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Abstract. Since the appearance of public-key cryptography in Diffie-Hellman seminal
paper, many schemes have been proposed, but many have been broken. Indeed, for
many people, the simple fact that a cryptographic algorithm withstands cryptanalytic
attacks for several years is considered as a kind of validation. But some schemes took a
long time before being widely studied, and maybe thereafter being broken.
A much more convincing line of research has tried to provide “provable” security for
cryptographic protocols, in a complexity theory sense: if one can break the cryptographic
protocol, one can efficiently solve the underlying problem.
Unfortunately, very few practical schemes can be proven in this so-called “standard
model” because such a security level rarely meets with efficiency. A convenient but recent
way to achieve some kind of validation of efficient schemes has been to identify some
concrete cryptographic objects with ideal random ones: hash functions are considered as
behaving like random functions, in the so-called “random oracle model”, block ciphers
are assumed to provide perfectly independent and random permutations for each key
in the “ideal cipher model”, and groups are used as black-box groups in the “generic
model”.
In this paper, we focus on practical asymmetric protocols together with their “reduc-
tionist” security proofs. We cover the two main goals that public-key cryptography is
devoted to solve: authentication with digital signatures, and confidentiality with public-
key encryption schemes.

Keywords: Cryptography, Digital Signatures, Public-Key Encryption, Provable Secu-
rity, Random Oracle Model

1 Introduction

1.1 Motivation

Since the beginning of public-key cryptography, with the seminal Diffie-Hellman pa-
per [24], many suitable algorithmic problems for cryptography have been proposed
(e.g. one-way —possibly trapdoor— functions) and many cryptographic schemes have
been designed, together with more or less heuristic proofs of their security relative to
the intractability of these problems (namely from the number theory, such as the in-
teger factorization, RSA [69], the discrete logarithm [26] and the Diffie-Hellman [24]
problems, or from the complexity theory with some NP-complete problems, such
as the knapsack [20] problem or the decoding problem of random linear codes [49]).
However, most of those schemes have thereafter been broken.

The simple fact that a cryptographic algorithm withstands cryptanalytic attacks
for several years is often considered as a kind of validation procedure, but some schemes
take a long time before being broken. The best example is certainly the Chor-Rivest
cryptosystem [20, 47], based on the knapsack problem, which took more than 10 years
to be totally broken [80], whereas before this last attack it was believed to be very hard,
since all the classical techniques against the knapsack problems, such as LLL [46], had
failed because of the high density of the involved instances. With this example, but
also many others, the lack of attacks at some time should never be considered as a
security validation of the proposal.
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1.2 Provable Security and Practical Security

A completely different paradigm is provided by the concept of “provable” security. A
significant line of research has tried to provide proofs in the framework of complexity
theory (a.k.a. “reductionist” security proofs [4]): the proofs provide reductions from
a well-studied problem (RSA or the discrete logarithm) to an attack against a cryp-
tographic protocol. A the beginning, people just tried to define the security notions
required by actual cryptographic schemes, and then to design protocols which achieve
these notions. The techniques were directly derived from the complexity theory, pro-
viding polynomial reductions. However, their aim was essentially theoretical, and thus
they were trying to minimize the required assumptions on the primitives (one-way
functions or permutations, possibly trapdoor, etc) [35, 33, 52, 67]. Therefore, they just
needed to exhibit polynomial reductions from the basic assumption on the primitive
into an attack of the security notion, in an asymptotic way.

However, such a result has no practical impact on actual security. Indeed, even
with a polynomial reduction, one may be able to break the cryptographic protocol
within few hours, whereas the reduction just leads to an algorithm against the under-
lying problem which requires many years. Therefore, those reductions only prove the
security when very huge (and thus maybe unpractical) parameters are used, under the
assumption that no polynomial time algorithm exists to solve the underlying problem.

For a few years, more efficient reductions were expected, under the denominations
of either “exact security” [10] or “concrete security” [57], which provide more practical
security results. The perfect situation is reached when one manages to prove that, from
an attack, one can describe an algorithm against the underlying problem, with almost
the same success probability within almost the same amount of time. We have then
achieved “practical security”.

Unfortunately, in many cases, provable security is at the cost of an important loss
in terms of efficiency for the cryptographic protocol. Thus some models have been
proposed, trying to deal with the security of efficient schemes: some concrete objects
are identified with ideal (or black-box) ones.

For example, it is by now usual to identify hash functions with ideal random
functions, in the so-called “random oracle model”, informally introduced by Fiat and
Shamir [27], and formalized by Bellare and Rogaway [8]. Similarly, block ciphers are
identified with families of truly random permutations in the “ideal cipher model” [7].
A few years ago, another kind of idealization was introduced in cryptography, the
black-box group [53, 77], where the group operation is defined by a black-box: a new
element necessarily comes from the addition (or the subtraction) of two already known
elements. It is by now called the “generic model”. Recent works [73, 17] even use many
models together to provide some new validations.

1.3 Outline of the Paper

In the next section, we explain and motivate more about exact security proofs, and
we introduce the notion of the weaker security analyses, the security arguments (in
an ideal model). Then, we review the formalism of the most important asymmetric
primitives: signatures and public-key encryption schemes. For both, we provide some
examples, with some security analyses in the “reductionist” sense.
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2 Security Proofs and Security Arguments

2.1 Basic Tools

For asymmetric cryptography, and symmetric cryptography as well, no security can
be unconditionally guaranteed, except with the one-time pad [81, 75], an unpracti-
cal symmetric encryption method. Therefore, for any cryptographic protocol, security
relies on a computational assumption: the existence of one-way functions, or permuta-
tions, possibly trapdoor. A one-way function is a function f which anyone can easily
compute, but given y = f(x) it is computationally intractable to recover x (or any
preimage of y). A one-way permutation is a bijective one-way function. For encryption,
one would like the inversion to be possible for the recipient only: a trapdoor one-way
permutation is a one-way permutation for which a secret information (the trapdoor)
helps to invert the function on any point.

Given such objects, and thus computational assumptions, we would like that se-
curity only relies on them. The only way to formally prove such a fact is by showing
that an attacker against the cryptographic protocol can be used as a sub-part in an
algorithm that can break the basic computational assumption.

2.2 “Reductionist” Security Proofs

In complexity theory, such an algorithm which uses the attacker as a sub-part in a
global algorithm is called a reduction. If this reduction is polynomial, we can say that
the attack of the cryptographic protocol is at least as hard as inverting the function: if
one has a polynomial algorithm, a.k.a. efficient algorithm, to solve the latter problem,
one can polynomially solve the former one, and thus efficiently as well.

Therefore, in order to prove the security of a cryptographic protocol, one first need
to make precise the security notion one wants the protocol to achieve: which adver-
sary’s goal one wants to be intractable, under which kind of attack. At the beginning
of the 1980’s, such security notions have been defined for encryption [33] and signa-
ture [35, 36], and provably secure schemes have been suggested. However, those proofs
had only a theoretical impact, because both the proposed schemes and the reductions
were completely unpractical. Indeed, the reductions were efficient (i.e. polynomial),
and thus a polynomial attack against a cryptosystem would have led to a polynomial
algorithm that broke the computational assumption. But this latter algorithm, even
polynomial, may require hundreds of years to solve a small instance. For example, let
us consider a cryptographic protocol based on integer factoring. Let us assume that
one provides a polynomial reduction from the factorization into an attack. But such
a reduction may just lead to a factorization algorithm with a complexity in 2100k10,
where k is the bit-size of the integer to factor. This indeed contradicts the assumption
that no-polynomial algorithm exists for factoring. However, on a 1024-bit number, it
provides an algorithm that requires 2130 basic operations, which is much more than the
complexity of the best current algorithm, such as NFS [44], which needs less than 2100.
Therefore, such a reduction would just be meaningful for numbers above 2048 bits.
Concrete examples are given later.

Moreover, most of the proposed schemes were unpractical as well. Indeed, the
protocols were polynomial in time and memory, but not efficient enough for practical
implementation.

For a few years, people have tried to provide both practical schemes, with practical
reductions and exact complexity, which prove the security for realistic parameters, un-
der a well-defined assumption: exact reduction in the standard model (which means in
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the complexity-theoretic framework). For example, under the assumption that a 1024-
bit integer cannot be factored with less than 270 basic operations, the cryptographic
protocol cannot be broken with less than 260 basic operations. We will see such an
example later.

Unfortunately, as already remarked, practical and even just efficient reductions, in
the standard model, can rarely be conjugated with practical schemes. Therefore, one
need to make some hypotheses on the adversary: the attack is generic, independent of
the actual implementation of some objects

– of the hash function, in the “random oracle model”;
– of the symmetric block cipher, in the “ideal cipher model”;
– of the group, in the “generic model”.

The “random oracle model” was the first to be introduced in the cryptographic com-
munity [27, 8], and has already been widely accepted. Therefore, in the sequel, we
focus on security analyses in this model.

2.3 The Random Oracle Model

As said above, efficiency rarely meets with provable security. More precisely, none of
the most efficient schemes in their category have been proven secure in the standard
model. However, some of them admit security validations under ideal assumptions:
the random oracle model is the most widely accepted one.

Many cryptographic schemes use a hash function H (such as MD5 [68] or the
American standards SHA-1 [55], SHA-256, SHA-384 and SHA-512 [56]). This use of
hash functions was originally motivated by the wish to sign long messages with a
single short signature. In order to achieve non-repudiation, a minimal requirement on
the hash function is the impossibility for the signer to find two different messages
providing the same hash value. This property is called collision-resistance.

It was later realized that hash functions were an essential ingredient for the security
of, first, signature schemes, and then of most cryptographic schemes. In order to obtain
security arguments, while keeping the efficiency of the designs that use hash functions,
a few authors suggested using the hypothesis that H behaves like a random function.
First, Fiat and Shamir [27] applied it heuristically to provide a signature scheme “as
secure as” factorization. Then, Bellare and Rogaway [8, 9] formalized this concept in
many fields of cryptography: signature and public-key encryption.

In this model, the so-called “random oracle model”, the hash function can be
formalized by an oracle which produces a truly random value for each new query.
Of course, if the same query is asked twice, identical answers are obtained. This is
precisely the context of relativized complexity theory with “oracles,” hence the name.

About this model, no one has ever been able to provide a convincing contradiction
to its practical validity, but just a theoretical counter-example [18] on a clearly wrong
design for practical purpose! Therefore, this model has been strongly accepted by the
community, and is considered as a good one, in which proofs of security give a good
taste of the actual security level. Even if it does not provide a formal proof of security
(as in the standard model, without any ideal assumption), it is argued that proofs in
this model ensure security of the overall design of the scheme provided that the hash
function has no weakness, hence the name “security arguments”.

More formally, this model can also be seen as a restriction on the adversary’s
capabilities. Indeed, it simply means that the attack is generic without considering
any particular instantiation of the hash functions.
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On the other hand, assuming the tamper-resistance of some devices, such as smart
cards, the random oracle model is equivalent to the standard model, which simply
requires the existence of pseudo-random functions [32, 51].

As a consequence, almost all the standards bodies by now require designs prov-
ably secure, at least in that model, thanks to the security validation of very efficient
protocols.

3 A First Formalism

In this section we describe more formally what a signature scheme and an encryption
scheme are. Moreover, we make precise the security notions one wants the schemes to
achieve. This is the first imperative step towards provable security.

3.1 Digital Signature Schemes

Digital signature schemes are the electronic version of handwritten signatures for
digital documents: a user’s signature on a message m is a string which depends on m,
on public and secret data specific to the user and–possibly–on randomly chosen data,
in such a way that anyone can check the validity of the signature by using public
data only. The user’s public data are called the public key, whereas his secret data
are called the private key. The intuitive security notion would be the impossibility to
forge user’s signatures without the knowledge of his private key. In this section, we
give a more precise definition of signature schemes and of the possible attacks against
them (most of those definitions are based on [36]).

Definitions A signature scheme is defined by the three following algorithms:

– The key generation algorithm K . On input 1k, which is a formal notation for
a machine with running time polynomial in k (1k is indeed k in basis 1), the
algorithm K produces a pair (kp, ks) of matching public and private keys. Algo-
rithm K is probabilistic. The input k is called the security parameter. The sizes of
the keys, or of any problem involved in the cryptographic scheme, will depend on
it, in order to achieve a security level in 2k (the expected minimal time complexity
of any attack).

– The signing algorithm Σ. Given a message m and a pair of matching public and
private keys (kp, ks), Σ produces a signature σ. The signing algorithm might be
probabilistic.

– The verification algorithm V . Given a signature σ, a message m and a public
key kp, V tests whether σ is a valid signature of m with respect to kp. In general,
the verification algorithm need not be probabilistic.

Forgeries and Attacks In this subsection, we formalize some security notions which
capture the main practical situations. On the one hand, the goals of the adversary
may be various:

– Disclosing the private key of the signer. It is the most serious attack. This attack
is termed total break.

– Constructing an efficient algorithm which is able to sign messages with good
probability of success. This is called universal forgery.

– Providing a new message-signature pair. This is called existential forgery.
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In many cases this latter forgery, the existential forgery, is not dangerous, because the
output message is likely to be meaningless. Nevertheless, a signature scheme which
is existentially forgeable does not guarantee by itself the identity of the signer. For
example, it cannot be used to certify randomly looking elements, such as keys. Fur-
thermore, it cannot formally guarantee the non-repudiation property, since anyone
may be able to produce a message with a valid signature.

On the other hand, various means can be made available to the adversary, help-
ing her into her forgery. We focus on two specific kinds of attacks against signature
schemes: the no-message attacks and the known-message attacks. In the first scenario,
the attacker only knows the public key of the signer. In the second one, the attacker
has access to a list of valid message-signature pairs. According to the way this list
was created, we usually distinguish many subclasses, but the strongest is the adaptive
chosen-message attack, where the attacker can ask the signer to sign any message of
her choice. She can therefore adapt her queries according to previous answers.

When one designs a signature scheme, one wants to computationally rule out
existential forgeries even under adaptive chosen-message attacks. More formally, one
wants that the success probability of any adversary A with a reasonable time is small,
where

SuccA = Pr
[

(kp, ks)← K (1k), (m,σ) ← AΣks (kp) : V (kp,m, σ) = 1
]

.

We remark that since the adversary is allowed to play an adaptive chosen-message
attack, the signing algorithm is made available, without any restriction, hence the
oracle notation AΣks . Of course, in its answer, there is the natural restriction that the
returned signature has not been obtained from the signing oracle Σks

itself.
This above security level is the strongest one that one can formalize in the commu-

nication model we consider. We insist on the fact that in the current communication
model, we give the adversary complete access to the cryptographic primitive, but as a
black-box. She can ask any query of her choice, and the box always answers correctly,
in constant time. Such a model does not consider timing attacks [42], where the ad-
versary tries to extract the secrets from the computational time. Some other attacks
analyze the electrical energy required by a computation to get the secrets [43], or to
make the primitive fail on some computation [11, 15]. They are not captured either by
this model.

3.2 Public-Key Encryption

The aim of a public-key encryption scheme is to allow anybody who knows the public
key of Alice to send her a message that she will be the only one able to recover, granted
her private key.

Definitions A public-key encryption scheme is defined by the three following algo-
rithms:

– The key generation algorithm K . On input 1k where k is the security parameter,
the algorithm K produces a pair (kp, ks) of matching public and private keys.
Algorithm K is probabilistic.

– The encryption algorithm E . Given a message m and a public key kp, E produces
a ciphertext c of m. This algorithm may be probabilistic. We write E (kp,m; r)
where r, in the probabilistic case, is the random input to E .

– The decryption algorithm D . Given a ciphertext c and the private key ks, D gives
back the plaintext m. This algorithm is necessarily deterministic.
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Security Notions As for signature schemes, the goals of the adversary may be
various. The first common security notion that one would like for an encryption scheme
is one-wayness (OW): with just public data, an attacker cannot get back the whole
plaintext of a given ciphertext. More formally, this means that for any adversary
A, her success in inverting E without the private key should be negligible over the
probability space M × Ω, where M is the message space and Ω is the space of the
random coins r used for the encryption scheme, and the internal random coins of the
adversary:

SuccA = Pr
m,r

[(kp, ks)← K (1k) : A(kp,E (kp,m; r)) = m].

However, many applications require more from an encryption scheme, namely the se-
mantic security (IND) [33], a.k.a. polynomial security/indistinguishability of encryp-
tions: if the attacker has some information about the plaintext, for example that it
is either “yes” or “no” to a crucial query, any adversary should not learn more with
the view of the ciphertext. This security notion requires computational impossibility
to distinguish between two messages, chosen by the adversary, one of which has been
encrypted, with a probability significantly better than one half: her advantage AdvA,
formally defined as

2× Pr
b,r

[

(kp, ks)← K (1k), (m0,m1, s)← A1(kp),
c = E (kp,mb; r) : A2(m0,m1, s, c) = b

]

− 1,

where the adversary A is seen as a 2-stage attacker (A1,A2), should be negligible.
A later notion is non-malleability (NM) [25]. To break it, the adversary, given a

ciphertext, tries to produce a new ciphertext such that the plaintexts are meaningfully
related. This notion is stronger than the above semantic security, but it is equivalent to
the latter in the most interesting scenario [6] (the CCA attacks, see below). Therefore,
we will just focus on one-wayness and semantic security.

On the other hand, an attacker can play many kinds of attacks, according to
the available information: since we are considering asymmetric encryption, the ad-
versary can encrypt any plaintext of her choice, granted the public key, hence the
chosen-plaintext attack (CPA). She may furthermore have access to more informa-
tion, modeled by partial or full access to some oracles: a plaintext-checking oracle
which, on input a pair (m, c), answers whether c encrypts the message m. This attack
has been named the Plaintext-Checking Attack (PCA) [58]; a validity-checking oracle
which, on input a ciphertext c, just answers whether it is a valid ciphertext or not.
This weak oracle had been enough to break some famous encryption schemes [13,
40], running the so-called reaction attacks [37]; or the decryption oracle itself, which
on any ciphertext, except the challenge ciphertext, answers the corresponding plain-
text (non-adaptive [52]/adaptive [67] chosen-ciphertext attacks). This latter scenario
which allows adaptively chosen ciphertexts as queries to the decryption oracle is the
strongest attack, and is named the chosen-ciphertext attack (CCA).

Furthermore, multi-user scenarios can be considered where related messages are
encrypted under different keys to be sent to many people (e.g. broadcast of encrypted
data). This may provide many useful data for an adversary. For example, RSA is well-
known to be weak in such a scenario [38, 76], namely with a small encryption exponent,
using the Chinese Remainders Theorem. But recent results prove that semantically
secure schemes, in the classical sense as described above, remain secure in multi-user
scenarios [5, 3], whatever the kind of attacks.

A general study of these security notions and attacks was conducted in [6], we
therefore refer the reader to this paper for more details. See also the summary diagram
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OW-CPA OW-PCA OW-CCA

IND-CPA IND-CCA

NM-CPA NM-CCA

OW – One-Wayness
IND – Indistinguishability of Encryptions

(a.k.a., Semantic Security)
NM – Non-Malleability
CPA – Chosen-Plaintext Attack
PCA – Plaintext-Checking Attack
CCA – Chosen-Ciphertext Attack

Fig. 1. Relations between the Security Notions for Asymmetric Encryption

on Figure 1. However, we can just review the scenarios we will be interested in in the
following:

– one-wayness under chosen-plaintext attacks (OW-CPA) – where the adversary
wants to recover the whole plaintext from just the ciphertext and the public
key. This is the weakest scenario.

– semantic security under adaptive chosen-ciphertext attacks (IND-CCA) – where
the adversary just wants to distinguish which plaintext, between two messages
of her choice, has been encrypted, while she can ask any query she wants to a
decryption oracle (except the challenge ciphertext). This is the strongest scenario
one can define for encryption (still in our communication model), and thus our
goal when we design a cryptosystem.

4 The Basic Assumptions

There are two major families in number theory-based public-key cryptography:

1. the schemes based on integer factoring, and on the RSA problem [69];
2. the schemes based on the discrete logarithm problem, and on the Diffie-Hellman

problems [24], in any “suitable” group. The first groups in use were cyclic sub-
groups of Z?

p, the multiplicative group of the modular quotient ring Zp = Z/pZ.
But many schemes are now converted on cyclic subgroups of elliptic curves, or of
the Jacobian of hyper-elliptic curves, with namely the so-called ECDSA [1], the
US Digital Signature Standard [54] on elliptic curves.

4.1 Integer Factoring and the RSA Problem

The most famous intractable problem is factorization of integers: while it is easy to
multiply two prime integers p and q to get the product n = p · q, it is not simple to
decompose n into its prime factors p and q.

Currently, the most efficient algorithm is based on sieving on number fields. The
Number Field Sieve (NFS) method [44] has a complexity in

O(exp((1.923 + o(1))(ln n)1/3(ln lnn)2/3)).

It has been used to establish the last record, in august 1999, by factoring a 155-digit
integer, product of two 78-digit primes [19].

The factored number, called RSA-155, was taken from the “RSA Challenge List”,
which is used as a yardstick for the security of the RSA cryptosystem (see later). The
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latter is used extensively in hardware and software to protect electronic data traffic
such as in the SSL (Security Sockets Layer) Handshake Protocol.

This record is very important since 155 digits correspond to 512 bits. And this is
the size which is in use in almost all the implementations of the RSA cryptosystem
(namely for actual implementations of SSL on the Internet).

RSA-155 =

109417386415705274218097073220403576120037329454492059909138421314763499842889\

34784717997257891267332497625752899781833797076537244027146743531593354333897

= 102639592829741105772054196573991675900716567808038066803341933521790711307779

* 106603488380168454820927220360012878679207958575989291522270608237193062808643

However, this record required thousands of machines, and three months of compu-
tation. Furthermore, due to the above complexity of NFS, integer factoring is believed
to be a difficult problem, especially for products of two primes of similar sizes larger
than 384 bits.

Unfortunately, it just provides a one-way function, without any possibility to invert
the process. No information is known to make factoring easier. However, some algebraic
structures are based on the factorization of an integer n, where some computations
are difficult without the factorization of n, but easy with it: the finite quotient ring
Zn which is isomorphic to the product ring Zp × Zq if n = p · q.

For example, the e-th power of any element x can be easily computed using the
square-and-multiply method. It consists in using the binary representation of the ex-
ponent e = ekek−1 . . . e0, computing the successive powers of 2 of x (x20

, x21
, . . . , x2k

)
and eventually to multiply altogether the ones for which ei = 1. However, to compute
e-th roots, it seems that one requires to know an integer d such that ed = 1 mod ϕ(n),
where ϕ(n) is the totient Euler function which denotes the cardinality of the multi-
plicative subgroup Z?

n of Zn. In the particular case where n = pq, ϕ(n) = (p−1)(q−1).
And therefore, ed−1 is a multiple of ϕ(n) which is equivalent to the knowledge of the
factorization of n [50].

In 1978, Rivest, Shamir and Adleman [69] defined the following problem:

The RSA Problem. Let n = pq be the product of two large primes of
similar size and e an integer relatively prime to ϕ(n). For a given y ∈ Z?

n,
compute the modular e-th root x of y (i.e. x ∈ Z?

n such that xe = y mod n.)

The Euler function can be easily computed from the factorization of n, since for any
n =

∏

pvi

i ,

ϕ(n) = n×
∏

(

1−
1

pi

)

.

Therefore, with the factorization of n (the trapdoor), the RSA problem can be easily
solved. However nobody knows whether the factorization is required, but nobody
knows how to do without it either:

The RSA Assumption. For any product of two large primes, n = pq,
large enough, the RSA problem is intractable (presumably as hard as the
factorization of n).

4.2 The Discrete Logarithm and the Diffie-Hellman Problems

The setting is quite general: one is given



10

– a cyclic group G of prime order q (such as the finite group (Zq,+), a subgroup of
(Z?

p,×) for q|p− 1, or an elliptic curve, etc);
– a generator g (i.e. G = 〈g〉).

We note in bold (such as g) any element of the group G, to distinguish it from a
scalar x ∈ Zq. But such a g could be an element in Z?

p or a point of an elliptic curve,
according to the setting. Above, we talked about a “suitable” group G. In such a
group, some of the following problems have to be hard to solve (using the additive
notation).

– the Discrete Logarithm problem (DL): given y ∈ G, compute x ∈ Zq such that
y = x · g = g + . . . + g (x times), then one writes x = logg y.

– the Computational Diffie-Hellman problem (CDH): given two elements in
the group G, a = a · g and b = b · g, compute c = ab · g. Then one writes
c = DH(a,b).

– the Decisional Diffie-Hellman Problem (DDH): given three elements in the
group G, a = a · g, b = b · g and c = c · g, decide whether c = DH(a,b) (or
equivalently, whether c = ab mod q).

It is clear that they are sorted from the strongest problem to the weakest one. Further-
more, one may remark that they all are “random self-reducible”, which means that
any instance can be reduced to a uniformly distributed instance: for example, given a
specific element y for which one wants to compute the discrete logarithm x in basis
g, one can choose a random z ∈ Zq, and compute z = z ·y. The element z is therefore
uniformly distributed in the group, and the discrete logarithm α = logg z leads to
x = α/z mod q. As a consequence, there are only average complexity cases. Thus, the
ability to solve a problem for a non-negligible fraction of instances in polynomial time
is equivalent to solve any instance in expected polynomial time.

Very recently, Tatsuaki Okamoto and the author [60] defined a new variant of the
Diffie-Hellman problem, which we called the Gap Diffie-Hellman Problem (GDH),
where one wants to solve the CDH problem with an access to a DDH oracle.

One may easily remark the following properties about above problems:

DL ≥ CDH ≥ {DDH,GDH},

where A ≥ B means that the problem A is at least as hard as the problem B. However,
in practice, no one knows how to solve any of them without breaking the DL problem
itself.

Currently, the most efficient algorithms to solve this latter problem depend on
the underlying group. For generic groups (for which no specific algebraic property
can be used), algorithms have a complexity in the square root of q, the order of the
generator g [74, 65]. For example, on well-chosen elliptic curves only these algorithms
can be used. The last record was established in April 2001 on the curve defined by
the equation y2 + xy = x3 + x2 + 1 over the finite field with 2109 elements.

However, for subgroups of Z?
p, some better techniques can be applied. The best

algorithm is based on sieving on number fields, as for the factorization. The General
Number Field Sieve method [39] has a complexity in

O(exp((1.923 + o(1))(ln p)1/3(ln ln p)2/3)).

It was used to establish the last record, in April 2001 as well, by computing discrete
logarithms modulo a 120-digit prime. Therefore, 512-bit primes are still safe enough,
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as far as the generic attacks cannot be used (the generator must be of large order q,
at least a 160-bit prime)

For signature applications, one only requires groups where the DL problem is hard,
whereas encryption needs trapdoor problems and therefore requires groups where some
of the DH’s problems are also hard to solve.

The CDH problem is usually believed to be much stronger than the DDH prob-
lem, which means that the GDH problem is difficult. This was the motivation of our
work on new encryption schemes based on the GDH problem [58] (see section 5.3).

5 Provably Secure Designs

5.1 Introduction

Until 1996, no practical DL-based cryptographic scheme has ever been formally stud-
ied, only heuristically. And surprisingly, at the Eurocrypt ’96 conference, two opposite
studies were conducted on the El Gamal signature scheme [26], the first DL-based sig-
nature scheme designed in 1985 and depicted on Figure 2.

Initialization

g a generator of Z?
p,

where p is a large prime

K : Key Generation

private key x ∈ Z?
p−1

public key y = gx mod p
→ (y, x)

Σ: Signature of m→ (r, s)

K is randomly chosen in Z?
p−1

r = gK mod p s = (m− xr)/K mod p− 1
→ (r, s) is a signature of m

V : Verification of (m, r, s)

check whether gm ?
= yrrs mod p

Fig. 2. The El Gamal Signature Scheme.

Whereas existential forgeries were known for that scheme, it was believed to pre-
vent universal forgeries. The first analysis, from Daniel Bleichenbacher [12], showed
such a universal forgery when the generator g is not properly chosen. The second
one, from Jacques Stern and the author [62], proved the security, against existential
forgeries under adaptive chosen-message attacks, of a slight variant with a randomly
chosen generator g. The slight variant simply replaces the message m by H(m, r) in
the computation, while one uses a hash function H that is assumed to behave like a
random oracle. It is amazing to remark that the Bleichenbacher’s attack also applies
on our variant. Therefore, depending on the initialization, our variant could be a very
strong signature scheme or become a very weak one!

As a consequence, a proof has to be performed in details. Furthermore, the conclu-
sions have to be strictly followed by developers, otherwise the concrete implementation
of a secure scheme can be very weak.
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5.2 Digital Signature Schemes

History The first secure signature scheme was proposed by Goldwasser et al. [35]
in 1984. It used the notion of claw-free permutations. A pair of permutations (f, g)
is said claw-free if it is computationally impossible to find a claw (x, y), which sat-
isfies f(x) = g(y). Their proposal provided polynomial algorithms with a polynomial
reduction between the research of a claw and an existential forgery under an adap-
tive chosen-message attack. However, the scheme was totally unpractical. What about
practical schemes?

The RSA Signature Scheme. Two years after the Diffie-Hellman paper [24], Rivest,
Shamir and Adleman [69] proposed the first signature scheme based on the “trapdoor
one-way permutation paradigm”, using the RSA function: the generation algorithm
produces a large composite number N = pq, a public key e, and a private key d such
that e · d = 1 mod ϕ(N). The signature of a message m, encoded as an element in
Z?

N , is its eth root, σ = m1/e = md mod N . The verification algorithm simply checks
whether m = σe mod N .

However, the RSA scheme is not secure by itself since it is subject to existential
forgery: it is easy to create a valid message-signature pair, without any help of the
signer, first randomly choosing a certificate σ and getting the signed message m from
the public verification relation, m = σe mod N .

The Schnorr Signature Scheme. In 1986 a new paradigm for signature schemes was
introduced. It is derived from fair zero-knowledge identification protocols involving
a prover and a verifier [34], and uses hash functions in order to create a kind of
virtual verifier. The first application was derived from the Fiat–Shamir [27] zero-
knowledge identification protocol, based on the hardness of extracting square roots,
with a brief outline of its security. Another famous identification scheme [71], together
with the signature scheme [72], has been proposed later by Schnorr, based on that
paradigm: the generation algorithm produces two large primes p and q, such that
q ≥ 2k, where k is the security parameter, and q | p− 1, as well as an element g in Z?

p

of order q. It also creates a pair of keys, the private key x ∈ Z?
q and the public key

y = g−x mod p The signature of a message m is a triple (r, e, s), where r = gK mod p,
with a random K ∈ Zq, the “challenge” e = H(m, r) and s = K + ex mod q. This
latter satisfies r = gsye mod p with e = H(m, r), which is checked by the verification
algorithm.

The security results for that paradigm have been considered as folklore for a long
time but without any formal validation.

Secure Designs

Schnorr’s Signature and Variants. In our papers [62, 63], with Jacques Stern, we for-
mally proved the above paradigm when H is assumed to behave like a random oracle.
The proof is based on the by now classical oracle replay technique: by a polynomial
replay of the attack with different random oracles (the Qi’s are the queries and the ρi’s
are the answers), we allow the attacker to forge signatures that are suitably related.
This generic technique is depicted on Figure 3, where the signature of a message m
is a triple (σ1, h, σ2), with h = H(m,σ1) which depends on the message and the first
part of the signature, both bound not to change for the computation of σ2, which
really relies on the knowledge of the private key. If the probability of fraud is high
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j · · ·

(m, σ1, h = ρi, σ2)

(m, σ1, h
′ = ρ′

i, σ
′

2)

ρ1 · · · ρi−1

Fig. 3. The Oracle Replay Technique

enough, then with good probability, the adversary is able to answer to many distinct
outputs from the H function, on the input (m,σ1).

To be more concrete, let us consider the Schnorr signature scheme, which is
presented on Figure 4, in any “suitable” cyclic group G of prime order q, where
at least the Discrete Logarithm problem is hard. We expect to obtain two signa-

Initialization (security parameter k)

g a generator of any cyclic group (G, +)

of order q, with 2k−1 ≤ q < 2k

H a hash function: {0, 1}? → Zq

K : Key Generation

private key x ∈ Z?
q

public key y = −x · g
→ (y, x)

Σ: Signature of m→ (r, h, s)

K is randomly chosen in Z?
q

r = K · g h = H(m, r) s = K + xh mod q
→ (r, h, s) is a signature of m

V : Verification of (m, r, s)

check whether h
?
= H(m, r)

and r
?
= s · g + h · y

Fig. 4. The Schnorr Signature Scheme.

tures (r = σ1, h, s = σ2) and (r′ = σ′

1, h
′, s′ = σ′

2) of an identical message m such that
σ1 = σ′

1, but h 6= h′. We then can extract the discrete logarithm of the public key:

r = s · g + h · y
r = s′ · g + h′ · y

}

⇒ (s− s′) · g = (h′ − h) · y,

which leads to
logg y = (s− s′) · (h′ − h)−1 mod q.

Let use denote by ε the success probability of the adversary in performing an
existential forgery after qh queries to the random oracle H. One can prove that for
ε large enough, more precisely ε ≥ 7qh/2k, after less than 16qh/ε repetitions of this
adversary, one can obtain such a pair of signatures with probability greater than 1/9.

However, this just covers the no-message attacks, which are the weakest attacks!
But because we can simulate any zero-knowledge protocol, even without having to
restart the simulation since we are in front of an honest verifier (i.e. the challenge is
randomly chosen by the random oracle H) one can easily simulate the signer without
the private key:
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– one first chooses random h, s ∈ Zq;

– one computes r = s · g + h · y and defines H(m, r) to be equal to h, which is a
uniformly distributed value;

– one can output (r, h, s) as a valid signature of the message m.

This furthermore simulates the oracle H, by defining H(m, r) to be equal to h. This
simulation is almost perfect since H is supposed to output a random value to any
new query, and h is indeed a random value. Nevertheless, if the query H(m, r) has
already been asked, H(m, r) is already defined, and thus the definition H(m, r) ← h
is impossible. But such a situation is very rare, which allows us to claim the following
result, which stands for the Schnorr signature scheme but also for any signature derived
from a three-round honest verifier zero-knowledge interactive proof of knowledge: let
A be an adversary against the Schnorr signature scheme, with security parameter k, in
the random oracle model. We assume that, after qh queries to the random oracle and qs

queries to the signing oracle, A produces, with probability ε ≥ 10(qs + 1)(qs + qh)/2k,
a valid signature. Then, after less than 23qh/ε repetitions of this adversary, one can
extract the private key x with probability ε′ ≥ 1/9.

From a more practical point of view, this result states that if an adversary manages
to perform an existential forgery under an adaptive chosen-message attack within an
expected time T , after qh queries to the random oracle and qs queries to the signing
oracle, then the discrete logarithm problem can be solved within an expected time
less than 207qhT .

Brickell, Vaudenay, Yung and the author extended this technique [64, 16] to many
variants of El Gamal [26] and DSA [54], such as the Korean Standard KCDSA [41].
However, the original El Gamal and DSA schemes were not covered by this study, and
are certainly not provably secure, even if no attack has ever been found against DSA.

RSA-Based Signatures. Unfortunately, with these signatures, we don’t really achieve
our goal, because the reduction is costly: if one can break the signature scheme within
an expected time T , and qh queries to the hash function, then one can compute logg y
within an expected time 207qhT , where qh can be huge, as much as 260 in practice.
This security proof is meaningful only for very large groups.

In 1996, Bellare and Rogaway [10] proposed other candidates, based on the RSA
assumption. The first scheme is the by now classical hash-and-decrypt paradigm
(a.k.a. the Full-Domain Hash paradigm): as for the basic RSA signature, the gen-
eration algorithm produces a large composite number N = pq, a public key e, and
a private key d such that e · d = 1 mod ϕ(N). In order to sign a message m, one
first hashes it using a full-domain hash function H : {0, 1}? → Z?

N , and computes
the eth root, σ = H(m)d mod N . The verification algorithm simply checks whether
the following equality holds, H(m) = σe mod N . For this scheme, they proved, in the
random oracle model: if an adversary can produce, with success probability ε, an exis-
tential forgery under a chosen-message attack within a time t, after qh and qs queries
to the hash function and the signing oracle respectively, then the RSA function can
be inverted with probability ε′ within time t′ where

ε′ ≥
ε

qs + qh
and t′ ≤ t + (qs + qh)Texp,

with Texp the time for an exponentiation to the power e, modulo N . This reduction
has been recently improved [21], thanks to the random self-reducibility of the RSA
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function, into:

ε′ ≥
ε

qs
× exp(−1) and t′ ≤ t + (qs + qh)Texp.

This latter reduction works as follows: we assume the existence of an adversary that
produces an existential forgery, with probability ε, within time t, after qh queries to
the random oracle H and qs queries to the signing oracle. We provide this adversary
with all the inputs/outputs he needs, while trying to extract the e-th root of a given
y. For that, we have to simulate the random oracle and the signing oracle.

Simulation of the random oracle H: For any fresh query m to H, one chooses
a random r ∈ Z?

N and flips a biased coin (which returns 0 with probability p, and
1 with probability 1 − p.) If 0 appears, one defines and returns H(m) = re mod N ,
otherwise one defines and returns H(m) = yre mod N .

Simulation of the signing oracle: For any fresh query m, one first invokes the
random oracle on m (if not yet done). If H(m) = re mod N for some known r, then
one returns r as the signature of m, otherwise we stop the simulation and return a
failure signal.

At the end of the game, the adversary outputs a valid message/signature H(m) =
σe mod N . If H(m) has been asked to H during the simulation then, with probability
1 − p, H(m) = yre = σe mod N and thus y = (σ/r)e mod N , which leads to an e-th
root of y. Otherwise we return a failure signal.

One must first remark that the H simulation is perfect since a new random element
in Z?

N is returned for any new query. However, the signing oracle simulation may fail
when a signing query is done on a message such that H(m) = yre mod N . Indeed, in
this case, the simulation aborts. But such a case happens with probability 1−p for any
signature. Therefore, the simulation is perfect with probability pqs, and in such a good
case, the forgery leads to the e-th root of y with probability 1−p. Therefore, the success
probability of our RSA inversion is (1−p)pqsε, which is optimal for p = 1−1/(qs +1).
And for this parameter, and a huge value qs, the success probability is approximately
ε/eqs.

As far as time complexity is concerned, each random oracle simulation (which can
be launched by a signing simulation) requires a modular exponentiation to the power
e, hence the result.

This is a great improvement since the success probability does not depend anymore
on qh. Furthermore, qs can be limited by the user, whereas qh cannot. In practice, one
only assumes qh ≤ 260, but qs can be limited below 230.

However, one would like to get more, suppressing any coefficient. In their paper [10],
Bellare and Rogaway proposed such a better candidate, the Probabilistic Signature
Scheme (PSS, see Figure 5): the key generation is still the same, but the signature
process involves three hash functions

F : {0, 1}k2 → {0, 1}k0 , G : {0, 1}k2 → {0, 1}k1 ,
H : {0, 1}? → {0, 1}k2 ,

where k = k0 + k1 + k2 +1 is the bit-length of the modulus N . For each message m to
be signed, one chooses a random string r ∈ {0, 1}k1 . One first computes w = H(m, r),
s = G(w) ⊕ r and t = F (w). Then one concatenates y = 0‖w‖s‖t, where a‖b denotes
the concatenation of the bit strings a and b. Finally, one computes the eth root,
σ = yd mod N .
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Fig. 5. Probabilistic Signature Scheme

The verification algorithm first computes y = σe mod N , and parses it as y =
b‖w‖s‖t. Then, one can get r = s ⊕ G(w), and checks whether b = 0, w = H(m, r)
and t = F (w).

About PSS, Bellare and Rogaway proved, in the random oracle model: if an ad-
versary can produce, with success probability ε, an existential forgery under a chosen-
message attack within a time t, after qh and qs queries to the hash functions (F , G
and H altogether) and the signing oracle respectively, then the RSA function can be
inverted with probability ε′ within time t′ where

ε′ ≥ ε−
1

2k2
− (qs + qH) ·

(

qs

2k1
+

qh + qs + 1

2k2

)

and t′ ≤ t + (qs + qH)k2Texp,

with Texp the time for an exponentiation to the power e, modulo N .

The reduction is a bit more intricate than the previous one: once again, we assume
the existence of an adversary that produces an existential forgery, with probability
ε, within time t, after qF , qG, qH queries to the random oracles F , G, H (we denote
qh = qF + qG + qH) and qs queries to the signing oracle. We provide this adversary
with all the inputs/outputs he needs, while trying to extract the e-th root of a given y.
For that, we have to simulate the random oracles and the signing oracle. For any fresh
query (m, r) to the random oracle H, one chooses a random u ∈ Z?

N and computes
z = yue mod N , until the most significant bit of z is 0. Then one parses z into 0‖w‖s‖t.
Then one defines H(m, r)← w, G(w)← s⊕ r and F (w)← t. One finally returns w.

For any query w to the random oracles F or G, if the answer has not already been
defined (during a H simulation) then a random string is returned.

A signing query m is trivially answered: one chooses a random r and runs a specific
simulation of H(m, r): one chooses a random u ∈ Z?

N and computes z = ue mod N ,
until the most significant bit of z is 0. Then one parses z into 0‖w‖s‖t, and defines
H(m, r)← w, G(w)← s⊕ r and F (w)← t. One finally returns u as a signature of m.

At the end of the game, the adversary outputs a valid message/signature (m,σ),
where σe = 0‖w‖s‖t mod N , which corresponds to the signature of m with the random
r = G(w) ⊕ s. If H(m, r) has not been asked, H(m, r) = w with probability 1/2k2 .
Therefore

Pr[valid(m,σ) | ¬AskH(m, r)] ≤ 2−k2 ,
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where “valid(m,σ)” denotes the event that the message/signature (m,σ) is a valid
one (and thus accepted by the verification algorithm), and “AskH(m, r)” denotes the
event that the query (m, r) has been asked to the random oracle H.

Since this is a forgery, m has never been signed by the signing oracle, and thus
H(m, r) has been asked directly by the adversary: H(m, r) ← w, G(w) ← s ⊕ r and
F (w)← t, where yue = 0‖w‖s‖t, which leads to an e-th root of y.

However, the simulations may not be perfect:

– the random oracles simulations may fail if when defining F (w) and G(w), during
an H-simulation (a direct one, or the simulation done for the signing simulation),
one of them had already been defined before. But this may just occur with prob-
ability less than qF · 2

−k2 (because of a previous direct query to F ), qG · 2
−k2

(because of a previous direct query to G) or (qH +qs) ·2
−k2 (because of a previous

direct or indirect H-simulation).

– even after many iterations, the z (computed during the H-simulation, or the sign-
ing simulation) may still be greater than N/2. We limit this number of iterations
to k2. Then the probability for z to be still greater than N/2 is less than 1/2k2 .

– the signing simulation may fail if the H(m, r) value has already been defined. But
this may only occur with probability (qH + qs)2

−k1 .

Therefore, the global success probability in inverting y is greater than

ε− 2−k2 − (qH + qs)

[

qF + qG

2k2
+

qH + qs

2k2
+

1

2k2
+

qs

2k1

]

,

hence the result.

As fas as time complexity is concerned, each H simulation (which can be launched
by a signing simulation) requires at most k2 modular exponentiations to the power
e, hence the result. Thanks to this exact and efficient security result, RSA–PSS has
become the new PKCS #1 v2.0 standard for signature [70]. Another variant has
been proposed with message-recovery. PSS-R allows one to include a large part of the
message inside the signature. This makes a signed-message shorter than the size of
the signature plus the size of the message, since this latter is inside the former one.

5.3 Public-Key Encryption

History

The RSA Encryption Scheme. In the same paper as the RSA signature scheme [69],
Rivest, Shamir and Adleman also proposed a public-key encryption scheme, thanks
to the “trapdoor one-way permutation” property of the RSA function: the generation
algorithm produces a large composite number N = pq, a public key e, and a private
key d such that e · d = 1 mod ϕ(N). The encryption of a message m, encoded as an el-
ement in Z?

N , is simply c = me mod N . This ciphertext can be easily decrypted thanks
to the knowledge of d, m = cd mod N . Clearly, this encryption is OW-CPA, relative to
the RSA problem. The determinism makes a plaintext-checking oracle useless. Indeed,
the encryption of a message m, under a public key kp is always the same, and thus it is
easy to check whether a ciphertext c really encrypts m, by re-encrypting it. Therefore
the RSA-encryption scheme is OW-PCA relative to the RSA problem as well.

Because of this determinism, it cannot be semantically secure: given the encryption
c of either m0 or m1, the adversary simply computes c′ = me

0 mod N and checks
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whether c′ = c. Furthermore, with a small exponent e (e.g. e = 3), any security
vanishes under a multi-user attack: given c1 = m3 mod N1, c2 = m3 mod N2 and
c3 = m3 mod N3, one can easily compute m3 mod N1N2N3 thanks to the Chinese
Remainders Theorem, which is exactly m3 in Z and therefore leads to an easy recovery
of m.

The El Gamal Encryption Scheme. In 1985, El Gamal [26] also designed a public-key
encryption scheme based on the Diffie-Hellman key exchange protocol [24]: given a
cyclic group G of order prime q and a generator g, the generation algorithm produces
a random element x ∈ Z?

q as private key, and a public key y = x · g. The encryption
of a message m, encoded as an element m in G, is a pair (c = a · g,d = a · y + m).
This ciphertext can be easily decrypted thanks to the knowledge of x, since

a · y = ax · g = x · c,

and thus m = d− x · c. This encryption scheme is well-known to be OW-CPA relative
to the Computational Diffie-Hellman problem. It is also semantically secure (against
chosen-plaintext attacks) relative to the Decisional Diffie-Hellman problem [79]. For
OW-PCA, it relies on the new Gap Diffie-Hellman problem [60].

Secure Designs As we have seen above, the expected security level is IND-CCA,
whereas the RSA encryption just reaches OW-CPA under the RSA assumption, and
the El Gamal encryption achieves IND-CPA under the DDH assumption. Can we
achieve IND-CCA for practical encryption schemes?

OAEP: the Optimal Asymmetric Encryption Padding. In 1994, Bellare and Rogaway
proposed a generic conversion [9], in the random oracle model, the “Optimal Asym-
metric Encryption Padding” (OAEP, see Figure 6), which was claimed to apply to

m 0k1 r

G

H

s t

Fig. 6. Optimal Asymmetric Encryption Padding

any family of trapdoor one-way permutations, such as RSA. The key generation pro-
duces a one-way permutation f : {0, 1}k → {0, 1}k , the public key. The private key is
the inverse permutation g, which requires a trapdoor to be computable. The scheme
involves two hash functions

G : {0, 1}k0 → {0, 1}n+k1 , H : {0, 1}n+k1 → {0, 1}k0 ,

where k = k0 + k1 + n + 1. For any message m ∈ {0, 1}n to be encrypted. Instead of
computing f(m), as done with the above plain-RSA encryption, one first modifies m,
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choosing a random string r ∈ {0, 1}k0 . Then one computes s = (m‖0k1) ⊕ G(r) and
t = r ⊕H(s). Finally, one computes c = f(s‖t).

The decryption algorithm first computes P = g(c), granted the private key g, and
parses it as P = s‖t. Then, one can get r = t ⊕ H(s), and M = s ⊕ G(r), which is
finally parsed into M = m‖0k1 , if the k1 least significant bits are all 0.

For a long time, the OAEP conversion has been widely believed to provide an
IND-CCA encryption scheme from any trapdoor one-way permutation. However, the
sole proven result (weak plaintext-awareness [9]) was the semantic security against
non-adaptive chosen-ciphertext attacks (a.k.a. lunchtime attacks [52]). And recently,
Shoup [78] showed that it was very unlikely that a stronger security result could be
proven. However, because of the wide belief of a strong security level, RSA–OAEP
became the new PKCS #1 v2.0 for encryption [70], and thus a de facto standard,
after an effective attack against the PKCS #1 v1.5 [13].

Fortunately, Fujisaki, Okamoto, Stern and the author [31] provided a complete
security proof: first we proved that combined with a trapdoor partial-domain one-way
permutation, the OAEP construction leads to an IND-CCA cryptosystem. A partial-
domain one-way permutation f is a one-way permutation such that given y = f(s‖t)
it is intractable to recover the full s‖t, but even s only. Furthermore, we provided a
complete reduction between the full-domain inversion of RSA and the partial-domain
inversion. Therefore, RSA–OAEP really achieves IND-CCA security under the RSA
assumption.

The proof is a bit intricate, so we refer the reader to [31] for more information.
Anyway, we can claim

if there exists a CCA–adversary against the “semantic security” of RSA–
OAEP (with a k-bit long modulus, with k > 2k0), with running time bounded
by t and advantage ε, making qD, qG and qH queries to the decryption oracle,
and the hash functions G and H respectively, then the RSA problem could
be solved with probability ε′, within time bound t′, where

ε′ ≥
ε2

4
− ε ·

(

2qDqG + qD + qG

2k0
+

2qD

2k1
+

32

2k−2k0

)

t′ ≤ 2t + qH · (qH + 2qG)×O(k3).

Unfortunately, the reduction is very expensive, and is thus meaningful only for huge
moduli, more than 4096-bit long. Indeed, the RSA inverter we can build, thanks to this
reduction, has a complexity at least greater than qH · (qH + 2qG)×O(k3). As already
remarked, the adversary can ask up to 260 queries to the hash functions, and thus this
overhead in the inversion is at least 2151. However, current factoring algorithms can
factor up to 4096 bit-long integers within this number of basic operations (see [45] for
complexity estimates of the most efficient factoring algorithms).

Anyway, the formal proof shows that the global design of OAEP is sound, and
that it is still probably safe to use it in practice (e.g. in PKCS #1 v2.0, while being
very careful during the implementation [48]).

More General Conversions. Unfortunately, there is no hope to use OAEP with any
DL-based primitive, because of the “permutation” requirement. The OAEP construc-
tion indeed requires the primitive to be a permutation (trapdoor partial-domain one-
way), which is the case of the RSA function. However, the only trapdoor problem
known in the DL-setting is the Diffie-Hellman problem, and it does not provide any
bijection. Thus, first Fujisaki and Okamoto [29] proposed a generic conversion from
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any IND-CPA scheme into an IND-CCA one, in the random oracle model. While ap-
plying this conversion to the above El Gamal encryption (see 5.3), one obtains an
IND-CCA encryption scheme relative to the DDH problem. Later, independently, Fu-
jisaki and Okamoto [30] and the author [61] proposed better generic conversions since
they apply to any OW-CPA scheme to make it into an IND-CCA one, still in the random
oracle model.

This high security level is just at the cost of two more hashings for the new en-
cryption algorithm, as well as two more hashings but one re-encryption for the new
decryption process.

REACT: a Rapid Enhanced-security Asymmetric Cryptosystem Transform. The re-
encryption cost is the main drawback of these conversions for practical purposes.
Therefore, Okamoto and the author tried and succeeded in providing a conversion that
is both secure and efficient [58]: REACT, for “Rapid Enhanced-security Asymmetric
Cryptosystem Transform”.

K ′: Key Generation

(kp, ks)← K (1k)
→ (kp, ks)

E ′: Encryption of m ∈M′ = {0, 1}` → (a, b, c)

R ∈M and r ∈ R are randomly chosen
a = E (kp, R; r) b = m⊕G(R) c = H(R,m, a, b)
→ (a, b, c) is the ciphertext

D ′: Decryption of (a, b, c)

Given a ∈ C, b ∈ {0, 1}` and c ∈ {0, 1}κ

R = D(ks, a) m = b⊕G(R)
if c = H(R,m, a, b) and R ∈M → m is the plaintext

(otherwise, “Reject: invalid ciphertext”)

Fig. 7. Rapid Enhanced-security Asymmetric Cryptosystem Transform S′

This latter conversion is indeed very efficient in many senses

– the computational overhead is just the cost of two hashings for both encryption
and decryption

– if one can break IND-CCA of the resulting scheme with an expected time T , one
can break OW-PCA of the basic scheme within almost the same amount of time,
with a low overhead (not as with OAEP). It thus provides a practical security
result.

Let us describe this generic conversion REACT [58] on any encryption scheme
S = (K ,E ,D)

E : PK×M×R→ C D : SK×C→M,

where PK and SK are the sets of the public and private keys, M is the messages space,
C is the ciphertexts space and R is the random coins space. One should remark that
R may be small and even empty, with a deterministic encryption scheme, such as
RSA. But in many other cases, such as the El Gamal encryption, it is as large as M.
We also need two hash functions G and H,

G : M→ {0, 1}`,H : M× {0, 1}` ×C× {0, 1}` → {0, 1}κ,
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where κ is the security parameter, while ` denotes the size of the messages to encrypt.
The REACT conversion is depicted on Figure 7.

In this new scheme S′, one can claim that if an attacker, against the semantic
security in a chosen-ciphertext scenario, can gain an advantage ε after qD, qG and
qH queries to the decryption oracle and to the random oracles G and H respectively,
within a time t, then one can design an algorithm that outputs, for any given C, the
plaintext of C, after less than qG + qH queries to the Plaintext-Checking Oracle with
probability greater than ε/2 − qD/2κ, within a time t + (qG + qH)TPCA, where TPCA

denotes the times required by the PCA oracle to answer any query.

This security result, in the random oracle model, comes from two distinct remarks:

– the adversary has necessarily asked either G(R) or H(R,mi, a, b) to get any in-
formation about the encrypted message m (either m0 or m1). Which means that
for a given C = E (kp, R; r), R is in the list of queries asked to G or to H. Sim-
ply asking for the qG + qH candidates to the Plaintext-Checking Oracle, one can
output the right one. Then, with probability ε/2, one inverts E , after (qG + qH)
queries to the Plaintext-Checking Oracle.

– However, in the chosen-ciphertext scenario, the adversary may ask queries to the
decryption oracle. We have to simulate this. For each query (a, b, c) asked by the
adversary to the decryption oracle, one looks at all the pairs (R,m) such that
(R,m, a, b) has been asked to the random oracle H. For any such R, one asks
the Plaintext-Checking Oracle whether a is a ciphertext of R (remark that it does
not make more queries to the Plaintext-Checking Oracle, since it has already been
taken into account above). Then it computes K = G(R), maybe using a simulation
of G if the query R has never been asked. If b = K ⊕m then one outputs m as
the plaintext of the triple (a, b, c). Therefore, any correctly computed ciphertext
is decrypted by the simulator. But if the adversary has not asked H(R,m, a, b)
the probability that the ciphertext is valid, and thus the decryption not correctly
simulated, is less than 1/2κ.

Hybrid Conversion. In this REACT conversion, one can improve efficiency, replacing
the one-time pad [81] by any symmetric encryption scheme: indeed, we have computed
some b = m ⊕K, where K = G(R) can be seen as a session key used in a one-time
pad encryption scheme. But one could use any symmetric encryption scheme (E,D)
that is just semantically secure (under no plaintext nor ciphertext attacks). Indeed,
the one-time pad achieves perfect semantic security, against this kind of very weak
attacks. But one can tolerate some imperfection. Anyway, most of the candidates to the
AES process (the call for symmetric encryption schemes, from the NIST, to become
the new international standard), and the AES itself (the winner), resisted to more
powerful attacks, and thus can be considered strongly secure in our scenario. Therefore,
plaintexts of any size could be encrypted using this conversion (see Figure 8), with a
very high speed rate.

RSA–OAEP Alternatives. As we have said, RSA–OAEP has become a de facto stan-
dard, even if its security has recently been subject to controversy. However, the prac-
tical security, for usual sizes (between 512 and 1024 bits), is not really proven because
of the huge overhead in the reduction. Some alternatives have been proposed, such as
OAEP+ [78] and SAEP(+) [14], but still with expensive reductions, in the general
RSA context (some efficient reductions have been proposed for OAEP or SAEP, but
only with RSA exponent 3, or the Rabin primitive [66]). Therefore RSA–REACT [59]
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looks like the best alternative to RSA–OAEP, thanks to the efficient reduction, and
the provable security relative the RSA assumption (in the random oracle model).

6 Conclusion

Recently, Cramer and Shoup proposed the first schemes, for both encryption [22]
and signature [23], with formal security proofs in the standard model (without any
ideal assumption). The encryption scheme achieves IND-CCA under the sole DDH

assumption, which says that the DDH problem is intractable. The signature scheme
prevents existential forgeries, even against adaptive chosen-message attacks, under the
Strong RSA assumption [2, 28], which claims the intractability of the Flexible RSA
problem:

Given an RSA modulus N and any y ∈ Z?
N , produce x and a prime integer

e such that y = xe mod N .

Both schemes are very nice because they are the first efficient schemes with formal
security proofs in the standard model. However, we have not presented them, nor the
reductions either. Actually, they are very intricate and pretty expensive. Furthermore,
even if no ideal assumptions are required, the complexity of the reductions make them
meaningless for practical parameters. Moreover, even if the schemes are much more
efficient than previous proposals in the standard model, they are still much more than
twice as expensive as the schemes presented along this paper, in the random oracle
model. This is enough to rule them out from practical use. Indeed, everybody wants
security, but only if it is quite transparent (and particularily from the financial point
of view). Therefore, provable security must not decrease efficiency. It is the reason why
strong security arguments, under a realistic restriction on the adversary’s capabilities,
for efficient schemes have a more practical impact than security proofs in the standard
model for less efficient schemes. Of course, quite efficient schemes with formal security
proofs are still the target, and thus an exciting challenge.
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