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Abstract. Since the appearance of public-key cryptography in the Diffie-Hellman seminal paper, many
schemes have been proposed, but many have been broken. Indeed, for a long time, the simple fact that a
cryptographic algorithm had withstood cryptanalytic attacks for several years was considered as a kind of
validation. But some schemes took a long time before being widely studied, and maybe thereafter being
broken.
A much more convincing line of research has tried to provide “provable” security for cryptographic proto-
cols, in a complexity theory sense: if one can break the cryptographic protocol, one can efficiently solve the
underlying problem. Unfortunately, this initially was a purely theoretical work: very few practical schemes
could be proven in this so-called “standard model” because such a security level rarely meets with efficiency.
Ten years ago, Bellare and Rogaway proposed a trade-off to achieve some kind of validation of efficient
schemes, by identifying some concrete cryptographic objects with ideal random ones. The most famous
identification appeared in the so-called “random-oracle model”. More recently, another direction has been
taken to prove the security of efficient schemes in the standard model (without any ideal assumption) by
using stronger computational assumptions.
In these lectures, we focus on practical asymmetric protocols together with their “reductionist” security
proofs, mainly in the random-oracle model. We cover the two main goals that public-key cryptography
is devoted to solve: authentication with digital signatures, and confidentiality with public-key encryption
schemes.

1 Introduction

Since the beginning of public-key cryptography, with the seminal Diffie-Hellman paper [25],
many suitable algorithmic problems for cryptography have been proposed and many crypto-
graphic schemes have been designed, together with more or less heuristic proofs of their security
relative to the intractability of the above problems. However, most of those schemes have there-
after been broken.

The simple fact that a cryptographic algorithm withstood cryptanalytic attacks for several
years has often been considered as a kind of validation procedure, but some schemes take a
long time before being broken. An example is the Chor-Rivest cryptosystem [21, 48], based on
the knapsack problem, which took more than 10 years to be totally broken [86], whereas before
this attack it was believed to be strongly secure. As a consequence, the lack of attacks at some
time should never be considered as a security validation of the proposal.

1.1 Provable Security

A completely different paradigm is provided by the concept of “provable” security. A significant
line of research has tried to provide proofs in the framework of complexity theory (a.k.a. “reduc-
tionist” security proofs [4]): the proofs provide reductions from a well-studied problem (RSA
or the discrete logarithm) to an attack against a cryptographic protocol.

At the beginning, people just tried to define the security notions required by actual cryp-
tographic schemes, and then to design protocols which achieve these notions. The techniques
were directly derived from the complexity theory, providing polynomial reductions. However,
their aim was essentially theoretical. They were indeed trying to minimize the required as-
sumptions on the primitives (one-way functions or permutations, possibly trapdoor, etc) [37,
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35, 52, 71] without considering practicality. Therefore, they just needed to design a scheme with
polynomial algorithms, and to exhibit polynomial reductions from the basic assumption on the
primitive into an attack of the security notion, in an asymptotic way. However, such a result has
no practical impact on actual security. Indeed, even with a polynomial reduction, one may be
able to break the cryptographic protocol within a few hours, whereas the reduction just leads
to an algorithm against the underlying problem which requires many years. Therefore, those
reductions only prove the security when very huge (and thus maybe unpractical) parameters are
in use, under the assumption that no polynomial time algorithm exists to solve the underlying
problem.

1.2 Exact Security and Practical Security

For a few years, more efficient reductions have been expected, under the denominations of
either “exact security” [12] or “concrete security” [58], which provide more practical security
results. The perfect situation is reached when one manages to prove that, from an attack,
one can describe an algorithm against the underlying problem, with almost the same success
probability within almost the same amount of time. We have then achieved “practical security”.

Unfortunately, in many cases, even just provable security is at the cost of an important loss
in terms of efficiency for the cryptographic protocol. Thus some models have been proposed,
trying to deal with the security of efficient schemes: some concrete objects are identified with
ideal (or black-box) ones.

For example, it is by now usual to identify hash functions with ideal random functions,
in the so-called “random-oracle model”, informally introduced by Fiat and Shamir [28], and
formalized by Bellare and Rogaway [10]. Similarly, block ciphers are identified with families
of truly random permutations in the “ideal cipher model” [9]. A few years ago, another kind
of idealization was introduced in cryptography, the black-box group [53, 80], where the group
operation, in any algebraic group, is defined by a black-box: a new element necessarily comes
from the addition (or the subtraction) of two already known elements. It is by now called the
“generic model”. Recent works [77, 18] even require several ideal models together to provide
some new validations.

1.3 Outline of the Notes

In the next section, we explain and motivate more about exact security proofs, and we intro-
duce the notion of the weaker security analyses, the security arguments (in an ideal model,
and namely the random-oracle model). Then, we review the formalism of the most important
asymmetric primitives: signatures and public-key encryption schemes. For both, we provide
some examples, with some security analyses in the “reductionist” sense.

1.4 Related Work

These notes present a survey, based on several published papers, from the author, with often
several co-authors: about signature [67, 69, 68, 17, 84], encryption [7, 3, 62, 59, 32, 33] and prov-
ably secure constructions [61, 63, 65, 64, 66]. Many other papers are also cited and rephrased,
which present efficient provably secure constructions. Among the bibliography list presented at
the end, we would like to insist on [10–12, 22, 82, 83]. We thus refer the reader to the original
papers for more details.
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2 Security Proofs and Security Arguments

2.1 Computational Assumptions

In both symmetric and asymmetric scenarios, many security notions can not be unconditionally
guaranteed (whatever the computational power of the adversary). Therefore, security generally
relies on a computational assumption: the existence of one-way functions, or permutations,
possibly trapdoor. A one-way function is a function f which anyone can easily compute, but
given y = f(x) it is computationally intractable to recover x (or any pre-image of y). A one-way
permutation is a bijective one-way function. For encryption, one would like the inversion to be
possible for the recipient only: a trapdoor one-way permutation is a one-way permutation for
which a secret information (the trapdoor) helps to invert the function on any point.

Given such objects, and thus computational assumptions about the intractability of the
inversion without possible trapdoors, we would like that security could be achieved without
extra assumptions. The only way to formally prove such a fact is by showing that an attacker
against the cryptographic protocol can be used as a sub-part in an algorithm that can break
the basic computational assumption.

A partial order therefore exists between computational assumptions (and intractable prob-
lems too): if a problem P is more difficult than the problem P ′ (P ′ reduces to P , see below)
then the assumption of the intractability of the problem P is weaker than the assumption of
the intractability of the problem P ′. The weaker the required assumption is, the more secure
the cryptographic scheme is.

2.2 “Reductionist” Security Proofs

In complexity theory, such an algorithm which uses the attacker as a sub-part in a global al-
gorithm is called a reduction. If this reduction is polynomial, we can say that the attack of
the cryptographic protocol is at least as hard as inverting the function: if one has a polyno-
mial algorithm to solve the latter problem, one can polynomially solve the former one. In the
complexity theory framework, a polynomial algorithm is the formalization of efficiency.

Therefore, in order to prove the security of a cryptographic protocol, one first needs to
make precise the security notion one wants the protocol to achieve: which adversary’s goal one
wants to be intractable, under which kind of attack. At the beginning of the 1980’s, such se-
curity notions have been defined for encryption [35] and signature [37, 38], and provably secure
schemes have been suggested. However, those proofs had a theoretical impact only, because
both the proposed schemes and the reductions were completely unpractical, yet polynomial.
The reductions were indeed efficient (i.e. polynomial), and thus a polynomial attack against a
cryptosystem would have led to a polynomial algorithm that broke the computational assump-
tion. But the latter algorithm, even polynomial, may require hundreds of years to solve a small
instance.

For example, let us consider a cryptographic protocol based on integer factoring. Let us
assume that one provides a polynomial reduction from the factorization into an attack. But
such a reduction may just lead to a factorization algorithm with a complexity in 225k10, where
k is the bit-size of the integer to factor. This indeed contradicts the assumption that no-
polynomial algorithm exists for factoring. However, on a 1024-bit number (k = 210), it provides
an algorithm that requires 2125 basic operations, which is much more than the complexity of the
best current algorithm, such as NFS [46], which needs less than 2100 (see Section 4). Therefore,
such a reduction would just be meaningful for numbers above 4096 bits (since with k = 212,
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2145 < 2149, where 2149 is the estimate effort for factoring a 4096-bit integer with the best
algorithm.) Concrete examples are given later.

2.3 Practical Security

Moreover, most of the proposed schemes were unpractical as well. Indeed, the protocols were
polynomial in time and memory, but not efficient enough for practical implementation.

For a few years, people have tried to provide both practical schemes, with practical reduc-
tions and exact complexity, which prove the security for realistic parameters, under a well-
defined assumption: exact reduction in the standard model (which means in the complexity-
theoretic framework). For example, under the assumption that a 1024-bit integer cannot be
factored with less than 270 basic operations, the cryptographic protocol cannot be broken with
less than 260 basic operations. We will see such an example later.

Unfortunately, as already remarked, practical or even just efficient reductions in the standard
model can rarely be conjugated with practical schemes. Therefore, one needs to make some
hypotheses on the adversary: the attack is generic, independent of the actual implementation
of some objects

– hash functions, in the “random-oracle model”;
– symmetric block ciphers, in the “ideal-cipher model”;
– algebraic groups, in the “generic model”.

The “random-oracle model” was the first to be introduced in the cryptographic community [28,
10], and has already been widely accepted. By the way, flaws have been shown in the “generic
model” [84] on practical schemes, and the “random-oracle model” is not equivalent to the
standard one either. Several gaps have already been exhibited [19, 54, 6]. However, all the
counter-examples in the random-oracle model are pathological, counter-intuitive and not nat-
ural. Therefore, in the sequel, we focus on security analyses in this model, for real and natural
constructions. A security proof in the random-oracle model will at least give a strong argument
in favor of the security of the scheme. Furthermore, proofs in the random-oracle model under a
weak computational assumption may be of more pratical interest than proofs in the standard
model under a strong computational assumption.

2.4 The Random-Oracle Model

As said above, efficiency rarely meets with provable security. More precisely, none of the most
efficient schemes in their category have been proven secure in the standard model. However,
some of them admit security validations under ideal assumptions: the random-oracle model is
the most widely accepted one.

Many cryptographic schemes use a hash function H (such as MD5 [72] or the American
standards SHA-1 [56], SHA-256, SHA-384 and SHA-512 [57]). This use of hash functions was
originally motivated by the wish to sign long messages with a single short signature. In order
to achieve non-repudiation, a minimal requirement on the hash function is the impossibility for
the signer to find two different messages providing the same hash value. This property is called
collision-resistance.

It was later realized that hash functions were an essential ingredient for the security of,
first, signature schemes, and then of most cryptographic schemes. In order to obtain security
arguments, while keeping the efficiency of the designs that use hash functions, a few authors sug-
gested using the hypothesis that H behaves like a random function. First, Fiat and Shamir [28]
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applied it heuristically to provide a signature scheme “as secure as” factorization. Then, Bellare
and Rogaway [10–12] formalized this concept for cryptography, and namely for signature and
public-key encryption.

In this model, the so-called “random-oracle model”, the hash function can be formalized
by an oracle which produces a truly random value for each new query. Of course, if the same
query is asked twice, identical answers are obtained. This is precisely the context of relativized
complexity theory with “oracles,” hence the name.

About this model, no one has ever been able to provide a convincing contradiction to
its practical validity, but just theoretical counter-examples on either clearly wrong designs
for practical purpose [19], or artificial security notions [54, 6]. Therefore, this model has been
strongly accepted by the community, and is considered as a good one, in which security analyses
give a good taste of the actual security level. Even if it does not provide a formal proof of
security (as in the standard model, without any ideal assumption), it is argued that proofs in
this model ensure security of the overall design of the scheme provided that the hash function
has no weakness, hence the name “security arguments”.

This model can also be seen as a restriction on the adversary’s capabilities. Indeed, it simply
means that the attack is generic without considering any particular instantiation of the hash
functions. Therefore, an actual attack would necessarily use a weakness or a specific feature of
the hash function. The replacement of the hash function by another one would rule out this
attack.

On the other hand, assuming the tamper-resistance of some devices, such as smart cards, the
random-oracle model is equivalent to the standard model, which simply requires the existence
of pseudo-random functions [34, 51].

As a consequence, almost all the standards bodies by now require designs provably secure,
at least in that model, thanks to the security validation of very efficient protocols.

2.5 The General Framework

Before going into more details of this kind of proofs, we would like to insist on the fact that
in the current general framework, we give the adversary complete access to the cryptographic
primitive, but as a black-box. It can ask any query of its choice, and the box always answers
correctly, in constant time. Such a model does not consider timing attacks [44], where the
adversary tries to extract the secrets from the computational time. Some other attacks analyze
the electrical energy required by a computation to get the secrets [45], or to make the primitive
fail on some computation [13, 16]. They are not captured either by this model.

3 A First Formalism

In this section we describe more formally what a signature scheme and an encryption scheme
are. Moreover, we make precise the security notions one wants the schemes to achieve. This is
the first imperative step towards provable security.

3.1 Digital Signature Schemes

Digital signature schemes are the electronic version of handwritten signatures for digital docu-
ments: a user’s signature on a message m is a string which depends on m, on public and secret
data specific to the user and —possibly— on randomly chosen data, in such a way that anyone
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can check the validity of the signature by using public data only. The user’s public data are
called the public key, whereas his secret data are called the private key. The intuitive security
notion would be the impossibility to forge user’s signatures without the knowledge of his private
key. In this section, we give a more precise definition of signature schemes and of the possible
attacks against them (most of those definitions are based on [38]).

Definitions A signature scheme S = (K,S,V) is defined by the three following algorithms:

– The key generation algorithm K. On input 1k, which is a formal notation for a machine
with running time polynomial in k (1k is indeed k in basis 1), the algorithm K produces a
pair (pk, sk) of matching public and private keys. Algorithm K is probabilistic. The input k
is called the security parameter. The sizes of the keys, or of any problem involved in the
cryptographic scheme, will depend on it, in order to achieve an appropriate security level
(the expected minimal time complexity of any attack).

– The signing algorithm S. Given a message m and a pair of matching public and private
keys (pk, sk), S produces a signature σ. The signing algorithm might be probabilistic.

– The verification algorithm V. Given a signature σ, a message m and a public key pk, V tests
whether σ is a valid signature of m with respect to pk. In general, the verification algorithm
need not be probabilistic.

Forgeries and Attacks In this subsection, we formalize some security notions which capture
the main practical situations. On the one hand, the goals of the adversary may be various:

– Disclosing the private key of the signer. It is the most serious attack. This attack is termed
total break.

– Constructing an efficient algorithm which is able to sign messages with good probability of
success. This is called universal forgery.

– Providing a new message-signature pair. This is called existential forgery. The corresponding
security level is called existential unforgeability (EUF).

In many cases the latter forgery, the existential forgery, is not dangerous because the output
message is likely to be meaningless. Nevertheless, a signature scheme which is existentially
forgeable does not guarantee by itself the identity of the signer. For example, it cannot be used
to certify randomly looking elements, such as keys. Furthermore, it cannot formally guarantee
the non-repudiation property, since anyone may be able to produce a message with a valid
signature.

On the other hand, various means can be made available to the adversary, helping it
into its forgery. We focus on two specific kinds of attacks against signature schemes: the no-
message attacks and the known-message attacks (KMA). In the former scenario, the attacker
only knows the public key of the signer. In the latter, the attacker has access to a list of valid
message-signature pairs. According to the way this list was created, we usually distinguish many
subclasses, but the strongest is definitely the adaptive chosen-message attack (CMA), where the
attacker can ask the signer to sign any message of its choice, in an adaptive way: it can adapt
its queries according to previous answers.

When signature generation is not deterministic, there may be several signatures correspond-
ing to a given message. And then, some notions defined above may become ambiguous [84].
First, in known-message attacks, an existential forgery becomes the ability to forge a fresh
message/signature pair that has not been obtained during the attack. There is a subtle point
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here, related to the context where several signatures may correspond to a given message. We
actually adopt the stronger rule that the attacker needs to forge the signature of message,
whose signature was not queried. The more liberal rule, which makes the attacker successful
when it outputs a second signature of a given message different from a previously obtained
signature of the same message, is called malleability, while the corresponding security level is
called non-malleability (NM). Similarly, in adaptive chosen-message attacks, the adversary may
ask several times the same message, and each new answer gives it some information. A slightly
weaker security model, by now called single-occurrence adaptive chosen-message attack (SO-

CMA), allows the adversary at most one signature query for each message. In other words the
adversary cannot submit the same message twice for signature.

When one designs a signature scheme, one wants to computationally rule out at least exis-
tential forgeries, or even achieve non-malleability, under adaptive chosen-message attacks. More
formally, one wants that the success probability of any adversary A with a reasonable time is
small, where

Succeuf
S (A) = Pr

[

(pk, sk)← K(1k), (m, σ)← ASsk(pk) : V(pk, m, σ) = 1
]

.

We remark that since the adversary is allowed to play an adaptive chosen-message attack,
the signing algorithm is made available, without any restriction, hence the oracle notation ASsk.
Of course, in its answer, there is the natural restriction that, at least, the returned message-
signature has not been obtained from the signing oracle Ssk itself (non-malleability) or even the
output message has not been queried (existential unforgeability).

3.2 Public-Key Encryption

The aim of a public-key encryption scheme is to allow anybody who knows the public key of
Alice to send her a message that she will be the only one able to recover, granted her private
key.

Definitions A public-key encryption scheme S = (K, E ,D) is defined by the three following
algorithms:

– The key generation algorithm K. On input 1k where k is the security parameter, the al-
gorithm K produces a pair (pk, sk) of matching public and private keys. Algorithm K is
probabilistic.

– The encryption algorithm E . Given a message m and a public key pk, E produces a ciphertext
c of m. This algorithm may be probabilistic. In the latter case, we write Epk(m; r) where r
is the random input to E .

– The decryption algorithm D. Given a ciphertext c and the private key sk, Dsk(c) gives back
the plaintext m. This algorithm is necessarily deterministic.

Security Notions As for signature schemes, the goals of the adversary may be various. The
first common security notion that one would like for an encryption scheme is one-wayness (OW):
with just public data, an attacker cannot get back the whole plaintext of a given ciphertext.
More formally, this means that for any adversary A, its success in inverting E without the
private key should be negligible over the probability space M × Ω, where M is the message
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space and Ω is the space of the random coins r used for the encryption scheme, and the internal
random coins of the adversary:

Succow
S (A) = Pr

m,r
[(pk, sk)← K(1k) : A(pk, Epk(m; r)) = m].

However, many applications require more from an encryption scheme, namely the semantic
security (IND) [35], a.k.a. polynomial security/indistinguishability of encryptions: if the attacker
has some information about the plaintext, for example that it is either “yes” or “no” to a crucial
query, any adversary should not learn more with the view of the ciphertext. This security
notion requires computational impossibility to distinguish between two messages, chosen by
the adversary, which one has been encrypted, with a probability significantly better than one
half: its advantage Advind

S (A), formally defined as

2× Pr
b,r

[

(pk, sk)← K(1k), (m0, m1, s)← A1(pk),
c = Epk(mb; r) : A2(m0, m1, s, c) = b

]

− 1,

where the adversary A is seen as a 2-stage attacker (A1,A2), should be negligible.
A later notion is non-malleability (NM) [26]. To break it, the adversary, given a ciphertext,

tries to produce a new ciphertext such that the plaintexts are meaningfully related. This notion
is stronger than the above semantic security, but it is equivalent to the latter in the most
interesting scenario [7] (the CCA attacks, see below). Therefore, we will just focus on one-
wayness and semantic security.

On the other hand, an attacker can play many kinds of attacks, according to the available
information: since we are considering asymmetric encryption, the adversary can encrypt any
plaintext of its choice, granted the public key, hence the chosen-plaintext attack (CPA). It may
furthermore have access to additional information, modeled by partial or full access to some
oracles:

– A validity-checking oracle which, on input a ciphertext c, answers whether it is a valid
ciphertext or not. Such a weak oracle, involved in the so-called reaction attacks [39] or
Validity-Checking Attack (VCA), had been enough to break some famous encryption sche-
mes [15, 42].

– A plaintext-checking oracle which, on input a pair (m, c), answers whether c encrypts the
message m. This attack has been termed the Plaintext-Checking Attack (PCA) [59].

– The decryption oracle itself, which on any ciphertext answers the corresponding plaintext.
There is of course the natural restriction not to ask the challenge ciphertext to that oracle.

For all these oracles, access may be restricted as soon as the challenge ciphertext is known,
the attack is thus said non-adaptive since oracle queries cannot depend on the challenge ci-
phertext, while they depend on previous answers. On the opposite, access can be unlimited
and attacks are thus called adaptive attacks (w.r.t. the challenge ciphertext). This distinction
has been widely used for the chosen-ciphertext attacks, for historical reasons: the non-adaptive
chosen-ciphertext attacks (CCA1) [52], a.k.a. lunchtime attacks, and adaptive chosen-ciphertext
attacks (CCA2) [71]. The latter scenario which allows adaptively chosen ciphertexts as queries to
the decryption oracle is definitely the strongest attack, and will be named the chosen-ciphertext
attack (CCA).

Furthermore, multi-user scenarios can be considered where related messages are encrypted
under different keys to be sent to many people (e.g. broadcast of encrypted data). This may
provide many useful data for an adversary. For example, RSA is well-known to be weak in such a
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scenario [40, 79], namely with a small encryption exponent, because of the Chinese Remainders
Theorem. But once again, semantic security has been shown to be the appropriate security level,
since it automatically extends to the multi-user setting: if an encryption scheme is semantically
secure in the classical sense, it is also semantically secure in multi-user scenarios, against both
passive [3] and active [5] adversaries.

) OW-CPA OW-VCA OW-PCA OW-CCA

IND-CPA IND-CCA

NM-CPA NM-CCA

OW – One-Wayness
IND – Indistinguishability

(a.k.a. Semantic Security)
NM – Non-Malleability

CPA – Chosen-Plaintext Attack
VCA – Validity-Checking Attack

(a.k.a. Reaction Attack)
PCA – Plaintext-Checking Attack
CCA – Chosen-Ciphertext Attack

Fig. 1. Relations between the Security Notions for Asymmetric Encryption

A general study of these security notions and attacks was conducted in [7], we therefore
refer the reader to this paper for more details. See also the summary diagram on Figure 1.
However, we can just review the main scenarios we will consider in the following:

– one-wayness under chosen-plaintext attacks (OW-CPA) – where the adversary wants to
recover the whole plaintext from just the ciphertext and the public key. This is the weakest
scenario.

– semantic security under adaptive chosen-ciphertext attacks (IND-CCA) – where the adver-
sary just wants to distinguish which plaintext, between two messages of its choice, has been
encrypted, while it can ask any query it wants to a decryption oracle (except the challenge
ciphertext). This is the strongest scenario one can define for encryption (still in our general
framework.) Thus, this is our goal when we design a cryptosystem.

4 The Computational Assumptions

There are two major families in number theory-based public-key cryptography:

1. the schemes based on integer factoring, and on the RSA problem [73];
2. the schemes based on the discrete logarithm problem, and on the Diffie-Hellman prob-

lems [25], in any “suitable” group. The first groups in use were cyclic subgroups of Z
?
p, the

multiplicative group of the modular quotient ring Zp = Z/pZ. But many schemes are now
converted on cyclic subgroups of elliptic curves, or of the Jacobian of hyper-elliptic curves,
with namely the so-called ECDSA [1], the US Digital Signature Standard [55] on elliptic
curves.
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4.1 Integer Factoring and the RSA Problem

The most famous intractable problem is factorization of integers: while it is easy to multiply
two prime integers p and q to get the product n = p · q, it is not simple to decompose n into
its prime factors p and q.

Currently, the most efficient algorithm is based on sieving on number fields. The Number
Field Sieve (NFS) method [46] has a super-polynomial, but sub-exponential, complexity in
O(exp((1.923 + o(1))(ln n)1/3(ln lnn)2/3)). It has been used to establish the main record, in
august 1999, by factoring a 155-digit integer (512 bits), product of two 78-digit primes [20].
The factored number, called RSA-155, was taken from the “RSA Challenge List”, which is used
as a yardstick for the security of the RSA cryptosystem (see later). The latter is used extensively
in hardware and software to protect electronic data traffic such as in the SSL (Security Sockets
Layer) Handshake Protocol.

This record is very important since 155 digits correspond to 512 bits. And this is the size
which is in use in almost all the implementations of the RSA cryptosystem (namely for actual
implementations of SSL on the Internet).

RSA-155 =

109417386415705274218097073220403576120\

037329454492059909138421314763499842889\

347847179972578912673324976257528997818\

33797076537244027146743531593354333897

= 102639592829741105772054196573991675900\

716567808038066803341933521790711307779

* 106603488380168454820927220360012878679\

207958575989291522270608237193062808643

Unfortunately, integer multiplication just provides a one-way function, without any possi-
bility to invert the process. No information is known to make factoring easier. However, some
algebraic structures are based on the factorization of an integer n, where some computations
are difficult without the factorization of n, but easy with it: the finite quotient ring Zn which
is isomorphic to the product ring Zp × Zq if n = p · q.

For example, the e-th power of any element x can be easily computed using the square-and-
multiply method. It consists in using the binary representation of the exponent e = ekek−1 . . . e0,
computing the successive 2 powers of x (x20

, x21
, . . . , x2k

) and eventually to multiply altogether
the ones for which ei = 1. However, to compute e-th roots, it seems that one requires to know
an integer d such that ed = 1 mod ϕ(n), where ϕ(n) is the totient Euler function which denotes
the cardinality of the multiplicative subgroup Z

?
n of Zn. In the particular case where n = pq,

ϕ(n) = (p − 1)(q − 1). And therefore, ed − 1 is a multiple of ϕ(n) which is equivalent to the
knowledge of the factorization of n [50]. In 1978, Rivest, Shamir and Adleman [73] defined the
following problem:

The RSA Problem. Let n = pq be the product of two large primes of similar size
and e an integer relatively prime to ϕ(n). For a given y ∈ Z

?
n, compute the modular

e-th root x of y (i.e. x ∈ Z
?
n such that xe = y mod n.)

The Euler function can be easily computed from the factorization of n, since for any n =
∏

pvi

i ,

ϕ(n) = n×
∏

(

1−
1

pi

)

.
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Therefore, with the factorization of n (the trapdoor), the RSA problem can be easily solved.
But nobody knows whether the factorization is required, and how to do without it either:

The RSA Assumption. For any product of two primes, n = pq, large enough, the
RSA problem is intractable (presumably as hard as the factorization of n).

4.2 The Discrete Logarithm and the Diffie-Hellman Problems

The setting is quite general: one is given

– a cyclic group G of prime order q (such as the finite group (Zq, +), a subgroup of (Z?
p,×)

for q|p− 1, of an elliptic curve, etc);
– a generator g (i.e. G = 〈g〉).

We note in bold (such as g) any element of the group G, to distinguish it from a scalar x ∈ Zq.
But such a g could be an element in Z

?
p or a point of an elliptic curve, according to the setting.

Above, we talked about a “suitable” group G. In such a group, some of the following problems
have to be hard to solve (using the additive notation).

– the Discrete Logarithm problem (DL): given y ∈ G, compute x ∈ Zq such that y =
x · g = g + . . . + g (x times), then one writes x = logg y.

– the Computational Diffie-Hellman problem (CDH): given two elements in the group
G, a = a · g and b = b · g, compute c = ab · g. Then one writes c = DH(a,b).

– the Decisional Diffie-Hellman Problem (DDH): given three elements in the group G,
a = a · g, b = b · g and c = c · g, decide whether c = DH(a,b) (or equivalently, whether
c = ab mod q).

It is clear that they are sorted from the strongest problem to the weakest one. Furthermore, one
may remark that they all are “random self-reducible”, which means that any instance can be
reduced to a uniformly distributed instance: for example, given a specific element y for which
one wants to compute the discrete logarithm x in basis g, one can choose a random z ∈ Zq,
and compute z = z · y. The element z is therefore uniformly distributed in the group, and the
discrete logarithm α = logg z leads to x = α/z mod q. As a consequence, there are only average
complexity cases. Thus, the ability to solve a problem for a non-negligible fraction of instances
in polynomial time is equivalent to solve any instance in expected polynomial time.

A new variant of the Diffie-Hellman problem has more recently been defined by Tatsuaki
Okamoto and the author [60], the so-called Gap Diffie-Hellman Problem (GDH), where one
wants to solve the CDH problem with an access to a DDH oracle. One may easily remark
the following properties about above problems: DL ≥ CDH ≥ {DDH,GDH}, where A ≥ B
means that the problem A is at least as hard as the problem B. However, in practice, no one
knows how to solve any of them without breaking the DL problem itself.

Currently, the most efficient algorithms to solve the latter problem depend on the underlying
group. For generic groups (for which no specific algebraic property can be used), algorithms
have a complexity in the square root of q, the order of the generator g [78, 70]. For example, on
well-chosen elliptic curves only these algorithms can be used. The last record was established
in April 2001 on the curve defined by the equation y2 + xy = x3 + x2 + 1 over the finite field
with 2109 elements.

However, for subgroups of Z
?
p, some better techniques can be applied. The best algorithm

is based on sieving on number fields, as for the factorization. The General Number Field
Sieve method [41] has a super-polynomial, but sub-exponential, complexity in O(exp((1.923 +
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o(1))(ln p)1/3(ln ln p)2/3)). It was used to establish the last record, in April 2001 as well, by
computing discrete logarithms in Z

?
p, for a 120-digit prime p. Therefore, 512-bit primes are still

safe enough, as far as the generic attacks cannot be used (the generator must be of large order
q, at least a 160-bit prime)

For signature applications, one only requires groups where the DL problem is hard, whereas
encryption needs trapdoor problems and therefore requires groups where some of the DH’s
problems are also hard to solve.

5 Digital Signature Schemes

Until 1996, no practical DL-based cryptographic scheme has ever been formally studied, but
heuristically only. And surprisingly, at the Eurocrypt ’96 conference, two opposite studies were
conducted on the El Gamal signature scheme [27], the first DL-based signature scheme designed
in 1985 and depicted on Figure 2.

Initialization → (p, g)

g a generator of Z
?
p,

where p is a large prime
→ (p, g)

K: Key Generation → (y, x)

private key x ∈ Z
?
p−1

public key y = gx mod p
→ (y, x)

S: Signature of m→ (r, s)

K is randomly chosen in Z
?
p−1

r = gK mod p s = (m− xr)/K mod p− 1
→ (r, s) is a signature of m

V: Verification of (m, r, s)

check whether gm ?
= yrrs mod p

→ Yes/No

Fig. 2. The El Gamal Signature Scheme.

Whereas existential forgeries were known for that scheme, it was believed to prevent uni-
versal forgeries. The first analysis, from Daniel Bleichenbacher [14], showed such a universal
forgery when the generator g is not properly chosen. The second one, from Jacques Stern and
the author [67], proved the security against existential forgeries under adaptive chosen-message
attacks of a slight variant with a randomly chosen generator g. The latter variant simply re-
places the message m by H(m, r) in the computation, while one uses a hash function H that
is assumed to behave like a random oracle. It is amazing to remark that the Bleichenbacher’s
attack also applies on our variant. Therefore, depending on the initialization, our variant could
be a very strong signature scheme or become a very weak one!

As a consequence, a proof has to be performed in details, with precise assumptions and
achievements. Furthermore, the conclusions have to be strictly followed by developers, otherwise
the concrete implementation of a secure scheme can be very weak.

5.1 Provable Security

The first secure signature scheme was proposed by Goldwasser et al. [37] in 1984. It used
the notion of claw-free permutations. A pair of permutations (f, g) is said claw-free if it is
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computationally impossible to find a claw (x, y), which satisfies f(x) = g(y). Their proposal
provided polynomial algorithms with a polynomial reduction between the research of a claw
and an existential forgery under an adaptive chosen-message attack. However, the scheme was
totally unpractical. What about practical schemes?

The RSA Signature Scheme Two years after the Diffie-Hellman paper [25], Rivest, Shamir
and Adleman [73] proposed the first signature scheme based on the “trapdoor one-way permu-
tation paradigm”, using the RSA function: the generation algorithm produces a large composite
number N = pq, a public key e, and a private key d such that e · d = 1 mod ϕ(N). The sig-
nature of a message m, encoded as an element in Z

?
N , is its e-th root, σ = m1/e = md mod N .

The verification algorithm simply checks whether m = σe mod N .
However, the RSA scheme is not secure by itself since it is subject to existential forgery: it

is easy to create a valid message-signature pair, without any help of the signer, first randomly
choosing a certificate σ and getting the signed message m from the public verification relation,
m = σe mod N .

The Schnorr Signature Scheme In 1986 a new paradigm for signature schemes was intro-
duced. It is derived from fair zero-knowledge identification protocols involving a prover and a
verifier [36], and uses hash functions in order to create a kind of virtual verifier. The first ap-
plication was derived from the Fiat–Shamir [28] zero-knowledge identification protocol, based
on the hardness of extracting square roots, with a brief outline of its security. Another famous
identification scheme [75], together with the signature scheme [76], has been proposed later by
Schnorr, based on that paradigm: the generation algorithm produces two large primes p and q,
such that q ≥ 2k, where k is the security parameter, and q | p− 1, as well as an element g in Z

?
p of

order q. It also creates a pair of keys, the private key x ∈ Z
?
q and the public key y = g−x mod p

The signature of a message m is a triple (r, e, s), where r = gK mod p, with a random K ∈ Zq,
the “challenge” e = H(m, r) and s = K + ex mod q. The latter satisfies r = gsye mod p with
e = H(m, r), which is checked by the verification algorithm.

The security results for that paradigm have been considered as folklore for a long time but
without any formal validation.

5.2 DL-Based Signatures

In our papers [67, 68], with Jacques Stern, we formally proved the above paradigm when H
is assumed to behave like a random oracle. The proof is based on the by now classical oracle
replay technique: by a polynomial replay of the attack with different random oracles (the Qi’s
are the queries and the ρi’s are the answers), we allow the attacker to forge signatures that
are suitably related. This generic technique is depicted on Figure 3, where the signature of a

-

-

A

H

H′

Q1 · · · Qi−1 Qi

(m, σ1)

· · · Qj . . .

ρi

ρ′

i

· · · ρj · · ·

· · · ρ′

j · · ·

(m, σ1, h = ρi, σ2)

(m, σ1, h
′ = ρ′

i, σ
′
2)

ρ1 · · · ρi−1

Fig. 3. The Oracle Replay Technique

message m is a triple (σ1, h, σ2), with h = H(m, σ1) which depends on the message and the first
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part of the signature, both bound not to change for the computation of σ2, which really relies
on the knowledge of the private key. If the probability of fraud is high enough, then with good
probability, the adversary is able to answer to many distinct outputs from the H function, on
the input (m, σ1).

To be more concrete, let us consider the Schnorr signature scheme, which is presented on
Figure 4, in any “suitable” cyclic group G of prime order q, where at least the Discrete Logarithm
problem is hard. We expect to obtain two signatures (r = σ1, h, s = σ2) and (r′ = σ′

1, h
′, s′ = σ′

2)

Initialization (security parameter k) → (G, g,H)

g a generator of any cyclic group (G, +)
of order q, with 2k−1 ≤ q < 2k

H a hash function: {0, 1}? → Zq

→ (G, g,H)

K: Key Generation → (y, x)

private key x ∈ Z
?
q

public key y = −x · g
→ (y, x)

S: Signature of m→ (r, h, s)

K is randomly chosen in Z
?
q

r = K · g h = H(m, r) s = K + xh mod q
→ (r, h, s) is a signature of m

V: Verification of (m, r, s)

check whether h
?
= H(m, r)

and r
?
= s · g + h · y

→ Yes/No

Fig. 4. The Schnorr Signature Scheme.

of an identical message m such that σ1 = σ′
1, but h 6= h′. Thereafter, we can easily extract the

discrete logarithm of the public key:

r = s · g + h · y
r = s′ · g + h′ · y

}

⇒ (s− s′) · g = (h′ − h) · y,

which leads to logg y = (s− s′) · (h′ − h)−1 mod q.

General Tools First, let us recall the “Splitting Lemma” which will be the main probabilistic
tool for the “Forking Lemma”. It translates the fact that when a subset A is “large” in a
product space X × Y , it has many “large” sections.

Lemma 1 (The Splitting Lemma). Let A ⊂ X × Y such that Pr[(x, y) ∈ A] ≥ ε. For
any α < ε, define

B =

{

(x, y) ∈ X × Y | Pr
y′∈Y

[(x, y′) ∈ A] ≥ ε− α

}

,

then the following statements hold:

(i) Pr[B] ≥ α
(ii) ∀(x, y) ∈ B, Pry′∈Y [(x, y′) ∈ A] ≥ ε− α.
(iii) Pr[B |A] ≥ α/ε.
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Proof. In order to prove statement (i), we argue by contradiction, using the notation B̄ for the
complement of B in X × Y . Assume that Pr[B] < α. Then

ε ≤ Pr[B] · Pr[A |B] + Pr[B̄] · Pr[A | B̄] < α · 1 + 1 · (ε− α) = ε.

This implies a contradiction, hence the result.
Statement (ii) is a straightforward consequence of the definition.
We finally turn to the last assertion, using Bayes’ law:

Pr[B |A] = 1− Pr[B̄ |A]

= 1− Pr[A | B̄] · Pr[B̄]/ Pr[A] ≥ 1− (ε− α)/ε = α/ε.
No-Message Attacks. The following Forking Lemma just states that the above oracle replay
technique will often success with any good adversary.

Theorem 2 (The Forking Lemma). Let (K,S,V) be a digital signature scheme
with security parameter k, with a signature as above, of the form (m, σ1, h, σ2), where
h = H(m, σ1) and σ2 depends on σ1 and h only. Let A be a probabilistic polynomial
time Turing machine whose input only consists of public data and which can ask qh

queries to the random oracle, with qh > 0. We assume that, within the time bound T , A
produces, with probability ε ≥ 7qh/2k, a valid signature (m, σ1, h, σ2). Then, within time
T ′ ≤ 16qhT/ε, and with probability ε′ ≥ 1/9, a replay of this machine outputs two valid
signatures (m, σ1, h, σ2) and (m, σ1, h

′, σ′
2) such that h 6= h′.

Proof. We are given an adversary A, which is a probabilistic polynomial time Turing machine
with random tape ω. During the attack, this machine asks a polynomial number of questions
to the random oracle H. We may assume that these questions are distinct: for instance, A can
store questions and answers in a table. Let Q1, . . . ,Qqh

be the qh distinct questions and let
ρ = (ρ1, . . . , ρqh

) be the list of the qh answers of H. It is clear that a random choice of H exactly
corresponds to a random choice of ρ. Then, for a random choice of (ω,H), with probability ε,
A outputs a valid signature (m, σ1, h, σ2). Since H is a random oracle, it is easy to see that the
probability for h to be equal to H(m, σ1) is less than 1/2k, unless it has been asked during the
attack. So, it is likely that the question (m, σ1) is actually asked during a successful attack.
Accordingly, we define IndH(ω) to be the index of this question: (m, σ1) = QIndH(ω) (we let
IndH(ω) =∞ if the question is never asked). We then define the sets

S =
{

(ω,H) | AH(ω) succeeds & IndH(ω) 6=∞
}

,

and Si =
{

(ω,H) | AH(ω) succeeds & IndH(ω) = i
}

for i ∈ {1, . . . , qh}.

We thus call S the set of the successful pairs (ω,H).
One should note that the set {Si | i ∈ {1, . . . , qh}} is a partition of S. With those definitions,

we find a lower bound for the probability of success, ν = Pr[S] ≥ ε− 1/2k. Since we did the
assumption that ε ≥ 7qh/2k ≥ 7/2k, then ν ≥ 6ε/7. Let I be the set consisting of the most
likely indices i,

I = {i | Pr[Si |S] ≥ 1/2qh} .

The following lemma claims that, in case of success, the index lies in I with probability at least
1/2.

Lemma 3.

Pr[IndH(ω) ∈ I |S] ≥
1

2
.
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Proof. By definition of the sets Si, Pr[IndH(ω) ∈ I |S] =
∑

i∈I Pr[Si |S]. This probability is
equal to 1−

∑

i6∈I Pr[Si |S]. Since the complement of I contains fewer than qh elements, this
probability is at least 1− qh × 1/2qh ≥ 1/2.

We now run the attacker 2/ε times with random ω and random H. Since ν = Pr[S] ≥ 6ε/7,
with probability greater than 1− (1− 6ε/7)2/ε, we get at least one pair (ω,H) in S. It is easily
seen that this probability is lower bounded by 1− e−12/7 ≥ 4/5.

We now apply the Splitting-lemma (Lemma 1, with ε = ν/2qh and α = ε/2) for each
integer i ∈ I: we denote by H|i the restriction of H to queries of index strictly less than i. Since
Pr[Si] ≥ ν/2qh, there exists a subset Ωi of executions such that,

for any (ω,H) ∈ Ωi, Pr
H′

[(ω,H′) ∈ Si | H
′
|i = H|i]≥

ν

4qh

Pr[Ωi |Si]≥
1

2
.

Since all the subsets Si are disjoint,

Pr
ω,H

[(∃i ∈ I) (ω,H) ∈ Ωi ∩ Si |S]

= Pr

[

⋃

i∈I

(Ωi ∩ Si) |S

]

=
∑

i∈I

Pr[Ωi ∩ Si |S]

=
∑

i∈I

Pr[Ωi |Si] · Pr[Si |S] ≥

(

∑

i∈I

Pr[Si |S]

)

/2 ≥
1

4
.

We let β denote the index IndH(ω) corresponding to the successful pair. With probability
at least 1/4, β ∈ I and (ω,H) ∈ Sβ ∩ Ωβ. Consequently, with probability greater than 4/5 ×
1/5 = 1/5, the 2/ε attacks have provided a successful pair (ω,H), with β = IndH(ω) ∈ I and
(ω,H) ∈ Sβ. Furthermore, if we replay the attack, with fixed ω but randomly chosen oracle H′

such that H′
|β = H|β, we know that PrH′ [(ω,H′) ∈ Sβ | H

′
|β = H|β] ≥ ν/4qh. Then

Pr
H′

[(ω,H′) ∈ Sβ and ρβ 6= ρ′
β | H

′
|β = H|β]

≥ Pr
H′

[(ω,H′) ∈ Sβ | H
′
|β = H|β]− Pr

H′
[ρ′

β = ρβ] ≥ ν/4qh − 1/2k,

where ρβ = H(Qβ) and ρ′
β = H′(Qβ). Using again the assumption that ε ≥ 7qh/2k, the above

probability is lower-bounded by ε/14qh. We thus replay the attack 14qh/ε times with a new
random oracle H′ such that H′

|β = H|β, and get another success with probability greater than

1− (1− ε/14qh)
14qh/ε ≥ 1− e−1 ≥ 3/5.

Finally, after less than 2/ε + 14qh/ε repetitions of the attack, with probability greater than
1/5× 3/5 ≥ 1/9, we have obtained two signatures (m, σ1, h, σ2) and (m′, σ′

1, h
′, σ′

2), both valid
w.r.t. their specific random oracle H or H′, and with the particular relations

Qβ = (m, σ1) = (m′, σ′
1) and h = H(Qβ) 6= H′(Qβ) = h′.

One may have noticed that the mechanics of our reduction depend on some parameters
related to the attacker A, namely, its probability of success ε and the number qh of queries to
the random oracle. This induces a lack of uniformity. A uniform version, in expected polynomial
time is also possible.
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Theorem 4 (The Forking Lemma – The Uniform Case). Let (K,S,V) be a dig-
ital signature scheme with security parameter k, with a signature as above, of the form
(m, σ1, h, σ2), where h = H(m, σ1) and σ2 depends on σ1 and h only. Let A be a prob-
abilistic polynomial time Turing machine whose input only consists of public data and
which can ask qh queries to the random oracle, with qh > 0. We assume that, within the
time bound T , A produces, with probability ε ≥ 7qh/2k, a valid signature (m, σ1, h, σ2).
Then there is another machine which has control over A and produces two valid signa-
tures (m, σ1, h, σ2) and (m, σ1, h

′, σ′
2) such that h 6= h′, in expected time T ′ ≤ 84480Tqh/ε.

Proof. Now, we try to design a machine M which succeeds in expected polynomial time:

1. M initializes j = 0;
2. M runs A until it outputs a successful pair (ω,H) ∈ S and denotes by Nj the number of

calls to A to obtain this success, and by β the index IndH(ω);
3. M replays, at most 140Njα

j times, A with fixed ω and random H′ such that H′
|β = H|β,

where α = 8/7;
4. M increments j and returns to 2, until it gets a successful forking.

For any execution of M, we denote by J the last value of j and by N the total number of
calls to A. We want to compute the expectation of N . Since ν = Pr[S], and Nj ≥ 1, then
Pr[Nj ≥ 1/5ν] ≥ 3/4. We define ` = dlogα qhe, so that, 140Njα

j ≥ 28qh/ε for any j ≥ `, when-
ever Nj ≥ 1/5ν. Therefore, for any j ≥ `, when we have a first success in S, with probability
greater than 1/4, the index β = IndH(ω) is in the set I and (ω,H) ∈ Sβ ∩Ωβ. Furthermore,
with probability greater than 3/4, Nj ≥ 1/5ν. Therefore, with the same conditions as before,
that is ε ≥ 7qh/2k, the probability of getting a successful fork after at most 28qh/ε iterations
at step 3 is greater than 6/7.
For any t ≥ `, the probability for J to be greater or equal to t is less than (1− 1/4× 3/4× 6/7)t−`,
which is less than γt−`, with γ = 6/7. Furthermore,

E[N | J = t] ≤

j=t
∑

j=0

(

E[Nj] + 140E[Nj]α
j
)

≤
141

ν
×

j=t
∑

j=0

αj ≤
141

ν
×

αt+1

α− 1
.

So, the expectation of N is E[N ] =
∑

t E[N | J = t] · Pr[J = t] and then it can be shown to be
less than 84480qh/ε. Hence the theorem.

Chosen-Message Attacks. However, this just covers the no-message attacks, without any oracle
access. Since we can simulate any zero-knowledge protocol, even without having to restart the
simulation because of the honest verifier (i.e. the challenge is randomly chosen by the random
oracle H) one can easily simulate the signer without the private key:

– one first chooses random h, s ∈ Zq;
– one computes r = s · g + h · y and defines H(m, r) to be equal to h, which is a uniformly

distributed value;
– one can output (r, h, s) as a valid signature of the message m.

This furthermore simulates the oracle H, by defining H(m, r) to be equal to h. This simulation
is almost perfect since H is supposed to output a random value to any new query, and h is
indeed a random value. Nevertheless, if the query H(m, r) has already been asked, H(m, r) is
already defined, and thus the definition H(m, r) ← h is impossible. But such a situation is
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very rare, which allows us to claim the following result, which stands for the Schnorr signature
scheme but also for any signature derived from a three-round honest verifier zero-knowledge
interactive proof of knowledge:

Theorem 5. Let A be a probabilistic polynomial time Turing machine whose input only
consists of public data. We denote respectively by qh and qs the number of queries that A
can ask to the random oracle and the number of queries that A can ask to the signer. As-
sume that, within a time bound T , A produces, with probability ε ≥ 10(qs + 1)(qs + qh)/2k,
a valid signature (m, σ1, h, σ2). If the triples (σ1, h, σ2) can be simulated without know-
ing the secret key, with an indistinguishable distribution probability, then, a replay of the
attacker A, where interactions with the signer are simulated, outputs two valid signa-
tures (m, σ1, h, σ2) and (m, σ1, h

′, σ′
2) such that h 6= h′, within time T ′ ≤ 23qhT/ε and

with probability ε′ ≥ 1/9.

A uniform version of this lemma can also be found in [68]. From a more practical point of
view, these results state that if an adversary manages to perform an existential forgery under
an adaptive chosen-message attack within an expected time T , after qh queries to the random
oracle and qs queries to the signing oracle, then the discrete logarithm problem can be solved
within an expected time less than CqhT , for some constant C. This result has been more recently
extended to the transformation of any identification scheme secure against passive adversaries
into a signature scheme [8].

Brickell, Vaudenay, Yung and the author also extended the forking lemma technique [69, 17]
to many variants of El Gamal [27] and DSA [55], such as the Korean Standard KCDSA [43].
However, the original El Gamal and DSA schemes were not covered by this study, and are
certainly not provably secure, even if no attack has ever been found against DSA.

5.3 RSA-Based Signatures

Unfortunately, with the above signatures based on the discrete logarithm, as any construction
using the Fiat-Shamir paradigm, we do not really achieve our goal, because the reduction is
costly, since qh can be huge, as much as 260 in practice. This security proof is meaningful for
very large groups only.

FDH-RSA: The Full-Domain Hash Signature In 1996, Bellare and Rogaway [12] pro-
posed other candidates, based on the RSA assumption. The first scheme is the by-now classical
hash-and-decrypt paradigm (a.k.a. the Full-Domain Hash paradigm): as for the basic RSA sig-
nature, the generation algorithm produces a large composite number N = pq, a public key e,
and a private key d such that e · d = 1 mod ϕ(N). In order to sign a message m, one first
hashes it using a full-domain hash function H : {0, 1}? → Z

?
N , and computes the e-th root,

σ = H(m)d mod N . The verification algorithm simply checks whether the following equality
holds, H(m) = σe mod N .

More generally, the Full-Domain Hash signature can be defined as described on figure 5, for
any trapdoor one-way permutation f .

Security Analysis For this scheme, Bellare and Rogaway proved, in the random-oracle model:
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K: Key Generation → (f, f−1)

public key f : X −→ X, a trapdoor one-way permutation onto X
private key f−1

→ (f, f−1)

S: Signature of m→ σ

r = H(m) and σ = f−1(r)
→ σ is the signature of m

V: Verification of (m, σ)

check whether f(σ)
?
= H(m)

→ Yes/No

Fig. 5. The FDH Signature.

Theorem 6. Let A be an adversary which can produce, with success probability ε, an
existential forgery under a chosen-message attack within a time t, after qh and qs queries
to the hash function and the signing oracle respectively. Then the permutation f can be
inverted with probability ε′ within time t′ where

ε′ ≥
ε

qs + qh + 1
and t′ ≤ t + (qs + qh)Tf ,

with Tf the time for an evaluation of f .

Let us present this proof, using the new formalism introduced by Victor Shoup in [81–83], and
which will be extensively used in these notes. In this technique, we define a sequence G1, G2,
etc., of modified attack games starting from the actual game G0. Each of the games operates
on the same underlying probability space: the public and private keys of the cryptographic
scheme, the coin tosses of the adversary A and the random oracles. Only the rules defining
how the view is computed differ from game to game. To go from one game to another with a
slightly different distribution probability, we repeatedly use the following lemma:

Lemma 7. Let E1, E2 and F1, F2 be events defined on a probability space

Pr[E1 | ¬F1] = Pr[E2 | ¬F2] and Pr[F1] = Pr[F2] = ε ⇒ |Pr[E1]− Pr[E2]| ≤ ε.

Proof. The proof follows from easy computations:

|Pr[E1]− Pr[E2]| = |Pr[E1 | F1] · Pr[F1] + Pr[E1 | ¬F1] · Pr[¬F1]

−Pr[E2 | F2] · Pr[F2]− Pr[E2 | ¬F2] · Pr[¬F2]|

= |(Pr[E1 | F1]− Pr[E2 | F2]) · ε

+ (Pr[E1 | ¬F1]− Pr[E2 | ¬F2]) · (1− ε)|

= |(Pr[E1 | F1]− Pr[E2 | F2]) · ε| ≤ ε.

Actually, this lemma will not be used in the proofs of the FDH signatures, because all the
simulated distributions will remain perfect.

Basic Proof of the FDH Signature. In this proof, we incrementally define a sequence of games
starting at the real game G0 and ending up at G5. We make a very detailed sequence of games
in this proof, since this is the first one. Some steps will be skipped in the other proofs. The goal
of this proof is to reduce the inversion of the permutation f on an element y (find x such that
y = f(x)) to an attack. We are thus given such a random challenge y.
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Game G0: This is the real attack game, in the random-oracle model, which includes the
verification step. This means that the attack game consists in giving the public key to the
adversary, and a full access to the signing oracle. When it outputs its forgery, one furthermore
checks whether it is actually valid or not. Note that if the adversary asks qs queries to the
signing oracle and qh queries to the hash oracle, at most qs + qh + 1 queries are asked to the
hash oracle during this game, since each signing query may make such a new query, and the last
verification step too. We are interested in the following event: S0 which occurs if the verification
step succeeds (and the signature is new).

Succeuf
fdh(A) = Pr[S0]. (1)

Game G1: In this game, we simulate the oracles, the hash oracle H and the signing oracle
S, and the last verification step, as shown on Figure 6. From this simulation, we easily see that
the game is perfectly indistinguishable from the real attack.

Pr[S1] = Pr[S0]. (2)

H
o
ra

cl
e For a hash-query H(q), such that a record (q, ?, r) appears in H-List, the answer is r. Otherwise the

answer r is defined according to the following rule:

IRule H(1)

Choose a random element r ∈ X. The record (q,⊥, r) is added to H-List.

Note: the second component of the elements of this list will be explained later.

S
o
ra

cl
e For a sign-query S(m), one first asks for r = H(m) to the H-oracle, and then the signature σ is defined

according to the following rule:

IRule S(1)

Computes σ = f−1(r).

V
o
ra

cl
e The game ends with the verification of the output (m, σ) from the adversary. One first asks for r =

H(m), and checks whether r = f(σ).

Fig. 6. Simulation of the Attack Game against FDH

Game G2: Since the verification process is included in the attack game, the output message
is necessarily asked to the hash oracle. Let us guess the index c of this (first) query. If the guess
failed, we abort the game. Therefore, only a correct guess (event GoodGuess) may lead to a
success.

Pr[S2] = Pr[S1 ∧ GoodGuess] = Pr[S1 |GoodGuess]× Pr[GoodGuess]

≥ Pr[S1]×
1

qh + qs + 1
. (3)

Game G3: We can now simulate the hash oracle, incorporating the challenge y, for which
we want to extract the pre-image x by f :
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IRule H(3)

If this is the c-th query, set r ← y; otherwise, choose a random
element r ∈ X. The record (q,⊥, r) is added to H-List.

Because of the random choice for the challenge y, this rule lets the game indistinguishable from
the previous one.

Pr[S3] = Pr[S2]. (4)

Game G4: We now modify the simulation of the hash oracle for other queries, which may
be used in signing queries:

IRule H(4)

If this is the c-th query, set r ← y and s ← ⊥; otherwise, choose a
random element s ∈ X, and compute r = f(s). The record (q, s, r)
is added to H-List.

Because of the permutation property of f , and the random choice for s, this rule lets the game
indistinguishable from the previous one.

Pr[S4] = Pr[S3]. (5)

Game G5: By now, excepted for the c-th hash query, which will be involved in the forgery
(and thus not asked to the signing oracle), the pre-image is known. One can thus simulate the
signing oracle without quering f−1:

IRule S(5)

Lookup for (m, s, r) in H-List, and set σ = s.

Since the message corresponding to the c-th query cannot be asked to the signing oracle,
otherwise it would not be a valid forgery, this rule lets the game indistinguishable from the
previous one.

Pr[S5] = Pr[S4]. (6)

Note that now, the simulation can easily be performed, without any specific computational
power or oracle access. Just a few more evaluations of f are done to simulate the hash oracle,
and the forgery leads to the pre-image of y:

Pr[S5] = Succow
f (t + (qh + qs)Tf). (7)

As a consequence, using equations (1), (2), (3), (4), (5), (6) and (7)

Succow
f (t + (qh + qs)Tf) = Pr[S5] = Pr[S3] = Pr[S4] = Pr[S2]

≥
1

qh + qs + 1
× Pr[S1] ≥

1

qh + qs + 1
× Pr[S0].

And thus,
Succeuf

fdh(A) ≤ (qh + qs + 1)× Succow
f (t + (qh + qs)Tf ).

ut
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Improved Security Result. This reduction has been thereafter improved [22], thanks to the
random self-reducibility of the RSA function. The following result applies as soon as the one-
way permutation has some homomorphic property on the group X:

f(x⊗ y) = f(x)⊗ f(y).

Theorem 8. Let A be an adversary which can produce, with success probability ε, an
existential forgery under a chosen-message attack within a time t, after qh and qs queries
to the hash function and the signing oracle respectively. Then the permutation f can be
inverted with probability ε′ within time t′ where

ε′ ≥
ε

qs

× exp(−2) and t′ ≤ t + (qs + qh)Tf ,

with Tf the time for an evaluation of f .

This proof can be performed as the previous one, and thus starts at the real game G0,
then we can use the same simulation as in the game G1. The sole formal difference in the
simulation will be the H-List which elements have one more field, and are thus initially of the
form (q,⊥,⊥, r). Things differ much after that, using a real value p between 0 and 1, which will
be made precise later. The idea here, is to make any forgery useful for inverting the permutation
f , not only a specific (guessed) one. On the other hand, one must still be able to simulate the
signing oracle. The probability p will separate the two situations:

Game G2: A random coin decides whether we introduce the challenge y in the hash answer,
or an element with a known pre-image:

IRule H(2)

One chooses a random s ∈ X. With probability p, one sets r ←
y ⊗ f(s) and t ← 1; otherwise, r ← f(s) and t ← 0. The record
(q, t, s, r) is added to H-List.

Because of the homomorphic property on the group X of the permutation f , this rule lets the
game indistinguishable from the previous one. Note again that elements in H-List contain one
more field t than in the previous proof. One may see that r = yt ⊗ f(s).

Game G3: For a proportion 1 − p of the signature queries, one can simulate the signing
oracle without having to invert the permutation f :

IRule S(3)

Lookup for (m, t, s, r) in H-List, if t = 1 then halt the game, otherwise
set σ = s.

This rule lets the game indistinguishable, unless one signing query fails (t = 1), which happens
with probability p, for each signature:

Pr[S3] = (1− p)qs × Pr[S2]. (8)

Note that now, the simulation can easily be performed, without any specific computational
power or oracle access. Just a few more exponentiations are done to simulate the hash oracle, and
the forgery (m, σ) leads to the pre-image of y, if (t = 1). The latter case holds with probability
p. Indeed, (m, t, s, r) can be found in the H-List, and then r = yt ⊗ f(s) = y ⊗ f(s) = f(σ),
which easily leads to the pre-image of y by f :

Succow
f (t + (qh + qs)Tf ) = p× Pr[S3]. (9)
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Using equations (1), (2), (8) and (9)

Succow
f (t + (qh + qs)Tf ) = p× Pr[S3] = p× (1− p)qs × Pr[S2]

= p× (1− p)qs × Pr[S1] = p× (1− p)qs × Pr[S0].

And thus,

Succeuf
fdh(A) ≤

1

p(1− p)qs
× Succow

f (t + (qh + qs)Tf ).

Therefore, the success probability of our inversion algorithm is p(1−p)qsε, if ε is the success
probability of the adversary. If qs > 0, the latter expression is optimal for p = 1/(qs + 1). And
for this parameter, and a huge value qs, the success probability is approximately ε/eqs. It is
anyway larger than ε/e2qs (where e = exp(1) ≈ 2.17 . . .).

As far as time complexity is concerned, each random oracle simulation (which can be
launched by a signing simulation) requires a modular exponentiation to the power e, hence
the result. ut

This is a great improvement since the success probability does not depend anymore on qh.
Furthermore, qs can be limited by the user, whereas qh cannot. In practice, one only assumes
qh ≤ 260, but qs can be limited below 230.

The Probabilistic Signature Scheme However, one would like to get more, suppressing
any coefficient. In their paper [12], Bellare and Rogaway proposed such a better candidate, the
Probabilistic Signature Scheme (PSS, see Figure 7): the key generation is still the same, but

H

rm

G

F

0 w s t

Fig. 7. Probabilistic Signature Scheme

the signature process involves three hash functions

F : {0, 1}k2 → {0, 1}k0, G : {0, 1}k2 → {0, 1}k1,
H : {0, 1}? → {0, 1}k2,

where k = k0 + k1 + k2 + 1 satisfies {0, 1}k−1 ⊂ X ⊂ {0, 1}k. We remind that f is a trapdoor
one-way permutation onto X, with an homomorphic relationship. For each message m to be
signed, one chooses a random string r ∈ {0, 1}k1. One first computes w = H(m, r), s = G(w)⊕r
and t = F(w). Then one concatenates y = 0‖w‖s‖t, where a‖b denotes the concatenation of
the bit strings a and b. Finally, one computes the pre-image by f , σ = f−1(y). The verification
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algorithm first computes y = f(σ), and parses it as y = b‖w‖s‖t. Then, one can get r = s⊕G(w),
and checks whether b = 0, w = H(m, r) and t = F(w).

About this PSS construction, Bellare and Rogaway proved the security in the random-oracle
model.

Theorem 9. Let A be a CMA-adversary against f–PSS which produces an existential
forgery within a time t, after qf , qg, qh and qs queries to the hash functions F , G and H
and the signing oracle respectively. Then its success probability is upper-bounded by

Succow
f (t + (qs + qh)k2 · Tf ) +

1

2k2
+ (qs + qh) ·

(

qs

2k1
+

qf + qg + qh + qs + 1

2k2

)

,

with Tf the time for an evaluation of f .

Proof. First, we assume the existence of an adversary A that produces an existential forgery
with probability ε within time t, after qf , qg and qh queries to the random oracles F , G and H
and qs queries to the signing oracle.

Game G0: This is the real-world attack game. In any game Gn, we denote by Sn the event
V(pk, m, σ) = 1, for a new signature σ.

Game G1: In this game, we make the classical simulation of the random oracles, with random
answers for any new query, as shown on Figure 8. This game is clearly identical to the previous
one. The H simulation may seem a bit intricate, but the bit c is never used. It will appear later.

F
,
G

a
n
d
H

o
ra

cl
es

Query F(w): if a record (w, t) appears in F-List, the answer is t.
Otherwise the answer t is chosen randomly: t ∈ {0, 1}k0 and the record (w, t) is added in F-List.
Query G(w): if a record (w, g) appears in G-List, the answer is g.
Otherwise the answer g is chosen randomly: g ∈ {0, 1}k1 and the record (w, g) is added in G-List.
Query H(m, r): one first sets c = 0 if the query is asked by the signing oracle, and c = 1 otherwise (by
the adversary directly). If a record (m, r, ?,⊥, w) appears in H-List:

IRule H-Old(1)

The answer is w.

Otherwise the answer w is defined according to the following rule:

IRule H-New(1)

Choose a random element w ∈ {0, 1}k2 . The record (m, r, c,⊥, w) is added
in H-List.

Note: the fourth component of the elements of this list will be explained later.

S
o
ra

cl
e For a sign-query S(m), one first chooses a random r ∈ {0, 1}k1 and asks for w = H(m, r), s = G(w)⊕ r

and t = F(w). Then one concatenates y = 0‖w‖s‖t and computes the signature σ according to the
following rule:

IRule S(1)

Computes σ = f−1(y).

Fig. 8. Simulation of the Attack Game against PSS

Game G2: In this game, we introduce the random challenge y?, for which one is looking for
x? such that y? = f(x?). Thus, we replace the random oracle H by the following simulation,
which may abort:
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IRule H-New(2)

Choose a random u ∈ X, then if c = 0, compute z = y? ⊗ f(u),
otherwise compute z = f(u), until the most significant bit of z is
0, but at most k2 times (otherwise one aborts the game). Choose a
random element w ∈ {0, 1}k2. The record (m, r, c,⊥, w) is added in
H-List.

Let us remark that the number of calls to H is upper-bounded by qh + qs (direct queries and
queries asked by the signing oracle.) This game may only differ from the previous one during
some H-simulations, if the simulation aborts because z is still in the bad range, even after the
k2 attempts (event BadRange2). Using the Lemma 7, noting that

Pr[S2 | ¬BadRange2] = Pr[S1 | ¬BadRange2] and Pr[BadRange2] ≤
qh + qs

2k2
,

one gets

|Pr[S2]− Pr[S1]| ≤
qh + qs

2k2
. (10)

Game G3: In the above game, one may have noted that z is uniformly distributed in X,
because of the permutation property of f , with the conditioning that the most significant bit
is 0. One can thus parse it into 0‖w‖s‖t, where w is uniformly distributed in {0, 1}k2:

IRule H-New(3)

Choose a random u ∈ X, then if c = 0, compute z = y? ⊗ f(u),
otherwise compute z = f(u), until the most significant bit of z is 0,
but at most k2 times (otherwise one aborts the game). Thereafter, z
is parsed into 0‖w‖s‖t, The record (m, r, c, u, w) is added in H-List.

This simulation is thus perfectly indistinguishable, since the additional field u in the H-List is
never used. But note that z = y?c ⊗ f(u).

Game G4: Now, we furthermore anticipate some F or G answers, with random numbers,
which is the case of the above s and t:

IRule H-New(4)

Choose a random u ∈ X, then if c = 0, compute z = y? ⊗ f(u),
otherwise compute z = f(u), until the most significant bit of z is 0,
but at most k2 times (otherwise one aborts the game). Thereafter, z
is parsed into 0‖w‖s‖t, and one adds the record (w, t) to the F-List

and (w, s ⊕ r) to the G-List. The record (m, r, c, u, w) is added in
H-List.

This game may only differ from the previous one if during some H-simulations, F(w) or G(w)
have already been defined (either by a direct query, or by a H-simulation.)

|Pr[S4]− Pr[S3]| ≤
(qh + qs)(qf + qg + qh + qs)

2k2
. (11)

Game G5: Now, we simply abort if the signing oracle makes a H(m, r)-query for some (m, r)
that has already been asked to H.

IRule H-Old(5)

If c = 0, then one aborts the game, otherwise the answer is w.

25



Because of the possible abortion

|Pr[S5]− Pr[S4]| ≤ qs(qh + qs)/2k1. (12)

Game G6: In the last game, we replace the signing oracle by an easy simulation, returning
the value u involved in the answer H(m, r), which defines z = f(u):

IRule S(6)

Look up for (m, r, c, u, w) in H-List, and set σ = u.

The simulation is perfect since c = 0.
The event S6 means that, at the end of that game, the adversary outputs a valid mes-

sage/signature (m, σ). The latter satisfies: y = f(σ) = b‖w‖s‖t. Then one gets r = s ⊕ G(w),
and checks whether b = 0, w = H(m, r) and t = f(w). Such a signature is valid

– without having queried H(m, r), which is possible with probability bounded by 2−k2;
– with y = y? ⊗ f(u), where (m, r, 1, u, w) ∈ H-List, and thus one gets x?.

Pr[S6] ≤ Succow
f (t′, k) + 2−k2, (13)

where t′ is the running time of the adversary, including the time for the simulations: t′ ≤
t + (qs + qh) · k2 · Tf .

The important point in this security result is the very tight link between success probabilities,
but also the almost linear time of the reduction. Thanks to this exact and efficient security
result, RSA–PSS has become the new PKCS #1 v2.1 standard for signature [74]. Another
variant has been proposed with message-recovery: PSS-R which allows one to include a large
part of the message inside the signature. This makes a signed-message shorter than the size of
the signature plus the size of the message, since the latter is inside the former one.

6 Public-Key Encryption

6.1 History

The RSA Encryption Scheme In the same paper [73] as the RSA signature scheme ap-
peared, Rivest, Shamir and Adleman also proposed a public-key encryption scheme, thanks
to the “trapdoor one-way permutation” property of the RSA function: the generation algo-
rithm produces a large composite number N = pq, a public key e, and a private key d such
that e · d = 1 mod ϕ(N). The encryption of a message m, encoded as an element in Z

?
N , is

simply c = me mod N . This ciphertext can be easily decrypted thanks to the knowledge of d,
m = cd mod N . Clearly, this encryption is OW-CPA, relative to the RSA problem. The deter-
minism makes a plaintext-checking oracle useless. Indeed, the encryption of a message m, under
a public key pk is always the same, and thus it is easy to check whether a ciphertext c really
encrypts m, by re-encrypting it. Therefore the RSA-encryption scheme is OW-PCA relative to
the RSA problem as well.

Because of this determinism, it cannot be semantically secure: given the encryption c of
either m0 or m1, the adversary simply computes c′ = me

0 mod N and checks whether c′ = c.
Furthermore, with a small exponent e (e.g. e = 3), any security vanishes under a multi-user
attack: given c1 = m3 mod N1, c2 = m3 mod N2 and c3 = m3 mod N3, one can easily compute
m3 mod N1N2N3 thanks to the Chinese Remainders Theorem, which is exactly m3 in Z and
therefore leads to an easy recovery of m.
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The El Gamal Encryption Scheme In 1985, El Gamal [27] also designed a public-key
encryption scheme based on the Diffie-Hellman key exchange protocol [25]: given a cyclic group
G of order prime q and a generator g, the generation algorithm produces a random element
x ∈ Z

?
q as private key, and a public key y = x · g. The encryption of a message m, encoded as

an element m in G, is a pair (c = a · g,d = a · y + m), for a random a ∈ Zq. This ciphertext
can be easily decrypted thanks to the knowledge of x, since

a · y = ax · g = x · c,

and thus m = d− x · c. This encryption scheme is well-known to be OW-CPA relative to the
Computational Diffie-Hellman problem. It is also semantically secure (against chosen-plaintext
attacks) relative to the Decisional Diffie-Hellman problem [85]. For OW-PCA, it relies on the
Gap Diffie-Hellman problem [60].

As we have seen above, the expected security level is IND-CCA, whereas the RSA encryption
just reaches OW-CPA under the RSA assumption, and the El Gamal encryption achieves IND-
CPA under the DDH assumption. Can we achieve IND-CCA for practical encryption schemes?

6.2 A First Generic Construction

In [10], Bellare and Rogaway proposed the first generic construction which applies to any
trapdoor one-way permutation f onto X. We need two hash functions G and H:

G : X −→ {0, 1}n and H : {0, 1}? −→ {0, 1}k1,

where n is the bit-length of the plaintexts, and k1 a security parameter. Then the encryption
scheme BR = (K, E ,D) can be described as follows:

– K(1k): specifies an instance of the function f , and of its inverse f−1. The public key pk is
therefore f and the private key sk is f−1.

– Epk(m; r): given a message m ∈ {0, 1}n, and a random value r
R
← X, the encryption algo-

rithm Epk computes

a = f(r), b = m⊕ G(r) and c = H(m, r),

and outputs the ciphertext y = a‖b‖c.
– Dsk(a‖b‖c): thanks to the private key, the decryption algorithm Dsk extracts

r = f−1(a), and next m = b⊕ G(r).

If c = H(m, r), the algorithm returns m, otherwise it returns “Reject.”

About this construction, one can prove:

Theorem 10. Let A be a CCA-adversary against the semantic security of the above
encryption scheme BR. Assume that A has advantage ε and running time τ and makes qd,
qg and qh queries to the decryption oracle, and the hash functions G and H, respectively.
Then

Succow
f (τ ′)≥

ε

2
−

2qd

2k1
−

qh

2n
,

with τ ′ ≤ τ + (qg + qh) · Tf ,

where Tf denotes the time complexity for evaluating f .
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Proof. In the following we use starred letters (r?, a?, b?, c? and y?) to refer to the challenge
ciphertext, whereas unstarred letters (r, a, b, c and y) refer to the ciphertext asked to the
decryption oracle.

Game G0: A pair of keys (pk, sk) is generated using K(1k). Adversary A1 is fed with pk,
the description of f , and outputs a pair of messages (m0, m1). Next a challenge ciphertext is
produced by flipping a coin b and producing a ciphertext y? = a?‖b?‖c? of mb. This ciphertext

comes from a random r? R
← X and a? = f(r?), b? = mb ⊕ G(r

?) and c? = H(mb, r
?). On input

y?, A2 outputs bit b′. In both stages, the adversary is given additional access to the decryption
oracle Dsk. The only requirement is that the challenge ciphertext y? cannot be queried from the
decryption oracle.

We denote by S0 the event b′ = b and use a similar notation Si in any Gi below. By definition,
we have

Pr[S0] =
1

2
+

ε

2
. (14)

Game G1: In this game, one makes the classical simulation of the random oracles, with
random answers for any new query, as shown on Figure 9. This game is clearly identical to the
previous one.

G
,
H

O
ra

cl
es

Query G(r): if a record (r, g) appears in G-List, the answer is g.
Otherwise the answer g is chosen randomly: g ∈ {0, 1}n and the record (r, g) is added in G-List.
Query H(m, r): if a record (m, r, h) appears in H-List, the answer is h.
Otherwise the answer h is chosen randomly: h ∈ {0, 1}k1 and the record (m, r, h) is added in H-List.

D
O

ra
cl

e Query Dsk(a‖b‖c): one applies the following rules:

IRule Decrypt−R(1)

Compute r = f−1(a);

Then, compute m = b⊕ G(r), and finally,

IRule Decrypt−H(1)

If c = H(m, r), one returns m, otherwise one returns “Reject.”

C
h
a
ll
en

g
er

For two messages (m0, m1), flip a coin b and set m? = mb.

IRule Chal−Hash(1)

Choose randomly r?, then set
a? = f(r?),
g? = G(r?), b? = m? ⊕ g?,
c? = H(m?, r?).

Then, output y? = a?‖b?‖c?.

Fig. 9. Formal Simulation of the IND-CCA Game against the BR Construction

Game G2: In this game, one randomly chooses h+ R
← {0, 1}k1, and uses it instead of

H(m?, r?).

IRule Chal−Hash(2)

The value h+ R
← {0, 1}k1 has been chosen ahead of time, choose

randomly r?, then set a? = f(r?), g? = G(r?), b? = m? ⊕ g?, and
c? = h+.
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The two games G2 and G1 are perfectly indistinguishable unless (m?, r?) is asked for H, either
by the adversary or the decryption oracle. But the latter case is not possible, otherwise the
decryption query would be the challenge ciphertext. More generally, we denote by AskR2 the
event that r? has been asked to G or to H, by the adversary. We have:

|Pr[S2]− Pr[S1] | ≤ Pr[AskR2]. (15)

Game G3: We start modifying the simulation of the decryption oracle, by rejecting any
ciphertext (a‖b‖c) for which the corresponding (m, r) has not been queried to H:

IRule Decrypt−H(3)

Look up in H-List for (m, r, c). If such a triple does not exist, then
output “Reject”, otherwise output m.

Such a simulation differs from the previous one if the value c has been correctly guessed, by
chance:

|Pr[S3]− Pr[S2] | ≤
qd

2k1
|Pr[AskR3]− Pr[AskR2] | ≤

qd

2k1
. (16)

Game G4: In this game, one randomly chooses r+ R
← X and g+ R

← {0, 1}n, and uses r+

instead of r?, as well as g+ instead of G(r?).

IRule Chal−Hash(4)

The three values r+ R
← X, g+ R

← {0, 1}n and h+ R
← {0, 1}k1 have been

chosen ahead of time, then set a? = f(r+), b? = m?⊕g+, c? = h+.

The two games G4 and G3 are perfectly indistinguishable unless r? is asked for G, either by the
adversary or the decryption oracle. The former case has already been cancelled in the previous
game, in AskR3. The latter case does not make any difference since either H(m, r?) has been
queried by the adversary, which falls in AskR3, or the ciphertext is rejected in both games. We
have:

Pr[S4] = Pr[S3] Pr[AskR4] = Pr[AskR3]. (17)

In this game, m? is masked by g+, a random value which never appears anywhere else. Thus,
the input to A2 follows a distribution that does not depend on b. Accordingly:

Pr[S4] =
1

2
. (18)

Game G5: Finally, one randomly chooses a+ R
← X, which implicitly defines a random r+ in

X. Actually, a+ is the given random challenge for which one is looking for the pre-image r+.

IRule Chal−Hash(5)

The three values a+ R
← X, g+ R

← {0, 1}n and h+ R
← {0, 1}k1 have been

chosen/given ahead of time, then set a? = a+, b? = m?⊕g+, c? =
h+.

The two games G5 and G4 are perfectly indistinguishable, thanks to the permutation property
of f .

Game G6: In the simulation of the decryption oracle, we may reject even earlier, if the
corresponding r has not been queried to G:
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IRule Decrypt−R(6)

Look up in G-List for (r, g) such that a = f(r). If no r is found, then
output “Reject”.

Such a simulation differs from the previous one if the value (m, r) has been queried to H, while
G(r) is unpredictable, and thus m = G(r)⊕ b is unpredictable too:

|Pr[AskR6]− Pr[AskR5] | ≤
qh

2n
. (19)

One may now note that the event AskR6 leads to the pre-image of a+ by f in the queries asked
to G and H, by the adversary. By checking all of them, one gets it:

Pr[AskR6] ≤ Succow
f (τ + (qg + qh)Tf ). (20)

6.3 OAEP: the Optimal Asymmetric Encryption Padding.

Description The problem with the above generic construction is the high over-head. When
one encrypts with a trapdoor one-way permutation onto X, one could hope the ciphertext to
be an element in X, without anything else. In 1994, Bellare and Rogaway proposed such a
more compact generic conversion [11], in the random-oracle model, the “Optimal Asymmetric
Encryption Padding” (OAEP, see Figure 10), obtained from a trapdoor one-way permutation

m 0k1 r

G

H

s t

Fig. 10. Optimal Asymmetric Encryption Padding

f onto {0, 1}k, whose inverse is denoted by f−1. We need two hash functions G and H:

G : {0, 1}k0 −→ {0, 1}k−k0 and H : {0, 1}k−k0 −→ {0, 1}k0,

for some k0. We also need n and k1 which satisfy k = n + k0 + k1. Then the encryption scheme
OAEP = (K, E ,D) can be described as follows:

– K(1k): specifies an instance of the function f , and of its inverse f−1. The public key pk is
therefore f and the private key sk is f−1.

– Epk(m; r): given a message m ∈ {0, 1}n, and a random value r
R
← {0, 1}k0, the encryption

algorithm Epk computes

s = (m‖0k1)⊕ G(r) and t = r ⊕H(s),

and outputs the ciphertext c = f(s, t).
– Dsk(c): thanks to the private key, the decryption algorithm Dsk extracts

(s, t) = f−1(c), and next r = t⊕H(s) and M = s⊕ G(r).

If [M ]k1 = 0k1, the algorithm returns [M ]n, otherwise it returns “Reject.”

In the above description, [M ]k1 denotes the k1 least significant bits of M , while [M ]n denotes
the n most significant bits of M .
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About the Security Paper [11] includes a proof that, provided f is a one-way trapdoor
permutation, the resulting OAEP encryption scheme is both semantically secure and weakly
plaintext-aware. This implies the semantic security against indifferent chosen-ciphertext at-
tacks, also called security against lunchtime attacks (IND-CCA1). Indeed, the Weak Plaintext-
Awareness means that the adversary cannot produce a new valid ciphertext, until it has seen
any valid one, without knowing (awareness) the plaintext. This is more formally defined by the
existence of a plaintext-extractor which, on input a ciphertext and the list of the query-answers
of the random oracles, outputs the corresponding plaintext. This plaintext-extractor is thus
enough for simulating the decryption oracle, but in the first step of the attack only. We briefly
comment on the intuition behind (weak) plaintext-awareness. When the plaintext-extractor
receives a ciphertext c, then:

– either s has been queried to H and r has been queried to G, in which case the extractor
finds the cleartext by inspecting the two query lists G-List and H-List,

– or else the decryption of (s, t) remains highly random and there is little chance to meet the
redundancy 0k1: the plaintext extractor can safely declare the ciphertext invalid.

The argument collapses when the plaintext-extractor receives additional valid ciphertexts, since
this puts additional implicit constraints on G and H. These constraints cannot be seen by
inspecting the query lists. Hence the requirement of a stronger notion of plaintext-awareness.
In [7], Bellare, Desai, Rogaway and the author defined such a stronger notion which extends
the previous awareness of the plaintext even after having seen valid ciphertexts. But such a
plaintext-awareness notion had never been studied for OAEP, while it was still widely admitted.

Shoup’s Counter-Example. In his papers [82, 83], Shoup showed that it was quite unlikely to
extend the results of [11] to obtain adaptive chosen-ciphertext security, under the sole one-
wayness of the permutation. His counter-example made use of the ad hoc notion of an XOR-
malleable trapdoor one-way permutation: for such permutation f0, one can compute f0(x⊕ a)
from f0(x) and a, with non-negligible probability.

m 0k1 r

G

H

s t

⊕ ∆

⊕ ∆

m 0k1 r

G

H

s t

⊕H(s)⊕H(s′)

Fig. 11. Shoup’s attack.

Let f0 be such an XOR-malleable permutation. Define f by f(s‖t) = s‖f0(t). Clearly, f
is also a trapdoor one-way permutation. However, it leads to a malleable encryption scheme
as we now show. Start with a challenge ciphertext y = f(s‖t) = s‖u, where s‖t is the output
of the OAEP transformation on the redundant message m‖0k1 and the random string r (see
Figure 11),

s = G(r)⊕ (m‖0k1), t = H(s)⊕ r and u = f0(t).

Since f is the identity on its leftmost part, we know s, and can define ∆ = δ‖0k1, for any
random string δ, and s′ = s ⊕ ∆. We then set t′ = H(s′) ⊕ r = t ⊕ (H(s) ⊕ H(s′)). The
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XOR-malleability of f0 allows one to obtain u′ = f0(t
′) from u = f0(t) and H(s)⊕H(s′), with

significant probability. Finally, y′ = s′‖u′ is a valid ciphertext of m′ = m⊕ δ, built from r′ = r,
since:

t′ = f−1
0 (u′) = t⊕ (H(s)⊕H(s′)) = H(s′)⊕ r, r′ = H(s′)⊕ t′ = r

and
s′ ⊕ G(r′) = ∆⊕ s⊕ G(r) = ∆⊕ (m‖0k1) = (m⊕ δ)‖0k1.

Note that the above definitely contradicts adaptive chosen-ciphertext security: asking the
decryption of y′ after having received the ciphertext y, an adversary obtains m′ and easily
recovers the actual cleartext m from m′ and δ. Also note that Shoup’s counter-example exactly
stems from where the intuition developed at the end of the previous section failed: a valid
ciphertext y′ was created without querying the oracle at the corresponding random seed r ′,
using in place the implicit constraint on G coming from the received valid ciphertext y.

Using methods from relativized complexity theory, Shoup [82, 83] built a non-standard model
of computation, where there exists an XOR-malleable trapdoor one-way permutation. As a con-
sequence, it is very unlikely that one can prove the IND-CCA security of the OAEP construction,
under the sole one-wayness of the underlying permutation. Indeed, all methods of proof cur-
rently known still apply in relativized models of computation.

The Actual Security of OAEP Shoup [82, 83] furthermore provided a specific proof for
RSA with public exponent 3. However, there is little hope of extending this proof for higher
exponents. Hopefully, Fujisaki, Okamoto, Stern and the author provided a general security
analysis, but under a stronger assumption about the underlying permutation [32, 33]. Indeed,
we prove that the scheme is IND-CCA in the random-oracle model [10], relative to the partial-
domain one-wayness of permutation f .

Partial-Domain One-Wayness. Let us first introduce this new computational assumption. Let
f be a permutation f : {0, 1}k −→ {0, 1}k, which can also be written as

f : {0, 1}n+k1 × {0, 1}k0 −→ {0, 1}n+k1 × {0, 1}k0,

with k = n+k0 +k1. In the original description of OAEP from [11], it is only required that f is
a trapdoor one-way permutation. However, in the following, we consider two additional related
problems, namely partial-domain one-wayness and set partial-domain one-wayness:

– Permutation f is (τ, ε)-one-way if any adversary A whose running time is bounded by τ
has success probability Succow

f (A) upper-bounded by ε, where

Succow
f (A) = Pr

s,t
[A(f(s, t)) = (s, t)].

– Permutation f is (τ, ε)-partial-domain one-way if any adversary A whose running time is
bounded by τ has success probability Succ

pd-ow
f (A) upper-bounded by ε, where

Succ
pd-ow
f (A) = Pr

s,t
[A(f(s, t)) = s].

– Permutation f is (`, τ, ε)-set partial-domain one-way if any adversary A, outputting a set
of ` elements within time bound τ , has success probability Succ

s-pd-ow
f (A) upper-bounded

by ε, where
Succ

s-pd-ow
f (A) = Pr

s,t
[s ∈ A(f(s, t))].
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We denote by Succow
f (τ) (resp. Succ

pd-ow
f (τ) and Succ

s-pd-ow
f (`, τ)) the maximal success probabil-

ity Succow
f (A) (resp. Succ

pd-ow
f (A) and Succ

s-pd-ow
f (A)). The maximum ranges over all adversaries

whose running time is bounded by τ . In the third case, there is an obvious additional restriction
on this range from the fact that A outputs sets with ` elements. It is clear that for any τ and
` ≥ 1,

Succ
s-pd-ow
f (`, τ) ≥ Succ

pd-ow
f (τ) ≥ Succow

f (τ).

Note that, by randomly selecting an element in the set returned by an adversary to the set
partial-domain one-wayness, one breaks partial-domain one-wayness with probability Succ

s-pd-ow
f (A)/`.

This provides the following inequality

Succ
pd-ow
f (τ) ≥ Succ

s-pd-ow
f (`, τ)/`.

However, for specific choices of f , more efficient reductions may exist. Also, in some cases, all
three problems are polynomially equivalent. This is the case for the RSA permutation [73],
hence the global security result for RSA-OAEP.

The Proof of Security In the following we use starred letters (r?, s?, t? and y?) to refer to
the challenge ciphertext, whereas unstarred letters (r, s, t and y) refer to the ciphertext asked
to the decryption oracle.

The Intuition. Referring to our description of the intuition behind the original OAEP proof of
security, given above, we can carry a more subtle analysis by distinguishing the case where s
has not been queried from oracle H from the case where r has not been queried from G. If s
is not queried, then H(s) is random and uniformly distributed and r is necessarily defined as
t⊕H(s). This holds even if s matches with the string s? coming from the valid ciphertext y?.
There is a minute probability that t⊕H(s) is queried from G or equals r?. Thus, G(r) is random:
there is little chance that the redundancy 0k1 is met and the extractor can safely reject.

We claim that r cannot match with r?, unless s? is queried from H. This is because r? =
t? ⊕H(s?) equals r = t⊕H(s) with minute probability. Thus, if r is not queried, then G(r) is
random and we similarly infer that the extractor can safely reject. The argument fails only if
s? is queried.

Thus rejecting when it cannot combine elements of the lists G-List and H-List so as to build
a pre-image of y, the plaintext-extractor is only wrong with minute probability, unless s? has
been queried by the adversary. This seems to show that OAEP leads to an IND-CCA encryption
scheme if it is difficult to invert f “partially”, which means: given y? = f(s?‖t?), find s?.

The Strategy. Based on the intuition just described, we can formally prove that applying
OAEP encoding to a trapdoor permutation which is difficult to partially invert, leads to an
IND-CCA encryption scheme, hence the partial-domain one-wayness, which expresses the fact
that the above partial inversion problem is difficult.

Chosen-ciphertext security is actually addressed, by turning the intuition explained above
into a formal argument, involving a restricted variant of plaintext-awareness (where the list C
of ciphertexts is limited to only one ciphertext, the challenge ciphertext y?).
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Theorem 11. Let A be a CCA-adversary against the semantic security of the encryption
scheme OAEP. Assume that A has advantage ε and running time τ and makes qd, qg and
qh queries to the decryption oracle, and the hash functions G and H, respectively. Then

Succ
s-pd-ow
f (qh, τ

′)≥
ε

2
−

(

2(qd + 2)(qd + 2qg)

2k0
+

3qd

2k1

)

,

with τ ′ ≤ τ + qg · qh · (Tf +O(1)),

where Tf denotes the time complexity for evaluating f .

The Plaintext-Extractor

Description. In order to prove the security against adaptive chosen-ciphertext attacks, it is
necessary to simulate calls to a decryption oracle. As in the original paper [11], we design a
plaintext-extractor (which is actually the same). But the analysis is more intricate because the
success probability of the extractor cannot be estimated unconditionally but only relatively to
some computational assumption. When the plaintext-extractor receives a ciphertext c, then:

– either s has been queried to H and r has been queried to G, in which case the extractor
finds the cleartext by inspecting the two query lists G-List and H-List. One indeed looks up
for (γ,Gγ) ∈ G-List and (δ,Hδ) ∈ H-List. For such a pair, one defines σ = δ, θ = γ ⊕ Hδ,
µ = Gγ ⊕ δ, and checks whether c = f(σ, θ). If [µ]k1 = 0k1, then the tailing part is the
plaintext.

– or else the decryption of (s, t) remains highly random and there is little chance to meet the
redundancy 0k1: the plaintext extractor can safely declare the ciphertext invalid.

Comments. One can easily check that the output of the plaintext-extractor is uniquely defined,
regardless of the ordering of the lists. To see this, observe that since f is a permutation, the
value of σ = s is uniquely defined and so is δ. Keep in mind that the G-List and H-List correspond
to input-output pairs for the functions G and H, and at most one output is related to a given
input. This makes Hδ uniquely defined as well. Similarly, θ = t is uniquely defined, and thus γ
and Gγ : at most one µ may be selected, which is output depending on whether [µ]k1 = 0k1 or
not.

Furthermore, if both r and s have been queried by the adversary, the plaintext-extractor
perfectly simulates the decryption oracle.

Proof In the following, y? is the challenge ciphertext, obtained from the encryption oracle.
Since we have in mind using the plaintext-extractor instead of the decryption oracle, trying
to contradict semantic security, we assume that y? is a ciphertext of mb and denote by r? its
random seed. We have

r? = H(s?)⊕ t? and G(r?) = s? ⊕ (mb‖0
k1).

In what follows, all unstarred variables refer to the decryption queries.
We now present a proof with games which sequentially discard all cases for which the above

plaintext-extractor may fail.

Game G0: A pair of keys (pk, sk) is generated using K(1k). Adversary A1 is fed with pk,
the description of f , and outputs a pair of messages (m0, m1). Next a challenge ciphertext is
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produced by flipping a coin b and producing a ciphertext y? of mb. This ciphertext comes from

a random r? R
← {0, 1}k0 and s? and t? such that y? = f(s?, t?), where s? = (mb‖0

k1)⊕ G(r?)
and t? = r? ⊕H(s?). On input y?, A2 outputs bit b′. In both stages, the adversary is given
additional access to the decryption oracle Dsk. The only requirement is that the challenge
ciphertext cannot be queried from the decryption oracle.

We denote by S0 the event b′ = b and use a similar notation Si in any Gi below. By definition,
we have

Pr[S0] =
1

2
+

ε

2
. (21)

Game G1: In this game, one makes the classical simulation of the random oracles, with
random answers for any new query, as shown on Figure 12. This game is clearly identical to
the previous one.

G
,
H

O
ra

cl
es

Query G(r): if a record (r, g) appears in G-List, the answer is g.
Otherwise the answer g is chosen randomly: g ∈ {0, 1}k−k0 and the record (r, g) is added in G-List.
Query H(s): if a record (s, h) appears in H-List, the answer is h.
Otherwise the answer h is chosen randomly: h ∈ {0, 1}k0 and the record (s, h) is added in H-List.

D
O

ra
cl

e Query Dsk(c):the value M is defined according to the following rules:

IRule Decrypt−Init(1)

Compute (s, t) = f−1(c);

Look up for (s, h) ∈ H-List:

– if the record is found, compute r = t⊕ h.
Look up for (r, g) ∈ G-List:
• if the record is found

IRule Decrypt−SR(1)

h = H(s), r = t⊕ h,
g = G(r), M = s⊕ g.

• otherwise
IRule Decrypt−SnoR(1)

same as rule Decrypt−SR(1).
– otherwise

IRule Decrypt−noS(1)

same as rule Decrypt−SR(1).

If [M ]k1
= 0k1 , one returns m = [M ]n, otherwise one returns “Reject.”

C
h
a
ll
en

g
er

For two messages (m0, m1), flip a coin b and set m? = mb, M? = m?‖0k1 .

IRule Chal−Hash(1)

Choose randomly r?, then set
g? = G(r?), s? = M? ⊕ g?,
h? = H(s?), t? = r? ⊕ h?.

IRule Chal−Output(1)

Compute and output y? = f(s?, t?).

Fig. 12. Formal Simulation of the IND-CCA Game against OAEP

Game G2: In this game, one randomly chooses r+ R
← {0, 1}k0 and g+ R

← {0, 1}k−k0, and uses
r+ instead of r?, as well as g+ instead of G(r?).
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IRule Chal−Hash(2)

The two values r+ R
← {0, 1}k0, g+ R

← {0, 1}k−k0 have been chosen
ahead of time, then set r? = r+, g? = g+,
s? = M? ⊕ g+, h? = H(s?), t? = r+ ⊕ h?.

The two games G2 and G1 are perfectly indistinguishable unless r? is asked for G, either by
the adversary or by the decryption oracle. We define this event AskG2. We have:

|Pr[S2]− Pr[S1] | ≤ Pr[AskG2]. (22)

In this game, g+ is used in (s, t) but does not appear in the computation since G(r+) is not
defined to be equal to g+. Thus, the input to A2 follows a distribution that does not depend
on b. Accordingly:

Pr[S2] =
1

2
. (23)

Game G3: We start dealing with the decryption oracle, which has remained perfect up
to this game, but using the ability to invert f . We first make the decryption oracle reject all
ciphertexts c such that the corresponding r value has not been previously queried from G by
the adversary.

IRule Decrypt−SnoR(3)

g = G(r), M = 1k.

This new rule leads to a Reject since the 0k1 is not verified. This makes a difference only if c is
a valid ciphertext, while G(r) has not been asked. Since G(r) is uniformly distributed, equality
[s ⊕ G(r)]k1 = 0k1 happens with probability 1/2k1. Summing up for all decryption queries, we
get

|Pr[AskG3]− Pr[AskG2]| ≤
qd

2k1
. (24)

Note that we cannot remove the query G(r) from this rule, even if it would not change anything
in the simulation of the output of this decryption. However, it would remove a pair (r, g) from
G-List, which could be r? itself, and this would have a non-negligible impact on the event AskG3.

Game G4: We now make the decryption oracle reject all ciphertexts c such that the corre-
sponding s value has not been previously queried from H by the adversary.

IRule Decrypt−noS(4)

h = H(s), r = t⊕ h,
g = G(r), M = 1k.

This makes a difference only if y is a valid ciphertext, while H(s) has not been asked. First,
since r = H(s)⊕t is uniformly distributed, it has been queried from G with probability less than
(qg + qd)/2k0. Then, if G(r) has not been queried, the redundancy is satisfied with probability
less than 1/2k1. Summing up for all decryption queries, we get

|Pr[AskG4]− Pr[AskG3]| ≤
qd(qg + qd)

2k0
+

qd

2k1
. (25)

Game G5: Here, we can make the first formal modification in the previous game since,
whatever the h-value is, the message M is 1k, and g and h are never revealed:
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IRule Decrypt−noS(5)

h = H(s), M = 1k.

This will just postpone the definition of G(r) and also remove one pair (r, g) from G-List. The
latter removal may have some impact:

– on the simulation of a later decryption c′, if r′ = r was found in the previous game, but that
is no longer in the list. A rule Decrypt−SR is thus replaced by the rule Decrypt−SnoR,
which means that g′ = g was just defined in the modified rule, and never revealed (by any
means: no information is leaked.) Therefore, the probability for M ′ to satisfy the redundancy
was 2−k1;

– the removed r could be r?, but this is t ⊕H(s), for s 6∈ H-List. Such a case is bounded by
2−k0 .

Summing up for all decryption queries, we get

|Pr[AskG5]− Pr[AskG4]| ≤ qd ×

(

1

2k0
+

1

2k1

)

. (26)

Game G6: We follow in making formal modifications:

IRule Decrypt−noS(6)

M = 1k.

This will postpone the definition of H(s), and also remove the pair (s, h) from H-List. The latter
removal may have some impact on the simulation of a later decryption c′: if s′ = s was found
in the previous game, but that is no longer in the list:

– a rule Decrypt−SnoR is replaced by the rule Decrypt−noS (which just cancels r′ from
G-List), which means that h′ = h was just defined in the modified rule, and never revealed.
The probability for r′ to be equal to r? is 2−k0 .

– a rule Decrypt−SR is replaced by the rule Decrypt−noS, which means that h′ = h was
just defined in the modified rule, and never revealed. The probability for r′ = t′ ⊕ h′ to be
in G-List was less than qg/2k0, which is an upper-bound of this case to appear.

In both cases, the decryption is anyway still the same. Summing up for all decryption queries,
we get

|Pr[AskG6]− Pr[AskG5]| ≤
qd(qg + 1)

2k0
. (27)

Furthermore, in the decryption simulation, when both r and s have been asked, no new
query occurs:

IRule Decrypt−SR(6)

M = s⊕ g.

As a consequence, the new decryption simulation makes no new H-query.

Game G7: We now define s? independently of anything else, as well as H(s?), by randomly

choosing s+ R
← {0, 1}k−k0 and h+ R

← {0, 1}k0, and using s+ instead of s?, as well as h+ instead
of H(s?). The only change is that s? = s+ instead of M? ⊕ g+, which in some sense defines
g+ = M? ⊕ s+ but we do not need it. The game obeys the following rule:
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IRule Chal−Hash(7)

The three values r+ R
← {0, 1}k0, s+ R

← {0, 1}k−k0 and h+ R
← {0, 1}k0

have been chosen ahead of time, then set s? = s+, t? = r+ ⊕ h+.

The two games G7 and G6 are perfectly indistinguishable unless s? is asked for H by the
adversary, or used by the decryption oracle. The former event is denoted AskH7, while the latter
makes a difference only if the rule Decrypt−SR(6) was used, with an accepted ciphertext, or the
rule Decrypt−SnoR(6) was used, with r = r? (because this rule becomes Decrypt−noS(6),
where no G(r) query is done, since it could have been r?, and thus made the event AskG happen.)

We thus insist here on that the event AskH7 denotes the fact that s? is asked for H by the
adversary, whereas the event AskG denotes the fact that r? is asks for G by the adversary or
the decryption oracle/simulation.

Let us briefly deal with the bad cases:

– the rule Decrypt−SR(6) was used, with an accepted ciphertext. This means that there
exists a valid ciphertext c = f(s?‖t) that is queried to the decryption oracle, with the
corresponding r queried to G, where r = t⊕H(s?) = t⊕ t?⊕ r+, and r+ is a random value.

– the rule Decrypt−SnoR(6) was used, with r = r+, where r+ is a random value.

|Pr[AskG7]− Pr[AskG6] | ≤ Pr[AskH7] +
qd(qg + qd)

2k0
+

qd

2k0
. (28)

In this new game, r? = t? ⊕ h+ is uniformly distributed, and independent of the adversary’s
view, since h+ is never revealed:

Pr[AskG7] ≤
qg + qd

2k0
, (29)

where qg and qd denote the number of queries asked by the adversary to G, or to the decryption
oracle, respectively. As a consequence,

Pr[AskG2] ≤
3qd

2k1
+

(2qd + 1)(qg + qd)

2k0
+

qd(qg + 3)

2k0
+ Pr[AskH7] (30)

Game G8: Finally, we define s? and t? independently of anything else, by randomly choosing

s+ R
← {0, 1}k−k0 and t+

R
← {0, 1}k0:

IRule Chal−Hash(8)

The two values s+ R
← {0, 1}k−k0 and t+

R
← {0, 1}k0 have been chosen

ahead of time, then set s? = s+, t? = t+.

The two games G8 and G7 are perfectly indistinguishable.

Game G9: We now completely manufacture the challenge ciphertext: we randomly choose

y+ R
← {0, 1}k, and simply set y? = y+, ignoring the encryption algorithm altogether. This

implicitly defines s+ and t+, because of the permutation property of f . Actually, y+ is the
given random challenge for which one is looking for the partial pre-image s+.

IRule Chal−Hash(9)

Do nothing.

IRule Chal−Output(9)

The challenge y+ R
← {0, 1}k has been given ahead of time, then set

and output y? = y+.

38



The distribution of y? remains the same: due to the fact that f is a permutation, the previous
method defining y? = f(s?‖t?), with s? = s+ and t? = t+ was already generating a uniform
distribution over the k-bit elements.

Game G10: Before concluding, one may remark that the new simulation of the decryption
oracle is exactly the way the plaintext-extractor previously explained would operate, with some
extra but unuseful G-queries. Since we do not care anymore about the event AskG10, they can
be simplified:

IRule Decrypt−SR(10)

M = s⊕ g.

IRule Decrypt−SnoR(10)

M = 1k.

IRule Decrypt−noS(10)

M = 1k.

Finally, simply outputting the list of queries to H during this game, one gets

Pr[AskH10] ≤ Succ
s-pd-ow
f (qh, τ

′). (31)

To conclude the proof of Theorem 11, one just has to comment on the running time τ ′.
Although the plaintext-extractor is called qd times, there is no qd multiplicative factor in the
bound for τ ′. This comes from a simple bookkeeping argument. Instead of only storing the
lists G-List and H-List, one stores an additional structure consisting of tuples (γ,Gγ, δ,Hδ, y).
A tuple is included only for (γ,Gγ) ∈ G-List and (δ,Hδ) ∈ H-List. For such a pair, one defines
σ = δ, θ = γ ⊕Hδ, µ = Gγ ⊕ δ, and computes y = f(σ, θ). If [µ]k1 = 0k1, one stores the tuple
(γ,Gγ , δ,Hδ, y). The cumulative cost of maintaining the additional structure is qg ·qh ·(Tf +O(1))
but, handling it to the plaintext-extractor allows one to output the expected decryption of y,
by table lookup, in constant time. Of course, a time-space tradeoff is possible, giving up the
additional table, but raising the computing time to qd · qg · qh · (Tf +O(1)). ut

Particular Case: RSA–OAEP Theorem 11 unfortunately requires a very strong assumption
on the trapdoor permutation: the partial-domain one-wayness. Hopefully, in [33], we further-
more proved that for RSA, this is not a stronger assumption than the classical RSA assumption:

Lemma 12. Let A be an algorithm that outputs a q-set containing k−k0 of the most significant
bits of the e-th root of its input (partial-domain RSA, for any modulus N , which 2k−1 < N < 2k

and k > 2k0), within time bound t, with probability ε. There exists an algorithm that solves the
RSA problem (N, e) with success probability ε′, within time bound t′ where

ε′ ≥ ε× (ε− 22k0−k+6), t′ ≤ 2t + q2 ×O(k3).

Combining this lemma with the previous general security result about OAEP, one gets

Theorem 13. Let A be a CCA–adversary against the “semantic security” of RSA–OAEP
(where the modulus is k-bit long, k > 2k0), with running time bounded by t and advantage
ε, making qd, qg and qh queries to the decryption oracle, and the hash functions G and
H, respectively. Then the RSA problem can be solved with probability ε′ greater than

ε2

4
− ε ·

(

2(qd + 2)(qd + 2qg)

2k0
+

3qd

2k1
+

32

2k−2k0

)

within time bound t′ ≤ 2t + qh · (qh + 2qg)×O(k3).

39



There is actually a slight inconsistency in piecing together the two above results, coming
from the fact that RSA is not a permutation over k-bit strings. Research papers usually ignore
the problem. Of course, standards have to cope with it. Observe that one may decide only
to encode a message of n − 8 bits, where n is k − k0 − k1 as before, as is done in the PKCS
#1 standard. The additional redundancy leading bit can be treated the same way as the 0k1

redundancy, especially with respect to decryption. However, this is not enough since G(r) might
still carry the string (s‖t) outside the domain of the RSA encryption function. An easy way
out is to start with another random seed if this happens. On average, 256 trials will be enough.

This security result does not achieve the practical security, because of the expensive reduc-
tion. In [33], we improved the reduction cost, with a more intricate proof. More precisely:

Theorem 14. Let A be a CCA–adversary against the “semantic security” of RSA–OAEP
(where the modulus is k-bit long, k > 2k0), with running time bounded by t and advantage
ε, making qd, qg and qh queries to the decryption oracle, and the hash functions G and
H, respectively. Then the RSA problem can be solved with probability ε′ greater than

ε2 − 2ε ·

(

2qdqg + qd + qg

2k0
+

2qd

2k1
+

32

2k−2k0

)

within time bound t′ ≤ 2t + qh · (qh + 2qg)×O(k3).

Unfortunately, the reduction is still very expensive, and is thus meaningful for huge moduli
only, more than 4096-bit long. Indeed, the RSA inverter we can build, thanks to this reduction,
has a complexity at least greater than qh ·(qh+2qg)×O(k3). As already remarked, the adversary
can ask up to 260 queries to the hash functions, and thus this overhead in the inversion is at
least 2151. However, current factoring algorithms can factor up to 4096 bit-long integers within
this number of basic operations (see [47] for complexity estimates of the most efficient factoring
algorithms).

Anyway, the formal proof shows that the global design of OAEP is sound, and that it is
still probably safe to use it in practice (e.g. in PKCS #1 v2.0, while being very careful during
the implementation [49]).

6.4 REACT: a Rapid Enhanced-security Asymmetric Cryptosystem Transform

Unfortunately, there is no hope to use OAEP with any DL-based primitive, because of the
“permutation” requirement. The OAEP construction indeed requires the primitive to be a per-
mutation (trapdoor partial-domain one-way), which is the case of the RSA function. However,
the only trapdoor problem known in the DL-setting is the Diffie-Hellman problem, and it
does not provide any bijection. Thus, first Fujisaki and Okamoto [30] proposed a generic con-
version from any IND-CPA scheme into an IND-CCA one, in the random-oracle model. While
applying this conversion to the above El Gamal encryption (see Section 6.1), one obtains an
IND-CCA encryption scheme relative to the DDH problem. Later, independently, Fujisaki and
Okamoto [31] and the author [62] proposed better generic conversions since they apply to any
OW-CPA scheme to make it into an IND-CCA one, still in the random-oracle model.

This high security level is just at the cost of two more hashings for the new encryption
algorithm, as well as two more hashings but one re-encryption for the new decryption process.

Description The re-encryption cost is the main drawback of these conversions for practical
purposes. Therefore, Okamoto and the author tried and succeeded in providing a conversion
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that is both secure and efficient [59]: REACT, for “Rapid Enhanced-security Asymmetric Cryp-
tosystem Transform”. It is actually quite similar to the BR construction, excepted that it applies
to any trapdoor one-way function, not permutations only.

K′: Key Generation → (pk, sk)

(pk, sk)← K(1k)
→ (pk, sk)

E ′: Encryption of m ∈M′ = {0, 1}` → (a, b, c)

R ∈M and r ∈ R are randomly chosen
a = Epk(R; r) b = m⊕ G(R) c = H(R, m, a, b)
→ (a, b, c) is the ciphertext

D′: Decryption of (a, b, c)

Given a ∈ C, b ∈ {0, 1}` and c ∈ {0, 1}κ

R = Dsk(a) m = b⊕ G(R)
if c = H(R, m, a, b) and R ∈M → m is the plaintext

(otherwise, “Reject: invalid ciphertext”)

Fig. 13. Rapid Enhanced-security Asymmetric Cryptosystem Transform REACT = (K′, E ′,D′)

The latter conversion is indeed very efficient in many senses

– the computational overhead is just the cost of two hashings for both encryption and de-
cryption

– if one can break IND-CCA of the resulting scheme with an expected time T , one can break
OW-PCA of the basic scheme within almost the same amount of time, with a low overhead
(not as with OAEP). It thus provides a practical security result.

Let us describe this generic conversion REACT [59] on any encryption scheme S = (K, E ,D)

E : PK×M×R→ C, D : SK×C→M,

where PK and SK are the sets of the public and private keys, M is the messages space, C
is the ciphertexts space and R is the random coins space. One should remark that R may be
small and even empty, with a deterministic encryption scheme, such as RSA. But in many other
cases, such as the El Gamal encryption, it is as large as M. We also need two hash functions G
and H,

G : M→ {0, 1}`, H : M× {0, 1}` ×C× {0, 1}` → {0, 1}κ,

where κ is the security parameter, while ` denotes the size of the messages to encrypt. The
REACT conversion is depicted on Figure 13.

Security Result About this construction, one can prove:

Theorem 15. Let A be a CCA-adversary against the semantic security of the encryption
scheme REACT = (K′, E ′,D′). Assume that A has advantage ε and running time τ and
makes qd, qg and qh queries to the decryption oracle, and the hash functions G and H,
respectively. Then

Succ
ow−pca
S (τ ′)≥

ε

2
−

2qd

2κ
−

qh

2`
,

with τ ′ ≤ τ + (qg + qh) · Tpca,

where Tpca denotes the times required by the PCA oracle to answer any query.
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Proof. In the following we use starred letters (r?, a?, b?, c? and y?) to refer to the challenge
ciphertext, whereas unstarred letters (r, a, b, c and y) refer to the ciphertext asked to the
decryption oracle.

Game G0: A pair of keys (pk, sk) is generated using K(1k). Adversary A1 is fed with pk, and
outputs a pair of messages (m0, m1). Next a challenge ciphertext is produced by flipping a coin

b and producing a ciphertext y? = a?‖b?‖c? of mb. This ciphertext comes from random R? R
←M

and r? R
← R and a? = Epk(R

?, r?), b? = mb ⊕ G(R
?) and c? = H(R?, mb, a

?, b?). On input y?,
A2 outputs bit b′. In both stages, the adversary is given additional access to the decryption
oracle D′

sk. The only requirement is that the challenge ciphertext cannot be queried from the
decryption oracle.

We denote by S0 the event b′ = b and use a similar notation Si in any Gi below. By definition,
we have

Pr[S0] =
1

2
+

ε

2
. (32)

Game G1: In this game, one makes the classical simulation of the random oracles, with
random answers for any new query, as shown on Figure 14. This game is clearly identical to
the previous one.

G
,
H

O
ra

cl
es

Query G(r): if a record (r, g) appears in G-List, the answer is g.
Otherwise the answer g is chosen randomly: g ∈ {0, 1}` and the record (r, g) is added in G-List.
Query H(R, m, a, b): if a record (R, m, a, b, h) appears in H-List, the answer is h.
Otherwise the answer h is chosen randomly: h ∈ {0, 1}κ and the record (R, m, a, b, h) is added in H-List.

D
′
O

ra
cl

e Query D′

sk(a‖b‖c): one applies the following rules:

IRule Decrypt−R(1)

Compute R = Dsk(a);

Then, compute m = b⊕ G(R), and finally,

IRule Decrypt−H(1)

If c = H(R, m, a, b), one returns m, otherwise one returns “Reject.”

C
h
a
ll
en

g
er

For two messages (m0, m1), flip a coin b and set m? = mb.

IRule Chal−Hash(1)

Choose randomly R? and r?, then set
a? = Epk(R

?, r?),
g? = G(R?), b? = m? ⊕ g?,
c? = H(R?, m?, a?, b?).

Then, output y? = a?‖b?‖c?.

Fig. 14. Formal Simulation of the IND-CCA Game against REACT

Game G2: In this game, one randomly chooses h+ R
← {0, 1}κ, and uses it instead of

H(R?, m?, a?, b?).

IRule Chal−Hash(2)

The value h+ R
← {0, 1}κ has been chosen ahead of time, choose ran-

domly R? and r?, then set
a? = Epk(R

?, r?), g? = G(R?), b? = m? ⊕ g?, c? = h+.
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The two games G2 and G1 are perfectly indistinguishable unless (R?, m?, a?, b?) is asked for H,
either by the adversary or the decryption oracle. But the latter case is not possible, otherwise
the decryption query would be the challenge ciphertext itself. More generally, we denote by
AskR2 the event that R? has been asked to G or to H, by the adversary. We have:

|Pr[S2]− Pr[S1] | ≤ Pr[AskR2] (33)

Game G3: We start modifying the simulation of the decryption oracle, by rejecting any
ciphertext (a‖b‖c) for which the corresponding (R, m, a, b) has not been queried to H:

IRule Decrypt−H(3)

Look up in H-List for (R, m, a, b, c). If such a triple does not exist,
then output “Reject”, otherwise output m.

Such a simulation differs from the previous one if the value c has been correctly guessed, by
chance:

|Pr[S3]− Pr[S2] | ≤
qd

2κ
|Pr[AskR3]− Pr[AskR2] | ≤

qd

2κ
. (34)

Game G4: In this game, one randomly chooses R+ R
← M and r+ R

← R, and g+ R
← {0, 1}`,

and uses R+ instead of R?, r+ instead of r?, as well as g+ instead of G(R?).

IRule Chal−Hash(4)

The four values R+ R
←M, r+ R

← R, g+ R
← {0, 1}` and h+ R

← {0, 1}κ

have been chosen ahead of time, then set
a? = Epk(R

+, r+), b? = m? ⊕ g+, c? = h+.

The two games G4 and G3 are perfectly indistinguishable unless R? is asked for G, either by the
adversary or the decryption oracle. The former case has already been cancelled in the previous
game in AskR3. The latter case makes no difference since either H(R?, m, a, b) has been queried
by the adversary, which falls in AskR3, or the ciphertext is rejected in both games. We have:

Pr[S4] = Pr[S3] Pr[AskR4] = Pr[AskR3]. (35)

In this game, m? is masked by g+, a random value which never appears anywhere else. Thus,
the input to A2 follows a distribution that does not depend on b. Accordingly:

Pr[S4] =
1

2
. (36)

Game G5: Finally, one chooses a+ R
← C, according the following distribution: R+ R

←M, r+ R
←

R, a+ ← Epk(R
+, r+). This implicitly defines one pair (R+, r+), but the latter is unknown to

the simulator.

IRule Chal−Hash(5)

The three values a+ R
← C, g+ R

← {0, 1}` and h+ R
← {0, 1}κ have been

chosen/given ahead of time, then set a? = a+, b? = m?⊕g+, c? =
h+.

The two games G5 and G4 are perfectly indistinguishable.

Game G6: In the simulation of the decryption oracle, we may reject even earlier, if the
corresponding R has not been queried to G:
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IRule Decrypt−R(6)

Look up in G-List for (R, g) such that R = Dsk(a) (using the PCA-
oracle). If no R is found, then output “Reject”.

Note that this game differs from the analogous one for the first generic construction BR, because
the encryption function is not deterministic, as was the permutation f . Such a simulation differs
from the one in the previous game if the value (R, m, a, b) has been queried to H, while G(R)
is unpredictable, and thus m = G(R)⊕ b in unpredictable too:

|Pr[AskR6]− Pr[AskR5] | ≤
qh

2`
. (37)

One may now note that the event AskR6 leads to the plaintext R+ of a+ by S in the queries
asked to G and H. By checking all of them, one gets it:

Pr[AskR6] ≤ Succ
ow−pca
S (τ + (qg + qh)Tpca). (38)

This construction is very generic, and achieves practical security.

Hybrid REACT In this REACT conversion, one can even improve efficiency, replacing the
one-time pad [87] by any symmetric encryption scheme: indeed, we have computed some b =
m⊕K, where K = G(R) can be seen as a session key used in a one-time pad encryption scheme.
But one could use any symmetric encryption scheme (E,D) that is just semantically secure

r

G

ba

m

E

H

c

E

Fig. 15. Hybrid Rapid Enhanced-security Asymmetric Cryptosystem Transform

(under no plaintext nor ciphertext attacks). Indeed, the one-time pad achieves perfect semantic
security, against this kind of very weak attacks. But one can tolerate some imperfection. Anyway,
most of the candidates to the AES process (the call for symmetric encryption schemes, from the
NIST, to become the new international standard), and the AES itself (the winner), resisted to
more powerful attacks, and thus can be considered strongly secure in our scenario. Therefore,
plaintexts of any size could be encrypted using this conversion (see Figure 15), with a very high
speed rate.

7 Conclusion

Recently, Cramer and Shoup proposed the first schemes, for both encryption [23] and signa-
ture [24], with formal security proofs in the standard model (without any ideal assumption).
The encryption scheme achieves IND-CCA under the sole DDH assumption, which says that the
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DDH problem is intractable. The signature scheme prevents existential forgeries, even against
adaptive chosen-message attacks, under the Strong RSA assumption [2, 29], which claims the
intractability of the Flexible RSA problem:

Given an RSA modulus N and any y ∈ Z
?
N , produce x and a prime integer e such that

y = xe mod N .

Both schemes are very nice because they are the first efficient schemes with formal security
proofs in the standard model, but under stronger computational assumptions. We have not
presented them, nor the reductions either, which can be found in the original papers. Actually,
they are intricate and pretty expensive. Indeed, the complexity of the reductions make them
meaningful for large parameters only.

Furthermore, as already noted, no ideal assumptions (such as the random-oracle model) are
required, but stronger computational assumptions are needed: the final decision for the best for
practical use is not easy.

Moreover, even if the schemes are much more efficient than previous proposals in the stan-
dard model, they are still more than twice as expensive as the schemes presented along this
paper, in the random-oracle model. This is enough to rule them out from most of the practical
applications. Indeed, everybody wants security, but only if it is quite transparent. Therefore,
provable security must not decrease efficiency. It is the reason why strong security arguments
(which are in an ideal model, but this can be seen as realistic restrictions on the adversary’s
capabilities) for efficient schemes have a more practical impact than security proofs in the
standard model for less efficient schemes.

Of course, quite efficient schemes with formal security proofs are still the target, and thus
an exciting challenge.
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1996.
62. D. Pointcheval. Chosen-Ciphertext Security for any One-Way Cryptosystem. In PKC ’00, LNCS 1751, pages 129–146.

Springer-Verlag, Berlin, 2000.
63. D. Pointcheval. About Generic Conversions from any Weakly Secure Encryption Scheme into a Chosen-Ciphertext

Secure Scheme. In Proceedings of the Fourth Conference on Algebraic Geometry, Number Theory, Coding Theory
and Cryptography, pages 145–162, Tokyo, Japan, 2001.

64. D. Pointcheval. Practical Security in Public-Key Cryptography. In Proc. of ICISC ’01, LNCS 2288. Springer-Verlag,
Berlin, 2001.

65. D. Pointcheval. How to Encrypt Properly with RSA. CryptoBytes, 5(1):10–19, winter/spring 2002.
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