An Efficient Traitor Tracing Scheme and Pirates 2.0

Duong Hieu Phan, Paris 8 (joint work with Olivier Billet, Orange Labs)

ENS Crypto Seminar — Jan. 15, 2009

Outline

- Code-based Traitor Tracing
 - Collusion Secure Codes
 - Tardos Code supporting Erasure
 - Constant Size Ciphertext
- 2 Pirates 2.0
 - Pirate 2.0 vs. NNL Schemes
 - Pirates 2.0 against Code Based Schemes

Outline

Code-based Traitor Tracing

- Collusion Secure Codes
- Tardos Code supporting Erasure
- Constant Size Ciphertext

2 Pirates 2.0

- Pirate 2.0 vs. NNL Schemes
- Pirates 2.0 against Code Based Schemes

Traitor Tracing

Traitor Tracing

Main Approaches for Constructing Traitor Tracing

Tree based Approach

One of the most famous schemes: Naor-Naor-Lotspiech (2001)

Algebraic Approach

Some schemes: Boneh–Franklin (1999), Boneh–Sahai–Waters (2006), ...

Code-based Approach

Some schemes: Boneh–Shaw 99, Kiayias–Yung 01, Chabanne–Phan–Pointcheval 05, Sirvent 07, ...

Main Approaches for Constructing Traitor Tracing

Tree based Approach

One of the most famous schemes: Naor-Naor-Lotspiech (2001)

Algebraic Approach

Some schemes: Boneh–Franklin (1999), Boneh–Sahai–Waters (2006), ...

Code-based Approach

Some schemes: Boneh–Shaw 99, Kiayias–Yung 01, Chabanne–Phan–Pointcheval 05, Sirvent 07, ...

Collusion secure Codes

Collusion secure Codes

Marking Assumption

At positions where all the traitors get the same bit, the pirate codeword must retain that bit

KGen :						
Tab	ole 0 k _{0,1}	<i>k</i> _{0,2}	<i>k</i> 0,3	<i>k</i> _{0,4}	$k_{0,5}$	 $k_{0,\ell}$
Tab	ble 1 $k_{1,1}$	<i>k</i> _{1,2}	<i>k</i> _{1,3}	<i>k</i> _{1,4}	$k_{1,5}$	 $k_{1,\ell}$
Coc	leword i 1	1	0	1	0	 1

KGen :							
	Table 0	<i>k</i> _{0,1}	<i>k</i> _{0,2}	<i>k</i> 0,3	<i>k</i> _{0,4}	$k_{0,5}$	 $k_{0,\ell}$
	Table 1	<i>k</i> 1,1	<i>k</i> 1,2	<i>k</i> 1,3	<i>k</i> _{1,4}	<i>k</i> 1,5	 $k_{1,\ell}$
	Codeword i	1	1	0	1	0	 1
	user <i>i</i>	<i>k</i> _{1 1}	K1 2	$k_{0,3}$	k_{14}	$k_{0.5}$	 K1 e

KGen :							
	Table 0	<i>k</i> _{0,1}	<i>k</i> _{0,2}	<i>k</i> _{0,3}	<i>k</i> _{0,4}	$k_{0,5}$	 $k_{0,\ell}$
	Table 1	<i>k</i> _{1,1}	<i>k</i> _{1,2}	<i>k</i> _{1,3}	<i>k</i> _{1,4}	$k_{1,5}$	 $k_{1,\ell}$
	Codeword <i>i</i>	1	1	0	1	0	 1
	user <i>i</i>	<i>k</i> _{1,1}	<i>k</i> 1,2	к 0,3	<i>k</i> _{1,4}	<i>k</i> 0,5	 $k_{1,\ell}$
Enc :							
	Message	m_1	m_2	m_3	m₄	m_5	 m_{ℓ}

KGen :							
	Table 0	<i>k</i> _{0,1}	<i>k</i> _{0,2}	<i>k</i> _{0,3}	<i>k</i> _{0,4}	$k_{0,5}$	 $k_{0,\ell}$
	Table 1	<i>k</i> _{1,1}	<i>k</i> _{1,2}	<i>k</i> _{1,3}	<i>k</i> _{1,4}	<i>k</i> _{1,5}	 $k_{1,\ell}$
	Codeword i	1	1	0	1	0	 1
	user <i>i</i>	<i>k</i> _{1,1}	<i>k</i> _{1,2}	<i>k</i> _{0,3}	<i>k</i> _{1,4}	<i>k</i> 0,5	 $k_{1,\ell}$
Enc :							
	Message	m_1	m_2	m_3	m_4	m_5	 m_ℓ
	Ciphertext	<i>C</i> _{0,1}	<i>C</i> _{0,2}	<i>C</i> _{0,3}	<i>C</i> _{0,4}	<i>C</i> _{0,5}	 $c_{0,\ell}$
		C _{1,1}	<i>C</i> _{1,2}	<i>C</i> _{1,3}	<i>C</i> _{1,4}	<i>C</i> _{1,5}	 $c_{1,\ell}$

KGen :								
	Table 0	$k_{0,1}$	$k_{0,2}$	$k_{0,3}$	$k_{0,4}$	$k_{0,5}$		$k_{0,\ell}$
	Table 1	<i>k</i> _{1,1}	<i>k</i> _{1,2}	<i>k</i> _{1,3}	<i>k</i> _{1,4}	<i>k</i> _{1,5}		$k_{1,\ell}$
				•		•		
	Codeword <i>i</i>	1	1	0	1	0	•••	1
	user <i>i</i>	<i>k</i> _{1,1}	<i>k</i> _{1,2}	к 0,3	<i>k</i> _{1,4}	<i>k</i> 0,5		$k_{1,\ell}$
Enc :								
	Message	m_1	m_2	m_3	m_4	m_5		m_ℓ
	Ciphertext	<i>C</i> _{0,1}	<i>C</i> _{0,2}	<i>C</i> _{0,3}	<i>C</i> _{0,4}	<i>C</i> _{0,5}		<i>C</i> _{0,ℓ}
		C _{1,1}	<i>C</i> _{1,2}	<i>C</i> _{1,3}	<i>C</i> _{1,4}	<i>C</i> 1,5		<i>C</i> _{1,ℓ}

Tracing Traitors

- At each position *j*, send c_{0,j} and c_{1,j} corresponding to two different messages m_j and m'_j → v_j → a pirate codeword v
- From tracing algorithm of Secure Code, identify traitors

Pros and Cons

Pros

- Constant ciphertext rate
- Black-box Tracing

Pros and Cons

Pros

- Constant ciphertext rate
- Black-box Tracing

Cons 1

- The pirate may ignore some positions j in order to make the tracing procedure fail
- Solution (Kiayias–Yung): Use an All-or-Nothing Transform

$$M = M_1 || \cdots || M_\ell = AONT(m_1 || \cdots || m_\ell)$$

Pros and Cons

Pros

- Constant ciphertext rate
- Black-box Tracing

Cons 1

- The pirate may ignore some positions j in order to make the tracing procedure fail
- Solution (Kiayias–Yung): Use an All-or-Nothing Transform

$$M = M_1 || \cdots || M_\ell = AONT(m_1 || \cdots || m_\ell)$$

Cons 2

- Ciphertext size is very large, user key is also very large
- With AONT, users need to receive the whole ciphertext to be able to decrypt a single bit of the plaintext

Codes based Approach: Solutions

Sirvent

- Objective: Getting rid of AONT
- Advantage: Progressive Decryption
- Solution: Boneh–Shaw Code supporting erasure

Codes based Approach: Solutions

Sirvent

- Objective: Getting rid of AONT
- Advantage: Progressive Decryption
- Solution: Boneh–Shaw Code supporting erasure

Our Work: achieving constant size ciphertexts

- Encryption: use only some randomly chosen positions from a large code for each ciphertext (Boneh–Naor independently use single positions at CCS'08)
- Construction of Tardos' Code supporting erasure (Boneh–Naor rely on Boneh–Shaw codes supporting erasure)
- About the length of Tardos' Code vs. Boneh–Shaw Code

$O(c^2 \log(n/\epsilon)$ vs. $O(c^4 \log(n/\epsilon))$

Achieving Constant Size Ciphertexts

Choose *u* random positions *r*₁, ..., *r_u* Decompose *SK* = ⊕^{*u*}₁ *k_i* each *k_i* is encrypted using the key at position *r_i*

Constant Size Ciphertexts: Remarks

Perfect Pirate Decoder

The classical tracing procedure works well

Constant Size Ciphertexts: Remarks

Imperfect Pirate Decoder

If the pirate decoder decides to erase its keys at rate α :

- The pirate can decrypt with a probability of $(1 \alpha)^u$
- The classical tracing procedure does not work anymore
- Solution: Collusion Secure Codes supporting Erasure

Pirate

Constructions

Sirvent, Boneh–Naor: Boneh–Shaw Code supporting erasure

- Sirvent, Boneh–Naor: Boneh–Shaw Code supporting erasure
- No known Tardos Code supporting erasure

user 1 user 2 user 3 user 4

- each p_i is randomly chosen relatively close to 0 or 1
- for each user *j*, randomly draw cell w_{jj} :

$$\Pr[w_{ji} = 1] = p_i, \qquad \Pr[w_{ji} = 0] = 1 - p_i$$

- each p_i is randomly chosen relatively close to 0 or 1
- for each user *j*, randomly draw cell w_{jj} :

$$\Pr[w_{ji} = 1] = p_i, \qquad \Pr[w_{ji} = 0] = 1 - p_i$$

- each p_i is randomly chosen relatively close to 0 or 1
- for each user *j*, randomly draw cell w_{jj} :

$$\Pr[w_{ji} = 1] = p_i, \qquad \Pr[w_{ji} = 0] = 1 - p_i$$

- each p_i is randomly chosen relatively close to 0 or 1
- for each user *j*, randomly draw cell w_{jj} :

$$\Pr[w_{ji} = 1] = p_i, \qquad \Pr[w_{ji} = 0] = 1 - p_i$$

- each p_i is randomly chosen relatively close to 0 or 1
- for each user *j*, randomly draw cell w_{jj} :

$$\Pr[w_{ji} = 1] = p_i, \qquad \Pr[w_{ji} = 0] = 1 - p_i$$

- each p_i is randomly chosen relatively close to 0 or 1
- for each user *j*, randomly draw cell w_{jj} :

$$\Pr[w_{ji} = 1] = p_i, \qquad \Pr[w_{ji} = 0] = 1 - p_i$$

Tardos' Secure Code: Tracing

Tracing: Given a codeword v

A user *u* is declared guilty if:

$$f(u, v) = \sum_{i=1}^{\ell} \frac{v_i U_i}{U_i} \ge Z(= 20c \log 1/\epsilon)$$

where:

$$U_i = \begin{cases} \sqrt{\frac{1-p_i}{p_i}} & \text{if } u_i = 1\\ -\sqrt{\frac{p_i}{1-p_i}} & \text{if } u_i = 0 \end{cases}$$

Remark

When $v_i = 1$, the user *u* is more suspicious if $u_i = 1$ and less suspicious otherwise.

Coalition C of c traitors

Strategy for coalitions of c traitors

Produce a codeword v such that

$$S = \sum_{u_j \in \mathcal{C}} f(u_j, \mathbf{v}) = \sum_{i=1}^{\ell} v_i (\sum_{u_j \in \mathcal{C}} U_{ji}) \leq \mathbf{c} \times Z$$

Remark

If $v = 0^{\ell}$ then $f(\mathcal{C}, v) = 0$

However, the pirate cannot produce this codeword At a position, if all traitors receive bit 1, it should retain bit 1

Coalition C of c traitors

$$\mathcal{S} = \sum_{u_j \in \mathcal{C}} f(u_j, \mathbf{v}) = \sum_{i=1}^{\ell} v_i (\sum_{u_j \in \mathcal{C}} U_{ji}) \leq \mathbf{c} \times \mathbf{Z}$$

Tardos shows that:

- For columns where C have both 0 and 1, the choice of v in any C-strategy has a minor effect on the expectation of S *i.e.* the wins and loses almost cancel out
- The increase of S coming from all 1 columns is enough to make S ≤ c × Z with negligible probability:

$$\Pr[S \le c \times Z] \le \epsilon^{c/4}$$

Code length:

$$100c^2 log(n/\epsilon)$$

New Results in Traitor Tracing — Billet and Phan

Double Tardos Code supporting one half erasure

- If in original Tardos' Code, an innocent user is accused with probability *ε*,
- Then in Double Tardos supporting one half erasure, an innocent user is accused with the same probability e

Double Tardos Code supporting one half erasure

- If in original Tardos' Code, an innocent user is accused with probability *ε*,
- Then in Double Tardos supporting one half erasure, an innocent user is accused with the same probability e

Key Fact in Tardos Code

Double Tardos Code supporting one half erasure

- If in original Tardos' Code, an innocent user is accused with probability *ε*,
- Then in Double Tardos supporting one half erasure, an innocent user is accused with the same probability e

Key Fact in Tardos Code

 codewords of users are chosen totally independently from each others

Double Tardos Code supporting one half erasure

- If in original Tardos' Code, an innocent user is accused with probability *ε*,
- Then in Double Tardos supporting one half erasure, an innocent user is accused with the same probability e

Key Fact in Tardos Code

- codewords of users are chosen totally independently from each others
- one can consider that the pirate codeword v is fixed before the codeword of an innocent user is selected

Double Tardos Code supporting one half erasure

- If in original Tardos' Code, an innocent user is accused with probability *ε*,
- Then in Double Tardos supporting one half erasure, an innocent user is accused with the same probability e

Key Fact in Tardos Code

- codewords of users are chosen totally independently from each others
- one can consider that the pirate codeword v is fixed before the codeword of an innocent user is selected
- Tardos: "not only is the overall probability of the event j ∈ σ(ρ(C)) bounded by ε, but conditioned on any set of values p_i and v, the probability of j ∈ σ(y) is bounded by ε"

Strategy of Pirate

- If the pirate erases a position where he has both 0 and 1, he does not take advantage from the erasure. He can simply put 0 for that position in the pirate codeword
- The real problem comes from the fact that the pirate can erase positions at all 1 columns!

Strategy of Pirate

- If the pirate erases a position where he has both 0 and 1, he does not take advantage from the erasure. He can simply put 0 for that position in the pirate codeword
- The real problem comes from the fact that the pirate can erase positions at all 1 columns!

Solution to the erasure of all 1 columns

Strategy of Pirate

- If the pirate erases a position where he has both 0 and 1, he does not take advantage from the erasure. He can simply put 0 for that position in the pirate codeword
- The real problem comes from the fact that the pirate can erase positions at all 1 columns!

Solution to the erasure of all 1 columns

• Putting many *fake all* 1 *columns* in the code, at random positions k: $p_k = 1$

Strategy of Pirate

- If the pirate erases a position where he has both 0 and 1, he does not take advantage from the erasure. He can simply put 0 for that position in the pirate codeword
- The real problem comes from the fact that the pirate can erase positions at all 1 columns!

Solution to the erasure of all 1 columns

- Putting many *fake all* 1 *columns* in the code, at random positions k: $p_k = 1$
- The adversary cannot distinguish a real all 1 column from a fake all 1 column

Strategy of Pirate

- If the pirate erases a position where he has both 0 and 1, he does not take advantage from the erasure. He can simply put 0 for that position in the pirate codeword
- The real problem comes from the fact that the pirate can erase positions at all 1 columns!

Solution to the erasure of all 1 columns

- Putting many *fake all* 1 *columns* in the code, at random positions k: $p_k = 1$
- The adversary cannot distinguish a real all 1 column from a fake all 1 column
- Erasing half of all 1 columns, there still remain one half of real all 1 columns

Tardos' Code supporting erasure of rate 1/4

Code of four times the length of a normal Tardos' Code

- Two normal Tardos' Codes
- Two fake Tardos Codes of all 1 columns, randomly incorporated in the above two normal Tardos Codes

Tardos' Code supporting erasure of rate 1/4

Code of four times the length of a normal Tardos' Code

- Two normal Tardos' Codes
- Two fake Tardos Codes of all 1 columns, randomly incorporated in the above two normal Tardos Codes

Tardos' Code supporting erasure of rate 1/4

Analysis

- Erasing 1/4, at least one normal Tardos Code remains ⇒ sufficient to prevent innocent people from being accused
- Erasing 1/4 implies erasing less than one half of all 1 columns
- As pirate cannot distinguish between fake all 1 columns and normal all 1 columns, the remaining normal all 1 columns suffice to accuse traitors as in original Tardos' Code

Recall our Scheme

Remark

With an erasure rate of 1/4, a pirate has only a probability of $(3/4)^u$ of successfully decrypting ciphertexts

Comparison between schemes

Schemes	User key size	Ciphertext size	Enc time	Dec time
BF99	<i>O</i> (1)	<i>O</i> (<i>c</i>)	<i>O</i> (<i>c</i>) exp	$O(c) \exp$
BSW06	<i>O</i> (1)	\sqrt{N}	$O(\sqrt{N}) \exp(\sqrt{N})$	<i>O</i> (1) p/r
NNL01	$O(\log^2(N))$	<i>O</i> (<i>r</i>)	$O(\log(n))$	<i>O</i> (1)
BN08	$O(c^4 \log(N/\epsilon))$	<i>O</i> (1)	<i>O</i> (1)	<i>O</i> (1)
Ours	$O(c^2 \log(N/\epsilon))$	<i>O</i> (1)	<i>O</i> (1)	<i>O</i> (1)

Figure: Comparison between schemes

Outline

Code-based Traitor Tracing
 Collusion Secure Codes
 Tardos Code supporting Erasure
 Constant Size Ciphertext

2 Pirates 2.0

Pirate 2.0 vs. NNL Schemes

Pirates 2.0 against Code Based Schemes

Collusion in Classical Model

Fact Each user contributes its whole key Traitors should trust each other

Pirates 2.0: Traitors Collaborating in Public

Principle

Each traitor contributes a partial or derived information

Pirates 2.0: Traitors Collaborating in Public

Anonymity level of a traitor

Number of users in system that share traitor's contributed material

Practical Impact of Pirates 2.0

Collusion size

- Traitors do not need to trust someone
- Guaranteed anonymity is a big incentive to contribute secrets
- Even partial information extracted from tamper resistant or obfuscated decoders can be useful

Practical Impact of Pirates 2.0

Static vs. Adaptative

- The classical model of pirate is static: coalitions consist of randomly drawn decoders
- In a Pirates 2.0 attacks,

traitors can contribute information adaptatively

Practical Impact of Pirates 2.0

Application

- In the 2.0 internet, a server collects the traitors' contributions
- Any client of the server can produce a pirate decoder
- Dynamic coalitions: traitors only contribute missing pieces ⇒ no need for centralized server, peer-to-peer is OK

New Results in Traitor Tracing - Billet and Phan

Classical assumption for tracing

On input a valid ciphertext, pirate decoder "should" return the correct plaintext, otherwise it is useless

Classical assumption for tracing

On input a valid ciphertext, pirate decoder "should" return the correct plaintext, otherwise it is useless

Reasonable in classical model

As soon as a pirate collects a key, he is able decrypt all valid ciphertexts

Classical assumption for tracing

On input a valid ciphertext, pirate decoder "should" return the correct plaintext, otherwise it is useless

Reasonable in classical model

As soon as a pirate collects a key, he is able decrypt all valid ciphertexts

In Pirates 2.0

Do not assume perfect decoders and classical tracing may fail Does it mean pirate decoders are useless? Not really, example:

- Pirate decoder can't decrypt ciphertexts with headers > 1 Go
- It can decrypt any ciphertext with headers of size < 1 Go

NNL01: Subset Cover Framework

Idea

- To revoke a set R of users, partition the remaining users into subsets from some predetermined collection
- Encrypt for each subset separately

Framework

Predetermined collection of subsets

$$S_1, S_2, \cdots, S_w$$
 ($S_i \subseteq N$)

Each subset S_i is associated with a long-lived key L_i

A user $u \in S_j$ must be able to derive L_j from its secret information I_u

NNL01: Subset Cover Framework

Encryption

Given a revoked set *R*, the non-revoked users $N \setminus R$ are partitioned into *m* disjoint subsets $S_{i_1}, S_{i_2}, ..., S_{i_m}$

$$N \setminus R = \bigcup S_{i_j}$$

• a session key *K* is encrypted *m* times with $L_{i_1}, L_{i_2}, \dots, L_{i_m}$.

Defining Subsets: Complete Subtree

Each subset at node *i* contains all leaves in the subtree of node *i*

New Results in Traitor Tracing - Billet and Phan

Defining Subsets: Subset Difference

Each subset corresponds to a pair of nodes (i, j), where *j* is in the subtree rooted at *i* $S_{i,j}$ contains all leaves in the subtree of node *i* but NOT in the

subtree of node *j*

General Attack Strategy against Subset-Cover

Main Idea

Select a collection of subsets S_{x_1}, \ldots, S_{x_t} such that:

The number of users in each subset S_{x_k} is large \Rightarrow the anonymity level of the traitors is guaranteed

General Attack Strategy against Subset-Cover

Main Idea

Select a collection of subsets S_{x_1}, \ldots, S_{x_t} such that:

- The number of users in each subset S_{x_k} is large \Rightarrow the anonymity level of the traitors is guaranteed
- For any set R of revoked users and any method used by the broadcaster to partition

$$\mathsf{N}\setminus \mathsf{R}=\mathcal{S}_{i_1}\cup\cdots\cup\mathcal{S}_{i_m}$$

the probability that one of the subsets S_{x_k} belongs to the partition S_{i_1}, \ldots, S_{i_m} is high

Subset Difference: Key Assignment

Key Assignment

- Red: all nodes on the road from the user to the root
- Blue: all node hang-off the red road
- Label: from a red node to blue nodes in the subtree rooted at the red one

Remark on Key Assignment

- Red: all nodes on the road from the user to the root
- Blue: all node hang-off the red road
- Label: from a red node to blue nodes in the subtree rooted at the red one

Pirates 2.0 against to Subset Difference

Strategy of Pirates 2.0

Fix some level ρ

Pirates 2.0 against to Subset Difference

Strategy of Pirates 2.0

- Fix some level p
- A traitor only contributes a label *L_{i,j}* when:
 - *i* is below or at level ρ
 - j is a direct descendant of i
- A revoked user can also contribute! Helps maintaining a high level of anonymity for contributors

Pirates 2.0 against to Subset Difference

Strategy of Pirates 2.0

- Fix some level p
- A traitor only contributes a label *L_{i,j}* when:
 - *i* is below or at level ρ
 - j is a direct descendant of i
- A revoked user can also contribute! Helps maintaining a high level of anonymity for contributors

Lower bound for the number of subsets

- The broadcaster should use subsets S_{i,j} where i is below ρ in order to thwart Pirates 2.0
- Each subset $S_{i,j}$ covers less than the number of leaves in the subtree rooted at *i*, i.e., less than $N/2^{\rho}$ users

Lower bound for the number of subsets

- The broadcaster should use subsets S_{i,j} where i is below ρ in order to thwart Pirates 2.0
- Each subset $S_{i,j}$ covers less than the number of leaves in the subtree rooted at *i*, i.e., less than $N/2^{\rho}$ users
- To cover $N \setminus R$ users, the broadcaster has to use at least $2^{\rho}(N R/N)$ subsets
- If there is less than half of the users revoked, the number of subsets to be used is greater than 2^{ρ-1}

A Concrete Example

In the classical setting, covering 2³² users

- A set of ρ log(ρ) randomly chosen traitors can decrypt all ciphertexts of rate less than 2^{ρ-1}
- Anonymity level for each traitor: 2^{32-ρ}

A Concrete Example

In the classical setting, covering 2³² users

 A set of ρ log(ρ) randomly chosen traitors can decrypt all ciphertexts of rate less than 2^{ρ-1}

■ Anonymity level for each traitor: 2^{32-ρ}

- ρ = 10: 10000 traitors (1000 in adaptative attacks) can decrypt all ciphertexts with headers of size less than 128 Mb
- Each traitor is guaranteed an anonymity level of 2²² (each traitor is covered by 4 millions users)

Pirates 2.0 against Code Based Schemes

Main idea

Each user only contributes its sub-keys at some positions

New Results in Traitor Tracing - Billet and Phan

Pirates 2.0 against Code Based Schemes

Example for Tardos' Code

For a 30-collusion secure code with 2³² users

- about 100000 traitors
- mount a Pirates 2.0 attack, each traitor would be masked by thousands of users

Conclusion: Variations on Pirates 2.0

Open problems

- Modification of tree-based and code-based schemes resisting to Pirates 2.0
- Pirates 2.0 attacks against algebraic schemes?