
Full version of the extended abstract, which appeared in
the proceedings of the Workshop on Selected Areas in Cryptography 2004
(9 – 10 august 2004, Waterloo, Ontario, Canada)
H. Handschuh and A. Hasan Eds. Springer-Verlag, LNCS ????, pages ???–???.

About the Security of Ciphers

(Semantic Security and Pseudo-Random Permutations)

Duong Hieu Phan and David Pointcheval

CNRS/ENS – Dépt d’informatique – 45 rue d’Ulm, 75230 Paris Cedex 05, France.
{duong.hieu.phan,david.pointcheval}@ens.fr

Abstract. Probabilistic symmetric encryption have already been widely studied, from
a theoretical point of view. Nevertheless, many applications require length-preserving
encryption, to be patched at a minimal cost to include privacy without modifying the
format (e.g. encrypted filesystems). In this paper, we thus consider the security notions
for length-preserving, deterministic and symmetric encryption schemes, also termed
ciphers: semantic security under lunchtime and challenge-adaptive adversaries. We fur-
thermore provide some relations for this notion between different models of adversaries,
and the more classical security notions for ciphers: pseudo-random permutations (PRP)
and super pseudo-random permutations (SPRP).

1 Introduction

The main goal for any encryption scheme is secrecy: ideally, such a notion means that
a ciphertext should not reveal any information about the plaintext, however powerful
is the adversary. This had been defined under “perfect secrecy” [10], but also showed
to be impossible, unless one uses one-time pad, which is a symmetric encryption that
uses a secret key as long as the messages to be encrypted. That is, if one wants to
use a small symmetric key in order to protect many plaintexts or a long message, or
asymmetric encryption, such perfect secrecy is impossible.

To overcome this theoretical impossibility, but which has no real practical impact
since adversaries are computationally limited, several security notions have thereafter
been defined, and namely the polynomial security [4], a.k.a. indistinguishability of
ciphertexts or semantic security. This intuitively means that no polynomially bounded
adversary can extract any information about the plaintext, given the ciphertext.

However, in practice, an adversary is not only given the challenge ciphertext about
which plaintext it wants to learn some information. It may also have access to extra
information, such as plaintext-ciphertext pairs. According to the way these pairs are
obtained, several kinds of attacks may be mounted: known pairs, chosen-plaintext or
chosen-ciphertext attacks, in an adaptive way or not. Furthermore, when considering
semantic security, the choice of the plaintexts or the ciphertexts may be allowed be-
fore the adversary has been given the challenge ciphertext (lunchtime attacks [8]), or
unlimited (challenge-adaptive attacks [9]).

1.1 Some Wordings

In order to make things clear, let us note that all the adversaries considered in this
paper are implicitly adaptive, in the sense that their queries to any oracle may depend
on previous answers, but not necessarily on the challenge ciphertext they want to
break (when such a specific challenge exists, as in the semantic security game, or
the indistinguishability one). To make the distinction between whether the challenge
ciphertext may impact the queries or not, we will use the terms “adaptive attacks”
and “lunchtime attacks” respectively: in lunchtime attacks the adversary has a full
and adaptive access to oracles but before the challenge ciphertext is known only, while
in adaptive attacks this access is unlimited in time.

c© Springer-Verlag 2004.

2

1.2 Motivation

Relations between various security notions for symmetric encryption, under different
kinds of attacks, have been deeply studied by Bellare et al. [1] and Katz and Yung [6].
But they were mainly restricted to the probabilistic case. Nevertheless, many appli-
cations of encryption require length-preserving schemes. For compatibility, one may
indeed want the message format to be similar, whatever it is in clear (no privacy) or
encrypted (enhanced with privacy). Another famous application of encryption is for
encrypted filesystems [5], which need encryption schemes able to encipher the sectors
of a disk in-place, while sectors have a fixed length. Length-preserving symmetric en-
cryption thus means deterministic encryption schemes. In the following we thus focus
on length-preserving, deterministic and symmetric encryption schemes, also termed
ciphers. However, from our knowledge, no analysis of ciphers has ever been done so
far. The main reason may be that, while the security goal is privacy, no semantic secu-
rity definition fits the deterministic case: it is clear that the straightforward extension
of the usual notion fails when considering deterministic encryption (probabilistic en-
cryption is a basic requirement for semantic security, when an oracle —encryption
and decryption— is available at least once). As a consequence, other notions are used:
pseudo-random permutation or super pseudo-random permutation properties [3, 7].

The security notion one usually requires from a block cipher is indeed to look like
perfectly random permutations for random keys (family of pseudo-random permuta-
tions if one just considers chosen-plaintext attacks, or family of super pseudo-random
permutations if decryption queries are also possible). This is a very strong security
notion useful when the block cipher is seen as a all-purpose primitive (for providing
stream ciphers with encryption modes, message authentication codes, etc.). But for
confidentiality, the useful notion is secrecy only: the view of the ciphertext does not
leak any useful information about the plaintext to a (polynomial) adversary. While
the former notion of super pseudo-random permutations is clearly stronger than the
latter, the actual relations have never been studied.

1.3 Previous Work

Security notions for encryption have been defined a long time ago, namely with the
definition of polynomial security [4] (a.k.a. semantic security or indistinguishability).
Bellare et al. [1] studied several variants of the latter, for symmetric encryption, under
the names of find-then-guess, left-or-right and real-or-random, and relations in the
concrete setting. Katz and Yung [6] studied the actual difference between these various
kinds of attacks, against probabilistic symmetric encryption. Indeed, whereas in the
public-key setting chosen-plaintext attack is the basic scenario for an adversary, since it
can encrypt any plaintext of its choice granted the public key, in the symmetric setting,
simply some known plaintext-ciphertext pairs may give extra information. However,
they showed that an adaptive chosen-plaintext attack (where queries are allowed even
after the challenge ciphertext is known) does not help more than a lunchtime attack
(where oracle accesses are limited up to the reception of the challenge ciphertext.)

As already noted, the security notion usually required from a block cipher is
the (super) pseudo-randomness, which means to look like perfectly random permu-
tations, for randomly chosen keys. Depending on whether a decryption oracle is avail-
able or not, one indeed considers either the super pseudo-randomness or the pseudo-
randomness only, respectively. The latter notion (the weakest) has been recently stud-
ied by Desai and Miner [2]. They claimed the equivalence between this notion and the

3

semantic security under lunchtime chosen-plaintext attacks. Halevy and Rogaway [5]
showed the equivalence between the super pseudo-randomness and the left-and-right
indistinguishability, with (almost) unlimited oracle accesses, for tweakable ciphers.

1.4 Contributions

In this paper, we study the security notions of secrecy for ciphers, namely semantic
security (indistinguishability of ciphertext) and (super) pseudo-randomness, with the
existing relations between them.

We first show that the usual indistinguishability, modeled by the find-then-guess
game, (with some natural restrictions) is still equivalent to the natural definition of
semantic security (adapted for symmetric and deterministic encryption).

We then show that some results relative to the probabilistic case remain true for ci-
phers. Namely, adaptive chosen-plaintext attacks do not provide significant advantage
against lunchtime attacks. More interestingly, we also consider the relation between
adaptive and lunchtime chosen-ciphertext attacks, and prove that an adaptive access
does not help either in the case where the cipher and its inverse are already both
secure against lunchtime attacks.

Finally, for completeness, we provide relations between the above notions and
the notion of (super) pseudo-random permutations. We namely prove that indistin-
guishability against lunchtime adversaries is equivalent to the notion of super pseudo-
random permutations, when the cipher and its inverse have the same security level
against lunchtime attacks: challenge-adaptive security level is not necessary. All the
proofs and some additional relations, under various assumptions, are provided in the
Appendix.

We believe that these results have concrete applications for practical ciphers, since
the encryption and the decryption algorithms are often very similar, and thus with a
similar security level. For example, when considering DES possibly using some mode
of operation, under the conjecture that a slight modification of the key schedule (re-
placement of the left rotation by a right rotation) does not affect the security against
at least lunchtime adversaries, we can show that the above results hold without any
additional assumption (see Appendix C for the application.)

2 Security Notions for Encryption

2.1 Symmetric Encryption Schemes

Let us first review the formal definition of a symmetric encryption scheme π =
(k, `, E ,D). It is defined by two algorithms, parameterized by a key k that is assumed
to be uniformly distributed in {0, 1}k. Note that the two main data in practice are k,
the bit-length of the keys, and ` the bit-length of the block to be encrypted:

– the encryption algorithm Ek, which on a message m from the set {0, 1}`, and
random coins r from {0, 1}µ, outputs a ciphertext c in {0, 1}ν ;

– the decryption algorithm Dk, which on a ciphertext c outputs the corresponding
plaintext m, or ⊥ if there is no corresponding plaintext.

2.2 Ciphers: Length-Preserving, Deterministic and Symmetric

Encryption Schemes

In the particular case of deterministic encryption, the encryption scheme does not use
any random coin, since it is furthermore length-preserving, any ciphertext is valid:

4

it is a permutation for each key (and thus µ = 0 and ν = `.) For a given cipher
π = (k, `, E ,D), we can denote the inverse cipher by:

π−1 = (k, `, E−1 = D,D−1 = E).

2.3 Semantic Security

The natural security notion for encryption is the computational variant of perfect
secrecy: the view of the ciphertext does not help to learn any information about the
plaintext. This has been formalized by the notion of semantic security [4], for which
a SEM-adversary A = (A1,A2) plays the following game, in two steps:

– a key k is first uniformly drawn from {0, 1}k ;
– Stage 1: A1 outputs a samplable distribution D on the set {0, 1}`, together with

a state information s to be forwarded to the second step of the attack;
– a message m is drawn from {0, 1}` according to the distribution D (denoted

m
D
← {0, 1}`), and a random tape r is uniformly drawn from {0, 1}µ (denoted

r
R
← {0, 1}µ) then one computes c = Ek(m; r);

– Stage 2: A2 is given the state information s and the ciphertext c. It outputs a
computable predicate f .

The adversary is said to be successful if f(m) is true. It means that it has been able
to learn at least one bit of information about m, from the ciphertext c. However it
is easy for an adversary to win all the time, by outputting a constant predicate f .
Then we say that A breaks the semantic security if the predicate f holds on m with
probability significantly greater than for another random plaintext m′ (following the
same “a priori” distribution D).

Therefore, we define the advantage Adv
sem
π (A) of an adversary A, against the

semantic security of an encryption scheme π, by the following distance:

Pr

k
R
← {0, 1}k ; (D, s)← A1();

m,m′ D
← {0, 1}`; r

R
← {0, 1}µ;

c = Ek(m; r); f ← A2(s, c) :
f(m) = 1

− Pr

k
R
← {0, 1}k ; (D, s)← A1();

m,m′ D
← {0, 1}`; r

R
← {0, 1}µ;

c = Ek(m; r); f ← A2(s, c) :
f(m′) = 1

.

Definition 1. An encryption scheme π is said to be (ε, t)-semantically secure if for
any adversary A, that runs within time t, Adv

sem
π (A) ≤ ε.

Adversaries. Adversary A may be given extra information than just the challenge
ciphertext, such as plaintext-ciphertext pairs. According to the way these pairs are de-
fined, several kinds of attacks may be mounted: known pairs, chosen-plaintext and/or
chosen-ciphertext attacks. Furthermore, the choice of the plaintexts or the ciphertexts
may be allowed before the adversary has been given the challenge ciphertext only, or
unlimited.

Such additional information is modeled by (un)limited access to oracles that com-
pute encryptions or decryptions. A (t, e1, d1, e2, d2)-adversary A = (AEk,Dk

1 ,AEk,Dk

2) is
a 2-stage adversary A where A1 (resp. A2) can ask up to e1 and d1 (resp. e2 and
d2) queries to the encryption and decryption oracles Ek and Dk, with a running time
bounded by t. We cover this way the passive adversary, where e1 = e2 = d1 = d2 = 0
that is denoted P0-C0, or any active adversary that is denoted PX-CY, according to
the oracles access:

5

X = ’1’ – e1 > 0 but e2 = 0, lunchtime chosen-plaintext (P1-CY);
Y = ’1’ – d1 > 0 but d2 = 0, lunchtime chosen-ciphertext (PX-C1);
X = ’2’ – e2 > 0 whatever e1 is, adaptive chosen-plaintext (P2-CY);
Y = ’2’ – d2 > 0 whatever d1 is, adaptive chosen-ciphertext (PX-C2).

We remind that all the adversaries are adaptive w.r.t. the previous oracle answers,
and thus by “adaptive” we mean “challenge-adaptive”, while “lunchtime” stands for
“challenge-non-adaptive”.

Such a PX-CY adversary can play the attack game against semantic security, but
there are natural restrictions in case of oracle access. Let us denote by ΛE (ΛD resp.)
the lists of plaintext-ciphertext (m, c) pairs obtained from the encryption oracle (and
the decryption oracle resp.). The superscript m (resp. c) will be used to restrict these
lists to the first coordinates (resp. the second coordinates), which thus leads to two
lists of plaintexts Λm

E
and Λm

D
, and two lists of ciphertexts Λc

E
and Λc

D
. The restrictions

are thus:

– if the adversary has access to the decryption oracle (that is C1 or C2), it is re-
stricted not to ask the challenge ciphertext c in the second stage;

– in the deterministic case, if the adversary has access to the encryption oracle
(that is P1 or P2), the support SD of D (the set of plaintexts that have a non-zero
probability in D) must be disjoint with the list of the plaintexts asked to the
encryption oracle at any time, or obtained from the decryption oracle during the
first stage.

The former restriction is the classical one, and the latter one is quite natural for
deterministic encryption. We show later (by proving equivalence with the find-then-
guess notion) that it is a minimal restriction.

Definition 2. An encryption scheme π is said to be (ε, t, e1, d1, e2, d2)-semantically
secure if for any (t, e1, d1, e2, d2)-SEM adversary A, that asks at most e1 and d1 (resp.
e2 and d2) encryption and decryption queries in the first stage (resp. in the second
stage) within time t, Adv

sem
π (A) ≤ ε.

2.4 Indistinguishability: Find-then-Guess

The indistinguishability security notion (also known as find-then-guess [1]) involves a
(t, e1, d1, e2, d2)-IND adversary A = (AEk,Dk

1 ,AEk,Dk

2) that plays the following game:

– a key k is first uniformly drawn from {0, 1}k ;
– Stage 1 (find): AEk,Dk

1 outputs two plaintexts (m0,m1) together with a state in-
formation s;

– a bit b is randomly drawn, and a random tape r is uniformly drawn from {0, 1}µ

then one computes c = Ek(mb; r);
– Stage 2 (guess): AEk,Dk

2 is given the state information s and the ciphertext c. It
outputs its guess b′ for b.

The adversary is said to be successful if b′ = b. It means that it has been able to
distinguish the encryption of m0 from the encryption of m1. However it is easy for an
adversary to win half the time, by simply flipping a random coin. Then we say that A
breaks the find-then-guess security if b′ = b with probability significantly greater than
1/2. Therefore, we define the advantage of an adversary A, against the find-then-guess
security, or indistinguishability, of an encryption scheme π, by the following formula:

Adv
ind
π (A) = 2× Pr

[

k
R
← {0, 1}k; (m0,m1, s)← A

Ek,Dk

1 (); b
R
← {0, 1};

r
R
← {0, 1}µ; c = Ek(mb; r); b

′ ← AEk,Dk

2 (s, c) : b′ = b

]

− 1.

6

As above, there are also natural restrictions in case of oracle access:

– if the adversary has access to the decryption oracle (that is C1 or C2), it is re-
stricted not to ask the challenge ciphertext c in the second stage;

– in the deterministic case, if the adversary has access to the encryption oracle (that
is P1 or P2) it is restricted not to ask m0 or m1 to the encryption oracle at any
time, or to have obtained m0 or m1 from the decryption oracle during the first
stage.

Since we focus this paper on the deterministic case, one can note that the above
restrictions sum up to

m0,m1 6∈ Λm
E c 6∈ Λc

D.

Definition 3. An encryption scheme π is said to be (ε, t, e1, d1, e2, d2)-indistinguish-
able if for any (t, e1, d1, e2, d2)-IND adversary A, that asks at most e1 and d1 (resp.
e2 and d2) encryption and decryption queries in the first stage, a.k.a. the find stage
(resp. in the second stage, a.k.a. the guess stage) within time t, Adv

ind
π (A) ≤ ε.

2.5 Pseudo-Random and Super Pseudo-Random Permutations

Pseudo-Random Permutation. The usual security notion one requires from a
block cipher is to look like perfectly random permutations, for the keys uniformly
drawn. This notion can be formalized as follows: any adversary accessing an oracle Ob

(O0 corresponds to the perfectly random permutation P —a permutation randomly
chosen in the set SP ` of the permutations onto {0, 1}`— and O1 corresponds to
an encryption permutation Ek, for a random key k) cannot guess b (i.e, it cannot
distinguish if it accesses the perfectly random permutation P or the actual encryption
algorithm Ek, with a random key):

Adv
prp
π (A) = 2× Pr

[

k
R
← {0, 1}k ;P

R
← SP`;O0 = P;O1 = Ek;

b
R
← {0, 1}; b′ ← AOb() : b′ = b

]

− 1.

Definition 4. An encryption scheme π is said to be a (ε, t, n)-pseudo-random per-
mutation, denoted (ε, t, n)-PRP if for any (t, n)-PRP adversary A, that asks at most
n encryption queries within time t, Adv

prp
π (A) ≤ ε.

Super Pseudo-Random Permutation. The above notion does not take into ac-
count the decryption oracle access. Hence the stronger notion: as above, one requires
that no adversary can distinguish if it accesses the perfectly random permutation P
or the actual cipher. But in this case, the adversary not only accesses the permutation
Ob itself, which is either P or Ek, but also its inverse O−1

b , which is thus either P−1

or Dk:

Adv
sprp
π (A) = 2× Pr

k
R
← {0, 1}k ;P

R
← SP`;

(O0,O
−1
0) = (P,P−1); (O1,O

−1
1) = (Ek,Dk);

b
R
← {0, 1}; b′ ← AOb,O

−1
b () : b′ = b

− 1.

Definition 5. An encryption scheme π is said to be a (ε, t, n,m)-super pseudo-random
permutation, denoted (ε, t, n,m)-SPRP if for any (t, n,m)-SPRP adversaryA, that asks
at most n encryption queries and m decryption queries within time t, Adv

sprp
π (A) ≤ ε.

7

2.6 Equivalences

For completeness, let us briefly recall a well-known result: indistinguishability and
semantic security are equivalent security notions, if D is required to be efficiently
samplable, and the predicate f to be efficiently computable. From a more concrete
point of view, we can state the following theorem, which proof can be found in the
Appendix A.1.

Theorem 6. For any encryption scheme π = (k, `, E ,D):

1

2
× Adv

ind
π (t, e1, d1, e2, d2) ≤ Adv

sem
π (t, e1, d1, e2, d2) ≤ Adv

ind
π (t′, e1, d1, e2, d2),

where t′ ≤ t + 2TD + Tf , if the sampling time for D is bounded by TD and the time to
evaluate predicate f is bounded by Tf .

3 About the Indistinguishability of Ciphers

First, as already remarked, contrary to the probabilistic case, restrictions do not exist
for the challenge only, which should not have been asked to the decryption oracle, but
also for m0 and m1: they should not have been asked to the encryption oracle either,
hence m0,m1 6∈ Λm

E
and c 6∈ Λc

D
.

3.1 Normal Adversary

Moreover, in the following, we restrict any adversary to behave like a normal adversary,
which means that

– each query is asked at most once;

– if m has been asked as an encryption query (or to Ob), with answer c, the query
c will never be asked to the decryption oracle (or to O−1

b) later;

– if c has been asked as a decryption query (or to O−1
b), with answer m, the query

m will never be asked to the encryption oracle (or to Ob) later;

– for a (t, n)-PRP adversary (or (t, n,m)-SPRP adversary, respectively), the ad-
versary makes exactly n queries to Ob (n queries to Ob and m queries to O−1

b ,
respectively) .

Proposition 7. Any adversary can be made normal (with just additional look up in
tables.)

The proof can be found in the Appendix A.2.

3.2 Adaptive Adversaries

Since we consider general adversaries, with possible oracle access, according to the
values e1, d1, e2 and d2, for simpler notations we omit the oracle notation A =
(AEk,Dk

1 ,AEk,Dk

2) but simply use A = (A1,A2). Oracle access is now implicit.

8

Adaptive Chosen-Plaintext Attacks. First, we review the property showed by
Katz and Yung [6] about probabilistic symmetric encryption schemes. By the Corol-
lary 10 below, we prove that it still holds for ciphers: an adaptive access to the en-
cryption oracle after the challenge ciphertext is known does not significantly increase
the power of an adversary which already had adaptive access to this oracle in the first
stage.

Theorem 8. For any cipher π:

Adv
ind
π (t, e1, d1, e2, d2) ≤ (2e2 + 1)× Adv

ind
π (t, e1 + e2, d1 + d2, 0, d2).

Proof. Let A be a (t, e1, e2, d1, d2)-normal adversary against indistinguishability. We
denote by A[ε2] the new adversary B we build using A, by restricting the interactions
A actually has with the world. We indeed filter the queries it asks: all the queries asked
by A1 are forwarded (as well as the answers); however, only the first ε2 encryption
queries are forwarded in the second stage, extra encryption queries are answered at
random, but different from any previously involved ciphertext (the decryption queries,
the ciphertext answers to encryption queries, and the challenge ciphertext.) We easily
see that A[ε2] is normal. Note that A[e2] = A since in this case all the queries are
forwarded, as well as the answers, whereas A[0] is in fact an adversary who makes no
encryption query in the second stage, since the queries asked by A2 are answered at
random, without querying Ek.

Lemma 9. For any 1 ≤ ε2 ≤ e2:

Adv
ind
π (A[ε2])− Adv

ind
π (A[ε2 − 1]) ≤ 2× Adv

ind
π (t, e1 + e2, d1 + d2, 0, d2).

The proof of this lemma is quite similar but simpler than the proof of the Lemma 12
below. The complete proof of the present lemma can be found in the Appendix A.3.
The full proof of the Lemma 12 is included below. By applying e2 times this lemma,
using a classical hybrid argument, one gets

Adv
ind
π (A) ≤ Adv

ind
π (t, e1, d1, 0, d2) + 2e2 × Adv

ind
π (t, e1 + e2, d1 + d2, 0, d2),

which implies the claimed result. ut

In the particular case where d2 = 0, one gets the following corollary which means that
adaptive chosen-plaintext attacks do not give any additional power to an adversary.

Corollary 10. For any cipher π:

Adv
ind
π (t, e1, d1, e2, 0) ≤ (2e2 + 1)× Adv

ind
π (t, e1 + e2, d1, 0, 0).

Adaptive Chosen-Plaintext and Chosen-Ciphertext Attacks. This result was
already known. But the particular case of deterministic encryption admits improve-
ments: under specific assumptions, an adaptive access to both the encryption oracle
and the decryption oracle after the challenge ciphertext is known does not significantly
increase the power of an adversary which already had access to these oracles in the
first stage. Interestingly, the cost of the reduction is only linear in the (total) number
of queries.

Theorem 11. For any cipher π: Adv
ind
π (t, e1, d1, e2, d2) is upper-bounded by

(

2(e2 + d2) + 1

)(

Adv
ind
π (t, e1 + e2, d1 + d2, 0, 0)

+Adv
ind
π−1(t, d1 + d2 − 1, e1 + e2 + 2, 0, 0)

)

.

9

Proof. Let A be a (t, e1, e2, d1, d2)-normal adversary against indistinguishability. As
above, we denote by A[n] the new adversary B we build using A, by restricting the
interactions A actually has with the world: all the queries in the first stage are for-
warded, and the answers too, but only the first n queries are answered correctly in
the second stage, while extra queries are answered at random but different from any
message which previously appeared in the same category: if it is an encryption query,
the answer must be different from any previously involved ciphertext (the decryption
queries, the ciphertext answers to encryption queries, and the challenge); if it is a
decryption query, the answer must be different from any previously involved plain-
text (the encryption queries, the plaintext answers to decryption queries, and the two
plaintexts output of A1). We easily see that A[n] is normal. Note that A[e2 +d2] = A,
since there are at most e2 + d2 oracle queries in the second stage. However, A[0] is a
lunchtime adversary, since all the queries in the second stage are answered at random,
without querying any oracle.

Lemma 12. For any n ≤ e2 + d2: the difference Adv
ind
π (A[n]) − Adv

ind
π (A[n − 1]) is

upper-bounded by

2×

(

Adv
ind
π (t, e1 + e2, d1 + d2, 0, 0) + Adv

ind
π−1(t, d1 + d2 − 1, e1 + e2 + 2, 0, 0)

)

,

where t is the running time of A.

Proof. We construct two adversaries B and C, such that for each successful execution
of A, one of B or C is successful. The former is a (t, e1 +e2, d1 +d2, 0, 0)-IND adversary
against π, while the latter is a (t, d1 + d2 − 1, e1 + e2 + 2, 0, 0)-IND adversary against
π−1.

Description of B and C. Our adversaries B and C actually restrict the interactions
A has, the same way as A[n − 1] or A[n] would do: B1 and C1 run A1, forwarding
any query/answer to their corresponding encryption/decryption oracles1. When A1

outputs (m0,m1), B1 and C1 choose a random bit b and get c = Ek(mb). This value
requires one more encryption query to π for B1, while it requires one more decryption
query to π−1 for C1. Then B1 and C1 run A2(c) up to the nth query q, still forwarding
any query/answer to their corresponding oracles, except that last q one (the nth query
of A2). In the case that A2 makes less than n queries, B and C complete randomly their
games by choosing immediately two random plaintexts different from any previous
plaintext and outputting randomly the guesses. The advantages are thus exactly zero
in this case. We thus now turn to the case where such a query q exists:

– If q is an encryption query, C completes randomly its game in the above sense
with a random answer since we do not care about it but only about B, which
attacks π as follows. B1 chooses a random plaintext q0 for π, different from any
previous plaintext (encryption queries and decryption answers), and then outputs
(q0, q1 = q). Thereafter, the challenge ciphertext a = Ek(qd) is produced, for a
random bit d. On input a, B2 resumes A2 using a for answering the query q (note
that B2 does not query on q). When A2 outputs its guess b′ for the bit b, B2

outputs its guess d′, for the bit d, that is defined by the boolean value of the test
b′ = b (in other words, if b′ = b, then d′ = 1, else d′ = 0).

1 Note that a query to Ek corresponds to an encryption query to π (for B1), while it corresponds to
a decryption query to π

−1 (for C1), and similarly for a query to Dk.

10

– If q is a decryption query, B completes randomly its game in the above sense with a
random answer since we do not care about it but only about C, which attacks π−1

as follows. C1 chooses a random plaintext q0 for π−1 (and thus a ciphertext for π),
different from any previous plaintext for π−1 (Dk queries and Ek answers) but also
from Ek(mb) (C1 must ask this further query —a decryption query for π−1— to
learn this value and avoid the collision), and then outputs (q0, q1 = q). Thereafter,
the challenge a = Dk(qd), a ciphertext for π−1, is produced for a random bit d.
On input a, C2 resumes A2 using a for answering the query q. When A2 outputs
its guess b′ for the bit b, C2 outputs its guess d′, for the bit d, that is defined by
the boolean value of the test b′ = b (in other words, if b′ = b, then d′ = 1, else
d′ = 0).

Advantages of B and C. We first check that B and C satisfy the access restriction to
the oracles, which is easy. Indeed, in the case B1 and C1 choose a random plaintext q0

(when A makes the nth query), they choose it different from any previous plaintext.
Then, we know that B2 and C2 do not ask any other query, the access restriction to
the decryption oracle is then satisfied. Let us now evaluate the number of queries:

– Algorithm B1 makes at most e1 +e2 encryption queries (all the encryption queries
that A makes up to the nth query q excepted q itself and it must make one more
encryption query to get c = Ek(mb)), and d1 + d2 decryption queries (all the
decryption queries that A makes up to the nth query);

– Algorithm C1 makes at most d1 + d2 − 1 encryption queries (all the decryption
queries that A makes up to the nth query q excepted the query q itself) and
e1 + e2 + 2 decryption queries (all the encryption queries that A makes up to the
nth query, one more query to get c = Ek(mb), and one more query to learn the
value Ek(mb)).

About the running time, no extra computation has to be perform by either B or C.
We thus get the following upper-bounds, where t is the running time of A:

Adv
ind
π (B) ≤ Adv

ind
π (t, e1 + e2, d1 + d2, 0, 0),

Adv
ind
π−1(C) ≤ Adv

ind
π−1(t, d1 + d2 − 1, e1 + e2 + 2, 0, 0).

Let us now analyze the relation between the advantages of B and C, and those of A[n]
and A[n − 1]. We denote by Enc

q the event in which q is an encryption query and
we also denote by Adv

ind
π (A |Enc

q) the conditional advantage of A providing the event
Enc

q holds, that is

Adv
ind
π (A |Enc

q) = Pr[A() = 1 | b = 1 ∧ Enc
q]− Pr[A() = 1 | b = 0 ∧ Enc

q].

– if q is an encryption query, we have a non trivial adversary B:

Adv
ind
π (B) = 2Pr[d′ = d]− 1 = Pr[d′ = 1 | d = 1]− Pr[d′ = 1 | d = 0].

When d = 1, the distribution of b and b′ used by B is exactly the same as the usual
attack game for A[n], since a is the correct answer of q1 = q. When d = 0, the
answer of the encryption query q (w.r.t. π) is a, the encryption of q0 (a random
distinct message), and thus a random ciphertext different from any previously
involved ciphertext because of the permutation propriety of the cipher. The last

11

remark shows that B is identical to A[n− 1]. Since d′ = 1 means b′ = b, we have2:

Adv
ind
π (B |Enc

q) = Pr[d′ = 1 | d = 1 ∧ Enc
q]− Pr[d′ = 1 | d = 0 ∧ Enc

q]

=
1

2
·
(

Adv
ind
π (A[n] |Enc

q)− Adv
ind
π (A[n− 1] |Enc

q)
)

.

– if q is a decryption query, a similar argument can be provided for the adversary C:
when d = 1, C is identical to A[n] and when d = 0, C is identical to A[n−1] because
the encryption of q0 (a random distinct message) for C is a random plaintext
different from any previous plaintext (included m0 and m1.) Therefore, we have2:

Adv
ind
π (C |Enc

q) = Pr[d′ = 1 | d = 1 ∧ Enc
q]− Pr[d′ = 1 | d = 0 ∧ Enc

q]

=
1

2
·
(

Adv
ind
π (A[n] |Enc

q)− Adv
ind
π (A[n− 1] |Enc

q)
)

.

In the above formula, Enc
q denotes the negation of event Enc

q. With the remark that
Adv

ind
π (B |Enc

q) = 0 and Adv
ind
π (C |Enc

q) = 0, we have:

Pr[Enc
q]× Adv

ind
π (B |Enc

q) = Adv
ind
π (B) ≤ Adv

ind
π (e1 + e2, d1 + d2, 0, 0),

Pr[Enc
q]× Adv

ind
π (C |Enc

q) = Adv
ind
π (C) ≤ Adv

ind
π−1(d1 + d2 − 1, e1 + e2 + 2, 0, 0).

Combined with the two above equations, this leads to the expected result. ut

Starting from A = A[e2 +d2], and applying e2 +d2 times the above relation, one gets:

Adv
ind
π (A) ≤ Adv

ind
π (A[0]) + 2(e2 + d2)

(

Adv
ind
π (t, e1 + e2, d1 + d2, 0, 0)

+Adv
ind
π−1(t, d1 + d2 − 1, e1 + e2 + 2, 0, 0)

)

.

Since A[0] is a (t, e1, d1, 0, 0)-IND adversary, and thus its advantage is bounded by
Adv

ind
π (t, e1 + e2, d1 + d2, 0, 0), one gets the result. ut

In many ciphers, the encryption algorithm and the decryption algorithm are similar.
Therefore, if the cipher is secure against any lunchtime adversary (IND-P1-C1), its
inverse achieves a similar security level. The above theorem implies that the cipher
is actually secure against any adaptive adversary (IND-P2-C2): thus, adaptive attacks
do not help against symmetric and deterministic encryption schemes.

4 Indistinguishability and Pseudo-Randomness

In this section, we give a relation between the notion of indistinguishability defined
above and the classical security notions for ciphers, namely to provide a pseudo-
random permutation family or a super pseudo-random permutation family.

4.1 IND-P1-C0 is Equivalent to Pseudo-Randomness

In [2], Desai and Miner claimed that:

Proposition 13. For any cipher π:

1

2
× Adv

ind
π (t, e1, 0, 0, 0) ≤ Adv

prp
π (t, e1 + 1) ≤ (e1 + 1)× Adv

ind
π (t, e1 + 1, 0, 0, 0).

We prove this proposition (which has not been published anywhere) in the following
two theorems whose results are more general. In fact, the left relation is a particular
case of Theorem 14 where d1 = e2 = d2 = 0, while the right relation is a particular
case of Theorem 15 where n = e1 + 1 and m = 0.

2 We remind that Adv
ind
π (A | E) denotes the conditional advantage of any adversary A providing the

event E holds.

12

4.2 IND-P2-C2 is “almost” Equivalent to Super Pseudo-Randomness

The first theorem is the intuitive and easy direction:

Theorem 14. For any cipher π:

Adv
ind
π (t, e1, d1, e2, d2) ≤ 2× Adv

sprp
π (t, e1 + e2 + 1, d1 + d2).

Proof. We are assuming that π is SPRP-secure. We then show that π is also secure in
the sense of IND-P2-C2. Let A to be a (t, e1, d1, e2, d2)-IND adversary attacking π. We
want to show that Adv

ind
π (A) is negligible. To this end, we describe a SPRP adversary

B which attacks π by using A as a sub-program.

Description of BOb,O
−1
b . Our adversary B runs A1 by answering its encryption/de-

cryption queries, which are simply forwarded to the oracles Ob and O−1
b , respectively.

When A1 outputs (m0,m1), B chooses a random bit d and gets yd = Ob(md). B then
runs A2(yd), still forwarding all the encryption/decryption queries of A to the oracles
Ob and O−1

b , respectively. When A2 outputs its guess d′ for the bit d, B outputs its
guess b′, for the bit b, that is defined by the boolean value of the test d′ = d (i.e, if
d′ = d, then b′ = 1, else b′ = 0).

Advantage of B. We now consider the relation between the advantage of B and the
advantage of A.

– in the case b = 1, this game is exactly the game in which A plays against π.
The probability that B outputs b′ = 1 is therefore the probability that d′ = d:
(Adv

ind
π (A) + 1)/2.

– in the case b = 0, because A queries a random permutation, and yd = P(md) is
perfectly independent with m0 and m1, A2 therefore gives an answer d′ = d with
probability 1/2. Consequently, B gives b′ = 1 with probability 1/2.

Combining these two cases, in which A is a (t, e1, d1, e2, d2)-IND adversary and B is
a (t, e1 + e2 + 1, d1 + d2)-SPRP adversary, we get the expected result. B indeed asks
e1 + e2 + 1 queries to Ob, because of the extra query to get yd. ut

The other direction is less natural, and much more surprising:

Theorem 15. For any cipher π:

Adv
sprp
π (t, n,m) ≤ (n + m)×

(

Adv
ind
π (t, n,m, 0, 0) + Adv

ind
π−1(t,m, n, 0, 0)

)

.

Proof. Let A be a (t, n,m)-SPRP normal adversary against π. We denote by A[η] the
hybrid adversary B, built using A by restricting its interactions: the first η queries to
the oracles are answered by Ek (for an encryption query – oracle O) and by Dk (for
a decryption query – oracle O−1), the following queries are answered by P and P−1

respectively. The goal of the adversary is always to output a bit b′. We define PI(B)
to be the probability that any adversary B gives the answer b′ = 1. We thus have:

Adv
sprp
π (A) = Pr[A() = 1 | b = 1]− Pr[A() = 1 | b = 0]

= PI[AEk,Dk() = 1]− Pr[AP ,P−1
() = 1] = PI(A[n + m])− PI(A[0]).

Lemma 16. For any η ≤ n + m:

PI(A[η])− PI(A[η − 1]) ≤ Adv
ind
π (n,m, 0, 0) + Adv

ind
π−1(m,n, 0, 0).

13

This proof is similar to the one of the Lemma 12. The idea is that we construct
two adversaries, a (t, n,m, 0, 0)-adversary B against π and a (t,m, n, 0, 0)-adversary C
against π−1 such that one of their advantages is exactly equal to the left-hand side.
These two adversaries run A up to the ηth query of A[η] using Ek for answering a
query to Ob and using Dk for answering a query to Ob. According to the type of the
ηth query of A[η] (an encryption query or a decryption query), B1 or C1 outputs this
query as one of its two chosen messages (the other is chosen randomly) and then B1

or C1 gives its received challenge as the answer to the ηth query of A. B2 or C2 then
outputs its guess according to the guess of A without making any query.

The full proof can be found in Appendix A.4.

Applying n + m times this lemma, we obtain the expected result. ut

From these two theorems, we see that a cipher is a super pseudo-random permutation
if and only if itself and its inverse achieve semantic security against any lunchtime
adversary (IND-P1-C1). In other words, under the conjecture that a cipher and its
inverse achieve a similar security level secure against any lunchtime adversary, SPRP

and IND-P1-C1 are equivalent with a linear-cost reduction.

The more intuitive equivalence, between IND-P2-C2 and SPRP, can be obtained
under a weaker condition: if π−1 is just IND-P1-C0. This result is given in details in
the Appendix B.

Acknowledgement

The work described in this paper has been supported in part by the European Com-
mission through the IST Programme under Contract IST-2002-507932 ECRYPT. The
information in this document reflects only the authors’ views, is provided as is and no
guarantee or warranty is given that the information is fit for any particular purpose.
The user thereof uses the information at its sole risk and liability.

5 Conclusion

Many block ciphers are built in such a way that the encryption and the decryption
algorithms are similar, for efficiency reasons (smaller code). Then intuitively, they may
have similar security levels, at least against lunchtime attacks. This is for example the
case with the most famous block cipher, that is DES, under a very weak conjecture
(see Appendix C).

Based on such an assumption, we have proven that adaptive attacks do not help for
breaking semantic security. We also proved that the most classical security notion for
ciphers (to be a super pseudo-random permutation family) is equivalent to semantic
security against adaptive attacks, but thus also against lunchtime attacks only.

References

1. M. Bellare, A. Desai, E. Jokipii, and P. Rogaway. A Concrete Security Treatment of Symmetric
Encryption: Analysis of the DES Modes of Operation. In Proc. of the 38th FOCS. IEEE, New
York, 1997.

2. A. Desai and S. Miner. Concrete Security Characterization of PRFs and PRPs: Reduction and
Applications. In Asiacrypt ’00, LNCS 1976, pages 503–516. Springer-Verlag, Berlin, 2000.

3. O. Goldreich, S. Goldwasser, and S. Micali. On The Cryptographic Applications of Random
Functions. In Crypto ’84, LNCS 196. Springer-Verlag, Berlin, 1985.

14

4. S. Goldwasser and S. Micali. Probabilistic Encryption. Journal of Computer and System Sciences,
28:270–299, 1984.

5. S. Halevi and P. Rogaway. A Tweakable Enciphering Mode. In Crypto ’03, LNCS 2729, pages
482–499. Springer-Verlag, Berlin, 2003.

6. J. Katz and M. Yung. Complete Characterization of Security Notions for Probabilistic Private-Key
Encryption. In Proc. of the 32nd STOC. ACM Press, New York, 2000.

7. M. Luby and Ch. Rackoff. How to Construct Pseudorandom Permutations from Pseudorandom
Functions. SIAM Journal of Computing, 17(2):373–386, 1988.

8. M. Naor and M. Yung. Public-Key Cryptosystems Provably Secure against Chosen Ciphertext
Attacks. In Proc. of the 22nd STOC, pages 427–437. ACM Press, New York, 1990.

9. C. Rackoff and D. R. Simon. Non-Interactive Zero-Knowledge Proof of Knowledge and Chosen
Ciphertext Attack. In Crypto ’91, LNCS 576, pages 433–444. Springer-Verlag, Berlin, 1992.

10. C. E. Shannon. Communication Theory of Secrecy Systems. Bell System Technical Journal,
28(4):656–715, 1949.

A Proofs

A.1 Proof of Theorem 6

First, let A = (AEk,Dk

1 ,AEk,Dk

2) be a (t, e1, d1, e2, d2)-adversary against indistinguisha-

bility. We define the following (t, e1, d1, e2, d2)-adversary B = (BEk,Dk

1 ,BEk,Dk

2) against
semantic security:

– k
R
← {0, 1}k ;

– B1 runs A1, and forwards all the query-answers to/from the oracles (the same
number of queries are thus asked). When A1 outputs two plaintexts (m0,m1) and
s, one defines and outputs the distribution D = {m0,m1} (the uniform distribu-
tion among the two messages) together with the state information s;

– m
D
← {0, 1}`, r

R
← {0, 1}µ and c = Ek(m; r) (note this is equivalent to b

R
← {0, 1},

r
R
← {0, 1}µ and c = Ek(mb; r));

– B2 is given the state information s and the ciphertext c, which it forwards to A2.
it also forwards all the query-answers to/from the oracles (the same number of
queries are thus asked). When A2 outputs its guess b′ for b, one defines f(x) to
be the predicate x = mb′ .

By definition, if we consider the distribution D for m′, that is equivalent to the random
choice of a bit d independent to b and b′, and m′ = md,

Adv
ind
π (A) = 2× Pr[b′ = b]− 1

Adv
sem
π (B) = Pr[f(m)]− Pr[f(m′)] = Pr[mb = mb′]− Pr[md = mb′]

= Pr[b = b′] + Pr[b 6= b′ ∧m0 = m1]− Pr[d = b′]− Pr[d 6= b′ ∧m0 = m1]

=

(

Pr[b = b′]−
1

2

)

+

(

Pr[b 6= b′ |m0 = m1]−
1

2

)

× Pr[m0 = m1].

Note that if m0 = m1 then, from an information theoretical point of view, the
adversary has no information about b, thus b′ is perfectly independent of b, then
Adv

ind
π (A) = 2 × Adv

sem
π (B). Furthermore, the running time of B is exactly the same

as the running time of A since no computation is done. Therefore, if the running time
of A is bounded by t, Adv

ind
π (A) ≤ 2× Adv

sem
π (t, e1, d1, e2, d2).

From the restrictions point of view, if A has access to the decryption oracle, it is
not allowed to use it on the challenge c, thus B does not make such a wrong query
either. If the scheme is deterministic, A is not allowed to ask either m0 or m1 to the

15

encryption oracle. Thus B will not do it either: they are exactly the two messages
whose probability is not zero in D.

Let us turn to the second part of the relation. Let A = (AEk,Dk

1 ,AEk,Dk

2) be
a (t, e1, d1, e2, d2)-adversary against the semantic security. We define the following
(t′, e1, d1, e2, d2)-adversary B = (BEk,Dk

1 ,BEk,Dk

2) against indistinguishability:

– k
R
← {0, 1}k ;

– B1 runs A1, and forwards all the query-answers to/from the oracles (the same
number of queries are thus asked). When A1 outputs a distribution D and s, one
draws independently two plaintexts (m0,m1) using D, and outputs them together
with the state information s;

– b
R
← {0, 1}, r

R
← {0, 1}µ and c = Ek(mb; r)

– B2 is given the state information s and the ciphertext c, which it forwards to A2.
it also forwards all the query-answers to/from the oracles (the same number of
queries are thus asked). When A2 outputs f , one checks whether f(m0) holds. If
it is true, one outputs b′ = 0, otherwise b′ = 1.

By definition, if we consider the distribution D for m′, that is equivalent to m′ = mb

(where b = 1− b), and the event E, which means f(m0) = f(m1),

Adv
sem
π (A) = Pr[f(mb)]− Pr[f(m′)] = Pr[f(mb)]− Pr[f(mb)]

= Pr[f(mb) ∧ ¬E]− Pr[f(mb) ∧ ¬E]

= Pr[¬E]× (Pr[f(mb) | ¬E]− Pr[¬f(mb) | ¬E])

Adv
ind
π (B) = 2× Pr[b′ = b]− 1 = Pr[f(m0) | b = 0]− Pr[f(m0) | b = 1]

= Pr[f(mb) ∧ E | b = 0] + Pr[f(mb) ∧ ¬E | b = 0]

−Pr[f(mb) ∧ E | b = 1]− Pr[¬f(mb) ∧ ¬E | b = 1].

The output of A does not depend on the actual value of b, but on c only, thus

Adv
ind
π (B) = Pr[f(mb) ∧ ¬E]− Pr[¬f(mb) ∧ ¬E]

= Pr[¬E]× (Pr[f(mb) | ¬E]− Pr[¬f(mb) | ¬E]) = Adv
sem
π (A).

Note that the running time of B is exactly the same as of A plus two samplings using
D and one evaluation of f . Then if the running time of A is bounded by t, sampling
one element using D is bounded by TD and evaluating f is bounded by Tf :

Adv
sem
π (A) ≤ Adv

ind
π (t + 2TD + Tf , e1, d1, e2, d2).

From the restrictions point of view, ifA has access to the decryption oracle, it is not
allowed to use it on the challenge c, thus B does not make such a wrong query either.
If the scheme is deterministic, A is not allowed to ask a message whose probability is
not zero in D. Thus B will not ask either m0 or m1 to the encryption oracle. ut

A.2 Proof of Proposition 7

We show that we can transform any adversary A into a normal adversary B without
decreasing its power. This can be simply done by bookkeeping all the query-answers.
We indeed store all the query-answers (m, c) in a list Λ, which is initially set to empty.
Whenever the adversary asks an encryption query m, one first looks into the list Λ
whether there is a pair (m, c). In such a case, the adversary is given back c, otherwise

16

m is queried to the encryption oracle to get the answer c, then one stores the pair
(m, c) into the list. Any decryption query is proceeded in the same way. Since the
encryption algorithm is deterministic (and the decryption algorithm too), there is a
unique answer to each query.

So the above simulation of oracles is perfect. The cost is just some look up in a
list (which admits very efficient techniques). ut

A.3 Proof of Lemma 9

We construct B, a (t, e1+ε2, d1+d2, 0, d2)-IND adversary attacking π whose advantage
is exactly the left-hand side of the relation.

Description of B. Our adversary B restricts interactions of A with the world, as
A[ε2 − 1] or A[ε2] would do: B1 runs A1, forwarding any query/answer to the encryp-
tion/decryption oracle; when A1 outputs (m0,m1), B1 chooses a random bit b and
gets c = Ek(mb) (we see here that B1 makes one more encryption query to get c); then
B1 runs A2(c) up to the εth

2 encryption query q, still forwarding any query/answer to
the encryption/decryption oracle, except that last q one.

In the case that A2 makes less than ε2 encryption queries, B chooses immediately
two random plaintexts, but different from any previously involved plaintext and out-
puts randomly its guess d′. We consider now the case where such a query q exists. B1

also chooses a random plaintext q0, but different from any previously involved plain-
text (included mb), and then outputs (q0, q1 = q). Thereafter, a challenge ciphertext
a of qd is produced, for a random bit d.

On input a, B2 resumes A2 using a for answering the query q (remark that B does
not query on q, which thus makes one less query). B2 follows up, still forwarding any
decryption query/answer from A2 to its decryption oracle, while encryption queries
are answered at random, but different from any previously involved plaintext. When
A2 outputs its guess b′ for the bit b, B2 outputs its guess d′, for the bit d, that is
defined by the boolean value of the test b′ = b (i.e, if b′ = b, then d′ = 1, else d′ = 0).

We can note that B1 makes at most (e1 +ε2) encryption queries (all the encryption
queries that A makes up to the εth

2 query q in the second stage, but not q itself; it must
make one more encryption query to get c = Ek(mb)), and at most (d1 +d2) decryption
queries. From its side, B2 makes no encryption query and at most d2 decryption
queries.

Advantage of B. We first check that B satisfies the access restriction to the oracles.
Indeed, in the case A2 makes less than ε2 encryption queries, B does not make any
more query, so B satisfies the access restriction. In the other case, when B1 chooses a
random plaintext q0, it chooses it different from any previous plaintext. Then, we know
that B2 does not ask any other encryption query since q is the last real encryption
query of A[ε2]. About the access restriction to the decryption oracle, a is assumed to
be the ciphertext of q, it means that for A, a is assumed to be the ciphertext of the
plaintext q, and thus a is never asked since A is a normal adversary. Algorithm B is
thus a (t, e1 + e2, d1 + d2, 0, d2)-adversary:

Adv
ind
π (B) ≤ Adv

ind
π (t, e1 + e2, d1 + d2, 0, d2).

Let us now analyze the relation between the advantages of B, A[ε2] and A[ε2− 1].
In the case that A2 makes less than ε2 encryption queries, the advantage of B is zero

17

which is trivially equal to Adv
ind
π (A[ε2])−Adv

ind
π (A[ε2− 1]) since A[ε2] = A[ε2− 1]. In

the case that A2 makes more than ε2 encryption queries, we have3:

Adv
ind
πβ

(B) = Pr[d′ = 1 | d = 1]− Pr[d′ = 1 | d = 0].

When d = 1, the distribution of b and b′ used by B is exactly the same as the usual
attack game for A[ε2], since a is the correct answer of q1 = q. When d = 0, the
answer of the encryption query q (w.r.t. π) is a, the encryption of q0 (a random
distinct message), and thus a random ciphertext different from any previous ciphertext
(included the challenge of A), because of the permutation propriety of the cipher. The
last remark shows that the distribution of b and b′ used by B is exactly the same as
the attack game for A[ε2 − 1].

Since d′ = 1 means b′ = b, we have:

Adv
ind
π (B) = Pr[d′ = 1 | d = 1]− Pr[d′ = 1 | d = 0]

=
1

2
×

(

Adv
ind
π (A[ε2])− Adv

ind
π (A[ε2 − 1])

)

.

ut

A.4 Proof of Lemma 16

We construct two adversaries, a (t, n,m, 0, 0)-IND adversary B against the cipher π
and a (t,m, n, 0, 0)-IND adversary C against the inverse π−1 such that one of their
advantages is exactly equal to the left-hand side.

Description of B and C. Our adversaries B and C restrict the interactions A has
with the world, the same way as it would be for A[η − 1] or A[η]. B1 and C1 run A,
forwarding all the first η − 1 query/answer of A to their corresponding oracles (for a
query x to Ob, B1 and C1 answer Ek(x) which is a π-encryption query for the former
and a π−1-decryption query for the latter, and for a query y to O−1

b , B1 and C1 answer
D(x), which is a π-decryption query for the former and a π−1-encryption query for
the latter). We now consider the ηth query q of A.

– If q is an encryption query, C completes randomly its game by choosing imme-
diately its two random plaintexts, but different from any previous plaintext and
outputting randomly the guess d′, whereas B attacks π as follows. B1 chooses a
random plaintext q1, but different from any previous plaintext, and then outputs
q0 = q, q1. Thereafter, a challenge ciphertext c = Ek(qd) is produced, for a random
bit d. B2, on input c, resumes A, outputting c as the answer for the query q. For
the other queries of A, B2 answers randomly but consistently. Finally, when A
outputs its guess b′, B2 outputs (without making any query) its guess d′, for the
bit d, that is defined equal to b′.

– If q is a decryption query, B completes randomly its game by choosing immedi-
ately its two random plaintexts, but different from any previous plaintext and
outputting randomly the guess d′, whereas C attacks π−1 as follows. C1 chooses a
random ciphertext q1, but different from any previous ciphertext, and then out-
puts q0 = q, q1. Thereafter, a plaintext (the challenge π−1-ciphertext c = Dk(qd))
is produced, for a random bit d. C1 give c as an answer for the query q of A.

3
d and d

′ follow the distribution obtained in the above game: d is the challenge random bit, while
d
′ is the output of B.

18

For the other queries of A, C1 answer randomly but consistently. Finally, when A
outputs its guess b′, C2 outputs (without making any query) its guess d′, for the
bit d, that is defined equal to b′.

We note that B1 makes at most n encryption queries and m decryption queries to π,
while C1 makes at most m encryption queries and n decryption queries to π−1. From
their sides, B2 and C2 make no encryption query and no decryption query.

Advantages of B and C. We first check that B and C satisfy the access restriction
to the oracles. Indeed, when B1 and C1 choose a random plaintext q0, they choose it
different from any previous plaintext. Algorithm B is thus a (n,m, 0, 0)-IND adversary
against π, and algorithm C is a (m,n, 0, 0)-IND adversary against π−1, within the same
running time t as A:

Adv
ind
π (B) ≤ Adv

ind
π (t, n,m, 0, 0),

Adv
ind
π−1(C) ≤ Adv

ind
π−1(t,m, n, 0, 0).

Let us now analyze the relation between the advantages of B and C, and A[η] and
A[η − 1]. We denote by Enc

q the event that q is an encryption query and we also
denote by PI(A[η] |Enc

q) the conditional probability that A[η] outputs 1, providing
the event Enc

q, and by Adv
ind
π (A |Enc

q) the conditional advantage of A providing the
event Enc

q.

– q is a encryption query. We indeed have:

Adv
ind
π (B) = Pr[d′ = 1 | d = 1]− Pr[d′ = 1 | d = 0].

When d = 1, the distribution of b′ used by B is exactly the same as in the game that
A[η] would play, since a is the correct answer of q1 = q. When d = 0, the answer
of the encryption query q is a, the encryption of q0 (a random distinct message),
and thus a random ciphertext different from previous ciphertext, because of the
permutation propriety of the cipher. The last remark shows the game that B plays
is identical to the one that A[η − 1] would play. Since d′ = 1 means that b′ = 1,
we have:

Adv
ind
π (B |Enc

q) = Pr[d′ = 1 | d = 1 ∧ Enc
q]− Pr[d′ = 1 | d = 0 ∧ Enc

q]

= PI(A[η] ∧ Enc
q)− PI(A[η − 1] ∧ Enc

q).

– q is a decryption query. The same way as above, we have:

Adv
ind
π (C |Enc

q) = Pr[d′ = 1 | d = 1 ∧ Enc
q]− Pr[d′ = 1 | d = 0 ∧ Enc

q]

= PI(A[η] ∧ Enc
q)− PI(A[η − 1] ∧ Enc

q).

Using the remark that Adv
ind
π (B |Enc

q) = 0 and Adv
ind
π (C |Enc

q) = 0, one gets,

Pr[Enc
q]× Adv

ind
π (B |Enc

q) ≤ Adv
ind
π (n,m, 0, 0),

Pr[Enc
q]× Adv

ind
π (C |Enc

q) ≤ Adv
ind
π−1(m,n, 0, 0).

One then easily concludes. ut

19

B A Weaker Assumption for the Equivalence between IND-P2-C2

and SPRP

Theorem 17. For any cipher π:

Adv
ind
π (t, e1, d1, 0, 0) − Adv

ind
π (t, e1, 0, 0, 0) ≤ 2d1 × Adv

ind
π−1(t, d1, e1 + 1, 0, e1).

Proof. Let A be a (t, e1, d1, 0, 0)-IND adversary against π. We denote by A[δ1] the
adversary B, built by using A, restricting its interactions with the world: at most δ1

decryption queries are answered correctly in the first stage, extra decryption queries
are answered at random, but different from any previously involved plaintext. Note
that A[d1] = A and A[0] is in fact an adversary who makes no decryption query.

Lemma 18. For any 1 ≤ δ1 ≤ d1:

Adv
ind
π (A[δ1])− Adv

ind
π (A[δ1 − 1]) ≤ 2× Adv

ind
π−1(t, d1 − 1, e1 + 1, 0, e1).

Proof. We construct a (t, d1 − 1, e1 + 1, 0, e1)-IND adversary B against π−1 whose
advantage is equal to the left-hand side of the above relation.

Description of B. Our adversary B runs A, by intercepting the query-answer, so
that it behaves like A[δ1]: B1 runs A1, forwarding any query/answer to the encryp-
tion/decryption oracle until the δth

1 decryption query of A. Note that an encryption
query from A will be a decryption query for B. In the case that A1 makes less than δ1

encryption queries, B chooses immediately two random plaintexts (to π−1), but dif-
ferent from any previous plaintext and output randomly its guess d′. We consider now
the case where such a query q exists, B1 chooses randomly q0, but different from any
previous plaintext, and then outputs (q0, q1 = q). Thereafter, a challenge ciphertext a
of qd is produced, for a random bit d (and for the cipher π−1). On input a, B2 resumes
A1 using a for answering the query q. B2 follows up by forwarding any encryption
query/answer of A to its decryption oracle. decryption queries from B are answered
at random, but consistently. When A1 outputs (m0,m1), B2 chooses a random bit b
and gets c = Ek(mb) (B2 then makes one more decryption query —to π−1— to get c);
then B2 runs A2(c). When A2 outputs its guess b′ for the bit b, B2 outputs its guess
d′, for the bit d, that is defined by the boolean value of the test b′ = b (i.e, if b′ = b,
then d′ = 1, else d′ = 0). We can note that B1 makes at most (d1 − 1) encryption
queries (all the decryption queries that A makes up to the decryption query q but not
this query), and at most e1 + 1 decryption queries (all the encryption queries that A
makes up to the decryption query q and one more query to get c = Ek(mb)). From its
side, B2 makes no encryption query and at most e1 decryption queries.

Advantage of B. We first check that B satisfies the access restriction to the oracles.
Indeed, when B1 chooses a random plaintext q0, it chooses it different from any previ-
ous plaintext. Then, we know that B2 does not ask any other encryption query. About
the access restriction to the decryption oracle, a is assumed to be the plaintext of the
ciphertext q of A, and thus a is never asked since A is a normal adversary. Algorithm
B is thus a (d1 − 1, e1 + 1, 0, e1)-IND adversary against π−1 within the same running
time t as A:

Adv
ind
π−1(B) ≤ Adv

ind
π−1(t, d1 − 1, e1 + 1, 0, e1).

Let us now analyze the relation between the advantages of B, A[δ1] and A[δ1− 1].
We indeed have:

Adv
ind
π−1(B) = Pr[d′ = 1 | d = 1]− Pr[d′ = 1 | d = 0].

20

When d = 1, the distribution of b and b′ used by B is exactly the same as in A[δ1],
since a is the correct answer of q1 = q. When d = 0, the answer of the decryption
query q (w.r.t. π) is a, the decryption of q0 (a random distinct message), and thus a
random plaintext different from any previous plaintext, because of the permutation
propriety of the cipher. The last remark shows the B is identical to A[δ1 − 1]. Since
d′ = 1 means b′ = b, we have:

Adv
ind
π (B) = Pr[d′ = 1 | d = 1]− Pr[d′ = 1 | d = 0]

=
1

2
× (Adv

ind
π (A[δ1])− Adv

ind
π (A[δ1 − 1])).

ut

By applying d1 times the above lemma, one easily concludes the proof of the Theo-
rem 17. ut

Theorem 19.

Adv
sprp
π (t, n,m) ≤ n× (m + n)× Adv

ind
π (t, n,m + 1, 0,m)

+(m + n)×

(

Adv
ind
π (t, n,m, 0, 0) + Adv

ind
π−1(t,m, 0, 0, 0)

)

.

Proof. By the Theorem 15:

Adv
sprp
π (t, n,m) ≤ (n + m)×

(

Adv
ind
π (t, n,m, 0, 0) + Adv

ind
π−1(t,m, n, 0, 0)

)

.

By the above Theorem 17, applied to π−1, one gets:

Adv
ind
π−1(t,m, n, 0, 0) ≤ Adv

ind
π−1(t,m, 0, 0, 0) + 2n× Adv

ind
π (t, n,m + 1, 0,m).

Which concludes the proof. ut

From the Theorems 14 and 19, we immediately deduce the following corollary:

Corollary 20. For any cipher π such that its inverse π−1 is IND-P1-C0 secure, the
notions of indistinguishability against adaptive adversaries and super pseudo-random
permutations are equivalent.

C An Application to DES

We first remark that, in all Feistel-like ciphers, the encryption algorithm and the
decryption algorithm are almost similar. The only difference is just that encryption
uses the sub-key Ki for round i (for i = 1, . . . , n where n is the number of round), while
decryption uses the sub-key Kn+1−i for round i. Therefore, if we make a conjecture that
the use of the key expansion or its inverse does not affect the security of the ciphers, we
can prove that adaptive attacks do not help against any symmetric and deterministic
encryption of Feistel construction. This remark extends to any construction beyond
the basic primitive, using any mode of operation.

For the case of DES, we show that this conjecture is true when a slight modification
of the key schedule, changing the left rotation by a right rotation, does not make a
difference, from a security point of view. In this case, adaptive attacks do not help
against any construction beyond DES, in order to break semantic security.

21

The Key Schedule of DES. We briefly review the key schedule of DES that we call
here the left key schedule, and we denote by DESL the cipher DES.

Input : The master key K, a sequence of 56 bits (we omit the parity check bits).
Output : The sub-keys K1, . . . ,K16.
Process :

– Step 0: Transformation of the master key K in L0 = (C0, D0) by the permu-
tation table PC-1. L0 is a sequence of 56 bits (two halves of 28 bits).

For any i = 1, . . . , 16,
– Step i: Transformation of Li−1 = (Ci−1, Di−1) into Li = (Ci, Di), where Ci =

LRi(Ci−1) and Di = LRi(Di−1). In the above transformation, LRi denotes the
left rotation of either 2 positions or only one position (when i = 1, 2, 9, 16).
We denote by LO the left rotations that operate on the whole state: Li =
LOi(Li−1).
Transformation of Li into Ki by the permutation table PC-2.

We now change a little bit the key schedule by simply changing the left rotation
(LR) by a right rotation (RR). We then obtain a new key schedule we call the right
key schedule. We denote by DESR the variant of DES, where the left key schedule is
replaced by the right key schedule:

Input : The master key K, a sequence of 56 bits.
Output : The sub-keys K1, . . . ,K16.
Process :

– Step 0: Transformation of the master key K in R0 = (C0, D0) by the permu-
tation table PC-1. R0 is a sequence of 56 bits.

For any i = 1, . . . , 16,
– Step i: Transformation of Ri−1 = (Ci−1, Di−1) into Ri = (Ci, Di), where Ci =

RRi(Ci−1) and Di = RRi(Di−1). In the above transformation, RRi denotes the
right rotation of either 2 positions or only one position (when i = 1, 2, 9, 16).
We denote by RO the right rotations that operate on the whole state: Ri =
ROi(Ri−1).
Transformation of Ri into Ki by the permutation table PC-2.

Note that LOi = RO
−1
18−i for i = 2, . . . , 16, and LO1 = RO

−1
1 .

The slight modification of the key schedule, changing the left rotation by a right
rotation, does not seem to make a big difference, from a security point of view. We
thus make the left-right DES conjecture:

Conjecture 21 (Left-Right DES Conjecture). The two ciphers DESL and DESR have
the same security level.

Actually, for the following result, we just need to make a weaker assumption:

Conjecture 22 (Non-Adaptive Left-Right DES Conjecture). The two ciphers DESL and
DESR have the same security level against non-adaptive attacks:

∣

∣

∣
Adv

ind
DESL

(t, e1, d1, 0, 0) − Adv
ind
DESR

(t, e1, d1, 0, 0)
∣

∣

∣
≤ δ(t, e1, d1),

where δ is a small function.

Theorem 23. Under the non-adaptive left-right DES conjecture, adaptive attacks do
not help against DES, in order to break semantic security:

Adv
ind
DES(t, e1, d1, e2, d2) ≤ (2(e2 + d2) + 1)

(

Adv
ind
DES(t, q, q, 0, 0) + δ

)

,

where q = max{e1 + e2, d1 + d2}.

22

Proof. We just need to show that under the non-adaptive left-right DES conjecture,

∣

∣

∣
Adv

ind
DES(t, e1, d1, 0, 0) − Adv

ind
DES−1(t, e1, d1, 0, 0)

∣

∣

∣
≤ δ.

Let us consider the left key schedule process, which starts with L0 = PC-1(K). Then
Li = LOi(Li−1) and Ki = PC-2(Li). Note that L16 = L0 (since we have 16 rotations,
whose 12 are of two positions, and 4 of one positions, which operate independently on
each half, of 28 bits).

Let us now consider the right key schedule process, which starts with R0 = L1

(which is thus PC-1(K ′) for a key K ′, since PC-1 is a permutation). Then Ri =
ROi(Ri−1) and K ′

i = PC-2(Ri). The same way as above, R16 = R0 = L1:

L1 = R16 = RO16(R15), which implies R15 = RO
−1
16 (L1) = LO2(L1) = L2.

By induction, if R17−i = Li (which is true for i = 1, 2),

Li = R17−i = RO17−i(R17−(i+1)), and, R17−(i+1) = RO
−1
17−i(Li) = LOi+1(Li) = Li+1.

Therefore, for i = 1, . . . , 16, Li = R17−i and Ki = K ′
17−i, where K ′ = PC-1

−1(R0):

DES
−1
L (K) = DESR(K ′), for K ′ = PC-1

−1(PC-2(PC-1(K))).

Since PC-1 and PC-2 are two permutations, when K is uniformly distributed, K ′ is also
uniformly distributed: DESR and DES

−1
L = DES

−1 are thus perfectly equivalent, from
the security point of view. Therefore, under the non-adaptive left-right DES conjecture,
DES and DES

−1 have the same security level against non-adaptive adversaries. The
Theorem 11 gives the result. ut

