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Abstract. In this paper, we describe a new traitor tracing scheme which relies on

Tardos’ collusion secure codes to achieve constant size ciphertexts. Our scheme is

also equipped with a black-box tracing procedure against pirates that are allowed to

decrypt with some (possibly high) error rate while keeping the decoders of the lowest

possible size when using collusion secure codes, namely of size proportional to the

length of Tardos’ code.

1 Introduction

One common issue in digital content distribution is the problem of broadcasting data to
several legitimate users in a secure way. Therefore, the broadcaster usually encrypts its data
for the legitimate users. This is for example the case in pay-TV systems which allow to
restrict access to the content to subscribers only, or when distributing digital media such
as DVDs encrypted such that they can be used with compliant readers only [1]. In these
scenarios and many others, the legitimate users rely on a decryption box containing the
secrets that are necessary to obtain the digital content from the broadcasted information;
this decryption box can be a tamper resistant device such as a smart card, a firmware for
an electronic appliance, or a software on a personal computer. Tamper resistant devices
are hard and expensive since they are designed to withstand a large range of attacks from
side-channels attacks to invasive attacks. This raises the following issue: What if legitimate
users are able to extract the secrets from their decryption box and redistribute them?

Traitor tracing is a well known cryptographic means to discourage such indelicate users
(hereafter called traitors) from redistributing their secrets: It provides a way of embedding
different secrets into each user’s decryption box so that even if several traitors collude to
produce a pirate decoder from their shared secrets, an authority is able to trace at least one of
them. The efficiency of a traitor tracing scheme can be evaluated through several parameters:
the maximum size c of tolerated coalitions, the size of the broadcasted ciphertext, and the
size of the decoders. While it is obvious to design a traitor tracing scheme with a ciphertext
size linear in the total number N of users, efficiently resisting collusions when traitors have
full access to their decoders is not straightforward. Since its introduction by Chor, Fiat, and
Naor [8], several techniques have been proposed. A first class of schemes that we might call
combinatorial is based on carefully choosing some subset of a set of master keys to be put
in each decryption box. By analyzing the keys found in a pirate decoder, it is possible to
trace one of the traitors. The schemes [8, 20, 13, 9, 19] belong to this family. Another class
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of schemes is the public key traitor tracing schemes first introduced in [17] by Kurosawa
and Desmedt. To this family belong for instance [3, 21, 10, 18, 7, 5]. A third class of schemes
relying on the use of collusion secure codes (and thus combining ideas from the two previous
classes) has been introduced by Kiayias and Yung in [16]. The schemes [23, 11, 30, 4] belong to
this class. Several of these works also provided additional features apart from the basic traitor
tracing properties. It has been shown how to cope with decoders that decrypt correctly only
with some (non-negligible) probability [20]. Tracing the traitors using black-box access only
to the pirate decoders has been first proposed in [9]. The notion of public traceability has
been proposed in [22, 7].

Our work, as for instance [16, 30, 11], is based on the use of collusion secure codes.
These schemes enjoy many nice and desirable properties: they support black-box tracing
and the ratio between the ciphertexts and the plaintexts is constant. However, since these
schemes use collusion secure codes for both the ciphertext and the key used in the decoders,
the size of the ciphertexts and decoders is quite large, namely O(c4 log(N/ε)) for resisting
coalitions of at most c traitors with probability 1− ε. Another drawback of [16] comes from
the use of an all-or-nothing transform (AONT [25]) to prevent deletion of keys from the
pirate decoders as a way to escape the tracing procedure based on the underlying collusion
secure code. This AONT renders the scheme quite rigid and prevents the reduction of the
ciphertext’s size since it requires to use every key from the decoder in order to decrypt a
ciphertext, and thus slows down the decryption process. Safavi-Naini and Wang propose
in [27] to use collusion secure codes that support random deletion in any position. In [30],
Sirvent constructs new collusion secure codes which support deletion of a number of positions
chosen by the adversary in addition to the usual properties: this results in a black-box
tracing procedure which accommodates even more powerful pirates than [16, 27] and allows
to remove the need for AONT. However, codewords from collusion secure codes supporting
adversarial erasure have length Ω(c4 log(N/ε)) and the size of the ciphertexts and decoders
remains large. In this paper, we propose a scheme based on Tardos’ collusion secure code
with constant size ciphertexts and thus resolve a first issue with code based traitor tracing
schemes. The work by [4] also proposes (independently from our work, originally disclosed
in [2]) a scheme with constant size ciphertexts, but to be able to trace pirate decoders with
non-negligible error rate δ, the size of the decoders is Ω(c4/(1− δ)2 log(N/ε)) and tracing is
accordingly expensive. This large complexity comes from the fact that the authors in [4] built
a collusion secure code with the strong property of resisting erasure. While this might lead to
useful applications in settings other than traitor tracing, we show that such a strong collusion
secure code is not required here: Our scheme takes advantage of the specific setting of traitor
tracing where it is possible to distinguish between erased and unreadable positions. As a
result our scheme can rely on Tardos’ code and, in addition to bring constant size ciphertexts,
also allows decoders of size O(c2 log(N/ε)) even when considering pirate decoders with high
error rates δ.

2 Tardos’ collusion secure codes

Fingerprinting with collusion secure codes allows to uniquely identify a digital document
among several copies of it by embedding a fingerprint (a codeword). Such an identification
scheme must be resilient to collusions of traitors trying to remove their fingerprints so as
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to escape identification. Therefore, collusion secure codes share some properties with traitor
tracing; However, the main assumption here (called the marking assumption) is that the
traitors from a coalition are only able to identify the positions where the digits from their
respective codewords differ; Such positions are called detectable positions. This assumption
especially makes sense when fingerprinting data: apart from the codewords, the documents
are identical, and it is easy to uncover places where two copies of a document differ.

Among the first collusion secure codes are the identifiable parent property (IPP) codes
introduced in [8]; However, these codes are defined over large alphabets and are resilient
in a restricted attack model. The marking assumption and a way to construct randomized
collusion secure codes has first been proposed by Boneh and Shaw in [6]; The length of the
codewords is O(N3 log(N/ε)) for fully-collusion resistant codes and O(c4 log(N/ε)) for codes
resisting coalitions of at most c traitors. Tardos later introduced a new construction in [32]
and proved that the size of its codewords is optimal: a length of O(c2 log(N/ε)) is enough
to resist coalitions of at most c traitors. This obviously gives fully-collusion secure codes of
length O(N2 log(N/ε)).

2.1 Tardos’ construction

We now briefly describe the generation of a Tardos collusion secure code as proposed in [32].
We additionally describe the associated tracing procedure.

Code generation. In order to generate a code for N users that resists to c-collusions,
set the length ` = 100c2 log(Nε ) where ε is the false-positive error probability (that is, the
probability that an innocent user is accused) of the tracing algorithm and randomly draw a
sequence of probabilities pi as follows:

pi = sin2(ri), i ∈ J1, ` K (1)

where ri is randomly drawn from [t, π/2−t] and 0 < t < π/4 is chosen so that 300 c sin2 t = 1.
Each binary codeword w of the code is then constructed by choosing its i-th digit to be

either ‘1’ or ‘0’ according to the probability pi, that is: Pr[wi = 1] = pi.
Tracing procedure. The authority traces a subset of the traitors from a coalition (of at

most c traitors) that has produced some binary word v by computing an accusation sum Zw
for each possible codeword w via:

Zw =
∑̀
i=1

vi ·
(
w̄i

√
1− pi
pi

+ (w̄i − 1)
√

pi
1− pi

)
,

where w̄i is the bit wi viewed as an integer. Then, users corresponding to codewords w
such that Zw > 20 c log(Nε ) are declared as traitors. Tardos proves that the probability of
false-negative alarms (that is, the probability that no traitor is found) is then εc/4.

2.2 Note about the marking assumption

Here we make some basic remark that will be used later on in this paper. Think about
Tardos’ code as a matrix containing the codewords in its rows. We note that the columns in
Tardos’ code are all treated identically: they are generated the same way and contribute to
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the accusation sum following the same rule. Moreover, these columns have been generated
independently. This very simple fact allows one to use codewords of bigger length, say, twice
or four times the length of Tardos’ original codewords (i.e. L = 2` or L = 4`) and still
allows to trace the traitors by using any subset of positions of size `. We stress here that
the traitors can make an educated choice of the subset of positions instead of choosing them
randomly. However, even in this case, the resulting set of codeword remains a perfectly valid
instance of Tardos’ code.

This remark is motivated by the usual marking assumption for collusion secure codes.
Indeed, the most commonly used marking assumption is that traitors are able to identify
positions in their code words only where the digits differ: this fits a wide range of settings,
such as watermarking of digital content. However, in the following, we additionally consider
that some of the positions—regardless of the fact that they can be identified or not—might
be deleted by the traitors, so that this position does not hold the original digit anymore.
This issue motivated the introduction of AONT in [16] and the introduction of collusion
secure codes resisting erasure in [30, 4]. However, our above remark shows that expanding
a Tardos’ code of length ` to a length L = 1

β ` allows to cope with collusions of at most
c traitors that are able to delete up to (1− β)L digits from their pirate word, and then fall
back to the classical marking assumption on the untouched subset of βL = ` positions.

3 Traitor tracing schemes from collusion secure codes

3.1 Construction

Building the decoders. The main idea to build the decoder is to use two different set
of keys, viewed as a pair of tables denoted T (0) and T (1), each consisting of L randomly
drawn n-bit elements and to use them to recover u random values k1, . . . , ku broadcasted
(in an encrypted form) to the users in order to derive the corresponding session key SK

from the header for the data encapsulation mechanism: Obviously, the idea of using such a
pair of tables is to allow the embedding of the identity of the user a in her personal decoder:
if Ia is an L-bit string carrying the identity of user a, then we create a table T a specific to
user a by choosing as the i-th element T a[i] the key T (Ia

i )[i]. (Here, Iai denotes the i-th bit
of the bit string Ia.)

Coming back to the derivation of the session key SK from header, since each decoder
either embeds a key from T (0) or a key from T (1), the above-mentioned values ki must be
encrypted under both of these keys. The derivation of the session key is then performed
from an header = (r1, . . . , ru, z

(0)
1 , z

(1)
1 , . . . , z

(0)
u , z

(1)
u ) where the ri are u randomly chosen

indices from J1, LK and the zi are values obtained by encrypting u randomly chosen n-bit
values k1, . . . , ku using an encryption scheme Ẽ as follows:

∀i ∈ J1, uK, z
(0)
i = ẼT (0)[ri](ki) and z

(1)
i = ẼT (1)[ri](ki) .

Note that the number u of elements of the table T entering in the derivation of the session
key SK also depends on other system parameters in a way that is going to be discussed
later on. A brief description of how these elements fit together into our proposal for an
implementation of the function FK to be used in our key encapsulation mechanism within
each decoder is given in Figure 1.
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Fig. 1. The header is made of the values ri, z
(0)
i and z

(1)
i and the decoder of user a has access to

table T a. Using its bit string Ia, user a selects the correct values zi to be decrypted: here, user a

selects z
(0)
1 , z

(1)
2 , . . . , z

(1)
i , . . . , z

(0)
u . User a then decrypts these values with the corresponding keys

T a[k1], . . . , T a[ku] from table T a. The decrypted keys k1, . . . , ku are further combined together to

form the session key SK = k1 ⊕ · · · ⊕ ku.

Then, the data encapsulation mechanism is implemented as:

Encryption of M by broadcaster:

1. Draw (r1, r2, . . . , ru) from J1, LKu randomly;
2. Draw u elements k1, k2, . . . , ku from {0, 1}n randomly;
3. Encrypt the random values ki as z(0)

i = ẼT (0)[ri](ki) and z(1)
i = ẼT (1)[ri](ki), for i ∈ J1, uK;

4. Set header = (r1, . . . , ru; z(0)
1 , z

(1)
1 , z

(0)
2 , z

(1)
2 , . . . , z

(1)
u );

5. Derive the session key as SK = k1 ⊕ k2 ⊕ · · · ⊕ ku;
6. Encrypt M with the underlying encryption algorithm E and the secret key SK: C =
ESK(M);

7. Output the ciphertext E′(M) = (header, C).

Decryption of (header, C) in decoders:

1. Extract r1, . . . , ru from header;
2. Depending on the value Iai of the i-th bit of the user’s identifying string Ia, compute

ki = D̃Ta[ri]

(
z
(Ia

i )
i

)
∀i ∈ J1, uK .

3. Derive the temporary secret key SK = k1 ⊕ k2 ⊕ · · · ⊕ ku;
4. Use the underlying decryption algorithm to decrypt C with SK: M = DSK(C);
5. Output the plaintext D′(C) = M .
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Pirate decoders. A pirate decoder is only required to decrypt valid ciphertexts with some
probability τ . This is meant to take into account the case of coalitions of pirates dropping
some of the secrets required to decrypt so as to help concealing their identity, which is highly
critical in the setting of decoders based on collusion secure codes.
The tracing procedure. There are two main types of decoders: stateless decoders and
stateful decoders. Stateless decoders do not record information between two decryption at-
tempts whereas stateful decoders might memorize some information in order to help escaping
the tracing procedure. We first describe a procedure against stateless decoders.

Our tracing procedure is derived from the general black-box tracing strategy for stateless
decoders described in [9]: In order to decide if the decoder embeds the key T (0)[r] or the
key T (1)[r] for some position r, the tracer provides the information to derive SK only for one
of the key, that is, broadcasts ẼT (0)[r](k1) and ẼT (1)[r](0); Therefore, if the decoder decrypts
correctly this (invalid) ciphertext, the tracer deduces that the decoder knows T (0)[r].

Our tracing procedure also heavily relies on the property that the pirate decoders always
embed at least ` digits that have been produced through the classical marking assumption
(traitors can only put unreadable digits on detectable positions, the other positions are
untouched) where ` is the required length for Tardos’ code to be secure. We give sufficient
conditions on the parameters u and β for this property to hold in Theorem 2 of the next
paragraph.

We first describe the tracing procedure for u = 1. In this case, header only consists of
three values (r, z0, z1) where D̃T 0[r] = D̃T 1[r]. We call a 0-invalid header a header (r, z0, ∗)
produced from a valid header (r, z0, z1) by replacing z1 by a randomly chosen value ‘*’ and
similarly call (r, ∗, z1) a 1-invalid header. One can easily detect if the cell r of a decoder is
coming from T (0)[r], T (1)[r] is unreadable or is wrong/erased; as noted previously, the ability
to decide between unreadable cells (i.e. where the decoder knows the two possible keys) and
the wrong/erased cells (i.e. where the decoder knows none of the keys) is fundamental to
the tracing procedure. In order to distinguish these two types of positions, just follow the
procedure:

– Input a number L/τ of valid headers with randomly chosen positions r (where τ is the
decryption threshold of the decoder); every possible position therefore occurs τ−1 times
on the average. Every position for which the decoder decrypted at least once, is declared
an inhabited position. (Thus, inhabited position are the positions r for which the tracer
knows for sure that the decoder embeds at least one of the values T (0)[r], T (1)[r].)

– For every inhabited position r, input a number τ−1 of 0/1-invalid headers. As soon as
the decoder correctly decrypts a b-invalid header, deduce that cell r is coming from
table T (b). If the decoder never decrypts b-invalid headers, deduce that the position r

corresponds to a detectable position in the collusion secure code, that is, assume that
the decoder knows both T (0)[r] and T (1)[r] and call this position an unveiled position.

(Note that the above procedure declares a position r to be ‘0’, ‘1’, or unveiled even though
the pirate decoder refused to use the corresponding key T (i)[r] all of the time but once, i.e.
used a probabilistic strategy to hide its choices.) Since the pirate decoder embeds at least
` digits (either from detectable positions or untouched from the traitors’ original codewords)
we are able to trace the traitors by applying Tardos’ tracing procedure to these ` positions
as explained in Section 2.
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This procedure naturally extends to the case of u > 1. Remember that the pirate decoder
must decrypt correctly with probability greater than the threshold τ the well formed headers.
Therefore, for τ−1L choices of the u-tuples, the tracer knows about every inhabited position
(each time the decoder refuses to decrypt during this first phase no assumption is made,
but when the decoder decrypts, u inhabited positions are learnt). Then, for every inhabited
position r, the tracer considers 0/1-invalid headers corresponding to position r and chooses
the remaining u−1 positions among the set of inhabited positions (discovered in the previous
phase) randomly; the type (‘0’, ‘1’, or unveiled) of position r is then determined as in the
case u = 1 and the tracing procedure ends as before.

It is also possible to trace stateful decoders. Indeed, Kiayias and Yung proposed in [15]
a generic strategy to convert a tracing procedure against stateless decoders into a tracing
procedure against stateful decoders by using two versions of the plaintext watermarked
differently. This strategy can be applied with a slight modification of our scheme: instead
of encrypting k1 under T (0)[r1] and T (1)[r1], the broadcaster encrypts k1 under T (0)[r1]
and k̃1 under T (1)[r1]; Then instead of ESK(M), the broadcaster encrypts the plaintext
watermarked in two different ways M1 and M2 under SK = k1 ⊕ k2 ⊕ · · · ⊕ ku and under
S̃K = k̃1 ⊕ k2 ⊕ · · · ⊕ ku respectively, that is, provides ESK(M1) and EgSK(M2).

3.2 Security

In this paragraph we provide two results. The first one, given by Theorem 1, is that the
encryption scheme we propose is secure. The second one is that our proposed implementation
of the decoders is indeed resistant to coalitions of at most c-traitors and is given in Theorem 2.

Semantic security of a symmetric encryption scheme The semantic security of a
symmetric encryption SKE = (KeyGen, Enc, Dec) is defined as follows:

Definition 1. Let A be an adversary against SKE and λ be some security parameter. The
adversary A chooses two messages, m0 and m1, of equal length, and gives them to an en-
cryption oracle. The key generation KeyGen(λ) generates a random key K, draws a random
value σ ∈ {0, 1}, and encrypts the corresponding message mσ using the key K. The result-
ing ciphertext c? = EncK(mσ) is then provided to the adversary A. Finally, the adversary
outputs σ̂ ∈ {0, 1}. We define the advantage of A against SKE to be

AdvSKEA (λ) =
∣∣∣Pr [σ = σ̂]− 1

2

∣∣∣
in the above attack game. We also define AdvSKE(λ) as the maximum of all advantages
AdvSKEA (λ) for all probabilistic, polynomial-time machines A. We say that SKE is seman-
tically secure if AdvSKE(λ) is negligibly for a security level λ.

Theorem 1. Assume that the encryption schemes (Ẽ, D̃) and (E,D) are semantically se-
cure. Let us assume that adversaries know for a fraction of at most 2α positions the corre-
sponding entry from at least one of the two tables T (0) and T (1), and let u(λ) be chosen so
that πu(λ) =

(
αL
u

)
/
(
L
u

)
is negligible for the security level λ. Then

AdvE
′
(λ) ≤ πu(λ) + 2AdvẼ(λ) + AdvE(λ)

and thus (E′, D′) is semantically secure against the above adversaries.
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Proof. First, note that for each choice of the tuple of indices r1, r2, . . . , ru, either the adver-
sary knows at least one value in every of the u pairs (T (0)[r1], T (1)[r1]), . . . , (T (0)[ru], T (1)[ru]),
or she does not know T (0)[ri] and T (1)[ri] for at least one index ri among r1, . . . , ru. The first
case happens at most πu =

(
αL
u

)
/
(
L
u

)
of the times over the random choices of r1, . . . , ru. In the

other case, we can assume without loss of generality that the adversary A knows the u−1 re-
maining indices and (by renaming the indices) that the unknown values correspond to r1,
that is she does not know T (0)[r1] nor T (0)[r1]. Let us note s0 = T (0)[r1] and s1 = T (1)[r1].
As the keys to encrypt k2, . . . , ku are known to the adversary, the encryption of a message m
of E′ can be expressed, under the adversary’s view, as

(
Ẽs0(k1), Ẽs1(k1), k2, . . . ku, ESK(m)

)
,

where SK = k1 ⊕ k2 ⊕ · · · ⊕ ku. Let κ = k2 ⊕ · · · ⊕ ku so that SK = k1 ⊕ κ.
We now wish to bound the advantage of the adversary in breaking (E′, D′). To this end,

let Game0 be the original attack game played by the adversary A against (E′, D′). We denote
by ψ = (e?0, e

?
1, k

?
2 , . . . , k

?
u, c

?) the target ciphertext, we denote by σ the hidden bit generated
by the encryption oracle, and we let σ̂ be the bit outputted by A. Let T0 be the event where
σ = σ̂ . Also, let k?1 denote the underlying message corresponding to the ciphertexts e?0, e?1
and SK? denote the symmetric key used to encrypt mσ, that is: e?0 = Ẽs0(k?1), e?1 = Ẽs1(k?1),
and c? = ESK(mσ).

We also define a modified game Game1 which behaves just like game G1, except that
a completely random symmetric key SK+ is used in place of the key SK?. Let T1 be the
event that σ = σ̂ in this game Game1.

It is straightforward to see that there is an oracle query machine A1, whose running time
is essentially the same as that of A, such that:∣∣Pr[T1]− Pr[T0]

∣∣ ≤ 2AdvẼA1
(λ) . (2)

Indeed, the adversary A1 just uses adversary A to play two independent games against Ẽ:
one under the key s0 and another under the key s1. In the attack games that A1 are playing
against Ẽ, the challenged message k1 is equal to SK? ⊕ k?2 ⊕ · · · ⊕ k?u in game Game0, and
is equal to SK+ ⊕ k?2 ⊕ · · · ⊕ k?u in game Game1.

Finally, we observe that in this modified game Game1, the key SK+ is used to encrypt
message mσ and does not play any other role. Thus, in game Game1, the adversary A is
essentially carrying out an attack against E:∣∣∣∣Pr[T1]− 1

2

∣∣∣ ≤ AdvE(λ) . (3)

By combining Eq. (2) and Eq. (3) in the case where the adversary lacks at least one pair,
we get:

AdvE
′
(λ) ≤ πu(λ) + (1− πu)

(
2AdvẼ(λ) + AdvE(λ)

)
which proves the theorem. ut

An immediate corollary of the previous theorem is that the encryption scheme prevents
an attacker from dropping too many cells of its pirate decoder without dramatically dropping
its probability of correctly decrypting. The following theorem in turn shows that this can
be exploited to rely on the collusion secure code to trace at least one of the traitors.
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Theorem 2. Consider our construction for a traitor tracing scheme given in Sec. 3.1 with
master tables T (0), T (1) of n-bit cells and length L, a number u of keys ki, and where the
identifying strings are taken from the c-collusion secure code for N users derived from Tar-
dos’ fingerprinting scheme such as explained in Sec. 2, that is of size L = 100

β c2 log
(
N
ε

)
. We

claim that no coalition of less than c traitors can produce a pirate decoder with a decryption
probability greater than 2−t that can not be traced to at least one of the traitors as soon as
β and u are chosen so that: (

βL

u

)
≤ 2−t

(
L

u

)
. (4)

Proof. The idea of the proof is as follows: for the underlying fingerprint code to work, we
need to ensure that at least (say) one fourth of the cells of the tables has to be kept. Forcing
the pirate decoder to embed this number of cells to be able to decrypt correctly can be
achieved by increasing the number u of required cells to derive the session key SK.

First of all, note that for a cell from the table TP of the pirate decoder to be useful to
the pirate, more than n− t bits must be exact. (The remaining t bits can be guessed on the
fly for a price of at most 2−t, but more than t unknown bits would be too costly.) Therefore,
either the pirate decoder stores n− t bits or more of some cell (and thus the corresponding
bit from the fingerprinting code can be deduced) or the decoder stores less than n − t bits
of the cell (and thus it is useless for the derivation of the session key).

From the above we deduce that we can assume that only a certain fraction 0 < α ≤ 1 of
the cells of the table are kept in the pirate decoder. Now the probability that the decoder is
able to decrypt correctly is: πu =

(
αL
u

)
/
(
L
u

)
, so that the pirate decoder can not decrypt with

probability higher than 2−t by the hypothesis made at Eq. 4 if α < β. Therefore the pirate
decoder embeds more than βL digits and since the underlying Tardos’ fingerprint code of
length L has been expanded to 100

β c2 log
(
N
ε

)
, there remains 100c2 log

(
N
ε

)
digits in the pirate

word which allows Tardos’ tracing algorithm to output a list of traitors as usual. ut

3.3 Efficiency and sample parameters

We now propose a set of parameters for a sample implementation with the AES as the
underlying encryption schemes (E,D) and (Ẽ, D̃). The key size is therefore chosen to be
n = 128. For a number of users N = 230, setting β = 1

2 , and considering coalitions of at
most c = 100 traitors, the expanded code has length L ' 224, and Theorem 2 gives the
following data:

2−t = 10
100 2−t = 1

100 2−t = 1
1000

u 4 7 10

4 Conclusion

The long series of work about traitor tracing schemes based on collusion secure codes shows
that they can provide many interesting properties such as constant size ciphertexts, black-
box tracing procedures against stateful (and possibly high error rate) pirate decoders. In
contrast, the intriguing question of whether achieving trace and revoke capabilities is possible
or not remains open.
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