
Cryptographic Hardware and Embedded Systems (CHES 2004)
(11 – 13 august 2004, Boston, Massachusetts, USA)
M. Joye and J.-J. Quisquater Eds. Springer-Verlag, LNCS 3156, pages 441–454.

How to Disembed a Program?

(Extended Abstract?)

Benôıt Chevallier-Mames1, David Naccache1, Pascal Paillier1, and David Pointcheval2

1 Gemplus Card International/Applied Research and Security Center
{benoit.chevallier-mames,david.naccache,pascal.paillier}@gemplus.com

2 CNRS/ENS – Dépt Informatique – david.pointcheval@ens.fr

Abstract This paper presents the theoretical blueprint of a new secure token called the Externalized
Microprocessor (XµP). Unlike a smart-card, the XµP contains no ROM at all.
While exporting all the device’s executable code to potentially untrustworthy terminals poses formidable
security problems, the advantages of ROM-less secure tokens are numerous: chip masking time disappears,
bug patching becomes a mere terminal update and hence does not imply any roll-out of cards in the field.
Most importantly, code size ceases to be a limiting factor. This is particularly significant given the steady
increase in on-board software complexity.
After describing the machine’s instruction-set we introduce a public-key oriented architecture design which
relies on a new RSA screening scheme and features a relatively low communication overhead. We propose
two protocols that execute and dynamically authenticate arbitrary programs, provide a strong security
model for these protocols and prove their security under appropriate complexity assumptions.

Keywords. Embedded cryptography, RSA screening schemes, ROM-less smart cards, Program authentication,
Compilation theory, Provable security, Mobile code.

1 Introduction

The idea of inserting a chip into a plastic card is as old as public-key cryptography. The first patents
are now 25 years old but mass applications emerged only a decade ago because of limitations in
the storage and processing capacities of circuit technology. More recently new silicon geometries and
cryptographic processing refinements led the industry to new generations of cards and more complex
applications such as multi-applicative cards [7].

Over the last decade, there has been an increasing demand for more and more complex smart-
cards from national administrations, telephone operators and banks. Complexity grew to the point
where current cards are nothing but miniature computers embarking a linker, a loader, a Java virtual
machine, remote method invocation modules, a bytecode verifier, an applet firewall, a garbage collector,
cryptographic libraries, a complex protocol stack plus numerous other clumsy OS components.

This paper ambitions to propose a disruptive secure-token model that tames this complexity ex-
plosion in a flexible and secure manner. From a theoretical standpoint, we look back to von Neumann’s
computing model wherein a processing unit operates on volatile and nonvolatile memories, generates
random numbers, exchanges data via a communication tape and receives instructions from a program
memory. We revisit this model by alleviating the integrity assumption on the executed program, ex-
plicitly allowing malevolent and arbitrary modifications of its contents. Assuming a cryptographic key
is stored in nonvolatile memory, the property we achieve is that no chosen-program attack can actually
infer information on this key or modify its value: only authentic programs, the ones written by the
genuine issuer of the architecture, may do so.

Quite customizable and generic in several ways, our execution protocols are directly applicable to
the context of a ROM-less smart card (called the Externalized Microprocessor or XµP) interacting with
a powerful terminal (Externalized Terminal or XT). The XµP executes and dynamically authenticates
external programs of arbitrary size without intricate code-caching mechanisms. This approach not only
simplifies current smart-card-based applications but also presents immense advantages over state-of-
the-art technologies on the security marketplace. Notable features of the XµP are further discussed

? The full version of this work can be found at [6].

c© Springer-Verlag 2004.



2

in Section 7 and in the full version of this work [6]. We start by introducing the architecture and
programming language of the XµP in the next section. After describing our execution protocols in
Sections 4 and 5, Section 6 establishes a well-defined adversarial model and assesses their security
under the RSA assumption and the collision-intractability of a hash function.

2 The XµP’s Architecture and Instruction Set

xjvml. An executable program is modeled as a sequence of instructions P = (INS1, . . . , INS`) where
INSi is located at address i for i ∈ 1, · · · , ` off-board. These instructions are in essence similar to
instruction codes executed by any traditional microprocessor. Although the XµP’s instruction set
could be similar to that of a 68HC05, MIPS32 or a MIX processor [10], we choose to model it as
a jvml0-like machine [13], extending this language into xjvml as follows. xjvml is a basic virtual
processor operating on a volatile memory ram, a non-volatile memory nvm, classical I/O ports denoted
IO (for data) and XIO (for instructions), an internal random number generator denoted RNG and an
operand stack st, in which we distinguish

– transfer instructions: load x pushes the current value of ram[x] (i.e. the memory cell at
immediate address x in ram) onto the operand stack. store x pops the top value off the operand
stack and stores it at address x in ram. Similarly, load IO captures the value presented at the I/O
port and pushes it onto the operand stack whereas store IO pops the top value off the operand
stack and sends it to the external world. load RNG generates a random number and pushes it
onto the operand stack (the instruction store RNG does not exist). getstatic pushes nvm[x]
onto the operand stack and putstatic x pops the top value off the operand stack and stores it
into the nonvolatile memory at address x;

– arithmetic and logical operations: inc increments the value on the top of the operand stack.
pop pops the top of the operand stack. push0 pushes the integer zero onto the operand stack. xor
pops the two topmost values of the operand stack, exclusive-ors them and pushes the result onto
the operand stack. dec’s effect on the topmost stack element is the exact opposite of inc. mul
pops the two topmost values off the operand stack, multiplies them and pushes the result (two
values representing the result’s MSB and LSB parts) onto the operand stack;

– control flow instructions: letting 1 ≤ L ≤ ` be an instruction’s index, goto L is a simple jump
to program address L. Instruction if L pops the top value off the operand stack and either falls
through when that value is the integer zero or jumps to L otherwise. The halt instruction halts
execution.

Note that no program memory appears in our architecture: instructions are simply sent to the
microprocessor which executes them in real time. To this end, a program counter i is maintained by
the XµP: i is set to 1 upon reset and is updated by instructions themselves. Most of them simply
increment i ← i + 1 but control flow instructions may set i to arbitrary values in the range [1, `].
To request instruction INSi, the XµP simply sends i to the XT and receives INSi via the specifically
dedicated communication port XIO.

Security-Critical Instructions. While executing instructions, the device may be fed with mis-
behaving code crafted so as to read-out secrets from the NVM or even update the NVM at wish (for
instance, illegally credit the balance of an e-Purse). It follows that the execution of instructions that
have an irreversible effect on the device’s NVM or on the external world must be authenticated in
some way so as to validate their genuineness. For this reason we single-out the very few machine in-
structions that send signals out of the XµP1 and those instructions that modify the state of the XµP’s
non-volatile memory2. These instructions will be called security-critical in the following sections and
are defined as follows.

1 Typically the instruction allowing a data I/O port to toggle.
2 Typically the latching of the control bit that triggers EEPROM/Flash update or erasure.



3

Definition 1. A microprocessor instruction is security-critical if it might trigger the emission of an
electrical signal to the external world or if it causes a modification of the microprocessor’s internal
nonvolatile memory. We denote by S the set of security-critical instructions.

As we now see, posing S = {putstatic x, store IO} is not enough. Indeed, there exist subtle
attacks that exploit i as a side channel. Consider the example below where k denotes the NVM address
of a secret key byte u = nvm[k]:

P = (getstatic k, if 1000, dec, if 1001, dec, if 1002, . . . ) .

The XµP will require from the XT a continuous sequence of instructions

INS1, INS2, . . . , INSu−1, INSu

followed by a sudden request of INS1000+u and the value of u = nvm[k] has hence leaked-out.
Let us precisely formalize the problem: a microprocessor instruction is called leaky if it might

cause a physically observable variable (e.g. the program counter) to take one of several possible values,
depending on the data (ram, nvm or st element) handled by the instruction. The opposite notion is
the one of data indistinguishability that characterizes those instructions for which the processed data
have no influence whatsoever on environmental variables. Executing a xor, typically, does not reveal
information (about the two topmost stack elements) which could be monitored from the outside of the
XµP. As the execution of leaky instructions may reveal information about internal program variables,
they fall under the definition of security-criticality and we therefore include them in S. Following our
instruction set, we have S = {putstatic x, store IO, if L}.

3 Ensuring Program Authenticity

Verification per Instruction. To ascertain that the instructions executed by the device are
indeed those crafted by the code’s author, a naive approach consists in associating a signature to
each instruction e.g. with RSA3. The program’s author generates a public and private RSA sig-
nature key-pair (N, e, d) and embeds (N, e) into the XµP. The code is enhanced with signatures
P = ((INS1, σ1), . . . , (INS`, σ`)) where σi = µ(ID, i, INSi)

d mod N , µ denotes a deterministic RSA
padding function4 and ID is a unique program identifier.

Note that the instruction address i appears in the padding function to avoid interchanging in-
structions in a program. The role of ID is to guard against code mixture attacks in which the i-th
instructions of two programs are interchanged. The XµP keeps the ID of all authorized programs in
nonvolatile memory. We consider the straightforward protocol shown on Figure 1.

0. The XµP receives and checks ID and initializes i← 1
1. The XµP queries from the XT instruction number i
2. The XT sends (INSi, σi) to the XµP
3. The XµP

(a) ascertains that σei = µ(ID, i, INSi) mod N
(b) executes INSi

4. Goto step 1.

Fig. 1. The Authenticated XµP (inefficient)

This protocol is quite inefficient because, although verifying RSA signatures can be relatively easy
with the help of a cryptocoprocessor, verifying one RSA signature per instruction remains resource-
consuming.

3 Any other signature scheme featuring high-speed verification could be used here.
4 Note that if a message-recovery enabling padding is used, the storage of P can be reduced.



4

RSA-Based Screening Schemes. We resort to the screening technique devised by Bellare, Garay
and Rabin in [4]. Unlike verification, screening ascertains that a batch of messages has been signed
instead of checking that each and every signature in the batch is individually correct. More technically,
the RSA-screening algorithm proposed in [4] works as follows. Given a list of message-signature pairs
{mi, σi = h(mi)

d mod N}, one screens this list by simply checking that

(
t∏

i=1

σi

)e

=
t∏

i=1

h(mi) mod N and i 6= j ⇔ mi 6= mj .

At a first glance, this primitive seems to perfectly suit our code externalization problem where one does
not necessarily need to ascertain that all the signatures are individually correct, but rather control
that all the code ({INSi, σi}) seen by the XµP has indeed been signed by the program’s author at some
point in time.

Unfortunately the restriction i 6= j ⇔ mi 6= mj has a very important drawback as loops are
extremely frequent in executable code (in other words, the XµP may repeatedly require the same
{INSi, σi} while executing a given program)5. To overcome this limitation, we introduce a new screening
variant where, instead of checking that each message appears only once in the list, the screener controls
that the number of elements in the list is strictly smaller than e (we assume throughout the paper
that e is a prime number) i.e. :

(
t∏

i=1

σi

)e

=
t∏

i=1

µ(mi) mod N and t < e .

This screening scheme is referred to as µ-RSA. The security of µ-RSA for µ = h where h is a full
domain hash function, is guaranteed in the random oracle model [5] by the following theorem.

Theorem 2. Let (N, e) be an RSA public key where e is a prime number. If a forger F can produce
a list of t < e messages (m1, . . . ,mt) and 0 ≤ σ < N such that σe =

∏t
i=1 h(mi) mod N while the

signature of at least one of m1, . . . ,mt is not given to F , then F can be used to efficiently extract e-th
roots modulo N .

The theorem applies in both passive and active settings: in the former case, F is given the list
{m1, . . . ,mt} as well as the signature of some of them. In the latter, F is allowed to query a signing
oracle and may choose the value of the mis. We refer the reader to [6, Appendix A.1] for a proof of
Theorem 2 and detailed security reductions.

Opaque Screening. Signature screening is now used to verify instructions collectively as depicted
on Figure 3. At any point in time, ν is an accumulated product of t < e padded instructions ν =∏

i µ(ID, i, INSi). Loosely speaking, both parties XµP and XT update their own security buffers ν and
σ which compatibility (in the sense of σe = ν mod N) is checked before executing any security-critical
instruction. Note that a verification is also triggered when exactly e − 1 instructions are aggregated
in ν.

5 Historically, [4] proposed only the criterion (
∏
σi)

e =
∏
µ(mi) mod N . This version was broken by Coron and Naccache

in [9]. Bellare et al. subsequently repaired the scheme but the fix introduced the restriction that any message can appear
at most once in the list.



5

0. The XµP receives and checks ID and initializes i← 1
1. The XµP

(a) sets t← 1
(b) sets ν ← 1

2. The XT sets σ ← 1
3. The XµP queries from the XT instruction number i
4. The XT

(a) updates σ ← σ × σi mod N
(b) sends INSi to the XµP

5. The XµP updates ν ← ν × µ(ID, i, INSi) mod N
6. If t = e or INSi ∈ S the XµP

(a) queries from the XT the current value of σ
(b) halts execution if σe 6= ν mod N (cheating XT)
(c) executes INSi
(d) goto step 1

7. The XµP
(a) executes INSi
(b) increments t← t+ 1
(c) goto step 3.

Fig. 3. The Opaque XµP (secure but suboptimal)

As one can easily imagine, this protocol becomes rapidly inefficient when instructions of S are
frequently used. For instance, ifs constitute the basic ingredient of while and for assertions which
are extremely common in executable code. Moreover, in many cases, whiles and fors are even nested
or interwoven. It follows that the Opaque XµP would incessantly trigger the relatively expensive6

verification stage of steps 6a and 6b (we denote by CheckOut this verification stage throughout the
rest of the paper). This is clearly an overkill: in many cases ifs can be safely performed on non secret
data dependent7 variables (for instance the variable that counts 16 rounds during a DES computation).
We show in the next section how to optimize the number of CheckOuts while keeping the protocol
secure.

4 Internal Security Policies

We now associate a privacy bit to each memory and stack cells, denoting by ϕ(ram[j]), ϕ(nvm[j])
and ϕ(st[j]) the privacy bit associated to ram[j], nvm[j] and st[j]. NVM privacy bits are nonvolatile.
Informally speaking, the idea behind privacy bit is to prevent the external world from probing secret
data handled by the XµP. RAM privacy bits are initialized to zero upon reset, NVM privacy bits
are set to zero or one by the XµP’s issuer at the production or personalization stage, ϕ(IO) and
ϕ(RNG) are always stuck to zero8 and one by definition and privacy bits of released stack elements
are automatically reset to zero.

We also introduce simple rules by which the privacy bits of new variables evolve as a function of
prior ϕ values. Transfer instructions simply transfer the privacy bit of their variable (e.g. getstatic
3 simultaneously sets st[s] ← nvm[3] and ϕ(st[s]) ← ϕ(nvm[3]) where s denotes the stack pointer
and st[s] the topmost stack element). The rule we apply to arithmetical and logical instructions is
privacy-conservative namely, the output privacy bits are all set to zero if and only if all input privacy
bits were zero (otherwise they are all set to one). In other words, as soon as private data enter a

6 While the execution of a regular instruction demands only one modular multiplication, the execution of an INSi ∈ S
requires the transmission of an RSA signature (e.g. 1024 bits) and an exponentiation (e.g. to the power e = 216 + 1)
in the XµP.

7 Read: non-((secret-data)-dependent).
8 i.e. any external data fed into the XµP is considered as publicly observable by opponents and hence non-private.



6

computation all output data are tagged as private. This rule is easily hardwired as a simple boolean
or for non-unary operators.

This mechanism allows to process security-critical instructions in different ways depending on
whether they run over private or non-private data. Typically, executing an if L does not provide
critical information if the topmost stack element is non-private. A CheckOut may not be mandatorily
invoked in this case. Accordingly, outputting a non-private value via a store IO instruction does not
provide any sensitive information, and a CheckOut can be spared in this case as well. In fact, one can
easily specify a security policy that contextually defines the conditions (over privacy bits) under which
a security-critical instruction may or may not trigger a collective verification. To abstract away the
security policy chosen by the issuer, we introduce the boolean predicate

Alert : S × Φ 7→ {True,False}

where Φ denotes the set of all privacy bits Φ = ϕ(ram) ∪ ϕ(nvm) ∪ ϕ(st). Alert(INS, Φ) evaluates as
True when a CheckOut is to be invoked. We hence twitch our protocol as now shown on Figure 4.

0. The XµP receives and checks ID and initializes i← 1
1. The XµP

(a) sets t← 1
(b) sets ν ← 1

2. The XT sets σ ← 1
3. The XµP queries from the XT instruction number i
4. The XT

(a) updates σ ← σ × σi mod N
(b) sends INSi to the XµP

5. The XµP updates ν ← ν × µ(ID, i, INSi) mod N
6. If t = e or (INSi ∈ S and Alert(INSi, Φ)) the XµP

(a) CheckOut
(b) executes INSi
(c) goto step 1

7. The XµP
(a) executes INSi
(b) increments t← t+ 1
(c) goto step 3.

Fig. 4. Enforcing a Security Policy: Protocol 1

5 Authenticating Code Sections Instead of Instructions

Following the classical definition of [1,11], we call a basic block a straight-line sequence of instructions
that can be entered only at its beginning and exited only at its end. The set of basic blocks of
a program P is usually given under the form of a graph CFG(P ) and computed by the means of
control flow analysis [12,11]. In such a graph, vertices are basic blocks and edges symbolize control
flow dependencies: B0 → B1 means that the last instruction of B0 may handover control to the first
instruction of B1. In our instruction set, basic blocks admit at most two sons with respect to control
flow dependance; a block has two sons if and only if its last instruction is an if. When B0 → B1,
B0 ⇒ B1 means that B0 has no son but B1 (but B1 may have other fathers than B0). In this section
we define a slightly different notion that we call code sections.

Informally, a code section is a maximal collection of basic blocks B1 ⇒ B2 · · · ⇒ B` such that no
instruction of S∪{halt} appears in the blocks except, possibly, as the last instruction of B`. The section
is then denoted by S = 〈B1, . . . ,B`〉. In a code section, the control flow is deterministic i.e. independent
from program variables; thus a section may contain several cascading goto instructions. Code sections,



7

unlike basic blocks, may share instructions; yet they have a natural graph structure induced by CFG(P )
which we do not use in the sequel. It is known that computing a program’s basic blocks can be done
in almost-linear time [12] and it is easily seen that the same holds for code sections. We refer to the
full version of this work for an algorithm computing the set Sec(P ) of code sections of a program P .

Given that instructions in a code section are executed sequentially, and that sections can be
computed at compile time, signatures can certify sections rather than individual instructions. In other
words, a single signature per code section suffices. The signature of a code section S starting at address
i is:

σi = µ(ID, i, h)d mod N ,

with h = H(INS1, . . . , INSk) where INS1, . . . , INSk are the successive instructions in S. Here, H is an
iterative hash function recursively defined by H(x1, . . . , xj) = F (xj , H(x1, . . . , xj−1)) and H(x1) =
F (x1, IV ) where F (x, y) is H’s compression function and IV an initialization constant. We summarize
the new protocol on Figure 5.

0. The XµP receives and checks ID and initializes i← 1
1. The XµP

(a) sets t← 1 (t now counts code sections)
(b) sets ν ← 1

2. The XT sets σ ← 1
3. The XµP

(a) sets h← IV
(b) queries the code section starting at address i

4. The XT
(a) updates σ ← σ × σi mod N
(b) sets j = 1

5. The XT
(a) sends INSi

j to the XµP
(b) increments j ← j + 1

6. The XµP
(a) receives INSi

j ,
(b) updates h← F (INSi

j , h)
7. If INSi

j ∈ S and (Alert(INSi
j , Φ) or t = e) the XµP

(a) sets ν = ν × µ(ID, i, h) mod N
(b) CheckOut
(c) executes INSi

j

(d) goto step 1
8. Else if INSi

j ∈ S then the XµP
(a) sets ν = ν × µ(ID, i, h) mod N
(b) increments t← t+ 1
(c) executes INSi

j

(d) goto step 3
9. Else the XµP

(a) executes INSi
j

(b) increments j ← j + 1
(c) goto step 5.

Fig. 5. Authentication of Code Sections: Protocol 2

This protocol presents the advantage of being far less time consuming, because the number of
CheckOuts (and updates of ν) is considerably reduced. The formats under which the code can be
stored in the XT are diverse. The simplest of these consists in representing P as the list of all its signed
code sections P = (ID, (1, σ1,S1), . . . , (k, σk,Sk)). Whatever the file format used in conjunction with
our protocol is, the term authenticated program designates a program augmented with its signature
material Σ(P ) = {σi}i. Thus, our protocols actually execute authenticated programs. A program is
converted into an authenticated executable file via a specific compilation phase involving both code
processing and signature generations.



8

6 Security Analysis

What we provide in this section is a formal proof that the protocols described above are secure. The
security proof shall have two ingredients: a well-defined security model describing an adversary’s goal
and resources, and a reduction from some complexity-theoretic hard problem. Rather than rigourously
introducing the numerous notions our security model is based upon (which the reader may find in [6],
as well as the fully detailed reductions), we give here a high-level description of our security analysis.

The Security Model. We assume the existence of three parties in the game:

– a code issuer CI that compiles xjvml programs into authenticated executable files with the help
of the signing key (N, d),

– an XµP that follows the communication protocol given in Section 4 and contains the verification
key (N, e) matching (N, d). The XµP also possesses some cryptographic private key material k
stored in its NVM,

– an attacker A willing to access k using means that are discussed below.

Adversarial Goals. Depending on the role played by the XµP’s cryptographic key k, the adversary’s
goals might be of different nature. Of course, inferring information about k (worse, recovering k
completely) comes immediately to one’s mind, but there could also be weaker (somewhat easier)
ways of having access to k. For instance if k is a symmetric encryption key, A might try to decrypt
ciphertexts encrypted under k. Similarly, if it is a public-key signature key, A could attempt to rely on
the protocol engaged with the XµP to help forging signatures in a way or an other. More exotically,
the adversary could try to hijack the key k e.g. to use it (or a part of it thereof) as an AES key
whereas k was intended to be employed some other way. A’s goal in this case is a bit more intricate
to capture, but we see no reason why we should prohibit that kind of scenario in our security model.
Third, the adversary may attempt to modify k, thereby opening the door to fault attacks [2,3].

The Attack Scenario. Parties behave as follows. The CI crafts polynomially many authenticated
programs of polynomially bounded size and publishes them. We assume no interaction between the
CI and A. Then A and the XµP engage in the protocol and A attempts to make the XµP execute a
sequence of instructions ξ that was not originally issued by the CI. The attack succeeds when ξ contains
a security-critical instruction that handles some part of k which the XµP nevertheless executes.

We say that A is an (`, n, τ, ε)-attacker if after seeing at most ` authenticated programs P1, . . . , P`

totalling at most n ≥ ` instructions and processing at most τ steps, Pr[A succeeds] ≥ ε. In this defi-
nition, we include in τ the execution time Time(ξ) of ξ, stipulating by convention that executing each
instruction takes one step and that all transmissions (instruction addresses, instructions, signatures
and IO data) are instantaneous.

Security Proof for Protocol 1. We state:

Theorem 3. If the screening scheme µ-RSA is (qk, τ, ε)-secure against existential forgery under a
known message attack, then Protocol 1 is (`, n, τ, ε)-secure for n ≤ qk.

Moreover, when µ = FDH, outputting a valid forgery is equivalent to extracting e-th roots modulo
N as shown in [6, Appendix A.1]. The following corollary is proved by invoking Theorem 2.

Corollary 4. If µ is a full domain hash function, then Protocol 1 is secure under the RSA assumption
in the random oracle model.

Security Proof for Protocol 2. We now move on to the (more efficient) Protocol 2 defined in
Section 5. (µ,H)-RSA is defined as being the RSA screening scheme with padding function (x, y, z) 7→
µ(x, y,H(z)). We slightly redefine (`, n, τ, ε)-security as the resistance against adversaries that have
access to at most ` authenticated programs totalling at most n code sections. We state:



9

Theorem 5. If the screening scheme (µ,H)-RSA is (qk, τ, ε)-secure against existential forgery under
a known message attack, then Protocol 2 is (`, n, τ, ε)-secure for n ≤ qk.

When µ(a, b, c) = h(a‖b‖H(c)) and h is seen as a random oracle, a security result similar to
Corollary 4 can be obtained for Protocol 2. However, a bad choice for H could allow the adversary
A to easily find collisions over µ via collisions over H. Nevertheless, unforgeability can be formally
proved under the assumption that H is collision-intractable. We refer the reader to the corresponding
theorem given in [6, Appendix B]. Associating this result with Theorem 5, we conclude:

Corollary 6. Assume µ(a, b, c) = h(a‖b‖H(c)) where h is a full-domain hash function seen as a
random oracle. Then Protocol 2 is secure under the RSA assumption and the collision-intractability
of H.

What about active attacks? Although RSA-based screening schemes may feature strong unforge-
ability under chosen-message attacks (see [6, Appendix A.2] for such a proof for FDH-RSA), it is easy
to see that our protocols cannot resist chosen-message attackers whatever the security level of the
underlying screening scheme happens to be. Indeed, assuming that the adversary is allowed to query
the code issuer CI with messages of her choosing, a trivial attack consists in obtaining the signature

σ = µ(ID, 1, H(INS1, INS2, INS3))
d mod N

of a program P where ID is known to be accepted by the XµP and the single-section program P is

P = (getstatic 17, store IO, halt)

wherein nvm[17] is known to contain a fraction of the cryptographic key k, the value 17 being purely
illustrative here9. Similarly, the attacker may query the signature of some trivial key-modifying code
sequence. Obviously, nothing can be done to resist chosen-message attacks.

7 Deployment Considerations and Engineering Options

From a practical engineering perspective, our new architecture is likely to deeply impact the smart
card industry. We briefly discuss some advantages of our technology.

Code Patching. A bug in a program does not imply the roll-out of devices in the field but a simple
terminal update. Patching a future smart card can hence become as easy as patching a PC. A possible
bug patching mechanism consists in encoding in ID a backward compatibility policy signed by the
CI that either instructs the XµP to replace its old ID by a new one and stop accepting older version
programs or allow the execution of new or old code (each at a time, i.e. no blending possible). The
description of this mechanism is straightforward and omitted here.

Code Secrecy. Given that the XT contains the application’s code, our architecture assumes that the
algorithm’s specifications are public. It is possible to reach some level of secrecy by encrypting the XT’s
program under a key (common to all XµPs). Obviously, morphologic information about the algorithm
will leak out to some extent (loop structure etc.) but important elements such as S-box contents
or the actual type of boolean operators used by the code could remain confidential if programmed
appropriately.

Simplified Product Management. Given that a GSM XµP and an electronic-purse XµP differ only
by a few NVM bytes (essentially ID), by opposition to smart-cards, XµPs are real commodity products
(such as capacitors, resistors or Pentium processors) which stock management is greatly simplified and

9 The halt instruction is even superfluous as the attacker can power off the device right after the second instruction is
executed.



10

straightforward. Given the very small NVM room needed to store an ID and a public-key, a single
XµP can very easily support several applications provided that the sum of the NVM spaces used by
these applications does not exceed the XµP’s total NVM capacity and that these NVM spaces are
properly firewalled. From the user’s perspective the XµP is tantamount to a key ring carrying all the
secrets (credentials) used by the applications that the user interacts with but not these applications
themselves.

A wide range of trade-offs and variants is possible when implementing the architecture described
in this paper. Referring to the extended version of this work [6] for more, a few engineering options
are considered here.

Speeding up modular operations. While the multiplication of two κ-bit integers theoretically
requires κ2 operations, multiplying a random ν by µ(x) may require only κ2/4 operations when µ is
adequately chosen. Independently, an adequate usage of RAM counters allows to decrease the value
of e without sensibly increasing the expected number of CheckOut on the average.

Replacing RSA. Clearly, any signature scheme that admits a screening variant (i.e. a homomorphic
property) can be used in our protocols. RSA features a low (and customizable) verification time, but
replacing it by EC-based schemes for instance, could present some advantages.

Code Size versus Execution Speed. The access to a virtually unlimited ROM renders vacuous the
classical dilemma between optimizing code size or speed. Here, for instance, one can cheaply unwind
(inline) loops or implement algorithms using pre-computed space-consuming look-up tables instead of
performing on-line calculations etc.

Smart Usage of Security Hardware Features. Using the Alert predicate, the XµP could se-
lectively activate hardware-level protections against physical attacks whenever a private variable is
handled or forecasted to be used a few cycles later.

High Speed XIO. A high-speed communication interface is paramount for servicing the extensive
information exchange between the XµP and the XT. Evaluating transmission performances for a pop-
ular standard, the Universal Serial Bus (USB)10, we found that transfers of 32 bits can be done at 25
Mb/s in USB High Speed mode which corresponds to 780K 32-bit words per second. When servicing
Protocol 1, this corresponds approximately to a 32-bit XµP working at 390 KHz; when parallel execu-
tion and look-ahead transmission take place, one gets a 32-bit machine running at 780 KHz. An 8-bit
USB interface leads to 830 KHz. There is no doubt that these figures can be greatly improved.

8 Further Work

The authors believe that the concept introduced in this paper raises a number of practical and the-
oretical questions. Amongst these is the safe externalization of Java’s entire bytecode set, the safe
co-operative development of code by competing parties (i.e. mechanisms for the secure handover of
execution from program ID1 to program ID2), or the devising of faster execution protocols.

Interestingly, the paradigm of signature screening on which Protocols 1 and 2 are based also exists
in the symmetric setting, where RSA signatures are replaced by MACs and a few hash functions.
Security can also be assessed formally in this case under adequate assumptions. We refer the reader
to [6] for details.

This paper showed how to provably securely externalize programs from the processor that runs
them. Apart from answering a theoretical question, we believe that our technique provides the frame-
work of novel practical solutions for real-life applications in the world of mobile code and cryptography-
enabled embedded software.

10 Note that USB is unadapted to our application as this standard was designed for good bandwidth rather than for
good latency.



11

References

1. A. Aho, R. Sethi, J. Ullman, Compilers: Principles, Techniques, and Tools, Addison-Wesley, 1986.
2. E. Biham and A. Shamir, Differential Fault Analysis of Secret Key Cryptosystems, In Advances in Cryptography,

Crypto’97, LNCS 1294, pages 513–525, 1997.
3. I. Biehl, B. Meyer and V. Müller, Differential Fault Attacks on Elliptic Curve Cryptosystems, In M. Bellare (Ed.),

Proceedings of Advances in Cryptology, Crypto 2000, LNCS 1880, pages 131–146, Springer Verlag, 2000.
4. M. Bellare, J. Garay and T. Rabin, Fast Batch Verification for Modular Exponentiation and Digital Signatures,

Eurocrypt’98, LNCS 1403, pages 236–250. Springer-Verlag, Berlin, 1998.
5. M. Bellare and P. Rogaway, Random Oracles Are Practical: a Paradigm for Designing Efficient Protocols, Proceedings

of the first CCS, pages 62–73. ACM Press, New York, 1993.
6. B. Chevallier-Mames, D. Naccache, P. Paillier and D. Pointcheval, How to Disembed a Program?, IACR ePrint

Archive, http://eprint.iacr.org/2004/138, 2004.
7. Z. Chen, Java Card Technology for Smart Cards: Architecture and Programmer’s Guide, The Java Series, Addison-

Wesley, 2000.
8. J.-S. Coron, On the Exact Security of Full-Domain-Hash, Crypto’2000, LNCS 1880, Springer-Verlag, Berlin, 2000.
9. J.-S. Coron and D. Naccache, On the Security of RSA Screening, Proceedings of the Fifth CCS, pages 197–203,

ACM Press, New York, 1998.
10. D.E. Knuth, The Art of Computer Programming, vol. 1, Seminumerical Algorithms, Addison-Wesley, Third edition,

pages 124–185, 1997.
11. S. Muchnick, Advanced Compiler Design and Implementation, Morgan Kaufmann, 1997.
12. G. Ramalingam, Identifying Loops in Almost Linear Time, ACM Transactions on Programming Languages and

Systems, 21(2):175-188, March 1999.
13. R. Stata and M. Abadi, A Type System for Java Bytecode Subroutines, SRC Research Report 158, June 11, 1998,

http://www.research.digital.com/SRC/.


