An Efficient Traitor Tracing Scheme
and
Pirates 2.0

Duong Hieu Phan, Paris 8
(joint work with Olivier Billet, Orange Labs)

ENS Crypto Seminar — Jan. 15, 2009
Outline

1. Code-based Traitor Tracing
 - Collusion Secure Codes
 - Tardos Code supporting Erasure
 - Constant Size Ciphertext

2. Pirates 2.0
 - Pirate 2.0 vs. NNL Schemes
 - Pirates 2.0 against Code Based Schemes
Outline

1. Code-based Traitor Tracing
 - Collusion Secure Codes
 - Tardos Code supporting Erasure
 - Constant Size Ciphertext

2. Pirates 2.0
 - Pirate 2.0 vs. NNL Schemes
 - Pirates 2.0 against Code Based Schemes
New Results in Traitor Tracing — Billet and Phan

ENS Crypto Seminar — Jan. 15, 2009

4/38
Main Approaches for Constructing Traitor Tracing

Tree based Approach
One of the most famous schemes: Naor–Naor–Lotspiech (2001)

Algebraic Approach

Code-based Approach
Main Approaches for Constructing Traitor Tracing

<table>
<thead>
<tr>
<th>Approach</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tree based Approach</td>
<td>One of the most famous schemes: Naor–Naor–Lotspiech (2001)</td>
</tr>
<tr>
<td>Algebraic Approach</td>
<td>Some schemes: Boneh–Franklin (1999), Boneh–Sahai–Waters (2006), ...</td>
</tr>
<tr>
<td>Code-based Approach</td>
<td>Some schemes: Boneh–Shaw 99, Kiayias–Yung 01, Chabanne–Phan–Pointcheval 05, Sirvent 07, ...</td>
</tr>
</tbody>
</table>
Collusion secure Codes

Traitor 1

\[
\begin{array}{cccccccccccccc}
1 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 1 \\
\end{array}
\]

\[
\begin{array}{cccccccccccccc}
0 & 0 & 1 & 0 & 0 \\
\end{array}
\]

Traitor 2

\[
\begin{array}{cccccccccccccc}
1 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 1 \\
\end{array}
\]

\[
\begin{array}{cccccccccccccc}
0 & 0 & 1 & 0 & 1 \\
\end{array}
\]

Traitor 3

\[
\begin{array}{cccccccccccccc}
1 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 1 \\
\end{array}
\]

\[
\begin{array}{cccccccccccccc}
1 & 0 & 1 & 0 & 0 \\
\end{array}
\]

Marking Assumption

At positions where all the traitors get the same bit, the pirate codeword must retain that bit.
Collusion secure Codes

<table>
<thead>
<tr>
<th></th>
<th>Traitor 1</th>
<th>Traitor 2</th>
<th>Traitor 3</th>
<th>Pirate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 0 1 0 1 1 1 0 1 0 1 1 1 0 0 1 ...</td>
<td>1 0 1 0 1 0 1 1 0 1 1 0 0 0 1 ...</td>
<td>1 0 1 0 1 0 1 1 0 1 1 0 0 0 1 ...</td>
<td>1 0 1 0 1 1 0 1 1 0 0 1 ...</td>
</tr>
<tr>
<td></td>
<td>0 0 0 1 0 0</td>
<td>0 0 1 0 1</td>
<td>1 0 1 0 0</td>
<td></td>
</tr>
</tbody>
</table>

Marking Assumption

At positions where all the traitors get the same bit, the pirate codeword must retain that bit.
From Collusion Secure Codes to Traitor Tracing

KGen:

Table 0

<table>
<thead>
<tr>
<th>Table 0</th>
<th>k_{0,1}</th>
<th>k_{0,2}</th>
<th>k_{0,3}</th>
<th>k_{0,4}</th>
<th>k_{0,5}</th>
<th>...</th>
<th>k_{0,\ell}</th>
</tr>
</thead>
<tbody>
<tr>
<td>k_{1,1}</td>
<td>k_{1,2}</td>
<td>k_{1,3}</td>
<td>k_{1,4}</td>
<td>k_{1,5}</td>
<td>...</td>
<td></td>
<td>k_{1,\ell}</td>
</tr>
</tbody>
</table>

Table 1
From Collusion Secure Codes to Traitor Tracing

KGen:

Table 0

<table>
<thead>
<tr>
<th>k₀,₁</th>
<th>k₀,₂</th>
<th>k₀,₃</th>
<th>k₀,₄</th>
<th>k₀,₅</th>
<th>...</th>
<th>k₀,ℓ</th>
</tr>
</thead>
<tbody>
<tr>
<td>k₁,₁</td>
<td>k₁,₂</td>
<td>k₁,₃</td>
<td>k₁,⁴</td>
<td>k₁,⁵</td>
<td>...</td>
<td>k₁,ℓ</td>
</tr>
</tbody>
</table>

Table 1

| Codeword i | 1 | 1 | 0 | 1 | 0 | ... | 1 |

Tracing Traitors

At each position j, send $c₀,j$ and $c₁,j$ corresponding to two different messages m_j and $m_j′$ → v_j → a pirate codeword

From tracing algorithm of Secure Code, identify traitors
KGen:

<table>
<thead>
<tr>
<th>Codeword i</th>
<th>1</th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>...</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>user i</td>
<td>$k_{1,1}$</td>
<td>$k_{1,2}$</td>
<td>$k_{0,3}$</td>
<td>$k_{1,4}$</td>
<td>$k_{0,5}$</td>
<td>...</td>
<td>$k_{1,\ell}$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 0</th>
<th>$k_{0,1}$</th>
<th>$k_{0,2}$</th>
<th>$k_{0,3}$</th>
<th>$k_{0,4}$</th>
<th>$k_{0,5}$</th>
<th>...</th>
<th>$k_{0,\ell}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1</td>
<td>$k_{1,1}$</td>
<td>$k_{1,2}$</td>
<td>$k_{1,3}$</td>
<td>$k_{1,4}$</td>
<td>$k_{1,5}$</td>
<td>...</td>
<td>$k_{1,\ell}$</td>
</tr>
</tbody>
</table>

Enc:

<table>
<thead>
<tr>
<th>Message m_1</th>
<th>m_2</th>
<th>m_3</th>
<th>m_4</th>
<th>m_5</th>
<th>...</th>
<th>m_ℓ</th>
</tr>
</thead>
</table>

Tracing Traitors

At each position j, send $c_{0,j}$ and $c_{1,j}$ corresponding to two different messages m_j and m_j'. $c_j \rightarrow v_j \rightarrow a$ pirate codeword v

From tracing algorithm of Secure Code, identify traitors.
KGen:

<table>
<thead>
<tr>
<th>Table 0</th>
<th>Table 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>$k_{0,1}$</td>
<td>$k_{1,1}$</td>
</tr>
<tr>
<td>$k_{0,2}$</td>
<td>$k_{1,2}$</td>
</tr>
<tr>
<td>$k_{0,3}$</td>
<td>$k_{1,3}$</td>
</tr>
<tr>
<td>$k_{0,4}$</td>
<td>$k_{1,4}$</td>
</tr>
<tr>
<td>$k_{0,5}$</td>
<td>$k_{1,5}$</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>$k_{0,\ell}$</td>
<td>$k_{1,\ell}$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Codeword i</th>
<th>user i</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 0 1 0 ... 1</td>
<td></td>
</tr>
<tr>
<td>$k_{1,1}$</td>
<td>$k_{1,2}$</td>
</tr>
<tr>
<td>$k_{0,3}$</td>
<td>$k_{1,4}$</td>
</tr>
<tr>
<td>$k_{0,5}$</td>
<td>...</td>
</tr>
<tr>
<td>$k_{1,\ell}$</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>m_1</td>
</tr>
</tbody>
</table>
From Collusion Secure Codes to Traitor Tracing

KGen:

<table>
<thead>
<tr>
<th>Codeword i</th>
<th>user i</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 0

<table>
<thead>
<tr>
<th>$k_{0,1}$</th>
<th>$k_{0,2}$</th>
<th>$k_{0,3}$</th>
<th>$k_{0,4}$</th>
<th>$k_{0,5}$</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>$k_{1,1}$</td>
<td>$k_{1,2}$</td>
<td>$k_{1,3}$</td>
<td>$k_{1,4}$</td>
<td>$k_{1,5}$</td>
<td>...</td>
</tr>
</tbody>
</table>

Table 1

<table>
<thead>
<tr>
<th>$c_{0,1}$</th>
<th>$c_{0,2}$</th>
<th>$c_{0,3}$</th>
<th>$c_{0,4}$</th>
<th>$c_{0,5}$</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>$c_{1,1}$</td>
<td>$c_{1,2}$</td>
<td>$c_{1,3}$</td>
<td>$c_{1,4}$</td>
<td>$c_{1,5}$</td>
<td>...</td>
</tr>
</tbody>
</table>

Enc:

<table>
<thead>
<tr>
<th>Message</th>
<th>Ciphertext</th>
</tr>
</thead>
<tbody>
<tr>
<td>m_1</td>
<td>$c_{0,1}$</td>
</tr>
<tr>
<td>m_2</td>
<td>$c_{0,2}$</td>
</tr>
<tr>
<td>m_3</td>
<td>$c_{0,3}$</td>
</tr>
<tr>
<td>m_4</td>
<td>$c_{0,4}$</td>
</tr>
<tr>
<td>m_5</td>
<td>$c_{0,5}$</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>m_ℓ</td>
<td>$c_{0,\ell}$</td>
</tr>
</tbody>
</table>

Tracing Traitors

At each position j, send $c_{0,j}$ and $c_{1,j}$ corresponding to two different messages m_j and m_j'. From tracing algorithm of Secure Code, identify traitors.

New Results in Traitor Tracing — Billet and Phan

ENS Crypto Seminar — Jan. 15, 2009
From Collusion Secure Codes to Traitor Tracing

KGen:

<table>
<thead>
<tr>
<th>Table 0</th>
<th>Table 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>$k_{0,1}$, $k_{0,2}$, $k_{0,3}$, $k_{0,4}$, $k_{0,5}$, ... $k_{0,\ell}$</td>
<td>$k_{1,1}$, $k_{1,2}$, $k_{1,3}$, $k_{1,4}$, $k_{1,5}$, ... $k_{1,\ell}$</td>
</tr>
</tbody>
</table>

Enc:

<table>
<thead>
<tr>
<th>Codeword i</th>
<th>user i</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 1, 0, 1, 0, ... 1</td>
<td>$k_{1,1}$, $k_{1,2}$, $k_{0,3}$, $k_{1,4}$, $k_{0,5}$, ... $k_{1,\ell}$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Message</th>
<th>Ciphertext</th>
</tr>
</thead>
<tbody>
<tr>
<td>m_1, m_2, m_3, m_4, m_5, ... m_ℓ</td>
<td>$c_{0,1}$, $c_{0,2}$, $c_{0,3}$, $c_{0,4}$, $c_{0,5}$, ... $c_{0,\ell}$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ciphertext</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$c_{1,1}$, $c_{1,2}$, $c_{1,3}$, $c_{1,4}$, $c_{1,5}$, ... $c_{1,\ell}$</td>
<td></td>
</tr>
</tbody>
</table>

Tracing Traitors

- At each position j, send $c_{0,j}$ and $c_{1,j}$ corresponding to **two different messages** m_j and m'_j → v_j → a pirate codeword v
- From tracing algorithm of Secure Code, identify traitors
Pros and Cons

Pros

- Constant ciphertext rate
- Black-box Tracing

Cons 1

The pirate may ignore some positions j in order to make the tracing procedure fail.

Solution (Kiayias–Yung): Use an All-or-Nothing Transform $M = M_1 \| \cdots \| M_\ell = \text{AONT}(m_1 \| \cdots \| m_\ell)$

Cons 2

Ciphertext size is very large, user key is also very large.

With AONT, users need to receive the whole ciphertext to be able to decrypt a single bit of the plaintext.
Pros and Cons

Pros

- Constant ciphertext *rate*
- Black-box Tracing

Cons 1

- The pirate may ignore some positions j in order to make the tracing procedure fail
- Solution (Kiayias–Yung): Use an All-or-Nothing Transform

$$M = M_1 \| \cdots \| M_\ell = AONT(m_1 \| \cdots \| m_\ell)$$
Pros and Cons

Pros
- Constant ciphertext rate
- Black-box Tracing

Cons 1
- The pirate may ignore some positions \(j \) in order to make the tracing procedure fail
- Solution (Kiayias–Yung): Use an All-or-Nothing Transform

\[M = M_1 || \cdots || M_\ell = AONT(m_1 || \cdots || m_\ell) \]

Cons 2
- Ciphertext size is very large, user key is also very large
- With AONT, users need to receive the whole ciphertext to be able to decrypt a single bit of the plaintext
Sirvent

- Objective: Getting rid of AONT
- Advantage: Progressive Decryption
- Solution: Boneh–Shaw Code supporting erasure
Codes based Approach: Solutions

Sirvent

- Objective: Getting rid of AONT
- Advantage: Progressive Decryption
- Solution: Boneh–Shaw Code supporting erasure

Our Work: achieving constant size ciphertexts

- Encryption: use only some randomly chosen positions from a large code for each ciphertext (Boneh–Naor independently use single positions at CCS’08)
- Construction of Tardos’ Code supporting erasure (Boneh–Naor rely on Boneh–Shaw codes supporting erasure)
- About the length of Tardos’ Code vs. Boneh–Shaw Code

\[O(c^2 \log(n/\epsilon)) \text{ vs. } O(c^4 \log(n/\epsilon)) \]
Achieving Constant Size Ciphertexts

Choose u random positions r_1, \cdots, r_u

Decompose $SK = \bigoplus_{i=1}^{u} k_i$

each k_i is encrypted using the key at position r_i
Perfect Pirate Decoder

The classical tracing procedure works well
Imperfect Pirate Decoder

If the pirate decoder decides to erase its keys at rate α:

- The pirate can decrypt with a probability of $(1 - \alpha)^u$
- The classical tracing procedure does not work anymore
- Solution: Collusion Secure Codes supporting Erasure
Codes Supporting Erasure

Traitor 1	1 0 1 0 1 1 1 0 1 0 1 1 1 0 0 1	...	1 0 1 0 0
Traitor 2	1 0 1 0 1 0 1 1 0 1 1 0 0 0 1	...	1 0 1 0 1
Traitor 3	1 0 1 0 1 0 1 1 0 1 1 0 0 0 1	...	1 0 1 0 0
Codes Supporting Erasure

<table>
<thead>
<tr>
<th>Traitor 1</th>
<th>1 0 1 0 1 1 0 1 0 1 1 1 0 0 1</th>
<th>...</th>
<th>0 0 1 0 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traitor 2</td>
<td>1 0 1 0 1 0 1 1 0 1 1 0 0 0 1</td>
<td>...</td>
<td>0 0 1 0 1</td>
</tr>
<tr>
<td>Traitor 3</td>
<td>1 0 1 0 1 0 1 1 0 1 1 0 0 0 1</td>
<td>...</td>
<td>1 0 1 0 0</td>
</tr>
<tr>
<td>Pirate</td>
<td>1 0 1 0 1 1</td>
<td>1 0 1 1</td>
<td>0 0 1</td>
</tr>
</tbody>
</table>

New Results in Traitor Tracing — Billet and Phan

ENS Crypto Seminar — Jan. 15, 2009
Codes Supporting Erasure

<table>
<thead>
<tr>
<th></th>
<th>Traitor 1</th>
<th>Traitor 2</th>
<th>Traitor 3</th>
<th>Pirate</th>
<th>P. Eras</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Constructions

- Sirvent, Boneh–Naor: Boneh–Shaw Code supporting erasure
Codes Supporting Erasure

<table>
<thead>
<tr>
<th>Trait</th>
<th>Sequence</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1 0 1 0 1 1 0 1 0 1 1 1 0 0 1 ··· 0 0 1 0 0</td>
<td>0 0 1 0 0</td>
</tr>
<tr>
<td>2</td>
<td>1 0 1 0 1 0 1 1 0 1 1 0 0 0 1 ··· 0 0 1 0 1</td>
<td>0 0 1 0 1</td>
</tr>
<tr>
<td>3</td>
<td>1 0 1 0 1 0 1 1 0 1 1 0 0 0 1 ··· 1 0 1 0 0</td>
<td>1 0 1 0 0</td>
</tr>
<tr>
<td>Pirate</td>
<td>1 0 1 0 1 1 0 1 1 0 0 1 ··· 0 1 0</td>
<td>0 1 0</td>
</tr>
<tr>
<td>P. Eras</td>
<td>1 0 0 1 1 0 0 1 ··· 0 1 0</td>
<td>0 1 0</td>
</tr>
</tbody>
</table>

Constructions
- Sirvent, Boneh–Naor: Boneh–Shaw Code supporting erasure
- No known Tardos Code supporting erasure
Tardos’ Secure Code

Construction

user 1
user 2
user 3
user 4
Tardos’ Secure Code

Construction

- each p_i is randomly chosen relatively close to 0 or 1
- for each user j, randomly draw cell w_{ji}:

$$\Pr[w_{ji} = 1] = p_i, \quad \Pr[w_{ji} = 0] = 1 - p_i$$
Tardos’ Secure Code

<table>
<thead>
<tr>
<th>p_1</th>
<th>p_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Construction

- Each p_i is randomly chosen relatively close to 0 or 1.
- For each user j, randomly draw cell w_{ji}:

$$\Pr[w_{ji} = 1] = p_i, \quad \Pr[w_{ji} = 0] = 1 - p_i$$
Tardos’ Secure Code

<table>
<thead>
<tr>
<th></th>
<th>p_1</th>
<th>p_2</th>
<th>p_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>user 1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>user 2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>user 3</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>user 4</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Construction

- Each p_i is **randomly chosen** relatively close to 0 or 1
- For each user j, randomly draw cell w_{ji}:

 \[
 \Pr[w_{ji} = 1] = p_i, \quad \Pr[w_{ji} = 0] = 1 - p_i
 \]
Tardos’ Secure Code

<table>
<thead>
<tr>
<th></th>
<th>p_1</th>
<th>p_2</th>
<th>p_3</th>
<th>p_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>user 1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>user 2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>user 3</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>user 4</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Construction

- each p_i is **randomly chosen** relatively close to 0 or 1
- for each user j, randomly draw cell w_{ji}:

$$\Pr[w_{ji} = 1] = p_i, \quad \Pr[w_{ji} = 0] = 1 - p_i$$
Construction

- Each p_i is randomly chosen relatively close to 0 or 1.
- For each user j, randomly draw cell w_{ji}:

\[
\Pr[w_{ji} = 1] = p_i, \quad \Pr[w_{ji} = 0] = 1 - p_i
\]
Tardos’ Secure Code

<table>
<thead>
<tr>
<th></th>
<th>p_1</th>
<th>p_2</th>
<th>p_3</th>
<th>p_4</th>
<th>p_5</th>
<th>...</th>
<th>p_ℓ</th>
</tr>
</thead>
<tbody>
<tr>
<td>user 1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>...</td>
<td>1</td>
</tr>
<tr>
<td>user 2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>...</td>
<td>1</td>
</tr>
<tr>
<td>user 3</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>...</td>
<td>0</td>
</tr>
<tr>
<td>user 4</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>...</td>
<td>1</td>
</tr>
</tbody>
</table>

Construction

- each p_i is **randomly chosen** relatively close to 0 or 1
- for each user j, randomly draw cell w_{ji}:

\[
\Pr[w_{ji} = 1] = p_i, \quad \Pr[w_{ji} = 0] = 1 - p_i
\]
Tracing: Given a codeword ν

A user u is declared guilty if:

$$f(u, \nu) = \sum_{i=1}^{\ell} \nu_i U_i \geq Z = 20c \log \frac{1}{\epsilon}$$

where:

$$U_i = \begin{cases}
\sqrt{\frac{1-p_i}{p_i}} & \text{if } u_i = 1 \\
-\sqrt{\frac{p_i}{1-p_i}} & \text{if } u_i = 0
\end{cases}$$

Remark

When $\nu_i = 1$, the user u is more suspicious if $u_i = 1$ and less suspicious otherwise.
Coalition \mathcal{C} of c traitors

Strategy for coalitions of c traitors

Produce a codeword ν such that

$$S = \sum_{u_j \in \mathcal{C}} f(u_j, \nu) = \sum_{i=1}^{\ell} v_i \left(\sum_{u_j \in \mathcal{C}} U_{ji} \right) \leq c \times Z$$

Remark

- If $\nu = 0^\ell$ then $f(\mathcal{C}, \nu) = 0$
- However, the pirate cannot produce this codeword
 At a position, if all traitors receive bit 1, it should retain bit 1
Coalition C of c traitors

$$S = \sum_{u_j \in C} f(u_j, \nu) = \sum_{i=1}^{\ell} v_i \left(\sum_{u_j \in C} U_{ji} \right) \leq c \times Z$$

Tardos shows that:

- For columns where C have both 0 and 1, the choice of ν in any C-strategy has a minor effect on the expectation of S, i.e. the wins and loses almost cancel out.

- The increase of S coming from all 1 columns is enough to make $S \leq c \times Z$ with negligible probability:

$$\Pr[S \leq c \times Z] \leq \epsilon^{c/4}$$

- Code length:

$$100c^2 \log(n/\epsilon)$$
Tardos’ Code supporting erasure: Innocent users

Double Tardos Code supporting one half erasure

- If in original Tardos’ Code, an innocent user is accused with probability ϵ,
- Then in *Double Tardos supporting one half erasure*, an innocent user is accused with the same probability ϵ
Tardos’ Code supporting erasure: Innocent users

Double Tardos Code supporting one half erasure

- If in original Tardos’ Code, an innocent user is accused with probability ϵ,
- Then in Double Tardos supporting one half erasure, an innocent user is accused with the same probability ϵ

Key Fact in Tardos Code
Tardos’ Code supporting erasure: Innocent users

Double Tardos Code supporting one half erasure

- If in original Tardos’ Code, an innocent user is accused with probability ϵ,
- Then in *Double Tardos supporting one half erasure*, an innocent user is accused with the same probability ϵ.

Key Fact in Tardos Code

- Codewords of users are chosen totally independently from each other.
Tardos’ Code supporting erasure: Innocent users

Double Tardos Code supporting one half erasure

- If in original Tardos’ Code, an innocent user is accused with probability \(\epsilon \),
- Then in Double Tardos supporting one half erasure, an innocent user is accused with the same probability \(\epsilon \)

Key Fact in Tardos Code

- codewords of users are chosen totally independently from each others
- one can consider that the pirate codeword \(v \) is fixed before the codeword of an innocent user is selected
Tardos’ Code supporting erasure: Innocent users

Double Tardos Code supporting one half erasure

- If in original Tardos’ Code, an innocent user is accused with probability ϵ,
- Then in Double Tardos supporting one half erasure, an innocent user is accused with the same probability ϵ

Key Fact in Tardos Code

- codewords of users are chosen totally independently from each others
- one can consider that the pirate codeword v is fixed before the codeword of an innocent user is selected
- Tardos: “not only is the overall probability of the event $j \in \sigma(\rho(C))$ bounded by ϵ, but conditioned on any set of values p_i and v, the probability of $j \in \sigma(y)$ is bounded by ϵ”
Tardos’ Code supporting erasure: Tracing traitors

Strategy of Pirate

- If the pirate erases a position where he has both 0 and 1, he does not take advantage from the erasure. He can simply put 0 for that position in the pirate codeword.

- The real problem comes from the fact that the pirate can erase positions at all 1 columns!
Tardos’ Code supporting erasure: Tracing traitors

Strategy of Pirate

- If the pirate erases a position where he has both 0 and 1, he does not take advantage from the erasure. He can simply put 0 for that position in the pirate codeword.
- The real problem comes from the fact that the pirate can erase positions at all 1 columns!

Solution to the erasure of all 1 columns
Tardos’ Code supporting erasure: Tracing traitors

Strategy of Pirate

- If the pirate erases a position where he has both 0 and 1, he does not take advantage from the erasure. He can simply put 0 for that position in the pirate codeword.
- The real problem comes from the fact that the pirate can erase positions at all 1 columns!

Solution to the erasure of all 1 columns

- Putting many \textit{fake all 1 columns} in the code, at random positions k: $p_k = 1$
Tardos’ Code supporting erasure: Tracing traitors

Strategy of Pirate

- If the pirate erases a position where he has both 0 and 1, he does not take advantage from the erasure. He can simply put 0 for that position in the pirate codeword.
- The real problem comes from the fact that the pirate can erase positions at all 1 columns!

Solution to the erasure of all 1 columns

- Putting many fake all 1 columns in the code, at random positions k: $p_k = 1$
- The adversary cannot distinguish a real all 1 column from a fake all 1 column.
Strategy of Pirate

- If the pirate erases a position where he has both 0 and 1, he does not take advantage from the erasure. He can simply put 0 for that position in the pirate codeword.
- The real problem comes from the fact that the pirate can erase positions at all 1 columns!

Solution to the erasure of all 1 columns

- Putting many *fake all 1 columns* in the code, at random positions k: $p_k = 1$
- The adversary cannot distinguish a real all 1 column from a fake all 1 column
- Erasing half of all 1 columns, there still remain one half of real all 1 columns
Tardos’ Code supporting erasure of rate 1/4

<table>
<thead>
<tr>
<th>1 0 1 0</th>
<th>0 1 0 0</th>
<th>1 1 1 1</th>
<th>1 1 1 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 0 1</td>
<td>1 1 0 0</td>
<td>1 1 1 1</td>
<td>1 1 1 1</td>
</tr>
<tr>
<td>0 0 1 0</td>
<td>1 1 1 0</td>
<td>1 1 1 1</td>
<td>1 1 1 1</td>
</tr>
<tr>
<td>0 1 1 0</td>
<td>0 1 0 0</td>
<td>1 1 1 1</td>
<td>1 1 1 1</td>
</tr>
</tbody>
</table>

Code of four times the length of a normal Tardos’ Code

- Two normal Tardos’ Codes
- Two **fake** Tardos Codes of all 1 columns, randomly incorporated in the above two normal Tardos Codes
Tardos’ Code supporting erasure of rate $1/4$

<table>
<thead>
<tr>
<th>1 1 0 1</th>
<th>1 1 0 1</th>
<th>0 1 1 1</th>
<th>1 0 0 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 1 1</td>
<td>1 0 1 1</td>
<td>1 1 1 1</td>
<td>1 0 0 1</td>
</tr>
<tr>
<td>0 1 0 1</td>
<td>1 1 0 1</td>
<td>1 1 1 1</td>
<td>1 1 0 1</td>
</tr>
<tr>
<td>0 1 1 1</td>
<td>1 1 0 1</td>
<td>0 1 1 1</td>
<td>1 0 0 1</td>
</tr>
</tbody>
</table>

Code of four times the length of a normal Tardos’ Code

- Two normal Tardos’ Codes
- Two **fake** Tardos Codes of all 1 columns, randomly incorporated in the above two normal Tardos Codes
Tardos’ Code supporting erasure of rate $1/4$

1 1 0 1	1 1 0 1	0 1 1 1	1 0 0 1
0 1 1 1	1 0 1 1	1 1 1 1	1 0 0 1
0 1 0 1	1 1 0 1	1 1 1 1	1 1 0 1
0 1 1 1	1 1 0 1	0 1 1 1	1 0 0 1

Analysis

- Erasing $1/4$, at least one normal Tardos Code remains \Rightarrow sufficient to prevent innocent people from being accused
- Erasing $1/4$ implies erasing less than one half of all 1 columns
- As pirate cannot distinguish between fake all 1 columns and normal all 1 columns, the remaining normal all 1 columns suffice to accuse traitors as in original Tardos’ Code
Recall our Scheme

Remark
With an erasure rate of $1/4$, a pirate has only a probability of $(3/4)^u$ of successfully decrypting ciphertexts
Comparison between schemes

<table>
<thead>
<tr>
<th>Schemes</th>
<th>User key size</th>
<th>Ciphertext size</th>
<th>Enc time</th>
<th>Dec time</th>
</tr>
</thead>
<tbody>
<tr>
<td>BF99</td>
<td>$O(1)$</td>
<td>$O(c)$</td>
<td>$O(c)$ exp</td>
<td>$O(c)$ exp</td>
</tr>
<tr>
<td>BSW06</td>
<td>$O(1)$</td>
<td>\sqrt{N}</td>
<td>$O(\sqrt{N})$ exp</td>
<td>$O(1)$ p/r</td>
</tr>
<tr>
<td>NNL01</td>
<td>$O(\log^2(N))$</td>
<td>$O(r)$</td>
<td>$O(\log(n))$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>BN08</td>
<td>$O(c^4 \log(N/\epsilon))$</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>Ours</td>
<td>$O(c^2 \log(N/\epsilon))$</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
</tr>
</tbody>
</table>

Figure: Comparison between schemes
Outline

1. Code-based Traitor Tracing
 - Collusion Secure Codes
 - Tardos Code supporting Erasure
 - Constant Size Ciphertext

2. Pirates 2.0
 - Pirate 2.0 vs. NNL Schemes
 - Pirates 2.0 against Code Based Schemes
Collusion in Classical Model

Fact

- Each user contributes its whole key
- Traitors should trust each other
Principle

Each traitor contributes a partial or derived information
Pirates 2.0: Traitors Collaborating in Public

Anonymity level of a traitor
Number of users in system that share traitor’s contributed material
Collusion size

- Traitors do not need to trust someone
- Guaranteed anonymity is a big incentive to contribute secrets
- Even partial information extracted from tamper resistant or obfuscated decoders can be useful
The classical model of pirate is static: coalitions consist of randomly drawn decoders.

In a Pirates 2.0 attacks, traitors can contribute information adaptively.
Application

- In the 2.0 internet, a server collects the traitors’ contributions
- Any client of the server can produce a pirate decoder
- Dynamic coalitions: traitors only contribute missing pieces
 ⇒ no need for centralized server, peer-to-peer is OK
Classical Tracing vs. Pirates 2.0

Classical assumption for tracing

On input a valid ciphertext, pirate decoder "should" return the correct plaintext, otherwise it is useless.

Reasonable in classical model

As soon as a pirate collects a key, he is able decrypt all valid ciphertexts.

In Pirates 2.0

Do not assume perfect decoders and classical tracing may fail.

Does it mean pirate decoders are useless? Not really, example:

Pirate decoder can't decrypt ciphertexts with headers $>$ 1 Go

It can decrypt any ciphertext with headers of size $<$ 1 Go.
Classical Tracing vs. Pirates 2.0

Classical assumption for tracing

On input a valid ciphertext, pirate decoder “should” return the correct plaintext, otherwise it is useless.
Classical assumption for tracing

On input a valid ciphertext, pirate decoder “should” return the correct plaintext, otherwise it is useless.

Reasonable in classical model

As soon as a pirate collects a key, he is able decrypt all valid ciphertexts.
Classical Tracing vs. Pirates 2.0

Classical assumption for tracing
On input a valid ciphertext, pirate decoder “should” return the correct plaintext, otherwise it is useless

Reasonable in classical model
As soon as a pirate collects a key, he is able decrypt all valid ciphertexts

In Pirates 2.0
Do not assume perfect decoders and classical tracing may fail
Does it mean pirate decoders are useless? Not really, example:
- Pirate decoder can’t decrypt ciphertexts with headers > 1 Go
- It can decrypt any ciphertext with headers of size < 1 Go
NNL01: Subset Cover Framework

Idea

- To revoke a set R of users, partition the remaining users into subsets from some predetermined collection.
- Encrypt for each subset separately.

Framework

- Predetermined collection of subsets
 \[S_1, S_2, \ldots, S_w \quad (S_i \subseteq N) \]
- Each subset S_j is associated with a long-lived key L_j.
- A user $u \in S_j$ must be able to derive L_j from its secret information I_u.
Encryption

- Given a revoked set R, the non-revoked users $N \setminus R$ are partitioned into m disjoint subsets $S_{i_1}, S_{i_2}, \ldots, S_{i_m}$

$$N \setminus R = \bigcup S_{i_j}$$

- A session key K is encrypted m times with $L_{i_1}, L_{i_2}, \ldots, L_{i_m}$.
Defining Subsets: Complete Subtree

Each subset at node \(i \) contains all leaves in the subtree of node \(i \).
Each subset corresponds to a pair of nodes \((i, j)\), where \(j\) is in the subtree rooted at \(i\).

\(S_{i,j}\) contains all leaves in the subtree of node \(i\) but NOT in the subtree of node \(j\).
General Attack Strategy against Subset-Cover

Main Idea

Select a collection of subsets S_{x_1}, \ldots, S_{x_t} such that:

- The number of users in each subset S_{x_k} is large
 ⇒ the anonymity level of the traitors is guaranteed
General Attack Strategy against Subset-Cover

Main Idea

Select a collection of subsets S_{x_1}, \ldots, S_{x_t} such that:

- The number of users in each subset S_{x_k} is large
 \Rightarrow the anonymity level of the traitors is guaranteed
- For any set R of revoked users and any method used by the broadcaster to partition

$$N \setminus R = S_{i_1} \cup \cdots \cup S_{i_m}$$

the probability that one of the subsets S_{x_k} belongs to the partition S_{i_1}, \ldots, S_{i_m} is high
Subset Difference: Key Assignment

- **Red**: all nodes on the road from the user to the root
- **Blue**: all nodes hang-off the red road
- **Label**: from a red node to blue nodes in the subtree rooted at the red one
Remark on Key Assignment

- Red: all nodes on the road from the user to the root
- Blue: all node hang-off the red road
- Label: from a red node to blue nodes in the subtree rooted at the red one
Pirates 2.0 against to Subset Difference

Strategy of Pirates 2.0

- Fix some level ρ
Strategy of Pirates 2.0

- Fix some level ρ
- A traitor only contributes a label $L_{i,j}$ when:
 - i is below or at level ρ
 - j is a direct descendant of i
- A revoked user can also contribute!
 Helps maintaining a high level of anonymity for contributors
Strategy of Pirates 2.0

- Fix some level ρ
- A traitor only contributes a label $L_{i,j}$ when:
 - i is below or at level ρ
 - j is a direct descendant of i
- A revoked user can also contribute!
 Helps maintaining a high level of anonymity for contributors
The broadcaster should use subsets $S_{i,j}$ where i is below ρ in order to thwart Pirates 2.0.

Each subset $S_{i,j}$ covers less than the number of leaves in the subtree rooted at i, i.e., less than $N/2^\rho$ users.
Lower bound for the number of subsets

- The broadcaster should use subsets $S_{i,j}$ where i is below ρ in order to thwart Pirates 2.0.
- Each subset $S_{i,j}$ covers less than the number of leaves in the subtree rooted at i, i.e., less than $N/2^\rho$ users.
- To cover $N \setminus R$ users, the broadcaster has to use at least $2^\rho (N - R/N)$ subsets.
- If there is less than half of the users revoked, the number of subsets to be used is greater than $2^{\rho-1}$.
In the classical setting, covering 2^{32} users

- A set of $\rho \log(\rho)$ randomly chosen traitors can decrypt all ciphertexts of rate less than $2^{\rho-1}$
- Anonymity level for each traitor: $2^{32-\rho}$
In the classical setting, covering 2^{32} users

- A set of $\rho \log(\rho)$ randomly chosen traitors can decrypt all ciphertexts of rate less than $2^{\rho-1}$
- Anonymity level for each traitor: $2^{32-\rho}$
- $\rho = 10$: 10000 traitors (1000 in adaptive attacks) can decrypt all ciphertexts with headers of size less than 128 Mb
- Each traitor is guaranteed an anonymity level of 2^{22} (each traitor is covered by 4 millions users)
Main idea

Each user only contributes its sub-keys at some positions
Pirates 2.0 against Code Based Schemes

Example for Tardos’ Code

For a 30-collusion secure code with 2^{32} users

- about 100000 traitors
- mount a Pirates 2.0 attack, each traitor would be masked by thousands of users
Conclusion: Variations on Pirates 2.0

Open problems

- Modification of tree-based and code-based schemes resisting to Pirates 2.0
- Pirates 2.0 attacks against algebraic schemes?