
A CCA Secure Hybrid Damg̊ard’s ElGamal
Encryption

Yvo Desmedt1? and Duong Hieu Phan2 ??

1 University College London
Gower Street, London WC1E 6BT, United Kingdom.

2 University of Paris 8
2, rue de la Liberté 93526 - Saint-Denis cedex 02, France

hieu.phan@univ-paris8.fr

Abstract. ElGamal encryption, by its efficiency, is one of the most
used schemes in cryptographic applications. However, the original El-
Gamal scheme is only provably secure against passive attacks. Damg̊ard
proposed a slight modification of ElGamal encryption scheme (named
Damg̊ard’s ElGamal scheme) that provides security against non-adaptive
chosen ciphertext attacks under a knowledge-of-exponent assumption.
Recently, the CCA1-security of Damg̊ard’s ElGamal scheme has been
proven under more standard assumptions.

In this paper, we study the open problem of CCA2-security of Damg̊ard’s
ElGamal. By employing a data encapsulation mechanism, we prove that
the resulted hybrid Damg̊ard’s ElGamal Encryption is secure against
adaptive chosen ciphertext attacks. The down side is that the proof of
security is based on a knowledge-of-exponent assumption. In terms of
efficiency, this scheme is more efficient (e.g. one exponentiation less in
encryption) than Kurosawa-Desmedt scheme, the most efficient scheme
in the standard model so far.

1 Introduction

ElGamal encryption was introduced by ElGamal in 1985 [7] as a variant of Diffie-
Hellman key exchange. Since then, it has become one of the two most extensively
used for cryptographic applications, besides RSA [17].

The notion of semantic security, introduced by Goldwasser and Micali [11],
captures the intuition that an adversary should not be able to obtain any par-
tial information about the underlying plaintext of a challenge ciphertext. At the
same time, various kinds of attack have been modeled and the strongest for-
malized attack is a chosen ciphertext attack where the adversary is given access
to a decryption oracle that allows him to obtain the decryptions of his chosen

? The author is BT Professor of Information Security and is also funded by EPSRC
EP/C538285/1.

?? Part of this research was done while being at University College London, Adastral
Campus.

ciphertexts (with a natural restriction that these chosen ciphertexts are differ-
ent from the challenge ciphertext). There are two kinds of chosen ciphertext
attack: non-adaptive attacks or lunchtime attacks [15], denoted CCA1, where the
access to the decryption oracle is limited until the challenge is known; and adap-
tive chosen-ciphertext attack [16], denoted CCA2 or CCA where adversaries have
access to decryption oracle before and after receiving the challenge.

The original ElGamal scheme was proven to be semantically secure against
passive adversaries and there was the open question whether it is secure against
CCA1 attacks.

In [5] Damg̊ard proposed a variant of the ElGamal encryption scheme (later
called Damg̊ard’s ElGamal Encryption), by only adding an exponentiation to
ciphertexts, and provided a proof of security against non-adaptive chosen cipher-
text attacks. This proof requires however an informal assumption of knowledge-
of-exponent assumption. Later, Bellare and Palacio [2] formalized this notion,
calling it the Diffie-Hellman knowledge (DHK for short) assumption, and pro-
vided a formal proof of security against non-adaptive chosen ciphertext attacks
for Damg̊ard’s ElGamal Encryption. Dent [6] has shown that the DHK assump-
tion holds in generic groups. Recently, Gjøsteen [10], Wu and Stinson [21], Lip-
maa [14] improved the security results of Damg̊ard’s ElGamal Encryption but
all of these works only concern CCA1 security.

The Damg̊ard’s ElGamal encryption is obviously not CCA secure because it
is homomorphic. An important problem is thus to consider a simple variant of
Damg̊ard’s ElGamal encryption that could achieve CCA security, as this security
level is well-admitted to be the standard notion for confidentiality in cryptogra-
phy. We investigate in this paper the natural issue of using Damg̊ard’s ElGamal
encryption in a hybrid framework.

A hybrid encryption scheme [20] employs public-key encryption techniques
to derive a shared key that is then used to encrypt the actual messages using
symmetric-key techniques. It can thus take advantage of symmetric encryption
to encrypt arbitrary long messages. In [4], a formal treatment of hybrid schemes
was proposed, composed of two parts : first, a KEM (Key Encapsulation Mecha-
nism) is invoked to encrypt a random key; second, a DEM (Data Encapsulation
Mechanism) is performed to encrypt messages using a symmetric encryption
scheme. Kurosawa-Desmedt [13] proposed later a hybrid variant of the Cramer-
Shoup scheme [3] in the KEM/DEM framework which results in the most efficient
scheme in the standard model so far.

Contribution. We propose a hybrid Damg̊ard’s ElGamal Encryption, i.e., em-
bedding a DEM in the Damg̊ard’s ElGamal Encryption, and show that this
scheme achieves CCA security. The proposed scheme is more efficient than the
Kurosawa-Desmedt scheme in many aspects: it requires one less exponentiation,
it needs no target collision resistance, it produces shorter secret keys and public
keys.

The security proof for our proposed hybrid Damg̊ard’s ElGamal scheme has
to be however based on an extension of DHK assumption (which is an another
formalization of the KEA3 assumption in [1]). We give a proof of the hardness of

this assumption in generic groups. Although this kind of proof in generic groups
can be seen as a minimum requirement for the use of an assumption in a security
proof, we strongly believe that the hybrid Damg̊ard’s ElGamal scheme would be
very useful in practice and deserves to be investigated further.

2 Notation and standard definitions

In this section, we recall the formalization of the most important security notion
for asymmetric encryption, namely the CCA security.

Firstly, let us briefly remind that a public-key encryption scheme π is defined
by three algorithms: the key generation algorithm K(1λ), which on the security
parameter λ, produces a pair of matching public and private keys (pk, sk); the
encryption algorithm Epk(m; r) which outputs a ciphertext c corresponding to
the plaintext m ∈M, using random coins r ∈ R; and the decryption algorithm
Dsk(c) which outputs the plaintext m associated to the ciphertext c.

Security Notions Semantic security (a.k.a. polynomial security or indistin-
guishability of encryptions [11], denoted IND) is considered to be the standard
notion: if the attacker has some a priori information about the plaintext, it
should not learn more from the view of the ciphertext. More formally, this secu-
rity notion requires the computational indistinguishability between two strings,
chosen by the adversary, one of which has been encrypted. The adversary needs
to decide which one has been actually encrypted with a probability significantly
higher than one half: the advantage Advind

π (A), where the adversary A is seen as
a 2-stage Turing machine (A1,A2) whose running time is bounded by a poly-
nomial function in λ, should be a negligible function in λ. Formally, with λ the
security parameter:

Advind
π (A) = 2× Pr

[
(pk, sk)← K(1λ), (m0,m1, s)← A1(pk),
b

R← {0, 1}, c = Epk(mb) : A2(m0,m1, s, c) = b

]
− 1.

On the other hand, an attacker can employ various kinds of attacks, depending
on thee available information. Since we are considering asymmetric encryptions,
the adversary can encrypt any plaintext of its choice with the public key, hence
the basic chosen-plaintext attack. The strongest formalized attack can have a
polynomial access to the decryption oracle (except the challenge ciphertext c =
Epk(mb)), adaptive chosen-ciphertext attacks [16], denoted CCA or CCA2 (by
opposition to the earlier non-adaptive chosen-ciphertext attacks or lunchtime
attacks or [15], denoted CCA1, where the access to the decryption oracle is
limited until the challenge is known.)

The strongest security notion for asymmetric encryptions is thus the semantic
security against adaptive chosen-ciphertext attacks denoted IND-CCA or CCA
security. In this paper, as we deal with this security notion, the adversary A is
allowed to access the decryption oracle.
Denote maxA(Advind

π (A)) by Advind−cca
π (λ). The CCA security of π requires that

Advind−cca
π (λ) is a negligible function in λ.

3 Construction

In the following sections, one assumes having a group generator G which, on
input 1λ, returns (g, q) satisfying that g is a generator of a cyclic group Gq = 〈g〉
of prime order q, and 2λ−1 < q < 2λ.

3.1 Damg̊ard’s ElGamal Encryption [5]

First of all, we recall Damg̊ard’s ElGamal Encryption.

Key Generation K(1λ): (g, q) ← G(1λ), random elements x, y ∈ Zq are also
chosen.
Secret Key: sk = (x, y)
Public Key: pk = (g, c = gx, d = gy)

Encryption: Given a message m, the encryption runs as follows. First, it chooses
r

R← Zq and then computes:

u1 = gr, u2 = cr, e = dr ·m

The outputted ciphertext is (u1, u2, e)
Decryption: Given a ciphertext (u1, u2, e), the decryption runs as follows.

First, it tests if u2 = ux
1 . If this condition does not hold, the decryption

algorithm outputs “reject”; otherwise it computes:

K = uy
1, m = K−1 · e

and outputs m.

3.2 Hybrid Damg̊ard’s ElGamal Encryption

We now propose a hybrid variant of the above Damg̊ard’s ElGamal Encryption.
We just replace, in the encryption of Damg̊ard’s ElGamal scheme, the operation
e = dr ·m by a symmetric encryption of m under the key K = H(dr), where
H is randomly chosen from a universal familly of hash functions. The detailed
description follows.
In our scheme, we make use of:

– a Data Encapsulation Mechanism (DEM). A DEM is a symmetric key en-
cryption scheme, with encryption algorithm E and decryption algorithm D,
such that for the key K ∈ KD (KD is key space of DEM whose size depends
on λ) and the plaintext m ∈ {0, 1}?, e := EK(m) is the encryption of m
under K, and for key K ∈ KD and the ciphertext e ∈ {0, 1}?, m := DK(m)
is the decryption of e under K.
For our purpose, we require that DEM is CCA secure, i.e. the advantage
to distinguish EK(m0) from EK(m1) should be a negligible function in λ,
(i.e. given the challenge ciphertext EK(mb) for a random bit b, hard to
guess b) for randomly chosen K and adversarially chosen m0 and m1 (where

m0 and m1 are of equal length but different), even though the adversary has
access to the decryption oracle for its chosen ciphertext (except the challenge
ciphertext). We denote this advantage by Advind−cca

dem (λ).
Unlike the case of public-key, secure symmetric encryption schemes against
chosen-ciphertext attacks can be easily built out of weaker primitives: all one
needs is a secure symmetric encryption scheme against passive adversaries,
and a secure message authentication code (MAC).

– a key derivation function H which maps an element V ∈ Gq to H(V) ∈
KD. We require that it’s hard to distinguish H(V) from K ′, where V and
K ′ are both randomly chosen. We can thus use H as a function from a
universal family of hash functions Hλand let H = {Hλ}λ∈N. In other words,
we denote by Advind

H (λ) the maximum advantage of all adversaries, whose
running times are bounded by a polynomial function in λ, to distinguish
H(V) from K ′, where V and K ′ and H ∈ Hλ are randomly chosen, and
assume that Advind

H (λ) is a negligible function in λ. However, we will need
some more requirements about H which will be described in Section 4.

We now describe our proposed scheme:

Key Generation K(1λ): (g, q) ← G(1λ), random elements x, y ∈ Zq are also
chosen. Next a hash function H is randomly chosen from a universal family
of hash functions Hλ.
Secret Key: sk = (x, y)
Public Key: pk = (H, g, c = gx, d = gy)

Encryption: Given a message m, the encryption runs as follows. First, it chooses
r

R← Zq and then it computes:

u1 = gr, u2 = cr,K = H(dr), e = EK(m)

The ciphertext is (u1, u2, e)
Decryption: Given a ciphertext (u1, u2, e), the decryption runs as follows.

First, it tests if u2 = ux
1 . If this condition does not hold, the decryption

algorithm outputs “reject”; otherwise it computes:

K = H(uy
1), m = DK(e)

and outputs m.

3.3 Comparision with Kurosawa-Desmedt scheme

We briefly recall the Kurosawa-Desmedt scheme which makes use of:

– a CCA secure DEM.
– a key derivation function H which is a universal one-way hash function [9].
– a target collision resistance function TCR : Gq × Gq → Zq: given u1 := gr1

and u2 := gr2 , for random r1, r2 ∈ Zq, it is hard to find (u′1, u
′
2) ∈ Gq × Gq \

{(u1, u2)} such that H(u′1, u
′
2) = H(u1, u2)

We now describe their scheme: one uses a group generator G′, which on input
1λ, returns (g1, g2, q) where g1, g2 are two generators of the cyclic group 〈g〉 of
order q, and 2λ−1 < q < 2λ.

Key Generation K(1λ): (g1, g2, q) ← G(1λ), random elements x1, x2, y1, y2 ∈
Zq are also chosen.
Secret Key: sk = (x1, x2, y1, y2)
Public Key: pk = (H,TCR, g1, g2, c = gx1

1 gx2
2 , d = gy1

1 gy2
2)

Encryption: Given a message m, the encryption runs as follows. First, it chooses
r

R← Zq and then it computes:

u1 = gr
1, u2 = gr

2, α = TCR(u1, u2)

v = crdrα,K = H(v), e = EK(m)

The ciphertext is (u1, u2, e)
Decryption: Given a ciphertext (u1, u2, e), the decryption runs as follows.

First, it computes

α = TCR(u1, u2), v = ux1+y1α
1 ux2+y2α

2 ,K = H(v)

and then m = DK(e) (m may be “reject”).

Comparison. In terms of efficiency, our scheme has the following advantages over
the Kurosawa-Desmedt one:

Key Size: The secret key contains two group elements, compared to four group
elements in the Kurosawa-Desmedt scheme. Our scheme needs one group
generator, compared to two group generators in Kurosawa-Desmedt scheme
and does not need to use the TCR function, the public key is thus shorter.

Encryption Computation: We get rid of the TCR function. Moreover, in
our scheme v = dr while in the Kurosawa-Desmedt scheme v = crdrα.
We can thus save one exponentiation. A secondary advantage is that, in
our scheme, the values u1, u2, d could be computed in parallel, while in the
Kurosawa-Desmedt scheme, one should first compute u1, u2, then compute
α = TCR(u1, u2), and finally compute v.

Decryption Computation: We also get rid of the computation of the TCR
function. Otherwise, both schemes need two exponentiations. However, in
our scheme, as all exponentiations are with respect to the same base, the
algorithm can be executed faster.

4 Assumptions used in the Security Analyses

4.1 Hashed Decisional Diffie-Hellman Assumption

We first recall the definition of the Hashed Diffie-Hellman (HDDH) problem
needed for the sake of this work.

Assumption 1 (Hashed Decisional Diffie-Hellman Assumption)
Assume that there is no adversary that can effectively distinguish the two follow-
ing distributions:

– (g, q)← G(1λ) and a hash function H ;
– the distribution RH of random elements in G4

q : (g, ga, gb,H(Z)), for ran-

domly distributed a, b
R← Zq, Z

R← Gq;
– the distribution DH of tuples elements in G4

q : (g, ga, gb,H(gab)), for randomly

distributed a, b
R← Zq.

In other words, for all probabilistic algorithms A whose running times are
bounded by a polynomial function in λ, we define Advhddh

G (A) the advantage that
A can distinguish the two above distributions. The HDDH assumption states that
Advhddh

G (λ) = maxA(Advhddh
G (A)) is a negligible function in λ.

For our scheme, we need to use the following variant of the HDDH assumption:

Assumption 2 (Modified Hashed Decisional Diffie-Hellman: MHDDH)
Assume that there is no adversary that can effectively distinguish the two follow-
ing distributions:

– (g, q)← G(1λ) and a hash function H;
– the distribution RMH of random elements in G6

q : (g, ga, gb, gc, gac,H(Z)),

for randomly distributed a, b, c
R← Zq, Z

R← Gq;
– the distribution DMH of tuples elements in G6

q : (g, ga, gb, gc, gac,H(gbc)), for

randomly distributed a, b, c
R← Zq.

In other words, for all probabilistic algorithms A whose running times are bounded
by a polynomial function in λ, we define Advmhddh

G (A) the advantage that A
can distinguish the two above distributions. The MHDDH assumption states that
Advmhddh

G (λ) = maxA(Advmhddh
G (A)) is a negligible function in λ.

Proposition 3. The MHDDH and the HDDH assumptions are equivalent:

Advhddh
G (λ) = Advmhddh

G (λ)

Proof. The proof is quite trivial:

– Suppose that there is a MHDDH distinguisher for RMH and DMH , we con-
struct an HDDH distinguisher for RH and DH as follows. Given an instance
(g, gb, gc, Z), one randomly chooses a

R← Zq, computes ga, gac, then gives
(g, ga, gb, gc, gac, Z) to MHDDH distinguisher and finally outputs what the
MHDDH distinguisher returns. Thus:

Advhddh
G (λ) ≤ Advmhddh

G (λ)

– Inversely, suppose that there is a HDDH distinguisher for RH and DH , we
construct an MHDDH distinguisher for RMH and DMH as follows. Given
an instance (g, ga, gb, gc, gac, U), one just gives (g, ga, gc, U) to HDDH dis-
tinguisher and outputs what the HDDH distinguisher returns. Thus:

Advmhddh
G (λ) ≤ Advhddh

G (λ)
ut

We also need to introduce another assumption about the function H.

Assumption 4 (Extended Hashed Decisional Diffie-Hellman: EHDDH)
Assume that there is no adversary that can effectively distinguish the two follow-
ing distributions REH and DEH :

– (g, q)← G(1λ) and a hash function H;
– an element U ∈ Gq, U 6= 1 and an element v ∈ Z?

q adversarially chosen;
– the distribution REH of random elements in G4

q : (g, ga, gb,H(gab),H(Z)),

for randomly distributed a, b
R← Zq, Z

R← Gq;
– the distribution DEH of tuples elements in G6

q : (g, ga, gb,H(gab),H(Ugabv)),

for randomly distributed a, b
R← Zq.

In other words, for all probabilistic algorithms A whose running times are bounded
by a polynomial function in λ, we define Advehddh

G (A) the advantage that A
can distinguish the two above distributions. The EHDDH assumption states that
Advehddh

G (λ) = maxA(Advehddh
G (A)) is a negligible function in λ.

4.2 Diffie-Hellman Knowledge Assumption (DHK)

We now recall the definition of Diffie-Hellman Knowledge Assumptions.
For A,B, C ∈ Gq, we say that (A,B, C) is a DH-triple if there exists a, b ∈ Zq

such that A = ga, B = gb and C = gab. We say that (B,C) is a DH-pair relative
to A if (A,B, C) is a DH-triple (throughout the text, when we say (A,B, C)
is a DH-triple, we assume the base g to be fixed and known). We also write
C = DH(A,B). One way for an adversary A taking input g,A to output a
DH-pair (B,C) relative to A is to pick (and thus “know”) some b ∈ Zq, set
B = gb and C = Ab, and output (B,C). Damg̊ard [5] makes an assumption
which, informally, implies that this is the “only” way that a polynomial-time
adversary A, given (g,A), can output a DH-pair (B,C) relative to A.

Bellare and Palacio [2] provide a formalization of this assumption that we
refer to as the DHK (DHK stands for Diffie-Hellman Knowledge) assumption: the
adversary A, given (g,A), interacts with an extractor A?, querying it adaptively,
where A? is an algorithm that takes a pair of group elements and some state
information (the state of A? is denoted by St[A?]), and returns an exponent and
a new state.

Experiment Expdhk
G,A,A?(λ)

Below, A,A? are polynomial-time probabilistic algorithms (whose running times
are bounded by a polynomial function in λ).

– (g, q)← G(1λ); a
R← Zq, A = ga.

– Choose coins R[A], R[A?] for A;A?, respectively ; St[A?]← ((g,A), R[A]).
– Run A on input g,A and coins R[A] until it halts, replying to its oracle

queries as follows:
If A makes query (B,C) then:
• (b, St[A?])← A?((B,C), St[A?];R[A?])
• If C = Ba and B 6= gb then return 1,

else return b to A as the reply.
– Return 0

Assumption 5 (DHK) We define the DHK-advantage of A relative to A? as:

Advdhk
G,A,A?(λ) = Pr[Expdhk

G,A,A?(λ) = 1]

We say that Gq satisfies the DHK assumption if for every polynomial-time dhk-
adversary A, there exists a polynomial-time dhk-extractor A? such that
Advdhk

G,A,A?(λ) is a negligible function in λ.

We define Advdhk
G (λ) = maxA(minA?(Advdhk

G,A,A?(λ))). The DHK assumption
can be expressed as: Advdhk

G (λ) is a negligible function in λ.

4.3 Extended DHK Assumptions

We now consider an extension of the DHK assumption that we refer to as EDHK
(EDHK stands for Extended Diffie-Hellman Knowledge). The adversary is now
given not only (g,A) but also a DH-pair (B,C) relative to A. One way for an
adversary A taking input (g,A), a pair (B,C) relative to A, to output a DH-
pair (B′, C ′) relative to A is to pick (and thus “know”) some x, y ∈ Zq, and set
B′ = Bxgy and C ′ = CxAy.

Bellare and Palacio [1] introduced an assumption saying that this is the
“only” way that a polynomial-time adversary A, given g,A and a pair (B,C)
relative to A, can output a DH-pair B′, C ′ relative to A. Their formalization in [1]
(called KEA3 assumption) is for non-randomized adversaries. For our purpose of
dealing with probabilistic adversaries, we reuse the terms in [2] to formalize this
assumption.

Considering an adversary A, given (g,A) and a pair (B,C) relative to A,
interacts with an extractor A?, queries it adaptively, where A? is an algorithm
that takes a tuple of group elements (g,A, B, C) and some state information (the
state of A? is denoted by St[A?]), and finally returns two exponents and a new
state.

Experiment Expedhk
G,A,A?(λ)

Below, A,A? are probabilistic algorithms whose running times are bounded by
a polynomial function in λ.

– (g, q)← G(1λ); a, b
R← Zq, A = ga, B = gb, C = gab.

– Choose coins R[A], R[A?] for A;A?, respectively ; St[A?] ← ((g,A, B, C),
R[A]).

– Run A on input g,A and coins R[A] until it halts, replying to its oracle
queries as follows:
If A makes query (B′, C ′) then:
• (x||y, St[A?])← A?((B′, C ′), St[A?];R[A?])
• If (C = Ba and C ′ = B′a): if (B′ = Bxgy and C ′ = CxAy)) then return

x||y,
else return 1, as the reply, to A.

– Return 0

Assumption 6 (EDHK) We define the EDHK-advantage of A relative to A?

as:
Advedhk

G,A,A?(λ) = Pr[Expedhk
G,A,A?(λ) = 1]

We say that Gq satisfies the EDHK assumption if for every polynomial-time
edhk-adversary A, there exists a polynomial-time edhk-extractor A? such that
Advedhk

G,A,A?(λ) is a negligible function in λ.

We define Advedhk
G (λ) = maxA(minA?(Advedhk

G,A,A?(λ))).The EDHK assump-
tion can be expressed as: Advedhk

G (λ) is a negligible function in λ.

5 Security of the Hybrid Damg̊ard’s ElGamal Encryption

Theorem 7. The Hybrid Damg̊ard’s ElGamal encryption is CCA secure assum-
ing that:

1. the HDDH and EHDDH assumptions hold, and
2. the DHK and EDHK assumptions hold, and
3. the DEM is CCA secure.

Proof. We use the Game hopping technique.

Game G0: The simulator runs the real IND-CCA attack game. The key gen-
eration algorithm in Damg̊ard’s ElGamal encryption scheme generates a secret
key sk = (x, y) and a corresponding public key pk = (H, g, c = gx, d = gy). The
simulator is given both the secret key sk = (x, y) and the public key pk and
it generates random coins R[A] and R[A?]. The simulator runs the adversary
A = (A1,A2) on input pk and coins R[A]. When A1 outputs a pair of messages
(m0,m1), the simulator produces a challenge ciphertext by flipping a coin b and
producing a ciphertext of mb. This ciphertext (u?

1, u
?
2, e

?) comes from a random
string r? R← Zq:

u?
1 = gr?

, u?
2 = cr?

,K? = H(dr?

), e? = EK?(mb)

On input (u?
1, u

?
2, e

?), A2 outputs bit b′. We note that the adversary can sub-
mit decryption queries in both stages, before and after receiving the challenge
ciphertext.

We denote by S0 the event b′ = b and use the same notation Sn in any game
Gn below. Note that the adversary is given access to the decryption oracle Dsk

during both steps of the attack.

Pr[S0] =
1
2
×

(
Advind-cca

π (A) + 1
)

.

Game G1: In this game, we simulate the decryption oracle without making
use of the secret key. The input of the simulator is just the public key. In order to
simulate the decryption queries, the simulator will use the DHK Extractor in the
first stage (before receiving the challenge) and the EDHK Extractor in the second
stage (after receiving the challenge (u?

1, u
?
2, e

?)). The state of the extractor A? in
the first stage is set to be St[A?]← ((g, c), R[A]) and the state of the extractor
A? in the second stage will be set to be St[A?]← ((g, c, u?

1, u
?
2), R[A]). We now

describe the simulation of the decryption oracle:

– Decryption queries in the first stage (the queries submitted by A1): when-
ever the adversary submits a query (u1, u2, e), the simulator runs the DHK
Extractor A?((u1, u2), St[A?], R[A?]). If the Expdhk

G,A,A?(λ) outputs 0 or 1, the
simulator rejects this ciphertext. If the Expdhk

G,A,A?(λ) outputs r, the simulator
computes K = H(dr) and outputs m = DK(m).

– Decryption queries in the second stage: whenever the adversary submits a
query (u1, u2, e), the simulator uses EDHK Extractor A?((u1, u2), St[A?],
R[A?]). If the Expedhk

G,A,A?(λ) outputs 0, the simulator rejects this ciphertext.
If the Expedhk

G,A,A?(λ) outputs (r1||r2):
• r2 = 0, the simulator simply computes K = H(dr1) and outputs m =

DK(e?)
• if r2 6= 0: u1 = gr1(u?

1)
r2 and u2 = cr1(u?

2)
r2 = DH(c, u1). The session

key K = H(DH(d, u1)) = H(dr1(u?
2)

r2). The simulator decrypts e under
a hashed random session key (hash of a random group element of Gq) and
returns the resulted plaintext to the adversary. Under EHDDH, it’s easy
to see that the adversary cannot distinguish H(dr1(u?

2)
r2) from H(R),

where R
R← Gq.

Therefore, under the DHK, EDHK and EHDDH assumptions, the adversary can-
not distinguish the two games G1 and G0:

|Pr[S1]− Pr[S0] | ≤ Advdhk
G (λ) + Advedhk

G (λ) + nqAdvehddh
G (λ),

where nq is the maximum number of decryption queries that the adversary could
make.

Game G2: One now replaces the challenge (u?
1 = gr?

, u?
2 = gr?x,K? =

H(gyr?

)) by a random challenge (u?
1, u

?
2 = gr?x,K? = H(V ?)), where V ? R←

G. The simulation of the decryption oracle is kept unchanged. Therefore, un-
der the MHDDH assumption, i.e. it is hard to distinguish (g, u?

1 = gr?

, d =

gy, c = gx, u?
2 = gr?x,K? = H(gyr?

)) from a random challenge (g, u?
1, d =

gy, c = gx, u?
2 = gr?x,K? = H(V ?)), the two games G2 and G1 are indis-

tinguishable. Because of the equivalence between MHDDH and HDDH assump-
tions(Proposition 3), we have:

|Pr[S2]− Pr[S1] | ≤ Advhddh
G (λ),

Game G3: In this Game, we replace K? by a random key in KD. In the
previous game, the key K? is chosen as K? = H(V ?) for a random V ?, the
distance between two games G3 and G2 is thus:

|Pr[S3]− Pr[S2] | ≤ Advind
H (λ)

Game G4: Finally, we replace mb in e? = EK?(mb) by a random message
m?. As the key K? is randomly chosen, the distance between the two games G4

and G3 is:
|Pr[S4]− Pr[S3] | ≤ Advind−cca

dem (λ)

In this game, the output of A2 follows a distribution that does not depend on b.
Accordingly, Pr[S4] = 1/2. ut

6 Hardness of the EDHK problem in the generic group
model

The hardness of the DHK problem has been proven by Dent [6] in generic groups.
In this section, we prove that the EDHK assumption also holds in generic groups.
In the generic group model [19], elements of Gq appear to be encoded as unique
random strings, so that no property other than equality can be directly tested
by the adversary. An oracle is assumed to perform operations between group
elements, i.e. the group action in the group Gq. The encoding of the elements
of Gq is modeled as an injective function ξ : Zp → Σ, where Σ ⊂ {0, 1}∗, which
maps all a ∈ Zp to the string representation ξ(ga) of ga ∈ G.

Let us first recall a lemma [18, 19] that proofs in generic groups often rely
on.

Lemma 8 ([18, 19]). Let F (x1, x2, ..., xm) be a polynomial of total degree d ≥ 1.
Then the probability that F (x1, x2, ..., xm) = 0 mod n for randomly chosen values
(x1, x2, ..., xm) in Zn is bounded above by d/p where p is the largest prime dividing
n.

We now show that the EDHK assumption holds in a generic group.

Theorem 9. The EDHK assumption holds in a generic group.

Proof. The extractor A? keeps track of the oracle queries of A as polynomials.
A? maintains a list of pair L = {(Fi, ξi) : i = 0, 1, ..., τ − 1)}, where Fi are

polynomials of degree ≤ 2 in Zq[x, y, z1, .., zm]. We set F0 = 1, F1 = x, F2 =
y, F3 = xy and τ = 4,m = 0. The corresponding ξ0, ξ1, ξ2, ξ3 are set to be
arbitrary distinct strings in {0, 1}∗. A? starts the game by providing A with the
strings ξ0, ξ1, ξ2, ξ3. Each query of A is a group action.
A? answers group action queries as follows:
When A makes queries on strings that have not been in the list, those strings

will be added to the list and assigned new variables: each time a new string
appears, we denote it by ξτ and assign a new variable zm+1 to the element ξτ ,
we add (Fτ = zm, ξτ) to the list L and then increment τ and m by one.

We can now assume that A makes queries on strings in the list. Given a
multiply/divide selection bit and two operands ξi, ξj with 0 ≤ i, j ≤ τ − 1, we
compute Fτ = Fi + Fj ∈ Zq[x, y, z1, .., zm] or Fτ = Fi − Fj ∈ Zq[x, y, z1, .., zm]
depending on whether a multiplication or a division is requested. If Fτ = F` for
some ` < τ , we set ξτ = ξ`; otherwise, we set ξτ to a string in {0, 1}∗ distinct
from ξ0, ξ1, ..., ξτ . We add (Fτ , ξτ) to L and give ξτ to A, then increment τ by
one.
A terminates and returns a pair ξi, ξj where 0 ≤ i, j < τ . Let Fi, Fj be the

corresponding polynomial in the list L. Note that if A’s answer is correct then
necessarily:

Fi(x, y, xy, z1, z2, ..., zm) = xFj(x, y, xy, z1, z2, ..., zm)

Denote F ?(x, y, z1, z2, ..., zτ) = Fi(x, y, z1, z2, ..., zτ)− xFj(x, y, xy, z1, z2, ..., zτ).

Case 1: F ? is identical to 0. From the above simulation, Fi, Fj should have the
following form:
– Fi(x, y, xy, z1, z2, ..., zm) = ci0 + αix + βiy + γixy + ci1z1 + ... + cimzm

– Fi(x, y, xy, z1, z2, ..., zm) = cj0 + αjx + βjy + γjxy + cj1z1 + ... + cjmzm

Therefore: F ?(x, y, z1, z2, ..., zτ) = ci0 + (αi − cj0)x + (γi − βj)xy + βiy −
αjx

2− γjxz + ci1z1 + ...+ cimzm− cj1xz1− ...− cjmxzm− γjx
2y. We deduce

thus:
– βi = γj = ci1 = ... = cim = cj1 = ... = cjm = 0
– αi = cj0(= r1)
– γi = βj(= r2)

Fi = r1x + r2xy, Fj = r1 + r2y. As Fi, Fj have this form, A? could easily
extract and outputs r1||r2.

Case 2: F ? is not identical to 0. In this case, F ?(x, y, z1, z2, ..., zτ) = 0 is a
non-trivial equation. At this point, A? chooses randomly x?, y?, z?

1 , z?
2 , ..., z?

m.
The simulation provided by B is perfect unless the instantiation x← x?, y ←
y?, z1 ← z?

1 , ..., zm ← z?
m creates an equality relation between the simulated

group elements that was not revealed to A. The success probability of A is
thus bounded by the probability that any of the following holds:
– Fi(x?, y?, z?

1 , ..., z?
m) = Fj(x?, y?, z?

1 , ..., z?
m), for some 0 ≤ i, j < τ . From

Lemma 8, this occurs with a probability bounded by τ22/q.

– F ?(x?, y?, z?
1 , ..., z?

m) = 0. From Lemma 8, this occurs with a probability
bounded by 1/q.

ut

7 Conclusion

We propose a hybrid Damg̊ard’s ElGamal encryption that is CCA secure. The
proposed scheme is very efficient but its security should be based on an exten-
sion of the DHK assumption, which is quite strong. There are however some
reasons that could convince us about the usefulness of this scheme. Firstly, we
proved that the Extended DHK assumption holds in generic groups. Secondly,
Gjøsteen[10] proposed a new technique of security proof for Damg̊ard’s ElGamal
scheme (against non-adaptive chosen ciphertext) in which the DHK assumption
can be replaced by an assumption of hardness of a new problem, the gap sub-
group membership problem, which is somewhat similar to conventional problems
such as the Gap Diffie-Hellman problem. Therefore, it could be possible that the
Gjøsteen’s technique (or another new technique) would help to replace the EDHK
assumption by a more conventional one3. Finally, note that the HDDH assump-
tion is generally weaker than DDH assumption and might hold even in groups
where DDH problem is easy [8] and that EHDDH, EDHK assumption, though
strong, might also hold in groups where the DDH problem is easy (it seems easy
to prove the hardness of these assumptions in generic groups with pairings, for
example). Therefore, it might happen that our proposed scheme is still secure in
some non-DDH groups.

Acknowledgments

We would like to thank Eike Klitz for helpful discussions.

References

1. M. Bellare and A. Palacio. The knowledge-of-exponent assumptions and 3-round
zero-knowledge protocols. In Advances in Cryptology – Proceedings of CRYPTO
’04, volume LNCS 3152, pages 273–289, Berlin, 2004. Springer-Verlag.

2. M. Bellare and A. Palacio. Towards plaintext-aware public-key encryption without
random oracles. In Advances in Cryptology – Proceedings of ASIACRYPT ’04,
volume LNCS 3329, pages 48–62, Berlin, 2004. Springer-Verlag.

3. R. Cramer and V. Shoup. A Practical Public Key Cryptosystem Provably Se-
cure against Adaptive Chosen Ciphertext Attack. In Advances in Cryptology –
CRYPTO’98, volume 1462 of Lecture Notes in Computer Science, pages 13–25,
1998. Springer-Verlag, Berlin, Germany.

3 An independent work recently posted on ePrint [12] shows indeed that hybrid
Damg̊ard’s ElGamal encryption can be proved under standard assumptions.

4. R. Cramer and V. Shoup. Design and analysis of practical public-key encryp-
tion schemes secure against adaptive chosen ciphertext attack. SIAM Journal on
Computing, 33(1):167–226, 2003.

5. I. Damg̊ard. Towards Practical Public Key Systems Secure Against Chosen Ci-
phertext Attacks. In Advances in Cryptology – CRYPTO’91, volume 576 of Lecture
Notes in Computer Science, pages 445–456, Santa Barbara, CA, USA, Aug. 11–15,
1992. Springer-Verlag, Berlin, Germany.

6. A. W. Dent. The Hardness of the DHK Problem in the Generic Group Model.
Cryptology ePrint Archive, Report 2006/156, 2006. http://eprint.iacr.org/.

7. T. ElGamal. A Public-key Cryptosystem and a Signature Scheme Based on Dis-
crete Logarithms. IEEE Trans. on Information Theory, IT-31(4):469–472, 1985.

8. R. Gennaro, H. Krawczyk, and T. Rabin. Secure Hashed Diffie-Hellman over Non-
DDH Groups. In Advances in Cryptology – EUROCRYPT 2004, volume 3027 of
Lecture Notes in Computer Science, 2004. Springer-Verlag, Berlin, Germany.

9. R. Gennaro and V. Shoup. A note on an encryption scheme of Kurosawa and
Desmedt. Cryptology ePrint Archive, Report 2004/194, 2004. http://eprint.

iacr.org/.
10. K. Gjøsteen. A new security proof for damg̊ard’s ElGamal. In Topics in Cryptology

– CT-RSA 2006, volume 3860 of Lecture Notes in Computer Science, pages 150–
158, 2006. Springer-Verlag, Berlin, Germany.

11. S. Goldwasser and S. Micali. Probabilistic Encryption. Journal of Computer and
System Sciences, 28:270–299, 1984.

12. E. Kiltz, K. Pietrzak, M. Stam, and M. Yung. Randomness extraction: A new
paradigm for hybrid encryption. Cryptology ePrint Archive, Report 2008/304,
2008. http://eprint.iacr.org/.

13. K. Kurosawa and Y. Desmedt. A new paradigm of hybrid encryption scheme.
In Advances in Cryptology – CRYPTO 2004, volume 3152 of Lecture Notes in
Computer Science, pages 426–442, 2004. Springer-Verlag, Berlin, Germany.

14. H. Lipmaa. On CCA1-Security of Elgamal And Damg̊ard Cryptosystems. Cryp-
tology ePrint Archive, Report 2008/234, 2008. http://eprint.iacr.org/.

15. M. Naor and M. Yung. Public-key Cryptosystems Provably Secure against Chosen
Ciphertext Attack. In 22nd Annual ACM Symposium on Theory of Computing,
pages 427–437, 1990. ACM Press.

16. C. Rackoff and D. R. Simon. Non-Interactive Zero-Knowledge Proof of Knowledge
and Chosen Ciphertext Attack. In Advances in Cryptology – CRYPTO’91, volume
576 of Lecture Notes in Computer Science, pages 433–444, 1992. Springer-Verlag,
Berlin, Germany.

17. R. Rivest, A. Shamir, and L. Adleman. A Method for Obtaining Digital Signatures
and Public Key Cryptosystems. Communications of the ACM, 21(2):120–126,
February 1978.

18. J. T. Schwartz. Fast probabilistic algorithms for verification of polynomial identi-
ties. J. ACM, 27(4):701–717, 1980.

19. V. Shoup. Lower Bounds for Discrete Logarithms and Related Problems. In Ad-
vances in Cryptology – EUROCRYPT’97, volume 1233 of Lecture Notes in Com-
puter Science, pages 256–266, 1997. Springer-Verlag, Berlin, Germany.

20. V. Shoup. Using Hash Functions as a Hedge against Chosen Ciphertext Attack.
In Advances in Cryptology – EUROCRYPT 2000, volume 1807 of Lecture Notes in
Computer Science, pages 275–288, 2000. Springer-Verlag, Berlin, Germany.

21. J. Wu and D. Stinson. On The Security of The ElGamal Encryption Scheme and
Damgards Variant. Cryptology ePrint Archive, Report 2008/200, 2008. http:

//eprint.iacr.org/.

