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Abstract. Group Diffie-Hellman schemes for password-based key exchange are de-
signed to provide a pool of players communicating over a public network, and sharing
just a human-memorable password, with a session key (e.g, the key is used for mul-
ticast data integrity and confidentiality). The fundamental security goal to achieve in
this scenario is security against dictionary attacks. While solutions have been proposed
to solve this problem no formal treatment has ever been suggested. In this paper, we
define a security model and then present a protocol with its security proof in both the
random oracle model and the ideal-cipher model.

1 Introduction

Group Diffie-Hellman schemes for password-based key exchange are designed to pro-
vide a pool of players, communicating over a public network, and holding a shared
human-memorable password with a session key to be used to implement secure mul-
ticast sessions. A human-memorable password pw is a (short) string chosen from a
relatively small dictionary to be easily memorized and typed-in by a human.

Consider mission-critical applications such as emergency rescue and military op-
erations [18, 19, 21], or even commercial applications like conferencing/meeting [1, 19]
and personal networking [5, 13], where a (small) group of people collaborate. These ap-
plications operate in a highly mobile environment characterized by the lack of any fixed
network and security infrastructure. At the same time, these are applications where
secure multicast sessions may be needed. Due to the absence of fixed infrastructure,
session keys can be computed via a group Diffie-Hellman key exchange bootstrapped
from a password. A password usually chosen by the participants may be a low-quality
one (i.e. 4 decimal digits) easier to memorize than a high-quality one (i.e. 56-bit,
192-bit).

The fundamental security goal for a group Diffie-Hellman protocol designed for
such a scenario to achieve is security against dictionary attacks. One can not actually
prevent the adversary from guessing a value for pw and using this value in an attempt
to impersonate a player. If the attack fails, the adversary can eliminate this value
from the list of possible values for pw. However, one would like this attack to be the
only one the adversary can mount: after n active interactions with some participants
the adversary should not be able to eliminate a greater number of passwords than
n. Namely, a passive eavesdropping should be of no help to the adversary since an
off-line exhaustive search on pw should not get any bias on the actual password –
such a bias could be later used in on-line interactions. The off-line exhaustive search
is called dictionary attack.

Contributions. This paper represents the first formal treatment of the authenti-
cated group Diffie-Hellman key exchange problem when the parties share a human-
memorable password. We start from the model of Bresson et al. [10] and enhance it
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to capture dictionary attacks. In our model, the parties are modeled through oracles
and the various types of attacks are modeled by queries to these oracles. The model is
equipped with the ability to obtain honest protocol executions to enable a treatment
of dictionary attacks.

Our model is used to define the execution of a password-based group Diffie-Hellman
protocol which we refer to as EKE (Encrypted Key Exchange, see [3]). Converting a
provably authenticated group Diffie-Hellman protocol [10] into a password-based group
Diffie-Hellman protocol is not an easy task. The trivial conversion consisting in substi-
tuting a signature scheme by a symmetric encryption scheme, using the password as
secret key as for the two-party case [2, 7], does not provide security against dictionary
attacks. We have, in effect, to perform several modifications to the protocol of Bresson
et al. [10]. The modifications cost only one more exponentiation per player however
we also notice that the cost of the signatures and verifications is replaced by the cost
of a symmetric encryption, which is very low. The flows are moreover shorter since
there is no longer a signature.

The security against dictionary attacks shows up in Theorem 2 which asserts the
security of EKE in both the random oracle model and the ideal-cipher model. Security
against dictionary attacks depends on how many interactions the adversary carries
out against the instances rather than on the adversary’s computational power. The
theorem exhibits a reduction from the semantic security of an EKE session key to
reasonable and well-defined computational problems.

Our paper is organized as follows. In the remainder of this section we summarize
the related work. In Section 2, we define our model and the definitions that should
be satisfied by a group Diffie-Hellman scheme secure against dictionary attacks. In
Section 3, we present the intractability assumptions we use in this paper. We present
the EKE protocol in Section 4 and assert its security in both the random oracle model
and the ideal-cipher model in Section 5. We then prove its security in Section 6. Finally,
some extensions are provided: we briefly deal with forward-secrecy in Section 7 and
with mutual authentication in Section 8.

Related Work. Several 2-party Diffie-Hellman key exchange protocols aimed to dis-
tribute a session key among two parties when the parties share a password. Recently,
Bellare et al. [2] presented a formal model for this problem and a protocol secure
in the ideal-cipher model. Our work extends their work to the multi-party setting.
Security proofs in the ideal-cipher model see a (keyed) cipher as a family of random
permutations which are queried via an oracle to encrypt and decrypt. The oracle pro-
duces a truly random value for each new query and identical answers if the same query
is asked twice; furthermore, for each key, the injectivity is satisfied. In practice, the
ideal-cipher [4] is instantiated using deterministic symmetric encryption function such
as AES [17]. Although these encryption functions have been designed with different
criteria from being an ideal-cipher, AES has been designed with unpredictability in
mind.

Security proofs in these two models together (both the random oracle and the
ideal-cipher models) are superior to those provided by ad-hoc protocol designs al-
though they do not provide the same security guarantees as those in the random
oracle and the standard models. However, the ideal-cipher model allows for “elegant”
and more efficient protocols. Boyko et al. [7, 15] provided (2-party) Diffie-Hellman key
exchange protocols proved secure in the random oracle model using the multi-party
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simulatability technique. Katz et al. [14], and Goldreich et al. [12] designed two-party
key exchange protocols secure in the standard model.

Several papers have extended the Diffie-Hellman protocol [11] to the multi-party
setting and thus aimed to distribute a session key among parties aggregated into a
group. Bresson et al. [10] presented a formal model to securely design protocols for a
scenario wherein each party holds a pair of matching public/private keys. A logical
follow up to this work is a formal model for a scenario wherein the parties share a
human-memorable password. This latter scenario was suggested by Asokan et al. [1]
as well as protocols with informal security analysis.

2 Model

In this section we define a formal model for security against dictionary attacks where
the adversary’s capabilities are modeled through queries. In our model, the players
do not deviate from the protocol and the adversary is not a player. We define the
security notion that a password-based group Diffie-Hellman protocol should achieve.
In Authenticated Key Exchange (with implicit authentication), each player is assured
that an adversary not in the group is unable to learn any information about the
session key. Another important notion is mutual authentication, which guarantees to
each player that it actually shares a session key with all the others.

2.1 Security Model

Players. We fix a nonempty set U of players that can participate in a group Diffie-
Hellman key exchange protocol P . A player Ui ∈ U may have many instances called
oracles involved in distinct, but possibly concurrent, executions of P . We denote by
Πt

i the t-th instance of player Ui, for any t ∈
�
.

The players share a low-entropy secret pw taken from a small dictionary Password

of size N . In the following, we assume that this password pw follows a uniform distri-
bution in the Password set.

Abstract Interface. Let us define the basic structure of a password-based group
Diffie-Hellman protocol P . The protocol consists of two algorithms:

– The password generation algorithm PwdGen(1`) is a probabilistic algorithm
which, on input a security parameter 1`, provides each player in U with a common
password pw uniformly distributed in Password.

– The key exchange algorithm KeyExch(U) is an interactive multi-party protocol
providing the instances of players in U , holding a common password, with a session
key sk.

Queries. The adversary A interacts with the players by making various queries. Let
us explain the capability that each query captures:

– Execute(U): This query models passive attacks, where the adversary gets access
to honest executions of P by eavesdropping. Therefore, A gets back the protocol
flows of an honest execution of P between the players in U .

– Send(Π t
i ,m): This query models A sending a message to an instance. The adver-

sary A gets back the response oracle Π t
i generates in processing the message m
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according to the protocol P . A query Send(Π t
1, “Start”) initializes the key ex-

change algorithm, and thus the adversary receives the flow the first player should
send out to the second one.

– Reveal(Π t
i ): This query models the misuse of the session key by the players. The

query is only available to A if oracle Π t
i holds a session key. The Reveal-query

unconditionally forces oracle Π t
i to release skΠt

i
which is otherwise hidden to A.

– Test(Π t
i ): This query models the semantic security of the session key sk. The

Test-query can be asked at most once by the adversary A and is only available to
A if Πt

i is Fresh (see below). This query is answered as follows: one flips a coin
b and forwards Reveal(Π t

i ) if b = 1 or a random value if b = 0.

The Execute-query may at first seem useless since using the Send-query the ad-
versary has the ability to carry out honest executions of P among parties. Yet the
Execute-query is essential for properly dealing with dictionary attacks. The number qs

of Send-queries directly asked by the adversary does not take into account the number
of Execute-queries. Therefore, qs represents the number of flows the adversary may
have built by himself, and thus the number of passwords he would have tried.

The security notions take place in the context of executing P in the presence of
the adversary A. In this game Gameake(A, P ), A plays against the players using the
above queries in order to defeat the security of P . The game is initialized by providing
coin tosses to PwdGen, A, all Π t

i , and then

1. PwdGen is run to set the value pw of the password,

2. Initialize any Π t
i with skΠt

i
← null,

3. Initialize adversary A with 1` and access to all Π t
i ,

4. Run adversary A and answer queries made by A,

5. At the end of the game, A outputs its guess b′ for the bit b involved in the Test-
query.

2.2 Security Notions

Freshness. An oracle Π t
i is Fresh (or holds a Fresh key sk) if Π t

i has computed
a session key sk 6= null and neither Π t

i nor one of its partners has been asked for
a Reveal-query. Intuitively, the partners of an instance Π t

i are all the instances that
“should” hold the same session key as Π t

i at the end of the protocol. We give a more
formal definition in Appendix G.

AKE Security. In an execution of P , we say an adversary A wins if it asks a single
Test-query to a Fresh player U and correctly guesses the bit b used in the game
Gameake(A, P ). We denote the AKE advantage as Advake

P (A) = 2Pr[b = b′] − 1,
where the probability space is over all the random coins of the adversary and all the
oracles.

3 Assumptions

Before presenting the protocol, let us remind the algorithmic assumptions on which
its security will be based on. These assumptions were shown in [9] to be reasonable
by relating them to the DDH and CDH.
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Let � = 〈g〉 be a cyclic group of prime order q and n ∈
�
. Let In be {1, . . . , n},

P(In) be the set of all subsets of In and Γ be any subset of P(In). We define the
Group Diffie-Hellman distribution relative to Γ as:

GDHΓ = {DΓ (x1, . . . , xn) | x1, . . . , xn ∈R � q} ,

where
DΓ (x1, . . . , xn) =

{(
J, g

�
j∈J xj

)
J ∈ Γ

}
.

Our protocol in this paper is based on the triangular structure Tn for Γ , we illustrate
for n = 4 on Figure 1:

Tn =
⋃

2≤j≤n

{ {i | 1 ≤ i ≤ j, i 6= k} | 1 ≤ k ≤ j}

= {{}; {2}, {1}; {2, 3}, {1, 3}, {1, 2}; {2, 3, 4}, {1, 3, 4}, {1, 2, 4}, {1, 2, 3}; . . . }.

g

gx2 gx1

gx2x3 gx1x3 gx1x2

gx2x3x4 gx1x3x4 gx1x2x4 gx1x2x3

Fig. 1. Trigon defined by Tn when n = 4.

Trigon Group Computational Diffie-Hellman Assumption (TG-CDH). A
(T, ε)-TG-CDHn-attacker for � is a probabilistic Turing machine ∆ running in time
T that given D = DTn(x1, . . . , xn) ∈ GDHTn outputs gx1···xn with probability greater

than ε. We denote this success probability Succ
tgcdhn� (∆).

Multi Decisional Diffie-Hellman Assumption (M-DDH). In the analysis of the
protocol EKE we need an equivalent version of the DDH assumption. Let us define
the two following distributions:

M-DHn = {(gx1 , . . . , gxn , grx1 , . . . , grxn) |x1, . . . , xn, r ∈R � q} ,

Randn = {(gx1 , . . . , gxn , gy1 , . . . , gyn) |x1, . . . , xn, y1, . . . , yn ∈R � q} .

A (T, ε)−M-DDHn-distinguisher for � is a probabilistic Turing machine ∆ running
in time T that is able to distinguish the two distributions with advantage Advmddhn� (∆)
greater than ε.

Lemma 1. For any group � and any integer n, Advmddhn� (T ) ≤ (n − 1)Advddh� (T )

and Advmddhn� (T ) ≤ Advddh� (T + (4n − 6)τ � ), where τ � is the computational time for
an exponentiation in � .

Proof. The first result easily comes using a hybrid argument [16], while the second one
uses the random self-reducibility. Indeed, from a decisional Diffie-Hellman instance
(gx2 , gr1 , gr2x2), where r2 = r1, one derives (with 2 exponentiations performed by
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raising two values to the power of x1) a 4-tuple (A1 = gx1 , A2 = gx2 , B1 = gr1x1 , B2 =
gr2x2). Then, one easily gets a 2n-tuple (A1 = gx1 , . . . , An = gxn , B1 = gr1x1 , . . . , Bn =
grnxn) where either all the ri are equal (if r2 = r1), or the ri are independent from one
another (if r2 6= r1). To this aim, one chooses a random pair (ui, vi), and computes

Ai = Aui

1 Avi

2 = gx1ui+x2vi = gxi

Bi = Bui

1 Bvi

2 = gr1x1ui+r2x2vi = gr1xi+(r2−r1)x2vi .

ut

4 A Password-based Group Diffie-Hellman Protocol

In the following theorems and proofs we assume both the random oracle model and
the ideal-cipher model, and the arithmetic is in a finite cyclic group � = 〈g〉 of order a
`1-bit prime number q, where the operation is denoted multiplicatively. More precisely,
we consider ¯� = � \{1}. It has the particularity that for any h ∈ ¯� , ¯� = {hr | r ∈
{1, . . . , q − 1}}, but it is no longer a group.

We then use a hash function H from {0, 1}∗ to {0, 1}`2 and consider several block
ciphers, depending on the size of the input: for each integer i ≥ 2, we define two families
E i = {E i

k} and E ′i = {E ′ik} of keyed permutations over ¯� i , where k ∈ Password. The

inverse of E i
k (resp. E ′ik) is denoted Di

k (resp. D′ik).

In practice, such encryption schemes are instantiated with CBC mode so that
each part of the plaintext depends on the entire ciphertext. Following this idea, we
(abusively) denote Ek(X) (resp. E ′k(X)) the encryption of a plaintext X ∈ ¯� i for some

i under key k using E i
k (resp. E ′ik) without explicitly specifying the length of X.

4.1 Algorithm

As illustrated on Figure 2, the protocol EKE consists of a set of players arranged in a
ring and the flows are encrypted under the password pw . The session-key space SK as-
sociated to this protocol is {0, 1}`2 equipped with a uniform distribution. Moreover,
EKE consists of two stages: several up-flows (which are encrypted using E) and the
down-flow (which is encrypted using E ′).

In the up-flow, player Ui (for 1 ≤ i < n) receives a ciphertext Fli−1 ∈ ¯� i and
decrypts it using Dpw into the plaintext Xi−1 ∈ ¯� i (by convention, U1 just receives
Fl0 = “Start”, and thus builds X0 = {g0}, where g0 is a random element in ¯� ).
Player Ui then generates at random two (private) values (xi, νi) in � ?

q and gets Xi :=
Φ(Xi−1, xi, νi) ∈ ¯� i+1 by processing the plaintext Xi−1 according to the operator Φ
(described below). Player Ui finally encrypts the value Xi using Epw and forwards the
ciphertext Fli to the next player in the ring.

The down-flow takes place when player Un receives the last up-flow Fln−1 ∈ ¯� n . It
decrypts it using Dpw into the plaintext Xn−1 ∈ ¯� n . It then generates at random two
(private) values (xn, νn) in � ?

q and gets X ′n := Φ′(Xn−1, xn, νn) ∈ ¯� n by processing
the plaintext Xn−1 according to the operator Φ′ (described below). Player Un finally
encrypts the value X ′n using E ′

pw
and broadcasts the ciphertext Fln.

Finally, each player can compute the session key sk = H(U‖Fln‖K), where K =
(gν1···νn

0 )x1···xn . Indeed, if everything worked correctly, player Ui can compute K by
decrypting the broadcast Fln using D′

pw
into X ′n ∈

¯� n and raising the i-th term αi of
X ′n to the power of its private exponent xi.
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U1 U2 . . . Un

x1
R
← [1, q − 1] x2

R
← [1, q − 1] xn

R
← [1, q − 1]

X0 = {g0}

ν1
R
← [1, q − 1]

X1 := Φ(X0, x1, ν1)
Fl1 := Epw (X1)

Fl1−−−−−−−−−−→
X1 := Dpw (Fl1)

ν2
R
← [1, q − 1]

X2 := Φ(X1, x2, ν2)
Fl2 := Epw (X2)

Fl2−−−−−−−−−−→

. . .
Fln−1

−−−−−−−−−−→

Xn−1 := Dpw(Fln−1)

νn
R
← [1, q − 1]

X′
n := Φ′(Xn−1 , xn, νn)

Fln := E ′
pw

(X′
n)

Fln←−−−−−−−−−−
. . .

Fln←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Fln←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Each player gets X ′
n := D′

pw
(Fln) = {α1 , . . . , αn}

and K = (αi)xi = gx1...xn
n , where gn = gν1...νn

0

Φ({β1, . . . , βi−1, β}, x, ν)
= {βνx

1 , . . . , βνx
i−1, βν , βνx} ∈ ¯� i+1 .

Φ′({β1, . . . , βi−1, β}, x, ν)
= {βνx

1 , . . . , βνx
i−1, βν} ∈ ¯� i .

Fig. 2. Protocol EKE. The multicast group is U = {U1, U2, . . . , Un} and the session key is sk =
H(U‖Fln‖K).

4.2 Operators Φ and Φ �

We now describe the operators Φ and Φ′, and see that finally all the players agree on
the same value K. The operator Φ takes as inputs a set {β1, . . . , βi−1, β} ∈ ¯� i , for
some i, a private exponent x ∈ � ?

q and a blinding exponent ν ∈ � ?
q. Then,

Φ({β1, . . . , βi−1, β}, x, ν) = {βνx
1 , . . . , βνx

i−1, β
ν , βνx} ∈ ¯� i+1 .

The operator Φ′ does exactly the same transformation but returns the i first elements
only:

Φ′({β1, . . . , βi−1, β}, x, ν) = {βνx
1 , . . . , βνx

i−1, β
ν} ∈ ¯� i .

Therefore, if all the computations are performed correctly, the flows between 4 players
include the plaintexts X1, X2 and X3 presented on Figure 3. The plaintext X ′4 is the
4 first elements of X4 only while the last element of X4 is K = (gν1ν2ν3ν4

0 )x1x2x3x4 =
gx1x2x3x4
4 .

One can indeed check by induction that the j-th element of Xi is (gµi

0 )
yi/xj = g

yi/xj

i ,
where µi = ν1 · · · νi mod q, gi = gµi

0 and yi = x1 · · · xi mod q. Therefore, the i-th

element αi of the down-flow is g
yn/xi
n which with the knowledge of xi leads to the

common value K = αxi

i = gyn
n .

4.3 Dictionary Attacks

In EKE, we have to be careful of the content in the ciphertext since any redundancy
in the concatenation of the plaintexts in the flows of the protocol could be used by
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g0 = X0

g1 g
x1

1 = X1 = Φ(X0, x1, ν1)

g
x2

2 g
x1

2 g
x1x2

2 = X2 = Φ(X1, x2, ν2)

g
x2x3

3 g
x1x3

3 g
x1x2

3 g
x1x2x3

3 = X3 = Φ(X2, x3, ν3)

g
x2x3x4

4 g
x1x3x4

4 g
x1x2x4

4 g
x1x2x3

4 g
x1x2x3x4

4 = X4 = Φ(X3, x4, ν4)

Fig. 3. Honest execution, when n = 4. We denote νi = loggi−1
(gi).

the adversary to mount a dictionary attack. The adversary could decrypt flows using
all the passwords in the dictionary and look for this redundancy.

Namely, the trivial conversion wherein one substitutes in a group Diffie-Hellman
protocol [10] the signature scheme by a symmetric encryption scheme is easily seen
insecure, while it works in the two-party case. This conversion indeed produces a
protocol in which all the computations are performed with νi = 1, for all i; therefore
the last element of each plaintext in Fli also belongs to the plaintext in Fli+1.

5 Security Result

In this section we assert that under reasonable and well-defined intractability assump-
tions the protocol EKE securely distributes session keys. We deal with the AKE goal
only and thus do not consider forward-secrecy here. However, concurrent executions
are possible.

Theorem 2. Let P be the EKE protocol, SK be the session-key space and Password

be a finite dictionary of size N . Let A be an adversary against the AKE security of P
within a time bound T , after qs interactions with the parties, qh hash-queries, and qe

encryption/decryption queries. Then we have:

Advake
P (A) ≤

2qs

N
+ 2qsAdvmddhn� (T ′) + 2qhSucc

tgcdhn� (T ′) +
2Q2

q2

where T ′ ≤ T +nQτ � , Q = 3qs + qe and τ � is the computational time for an exponen-
tiation in � . (Recall that q is the order of � ).

This theorem shows that EKE is secure against dictionary attacks since the ad-
vantage of the adversary essentially grows with the ratio of interactions (number of
Send-queries) to the number of passwords. This is particularly significant in practice
since a password may expire once a number of failed interactions has been achieved,
whereas the adversary’s capability to enumerate passwords off-line is only limited by
its computational power.

Of course, the security results only holds provided that the adversary does not solve
either the trigon group computational problem TG-CDH or the multi-decisional Diffie-
Hellman problem M-DDH. But these terms can be made negligible by appropriate
choice of parameters for the group � .

6 Proof of Security

In this section we show that the protocol EKE achieves security against dictionary
attacks as claimed by Theorem 2. We first introduce the notations we will use and
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then prove that the best the adversary can do is to essentially eliminate one password
from the dictionary per initiated session (maybe concurrently). Here, we present a
proof that does not yet deal with forward-secrecy.

6.1 Operator Ψ

As illustrated in Figure 2, each player Ui generates a new basis when processing an
up-flow by raising the values it received to the power of its random blinding exponent
νi. But let us notice that given a TG-CDH instance of size n, with the TG-CDH-
solution, one can easily derivate the trigon whose lines are the flows sent during an
honest execution of EKE, by raising the lines to the power of random and independent
exponents.

We denote by θ a n-tuple of elements in � ?
q, by θi the i-th component of θ, and

by [g]n the n-tuple (g, . . . , g). For any line L of length i + 1, the operator Ψ takes as
input a n-tuple θ, a random exponent ν and applies a (multiplicative) self-reduction
of the line L as follows:

- [Using θ] first, one raises the first i elements of L to the power of Θi/θ1, . . . ,
Θi/θi respectively, and the last element to the power of Θi, where Θi = θ1 · · · θi;

- [Change of basis] then, one raises all the elements of the tuple to the power ν.

For example, from a line L = (g1, . . . , gi+1), with any tuple θ and ν, one gets

Ψ(L, θ, ν) = (g
νΘi/θ1

1 , . . . , g
νΘi/θi

i , gνΘi

i+1 ),

where Θi = θ1 · · · θi. A line L of form {gyi/x1 , . . . , gyi/xi , gyi} where yi = x1 · · · xi is
thus represented as follows:

L = Ψ([g]i+1, (x1, . . . , xi, 1, . . . , 1), 1) ∈ ¯� i+1 .

The following lemmas exhibit some useful results about the operators Φ and Ψ (proofs
appear in Appendix A and B):

Lemma 3 (Equality of distributions). Let g ∈ ¯� and L = {gα0 , . . . , gαi} ∈ ¯� i+1 .
The following two distributions are perfectly indistinguishable:

{
Ψ(L, θ, ν)

}
(θ,ν)∈(

�
?
q)

n+1
and

{
gr0 , . . . , gri

}
(r0,...,ri)∈(

�
?
q)

i+1

Lemma 4 (Commutativity and composition). Let x, ν, ν ′ ∈ � ?
q and θ, θ′ ∈ ( � ?

q)
n.

For any line L ∈ ¯� i , we have (where θθ′ is the component-wise multiplication of the
vectors θ and θ′):

Ψ(Φ(L, x, ν), θ, ν ′) = Φ(Ψ(L, θ, ν ′), xθi, ν);
Ψ(Ψ(L, θ, ν), θ′, ν ′) = Ψ(L, θθ′, νν ′);

Ψ(Φ(L, x, ν), [1]n, ν ′) = Φ(L, x, νν ′);
if (∀j < i, θj = θ′j), Ψ(L, θ, ν) = Ψ(L, θ′, ν).

6.2 Proof of Theorem 2

In this section we incrementally define a sequence of games starting at the real game
G0 and ending up at G6. We let b and b′ be defined as in Section 2.1 and refer to Si as
the event b = b′ in game Gi. We also define the event Encrypti as the event that a flow
has been encrypted, but not decrypted first (see below), by the adversary under pw
(with any symmetric encryption scheme E or E ′). We use the following lemma within
our sequence of games [20]:
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Lemma 5. Let E,E ′ and F, F ′ be some events defined on a probability space. Let us
assume that Pr[F ] = Pr[F ′] = ε and Pr[E ∧ ¬F ] = Pr[E ′ ∧ ¬F ′]. Then, |Pr[E] −
Pr[E′]| ≤ ε.

Game G0: This is the real attack Gameake(A, P ) in which several oracles are avail-
able to the adversary: a hash oracle, the encryption/decryption oracles, and all the
instances of players (in order to cover concurrent executions).

Rule 1: The instances of players process each Send-query with a pair of
random exponents (xi, νi), using the operators Φ and Φ′.

Thus, the instances of players can easily answer to the Reveal-query and the Test-
query. The Execute-query is proceeded similarly. By definition, Pr[S0] = (Advake

P (A) +
1)/2.

Game G1: We simulate the hash and the encryption/decryption oracles as in G0

by maintaining five lists: a hash list (ΛH), encryption lists (ΛE , Λ′E) and decryption
lists (ΛD, Λ′D). The lists are initially empty. We denote by qH the size of ΛH , and by
qE the number of encryption-decryption relations: i.e. qE is the size of ΛE ∪ Λ′E. The
queries are answered as follows:

– Hash-query: For a query q such that a record (q, r) appears in ΛH , the answer is
r. Otherwise r is chosen at random from {0, 1}`2 and the record (q, r) is added to
ΛH . We have H(q) = r.

– Encryption-query: For an encryption query (k,X) to E (resp. E ′) such that a record
(∗, k,X, Y ) appears in ΛE (resp., Λ′E) the answer is Y . Otherwise Y is a random
ciphertext of length |X|. The record (δ, k,X, Y ) is then added to encryption list ΛE

(resp. Λ′E). δ ∈ {0, 1} is a bit indicating the originator of the query: if the query
comes from the simulator then δ = 0 else the query comes from the adversary
δ = 1.

– Decryption-query: For a decryption query (k, Y ) to D (resp. D ′) such that a record
(∗, k,X, Y ) appears in ΛE (resp. Λ′E), the answer is X. Otherwise X is generated
by the following rule:

Rule 2: X is a random tuple {gri}1≤i≤|Y | where r1, . . . , r|Y | are randomly
drawn in � ?

q.

The record (k, Y,X) is then added to the decryption list ΛD (resp. Λ′D) while the
record (0, k,X, Y ) is added to the encryption list ΛE (resp. Λ′E).

We notice that a decryption-query adds a record to both the encryption and the
decryption lists, while an encryption-query adds a record to the encryption list only. In
both cases, a later encryption or decryption query on the same elements does not add
any record to any list. Hence, a record (k, Y,X) appears in the decryption list if and
only if the decryption query (k, Y ) has been asked first (i.e., before the corresponding
encryption query).

With this definition, Encrypti is defined in game Gi as the event that there exists
a record (1, pw , X, Y ) in an encryption list, such that Y has been submitted in a
Send-query. Note that this implies that the corresponding record (pw , Y,X) does not
appear in any decryption list.

From the above simulation we easily see that the games G1 and G0 are perfectly
indistinguishable, unless the permutation property of the block ciphers does not hold.
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One could have avoided collisions in the above simulation but this is at most q2
E/2(q−

1)2 since the smallest set for the encryption functions is | ¯� 2 | = (q − 1)2:

| Pr[S1]− Pr[S0] | ≤
q2
E

2(q − 1)2
≤

q2
E

q2
. (1)

Game G2: We delete the executions wherein the adversary may have guessed the
password. More formally, we delete the executions wherein event Encrypt1 occurs:
i.e. a Send(Π,Y )-query is asked and a record of the form (1, pw , ∗, Y ) appears in an
encryption list. In these executions, we stop setting b′ at random:

| Pr[S2]− Pr[S1] | ≤ Pr[Encrypt1]. (2)

Game G3: We simulate the instances of players from a tuple (x1, . . . , xn). This tuple
allows us to compute an instance D = D(x1, . . . , xn) of the TG-CDHn with its solution
gx1···xn . We use D to construct using blinding exponents ν1, . . . , νn the triangular
structure illustrated in Figure 3 where all the bases are randomized. The lines of this
structure will be used in this game to answer to the Send-queries. The lines of this
triangular structure are denoted and constructed as

Li =

{
{g} if i = 0,

Φ(Li−1, xi, νi) if 1 ≤ i ≤ n,

where the n + 1-th element κ of Ln is κ = gx1···xn
n = (gx1···xn)ν1···νn .

We now show how to use these lines to simulate the instances of players. We
first maintain a list ΛΨ that keeps track of the exponents θ used to blind a line Li:
L = Ψ(Li, θ, ν). This list contains records of the form (i, θ, ν, L) and is initially set to
{(0, [1]n, 1, {g})}. Then, we answer to a Send(Π t

i ,Fl)-query as follows:

– Πt
i is waiting for an up-flow: if the length of Fl is different from i, then we do not

do anything. Otherwise we do perform the following two steps.

1. if i = 1 then one sets L = {g}, else one invokes the decryption oracle to get
L = Dpw (Fl).

2. one computes line L′ according to Rule 1.1 and encrypts some elements of
L′. If i < n, then the whole line L′ is encrypted into Epw (L′). Otherwise,
if i = n, then only the n first elements of L′, we refer to them as L′′, are
encrypted using E ′

pw
. Finally, Π t

i waits for the down-flow.

Rule 1.1: We first chooses two random exponents (ρt
i, µ

t
i) ∈ ( � ?

q)
2. If

(i − 1, θ, ν, L) ∈ ΛΨ for some θ, ν, then we compute L′ = Ψ(Li, θ
′, µt

iν)
where θ′ is defined to θ except that θ′i = ρt

i, and we update the list ΛΨ .
Otherwise one applies the Rule 1.1’ presented below.

Rule 1.1’: One still uses Rule 1, but with (xiρ
t
i, νiµ

t
i) instead of (xi, νi).

The random ρt
i is different each time one answers this flow (either by Rule

1.1 or Rule 1.1’.) Indeed, the same flow Fl may be sent several times by the
adversary in different and concurrent executions.

By induction, one easily show that any line L either comes from Rule 2 or, under
¬Encrypt, from a previous Rule 1.1.
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– Πt
i is waiting for a down-flow: if the length of Fl is different from n, then we do

not do anything. Otherwise, we invoke the decryption oracle D ′
pw

(Fl) to obtain
L′′ or more specifically to obtain the i-th element αt

i in L′′:

Rule 3: For any Π t
i , Kt

i is set to be (αt
i)

xiρt
i , where αt

i is the i-th element
in the down-flow L′′ received by Π t

i .

We have now to show that the Φ relation between the lines Li−1 and Li is “pre-
served” by the Ψ transformation. The following lemma shows it: two lines Li−1, Li of
the triangular structure already related by the operator Φ are still related by Φ after
having respectively been transformed into L,L′ by the operator Ψ . The proof of this
lemma uses Lemma 4 and appears in Appendix C.

Lemma 6. L′ = Φ(L, xiρ
t
i, µ

t
iνi).

By Lemma 6, our simulation simply makes the player choose as private exponent xiρ
t
i

and as blinding exponent νiµ
t
i (both values are uniformly distributed because µt

i and
ρt

i are). From the value K t
i , we can then easily compute the session key skΠt

i
to be

H(U‖Fln‖K
t
i ).

It follows that games G2 and G3 are perfectly indistinguishable:

Pr[S3] = Pr[S2]. (3)

Game G4: We now modify the way the decryption queries are simulated by modifying
the Rule 2, in order to embed the instance D in the answers output by the decryption
oracle, so that an attack may help us to solve it.

Rule 2.1: One chooses a random blinding exponent ν ∈ � ?
q and random

exponents θ in ( � ?
q)

n. If Y is a query to Dpw , then X is set to Ψ(Li, θ, ν),
where i = |Y | − 1. If Y is a query to D′

pw
, and |Y | = n, then X ′ is set to

Ψ(Ln, θ, ν), but X is set to the n first elements of X ′. In both cases, the
list ΛΨ is updated.

From Lemma 3, with random θ and ν, all the answers X are perfectly random in
¯� |Y |:

Pr[S4] = Pr[S3]. (4)

Before going further on, let us claim the following lemma, whose proof is given in
Appendix D. It shows that from now on, Rule 1.1’ will not be used anymore.

Lemma 7. If one assumes ¬Encrypt4 in game G4, any plaintext L included in a flow
received via a Send-query is recorded in ΛΨ (possibly with one more element if L has
been decrypted by D′

pw
, and thus corresponds to a down-flow).

Game G5: In the above game G4, one can remark that knowledge of the xi’s is not
needed, one could only be given an instance D = D(x1, . . . , xn) of the TG-CDHn with
its solution gx1···xn only.

But while the xi’s are not needed to construct the triangular structure {L0,
. . . ,Ln}, the xi’s are needed to compute K t

i . This value is in turn used to compute the
session key skΠt

i
and therefore needed to answer to the Reveal-query and Test-query.

Thus, if we want to avoid the use of the xi’s, we need to find another way to compute
Kt

i .
Fortunately, it is possible: according to Lemma 7, if Encrypt4 did not occur then

the upflow L′ = Φ(L, xiρ
t
i, νiµ

t
i) has been generated by the Rule 1.1 with as input of
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L = Ψ(Li−1, θ, ν). Let us recall that L′′ corresponds to the n first elements of the tuple
Ψ(Ln, θ′, ν ′), κ = gx1···xn is the last component of Ln and Θ′ is equal to the product
θ′1 · · · θ

′
n. We can now compute K t

i by modifying Rule 3 to be:

Rule 3.1: K t
i = κν′Θ′·ρt

i/θ′i . And then, the session keys can been computed
without the xi’s.

Lemma 8. Rule 3 and Rule 3.1 lead to the same result.

This lemma is proven in Appendix E. By Lemma 8, the games G4 and G5 are perfectly
indistinguishable, as soon as Encrypt5 does not occur.

Pr[S5] = Pr[S4]. (5)

Game G6. Finally, we are just given an instance D = D(x1, . . . , xn) of the TG-CDHn

without its solution gx1···xn . Then, if the adversary helps us to get some K t
i , we have

solved the TG-CDHn problem (and we are done, see the Lemma 9 below).
However, since we do not know κ, we can no longer compute K t

i and can not
therefore answer to Reveal-oracles (and the Test-query). We simply simulate the Reveal-
oracles (even for a Test-query), by answering a random value, without asking the hash
oracle H.

Let us denote by AskH the event thatAmakes a hash-query of the form (U‖Fln‖K
t
i ),

where Fln is the down-flow received by any Π t
i . Unless neither AskH occurs (nor

Encrypt5) games G5 and G6 are perfectly indistinguishable:

Pr[S6 | ¬AskH] = Pr[S5 | ¬AskH]. (6)

The probability of event AskH is upper-bounded in the following lemma, whose proof
appears in Appendix F. Let us recall that qh denotes the number of hash-queries asked
by the adversary.

Lemma 9. Pr[AskH] ≤ qhSucc
tgcdhn� (T + (qs + qE)nτ � ).

In this game, answers to the Reveal-queries, and thus to the Test-query, are purely
random. Then, it is straightforward to see that

Pr[S6] =
1

2
. (7)

From Lemma 5 and Equations (6), (7), we get:

∣∣∣Pr[S5]−
1

2

∣∣∣ =
∣∣∣ Pr[S5]− Pr[S6]

∣∣∣ ≤ Pr[AskH].

Finally, from Equations (1), (2), (3), (4) and (5), and Lemmas 5, 9, we get:

∣∣∣Pr[S0]−
1

2

∣∣∣ ≤ Pr[Encrypt1] +
q2
E

q2
+ qhSucc

tgcdhn� (T + (qs + qE)nτ � ). (8)

6.3 Probability of Event Encrypt1

The security against dictionary attacks is measured by the probability that the event
Encrypt1 occurs. To evaluate this probability, we define a game wherein the view
of the adversary is perfectly independent from the password pw , in the information
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theoretical sense. First, let us note that the games G2, G3, G4 and G5 are perfectly
indistinguishable, and thus

Pr[Encrypt5] = Pr[Encrypt1]. (9)

We define an auxiliary game G′′6 similar to game G5 except that we answer differently
to a Send(Π t

i ,Fl)-query when instance Π t
i is waiting for an up-flow. In this game G′′6 ,

we in fact re-define all coefficients used by the random self-reducibility and entirely
re-blind line Li:

Rule 1.2: Whatever appears in ΛΨ so far, we choose a random exponent
ν ∈ � ?

q, a full vector θ ∈ ( � ?
q)

n and compute L′ = Ψ(Li, θ, ν). We then
update ΛΨ .

By Lemma 3, the plaintext L′ is indistinguishable from a random plaintext in ¯� i+1

and, therefore, the simulation is completely independent from the password pw . So
we have

Pr[Encrypt′′6] = qs/N. (10)

Moreover the only difference between games G′′6 and G5 is in the way the Send-
queries are answered. On input of a line L = (a1, . . . , ai−1, ai), the Rule 1.1 generates
line L′ = (aνx

1 , . . . , aνx
i−1, a

ν
i , aνx

i ) while the Rule 1.2 generates L′′ = (gr0 , . . . , gri).
Using the classical hybrid technique we can obtain:

|Pr[Encrypt′′6 ]− Pr[Encrypt5]| ≤ qs Advmddhn� (T + (qs + qE)nτ � ). (11)

Finally, Equations (9), (10) and (11) lead to

Pr[Encrypt1] ≤
qs

N
+ qsAdvmddhn� (T + (qs + qE)nτ � ).

Note that qE is the size of ΛE ∪ Λ′E and it is thus equal to qe plus the number of
queries asked by our simulation (at most two per Send-query): qE ≤ qe + 2qs. This
note, combined with Equation (8), concludes the proof. ut

7 Forward-Secrecy

The above proof does not deal with forward-secrecy. Considering forward-secrecy re-
quires to take into account a new kind of query that we call the Corrupt-query (any
other kinds of queries can still be asked after this one):

– Corrupt(U): This query models the attacks resulting in the password pw to be
revealed. A gets back from his query pw but does not get any internal data of U .

Then we define a new flavor of freshness, saying that an oracle Π t
i is Fresh (or

holds a Fresh key sk) if the following conditions hold. First, no Corrupt-query has been
made by the adversary since the beginning of the game. Second, Π t

i has computed a
session key and neither Π t

i nor its partners have been asked for a Reveal-query. The
partnering notion is more formally defined in Appendix G.

This security level means that the adversary does not learn any information about
previously established session keys when making a Corrupt-query. We thus denote by
Advakefs

P (A) the advantage an adversary can get on a fresh key, with the ability to
make a Corrupt-query.
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Theorem 10. Let P be the EKE protocol, SK be the session-key space and Password

be a finite dictionary of size N . Let A be an adversary against the AKE security of P
within a time bound T , after qs interactions with the parties, qh hash-queries, and qe

encryption/decryption queries. Then, there exists k ≤ n such that:

Advakefs
P (A) ≤

2qs

N
+ 2qsAdvmddhn� (T ′) + 2n2qn

s qhSucc
tgcdhk� (T ′) +

2Q2

q2
.

where T ′ ≤ T +Qnτ � , Q = 5qs + qe and τ � is the time of computation required for an
exponentiation in � . (Recall that q is the order of � ).

Proof. The proof of this theorem is given in Appendix G.

8 Mutual Authentication

The well-known approach for turning an Authenticated Key Exchange (AKE) protocol
into a protocol that provides mutual authentication (MA) is to use the shared session
key to construct a simple “authenticator” for the other parties. In [10], we already
described the transformation, and justified its security in the random-oracle model.
The first analysis has been done before in the two-party case in [2].

9 Conclusion

This paper provides the first formal treatment of the authenticated group Diffie-
Hellman key exchange problem that encompasses dictionary attacks. Addressed in this
paper are two security goals of the group Diffie-Hellman key exchange: the authenti-
cated key exchange and the mutual authentication. For each we present a definition,
a protocol and a security proof in both the random oracle model and the ideal-cipher
model that the protocol meets its goals. Furthermore, we consider forward-secrecy,
even if the reduction is not very efficient. Reducing the ideal-cipher model assumption
and improving the reduction for the forward-secrecy are still open problems.
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A Proof of Lemma 3

We need to prove that for any (n + 1)-tuple (r0, . . . , rn) ∈ ( � ?
q)

n+1, there exists a
unique solution (θ1, . . . , θn, ν) ∈ ( � ?

q)
n+1 to the following system in � q:





α0νθ2 . . . θn = r0

α1νθ1θ3 . . . θn = r1

· · ·
αn−1νθ1θ2 . . . θn−1 = rn−1

αnνθ1 . . . θn = rn

First, let us denote si = ri/αi. Then, we consider a generator of the (cyclic) multi-
plicative group � ?

q. Let â denote the discrete logarithm of an element a in � ?
q with

respect to this generator; we could rewrite this system in an (n + 1)× (n + 1) system
of linear equations in the ring � q−1:





ν̂ + θ̂2 + . . . + θ̂n = ŝ0

ν̂ + θ̂1 + θ̂3 + . . . + θ̂n = ŝ1

. . .

ν̂ + θ̂1 + θ̂2 + . . . + θ̂n−1 = ŝn−1

ν̂ + θ̂1 + . . . + θ̂n = ŝn

that is





θ̂1 = ŝn − ŝ0

θ̂2 = ŝn − ŝ1

. . .
...

θ̂n = ŝn − ŝn−1

ν̂ + θ̂1 + θ̂2 + . . . + θ̂n = ŝn
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This latter is clearly invertible in the ring � q−1. ut

B Proof of Lemma 4

We denote by i the size of the line L. We consider an element h of ¯� and a tuple
(µ, x1, . . . , xi−1) of exponents such that L = (gyi−1/x1 , . . . , gyi−1/xi−1 , gyi−1) where g =
hµ and yk = x1 · · · xk for any k. Lemma 3 proves the existence of such a tuple. Thus
we have

Φ(L, xi, ν) = (gνyi−1xi/x1 , . . . , gνyi−1xi/xi−1 , gνyi−1 , gνyi−1xi)

= (gνyi/x1 , . . . , gνyi/xi , gνyi).

Hence, with the definition Θk = θ1 · · · θk, for any k, we have:

Ψ(Φ(L, xi, ν), θ, ν ′) =
(
gνν′Θiyi/x1θ1 , . . . , gνν′Θiyi/xiθi , gνν′Θiyi

)
.

On the other hand, we have

Ψ(L, θ, ν ′) = (gν′Θi−1yi−1/x1θ1 , . . . , gν′Θi−1yi−1/xi−1θi−1 , gν′Θi−1yi−1).

As a consequence, Φ(Ψ(L, θ, ν ′), xiθi, ν) is equal to

=
(
gνν′Θi−1yi−1xiθi/x1θ1 , . . . , gνν′Θi−1yi−1xiθi/xi−1θi−1 , gνν′Θi−1yi−1 , gνν′Θi−1yi−1xiθi

)

=
(
gνν′Θiyi/x1θ1 , . . . , gνν′Θiyi/xi−1θi−1 , gνν′Θiyi/xiθi , gνν′Θiyi

)
= Ψ(Φ(L, xi, ν), θ, ν ′).

The other equalities are straightforward. ut

C Proof of Lemma 6

We know that L = Ψ(Li−1, θ, ν) and Li = Φ(Li−1, xi, νi). Furthermore, θ′ = θ, except
that θ′i = ρt

i. If we define θ̃ = θ, except that θ̃i = 1, and θ′′ = [1]n, except that θ′′i = ρt
i,

then θ′ = θ̃θ′′, and Lemma 4 says

L′ = Ψ(Li, θ
′, µt

iν) = Ψ(Φ(Li−1, xi, νi), θ
′, µt

iν)

= Ψ(Ψ(Φ(Li−1, xi, νi), θ̃, µt
iν), θ′′, 1)

= Ψ(Φ(Ψ(Li−1, θ̃, µt
iν), xi, νi), θ

′′, 1)

= Ψ(Φ(Ψ(Li−1, θ, µt
iν), xi, νi), θ

′′, 1)

= Ψ(Φ(Ψ(Li−1, θ, µt
iν), xi, νi), θ

′′, 1)

= Ψ(Φ(Ψ(Ψ(Li−1, θ, ν), [1]n, µt
i), xi, νi), θ

′′, 1)

= Ψ(Ψ(Φ(Ψ(Li−1, θ, ν), xi, νi), [1]n, µt
i), θ

′′, 1)

= Ψ(Φ(Ψ(Li−1, θ, ν), xi, νi), θ
′′, µt

i)

= Φ(Ψ(Li−1, θ, ν), xiθ
′′
i , νiµ

t
i)

= Φ(Ψ(Li−1, θ, ν), xiρ
t
i, νiµ

t
i)

= Φ(L, xiρ
t
i, νiµ

t
i).

ut



18

D Proof of Lemma 7

The proof is by induction over the length of Fl. First, by construction, a Send-query
asked to any instance Π t

1 contains the plaintext L = {g}, which is the initialization of
the list ΛΨ .

Now, let us assume the result for all plaintexts of length i−1 sent in a Send(Π t
i−1, ∗)-

query. Therefore, Rule 1.1 implies that the plaintext of the answer is also in the list
ΛΨ . Let us consider a Send(Π t

i ,Fl)-query. Two cases may appear:

– No record (0, pw , ∗,Fl) appears in ΛE∪Λ′E. Note that unless event Encrypt4 occurs,
(1, pw , ∗,Fl) can not appear in ΛE ∪ Λ′E either. The decryption oracle is thus
invoked to decrypt Fl under pw and get the plaintext L. According to Rule 2.1,
ΛΨ is be added some (i, θ, ν, L).

– Some record (0, pw , L,Fl) appears in ΛE . Two sub-cases may appear:
1. (pw ,Fl, L) ∈ ΛD ∪ Λ′D. Then, the decryption had been asked first. According

to Rule 2.1, ΛΨ had been added some (i, θ, ν, L).
2. (pw ,Fl, L) /∈ ΛD ∪ Λ′D. Then the encryption has been asked first. But under

the assumption ¬Encrypt4, L has not been encrypted by the adversary, but by
our simulation. Therefore, Fl had been previously output by a Send(Π t

i−1, ∗)-
query. According to hypothesis, a corresponding record (i, θ, ν, L) had been
added to ΛΨ .

In all these cases, under ¬Encrypt4, the plaintext corresponding to Fl is recorded
in ΛΨ . ut

E Proof of Lemma 8

We consider L′ the plaintext sent by Π t
i during the up-flow, and L′′ the plaintext

received in the down-flow. According to Lemma 7, if Encrypt4 did not occur, L′ has
been processed using Rule 1.1, on L = Ψ(Li−1, θ, ν), and thus, L′ = Φ(L, xiρ

t
i, νiµ

t
i).

Furthermore, L′′ corresponds to the n first elements of the tuple Ψ(Ln, θ′, ν ′).
Furthermore, we define κ to be the last component of Ln, and Θ′ = θ′1 · · · θ

′
n. Let

κi be the i-th element in Ln and αi the i-th element in L′′.

First κi = κ1/xi , and then, αi = (κν′

i )Θ
′/θ′i . Finally, K t

i should be α
xiρt

i

i . As a
consequence:

Kt
i =

((
κ1/xi

)ν′Θ′/θ′i
)xiρt

i

=
(
κν′Θ′/θ′i

)ρt
i

=
(
κν′Θ′

)ρt
i/θ′i

.

ut

F Proof of Lemma 9

In order to evaluate the probability of AskH, we define the same game G′6 as game G6

except that we are not given the solution gx1···xn of the TG-CDH instance anymore.
At the end of the game, we randomly pick in ΛH a record (U‖Fln‖K), among the qh

queries made by the adversary.
If AskH happened, with probability 1/qh, K = Kt

i , where Π t
i received the down-

flow Fln. Therefore, one can get θ′, ν ′ from the list ΛΨ and ρt
i from the simulation of

Πt
i , and the blinding exponents ν1, . . . , νn used to produce Ln, such that

K = Kt
i =

(
κν′Θ′

)ρt
i/θ′i

=
(
(gx1···xn

n )ν
′Θ′

)ρt
i/θ′i

=
(
(gx1···xn)ν1···νnν′Θ′

)ρt
i/θ′i

,
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where Θ′ = θ′1 · · · θ
′
n. Consequently, gx1···xn = (Kt

i )
θ′i/ν1···νnν′Θ′ρt

i . Therefore, we have

Pr[AskH] ≤ qhSucc
tgcdhn� (T ′). ut

G Proof of Theorem 10

G.1 Partnering

Before proving this theorem, one may precise the notion of partnering in our particular
case. Let us denote by Σ(Π t

i ) the transitive closure of instances which exchanged an

up-flow with Π t
i . Furthermore, let Π i,t

n (if it exists) be the instance of Un in Σ(Πt
i )

which sent the down-flow to Π t
i . Then, we say that an instance Π t′

j is a partner of

Πt
i if it is in Σ(Π t

i ), and furthermore Πj,t′
n = Πi,t

n . One can see that this definition
is reflexive, symmetric and transitive. Furthermore, a class of equivalence (a set of
partners) contains at most n instances, but with negligible probability.

Then, Π t
i and Πt′

j , with i < j, are partners if Π t′
j is on the communication link

between Π t
i and Π i,t

n . Furthermore, if k is the size of the set of partners, it contains one
instance of Un−k+1, Un−k+2, . . . , and Un. Another possibility is just the single-element
set.

G.2 Proof

To deal with forward-secrecy, we define event Corrupted as the event that A asks a
Corrupt-query, and we refine event Encrypt into EbCorrupt

EbCorrupti := Encrypti ≺ Corrupted

that is EbCorrupti occurs if A encrypts some data under pw before corrupting a
player.

Then, we define a new sequence of games, from G4, in which we have stopped
all the executions where event EbCorrupt4 occurred, outputting a random bit b′. We
show that the adversary cannot have any advantage without breaking the TG-CDH

problem. However we need to know the private exponents of (almost) all the instances
of the players, since the adversary may send the down-flow after making the Corrupt-
query, and thus knowing the password. Otherwise, a later Reveal-query would not be
perfect. The only instances for which we don’t need to know the private exponents are
the ones which are involved in the Test-ed execution: all the partners of the Test-ed
instance.

Therefore, we have to guess these instances, and thus the corresponding Send-
queries, in order to embed a TG-CDH instance into the protocol flows.

Game G̃5. In an execution, we denote by Π the Test-ed instance, and by Π ti
i all

the partners. However, we use the notation Π tn
n for the instance which produced the

down-flow sent to Π (even if it is not a partner). But we cancel executions where
there are several instances of the same player in the set of partners. This happens
with probability less than q2

s/2(q − 1)2 ≤ 2q2
s/q

2, because of the two random values
(x, ν) ∈ � ?

q:

|Pr[S̃5]− Pr[S4| ≤
2q2

s

q2
. (12)
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Game G̃6. Game G̃6 is the same as game G̃5 except that we randomly choose two
integers k, ` in [1, n] and k + 1 values u`, u`+1, . . . , u`+k−1 and un in [1, qs]. In this
game, we stop, setting b′ randomly, unless

– k is the size of the set of partners (from which one excludes the instance of Un);
– ` is the smallest index of the players in the set of partners;
– Πti

i is asked the ui-th Send-query (for all the possible indices).

Let Guess be the event that the guesses are all correct (we don’t stop the game for the
above reasons), which happens with probability greater than 1/n2qn

s . Furthermore,
this event does not modify the execution:

Pr[S̃6] = Pr[S̃6 ∧ Guess] + Pr[S̃6 ∧ ¬Guess] (13)

= Pr[S̃5] Pr[Guess] + Pr[S̃5 | ¬Guess] Pr[¬Guess]

= Pr[Guess]× Pr[S̃5] +
1

2
× (1− Pr[Guess]) (14)

=
1

2
+ Pr[Guess]

(
Pr[S̃5]−

1

2

)
. (15)

Game G̃7. In G̃6, we are given a second instance D′(x′`, . . . , x
′
`+k−1, x

′
n) of the

TG-CDHk+1 problem, with the solution, and the x′i’s. Then we make any of the above
instances Π ti

i to use ρt
i = x′i.

Pr[S̃7] = Pr[S̃6]. (16)

Game G̃8. In G̃8, one is still given an instance D′(x′`, . . . , x
′
`+k−1, x

′
n) and the solu-

tion, but without knowing the values x′i’s. One can easily see that the simulation is
still possible, with the elements of the instance:

Pr[S̃8] = Pr[S̃7]. (17)

Game G̃9. In game G̃9, the Test-query is answered with a random string so that
Pr[S̃9] = 1/2. Furthermore, unless the corresponding query is asked to the hash-oracle,
which event is denoted by AskH′, the view of the adversary is unchanged.

|Pr[S̃9]− Pr[S̃8]| ≤ Pr[AskH′]. (18)

The same way as for Lemma 9, we have Pr[AskH′] ≤ qhSucc
tgcdhk+1� (T +(qs +qE)nτ � ).

From Equations (16), (17) and (18), we obtain,

∣∣∣1
2
− Pr[S̃6]

∣∣∣ ≤
∣∣∣Pr[S̃9]− Pr[S̃6]

∣∣∣ ≤ Pr[AskH′] +
∣∣∣Pr[S̃8]− Pr[S̃6]

∣∣∣ ≤ Pr[AskH′]. (19)

Then, from Equations (15) and (19), we get:
∣∣∣∣Pr[Guess]

(
Pr[S̃5]−

1

2

)∣∣∣∣ ≤ Pr[AskH′] ≤ qhSucc
tgcdhk+1� (T + (qs + qE)nτ � ).

And thus, Equation (12) gives:
∣∣∣∣Pr[S4 | ¬EbCorrupt4]−

1

2

∣∣∣∣ ≤
2q2

s

q2
+ n2qn

s qhSucc
tgcdhk+1� (T + (qs + qE)nτ � ).

Furthermore, it is clear that Pr[EbCorrupt4] = Pr[Encrypt4], which concludes the proof.
ut


