: We now replace the function FKf
by a truly random function F .

Whenever B needs to use FKf
, it uses F :

|Pr[S4]− Pr[S3]| ≤ Adv
prp
G

(qd, t + 2× Tf).

In this last game, with an access to f and f−1, B is an actual IND-CCA2 adversary
against π(f). Since A is an (m,N)-IND adversary against π ′, qd ≤ m + N , hence the
result. ut

Lemma 16. π′ is (M,n)-IND secure:

Adv
(M,n)-ind

π′ (t) ≤ Advind-cca2
π′ (t + (M + n)Tf + 2Tf−1)

+n×

(

2Adv
prf
F

(M + 2n− 1, t) + (Mn2 + n + M)× 2−`

+Adv
prf
F

(M + n, t) + Adv
prp
G

(M + n, t)

)

.

Proof. As above, we start from an (M,n)-ind adversary A against π ′. We prove that

Adv
(M,n)-ind

π′ (A) is small by exhibiting an IND-CCA2 adversary B against π(f) with a
similar advantage.

11

Game G0: In this first game, as above, B is provided with D ′
sk′ , and plays exactly

the same way:
Pr[S0] = Pr[B = b] = Pr[A = b].

Game G1: We provide B with D
(f)

sk(f) instead of D′
sk′ , together with oracle access to

FKf
, GKg , but also the trapdoor to compute f−1. By the Proposition 15, B can use

this decryption oracle to perfectly simulate D ′
sk′ , excepted on a query 1‖c‖z, where

c is the challenge ciphertext for B. Fortunately, in this case, B can safely output ⊥.
Indeed, it would be a mistake only if z = F n

Kf
(c). Note that c is not known to A1, and

thus such a case can appear in the first stage only by chance (less than M/2`.) If this
happens in the second stage, by randomly outputting a z from a 1‖c‖z decryption
query, one would break the PRF property of F with probability of 1/n, since one
would output F n

Kf
(c) after only n − 1 queries (since this critical decryption query is

one of the n possible queries of A2.)

|Pr[S1]−Pr[S0]| ≤
M

2`
+ n · Succ

M,n
FKf

(t) ≤ n×Adv
prf
F

(M + 2n− 1, t) +
Mn2 + n + M

2`
.

Game G2: In this game, we replace the function FKf
by a truly random function F .

Similarly, we replace the permutation GKg by a truly random permutation G. With
the same argument as in the proof of the Lemma 14, in the games G3 and G4, we
have:

|Pr[S2]− Pr[S1]| ≤ Adv
prf
F

(qd, t) + Adv
prp
G

(qd, t).

In this last game, B is an actual IND-CCA2 adversary against π(f), hence the result.
ut

From the Lemmas 13, 14 and 16, one completes the proof of the Theorem 12. ut

3.3 Discussion about Non-Malleability

We now briefly discuss on the general notion of non-malleability (denoted by CNM(k))
in which the adversary finally outputs a ciphertext vector of size k, instead of a single
ciphertext. In [4], Bellare and Sahai introduced the notion of parallel attacks, denoted
PA (or more precisely PA(k) by us), where the adversary can ask a ciphertext vector
of size k to the decryption oracle just after the last normal single decryption query
(derived in three ways, as usual, with PA0, PA1 and PA2, according to the access
of the decryption oracle for single ciphertext queries.) They proved that IND-PAX is
equivalent to CNM(k)-CCAX, where CCA0 is indeed CPA. Their result can be translated
within our formalism under the following theorem, which proof can be found in the
Appendix.

Theorem 17. The two notions (m,n)-IND-PA(k) and (m,n)-CNM(k) are equivalent.
In other words, for any encryption scheme π = (G, E ,D):

1

2
× Adv(m,n)-ind-pa(k)

π (t) ≤ Adv(m,n)-ind-cnm(k)

π (t) ≤ Adv(m,n)-ind-pa(k)

π (t + TR),

where TR is an upper-bound on the time to evaluate the relation R.

Granted the following identifications,

(m,n)-IND-PA(1) = (m,n + 1)-IND (m,n)-CNM(1) = (m,n)-NM,

one gets (m,n + 1)-IND = (m,n)-NM.

12

4 A New Attack Model: CCAO2

Definition 18 (Post-Challenge Attacks). An adversary is called a post-challenge
chosen-ciphertext adversary (denoted by CCAO2-adversary) if it can access the oracle
after the challenge ciphertext is known only still with the restriction not to use it on
the challenge itself.

Given this new attack model of post-challenge chosen-ciphertext adversaries, com-
bined with the classical goals, one gets the two security notions: IND-CCAO2 and
NM-CCAO2. These notions are independent with the previous ones, excepted the triv-
ial implications. First, it is clear that for any XXX, XXX-CCA2 implies both XXX-CCA1

and XXX-CCAO2. But from the above result, we show that the opposite is not true.
In fact, we clearly have the following corollaries:

Corollary 19. IND-CCAO2 and IND-CCA1 are independent notions. In other words,
under the assumption that IND-CCA2 secure encryption schemes exist, there is a
scheme which is IND-CCA1 secure but not IND-CCAO2 secure and, there is a scheme
that is IND-CCAO2 secure but not IND-CCA1 secure.

Corollary 20. IND-CCA1 and IND-CCAO2 do not imply, even together, IND-CCA2.
In other words, under the assumption that IND-CCA2 secure encryption schemes exist,
there is a scheme which is both IND-CCA1 secure and IND-CCAO2 secure but not IND-
CCA2 secure.

Another discussion. Since parallel attacks [4] do not give more power to a CCAO2

adversary, we still have equivalence between the two notions of IND and NM under
this new kind of attack, as shown in [2] under CCA2.

Acknowledgement. The work described in this paper has been supported in part
by the European Commission through the IST Programme under Contract IST-2002-
507932 ECRYPT. The information in this document reflects only the authors’ views,
is provided as is and no guarantee or warranty is given that the information is fit
for any particular purpose. The user thereof uses the information at its sole risk and
liability.

References

1. M. Bellare, A. Desai, E. Jokipii, and P. Rogaway. A Concrete Security Treatment of Symmetric
Encryption: Analysis of the DES Modes of Operation. In Proc. of the 38th FOCS. IEEE, New
York, 1997.

2. M. Bellare, A. Desai, D. Pointcheval, and P. Rogaway. Relations among Notions of Security for
Public-key Encryption Schemes. In Adv. in Cryptology – Proceedings of Crypto ’98, volume LNCS
1462, pages 26–45, Berlin, 1998. Springer-Verlag.

3. M. Bellare and P. Rogaway. The Exact Security of Digital Signatures – How to Sign with RSA
and Rabin. In Eurocrypt ’96, LNCS 1070, pages 399–416. Springer-Verlag, Berlin, 1996.

4. M. Bellare and A. Sahai. Non-malleable encryption: Equivalence between two notions, and an
indistinguishability-based characterization. In Adv. in Cryptology – Proceedings of Crypto ’99,
volume LNCS 1666, pages 519–536, Berlin, 1999. Springer-Verlag.

5. D. Dolev, C. Dwork, and M. Naor. Non-Malleable Cryptography. In Proc. of the 23rd STOC.
ACM Press, New York, 1991.

6. D. Dolev, C. Dwork, and M. Naor. Non-Malleable Cryptography. SIAM Journal on Computing,
30(2):391–437, 2000.

7. O. Goldreich, Goldwasser, and S. Micali. How to construct random functions. Journal of the ACM,
33(4):210–217, 1986.

13

8. S. Goldwasser and S. Micali. Probabilistic Encryption. Journal of Computer and System Sciences,
28:270–299, 1984.

9. S. Goldwasser, S. Micali, and C. Rackoff. The Knowledge Complexity of Interactive Proof Systems.
In Proc. of the 17th STOC, pages 291–304. ACM Press, New York, 1985.

10. S. Goldwasser, S. Micali, and R. Rivest. A “Paradoxical” Solution to the Signature Problem. In
Proc. of the 25th FOCS, pages 441–448. IEEE, New York, 1984.

11. S. Goldwasser, S. Micali, and R. Rivest. A Digital Signature Scheme Secure Against Adaptative
Chosen-Message Attacks. SIAM Journal of Computing, 17(2):281–308, April 1988.

12. M. Naor and M. Yung. Public-Key Cryptosystems Provably Secure against Chosen Ciphertext
Attacks. In Proc. of the 22nd STOC, pages 427–437. ACM Press, New York, 1990.

13. K. Ohta and T. Okamoto. On Concrete Security Treatment of Signatures Derived from Identifi-
cation. In Crypto ’98, LNCS 1462, pages 354–369. Springer-Verlag, Berlin, 1998.

14. C. Rackoff and D. R. Simon. Non-interactive Zero-knowledge Proof of Knowledge and Chosen
Ciphertext Attack. In Proc. of CRYPTO ’91, volume LNCS 576, pages 433–444, Berlin, 1992.
Springer-Verlag.

15. A. Sahai. Non-Malleable Non-Interactive Zero-Knowledge and Chosen-Ciphertext Security. In
Proc. of the 40th FOCS. IEEE, New York, 1999.

A Proof of Theorem 17:

First, let A = (A1,A2,A
′
2) be an (m,n)-IND-PA(k) adversary against π. Such an

adversary is a classical IND adversary in two stages. But the second stage is split into
A2 which may be allowed to ask decryption queries and output a ciphertext vector.
A′

2 receives the plaintext vector and is not allowed any more to query the decryption
oracle before outputting its guess. We define the following (m,n)-CNM(k) adversary
B = (B1,B2):

– B1 runs A1, and forwards all the query-answers to/from the decryption oracle
(the same number of queries are thus asked.) When A1 outputs two plaintexts
(m0,m1) and s, one defines and outputs the distribution M = {m0,m1} (the
uniform distribution among the two messages) together with the state information
s;

– The challenger randomly chooses m according toM, which is equivalent to choose

b
R
← {0, 1} and m = mb, then computes c = Epk(m, r) for random coins r;

– B2 is given the state information s and the ciphertext c, which it forwards to A2.
It also forwards all the query-answers to/from the decryption oracle (the same
number of queries are thus asked.) When A2 outputs its ciphertext vector y and
a state information s′, B2 outputs (R,y) where the relation R is defined as follows:
R(x,m) returns (m = m0)⊕A′

2(x, s′).

By definition, if we consider the distributionM for m̃, that is equivalent to the random

choice of a bit d independent to b and b′, and m̃ = md, then Adv
(m,n)-ind-cnm(k)

π (A) is
equal to

Pr[R(x,m)] − Pr[R(x, m̃)] = Pr[R(x,mb)]− Pr[R(x,md)]

=
1

2
×

(

Pr[R(x,mb)]− Pr[R(x,mb̄)]

)

=
1

2
×

(

Pr[(m0 = mb)⊕A′
2(x, s′)]− Pr[(m0 = mb̄)⊕A′

2(x, s′)]

)

=
1

2
×

(

Pr[(b = 0)⊕ (b′ = 1)] − Pr[(b = 0)⊕ (b′ = 1)]

)

=
1

2
×

(

Pr[b = b′]− Pr[b 6= b′]

)

=
1

2
× Adv(m,n)-ind-pa(k)

π (B).

14

Note that the running time of B is exactly the same as of A.
Let us turn to the second part of the relation. LetA be an (m,n)-CNM(k) adversary.

We define the following (m,n)-IND-PA(k) adversary B = (B1,B2,B
′
2):

– B1 runs A1, and forwards all the query-answers to/from the decryption oracle (the
same number of queries are thus asked.) When A1 outputs a distributionM and
s, one draws independently two plaintexts (m0,m1) according toM, and outputs
them together with the state information s;

– The challenger randomly chooses b
R
← {0, 1}, and random coins r, and computes

c = Epk(mb, r);
– B2 is given the state information s and the ciphertext c, which it forwards to
A2. It also forwards all the query-answers to/from the decryption oracle (the
same number of queries are thus asked.) When A2 outputs (R,y). B2 outputs
the ciphertext vector y. B′

2 is then given the corresponding plaintext vector x. It
checks whether R(x,m0) holds. If it is true, one outputs b′ = 0, otherwise b′ = 1.

Adv(m,n)-ind-pa(k)

π (B) = Pr[b′ = 0 | b = 0]− Pr[b′ = 0 | b = b1]

= Pr[R(x,m0) | b = 0]− Pr[R(x,m0) | b = 1]

= Pr[R(x,m0) | b = 0]− Pr[R(x,m1) | b = 0]

= Adv(m,n)-ind-cnm(k)

π (A).

Note that the running time of B is exactly the same as of A plus one evaluation of
R. ut

