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Abstract. The OAEP construction is already 10 years old and well-established in
many practical applications. But after some doubts about its actual security level, four
years ago, the first efficient and provably IND-CCA1 secure encryption padding was
formally and fully proven to achieve the expected IND-CCA2 security level, when used
with any trapdoor permutation. Even if it requires the partial-domain one-wayness
of the permutation, for the main application (with the RSA permutation family) this
intractability assumption is equivalent to the classical (full-domain) one-wayness, but
at the cost of an extra quadratic-time reduction. The security proof which was already
not very tight to the RSA problem is thus much worse.

However, the practical optimality of the OAEP construction is two-fold, hence its at-
tractivity: from the efficiency point of view because of two extra hashings only, and from
the length point of view since the ciphertext has a minimal bit-length (the encoding of
an image by the permutation.) But the bandwidth (or the ratio ciphertext/plaintext) is
not optimal because of the randomness (required by the semantic security) and the re-
dundancy (required by the plaintext-awareness, the sole way known to provide efficient
CCA2 schemes.)

At last Asiacrypt ’03, the latter intuition had been broken by exhibiting the first IND-
CCA2 secure encryption schemes without redundancy, and namely without achieving
plaintext-awareness, while in the random-oracle model: the OAEP 3-round construc-
tion. But this result achieved only similar practical properties as the original OAEP
construction: the security relies on the partial-domain one-wayness, and needs a trap-
door permutation, which limits the application to RSA, with still a quite bad reduction.

This paper improves this result: first we show the OAEP 3-round actually relies on the
(full-domain) one-wayness of the permutation (which improves the reduction), then we
extend the application to a larger class of encryption primitives (including ElGamal,
Paillier, etc.) The extended security result is still in the random-oracle model, and in
a relaxed CCA2 model (which lies between the original one and the replayable CCA

scenario.)

Keywords: OAEP, Asymmetric encryption, semantic security, chosen-ciphertext se-
curity, random oracle model.

1 Introduction

The OAEP construction [4, 12, 13] is now well-known and widely used, since it is an
efficient and secure padding. However, the latter property had been recently called
into question: indeed, contrarily to the widely admitted result, the security cannot
be based on the sole one-wayness of the permutation [27], but the partial-domain
one-wayness [12, 13]. For an application to RSA, the main trapdoor one-way permuta-
tion, the two problems are equivalent, but the security reduction is much worse than
believed, because of a quadratic reduction between the two above problems.

There is also a second drawback of the OAEP construction, since its use is limited
to permutations. It can definitely not apply to any function, as tried and failed on the
NTRU primitive [15].
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Finally, the optimality, as claimed in the name of the construction, is ambiguous
and not clear: from the efficiency point of view, the extra cost for encryption and de-
cryption is just two more hashings which is indeed quite good. But the most important
optimality was certainly from the length point of view: the ciphertext is just an image
by the permutation, and thus the shortest as possible. However, another important
parameter is the bandwidth, or the ratio ciphertext/plaintext, which is not optimal:
the construction requires a randomness over 2k bits for a semantic security in 2−k, and
redundancy over k bits for preventing chosen-ciphertext attacks (plaintext-awareness):
the ciphertext is thus at least 3k bits as large as the plaintext.

1.1 Related Work

Right after the Shoup’s remark about the security of OAEP [27], several alterna-
tives to OAEP have been proposed: OAEP+ (by Shoup himself) and SAEP, SAEP+
(by Boneh [6]) but either the bandwidth, or the reduction cost remain pretty bad.
Furthermore, their use was still limited to permutations.

About generic paddings applicable to more general encryption primitives, one
had to wait five years after the OAEP proposal to see the first efficient suggestions:
Fujisaki–Okamoto [10, 11] proposed the first constructions, then Pointcheval [22] sug-
gested one, and eventually Okamoto–Pointcheval [18] introduced the most efficient
construction, called REACT. However, all these proposals are far to be optimal for
the ciphertext size. They indeed apply, in the random-oracle model, the general ap-
proach of symmetric and asymmetric components integration [26]: an ephemeral key
is first encrypted using key-encapsulation, then this key is used on the plaintext with a
symmetric encryption scheme (which is either already secure against chosen-ciphertext
attacks, or made so by appending a MAC – or a tag with a random oracle, for achieving
plaintext-awareness.)

Plaintext-awareness [4, 3] was indeed the essential ingredient to achieve IND-CCA2

security in the random-oracle model: it makes the simulation of the decryption oracle
quite easy, by rejecting almost all the decryption queries, unless the plaintext is clearly
known. But this property reduces the bandwidth since “unnecessary” redundancy is
introduced. Randomness is required for the semantic security, but this is the sole
mandatory extra data for constructing a secure ciphertext. At last Asiacrypt [21],
the first encryption schemes with just such a randomness, but no redundancy, has
been proposed: plaintext-awareness is no longer achieved, since any ciphertext is valid
and corresponds to a plaintext. But this does not exclude the IND-CCA2 security
level. In that paper [21], we indeed proved that an extension of OAEP, with 3 rounds
but without redundancy, provides an IND-CCA2 secure encryption scheme, with any
trapdoor permutation, but again under the partial-domain one-wayness. Hence a bad
security reduction.

Note 1. The classical OAEP [4] construction can be seen as a 2-round Feistel network,
while our proposal [21] was a 3-round network, hence the name OAEP 3-round. By
the way, one should notice that SAEP [6] can be seen as a 1-round Feistel network.

1.2 Achievements

In this paper, we address the two above problems: the bad security reduction of the
OAEP constructions, because of the need of the intractability of the partial-domain
one-wayness; and the restriction to permutations.
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First, we show that, contrarily to the OAEP (2-round) construction which cannot
rely on the (full-domain) one-wayness, the OAEP 3-round simply requires the (full-
domain) one-wayness: because of the third round, the adversary looses any control on
the r value. It is not able to make ciphertexts with the same r, without querying it.

Then, we extend the application of OAEP 3-round to a larger class of encryption
primitives: it applies to any efficiently computable probabilistic injection f : E×R→
F, which maps any x ∈ E into F in a probabilistic way according to the random string
ρ ∈ R. We need this function to be one-way: given y ∈ F, it must be hard to recover
x ∈ E (we do not mind about the random string ρ); this probabilistic function also
needs to satisfy uniformity properties which are implied by a simple requirement: f is
a bijection from E×R onto F. Some additional restrictions will appear in the security
proof:

– we cannot really consider the CCA2 scenario, but a relaxed one denoted RCCA,
which is between the usual one and the replayable CCA2 introduced last year [7]
and considered enough in many applications.

– the simulation will need a decisional oracle which checks whether two elements in
F have the same pre-images in E. The security result will thus be related to the
well-known gap-problems [19, 18].

This extension allows almost optimal bandwidths for many very efficient asymmetric
encryption schemes, with an IND-RCCA security level related to gap-problems (e.g.
an ElGamal variant related to the Gap Diffie-Hellman problem.) Note that the appli-
cation to trapdoor one-way permutations like RSA results in a much more efficient
security result, and provides an IND-CCA2 encryption scheme under the sole one-
wayness intractability assumption.

This paper is then organized as follows: in the next section, we review the classical
security model for asymmetric encryption, and present our new CCA-variant. In sec-
tion 3, we present the OAEP 3-round construction for any probabilistic injection, with
some concrete applications. The security result is presented and proven in section 4.

2 Security Model

In this section, we review the security model widely admitted for asymmetric encryp-
tion. Then, we consider some relaxed CCA-variants. First, let us briefly remind that
a public-key encryption scheme S is defined by three algorithms: the key generation
algorithm K(1k), which produces a pair of matching public and private keys (pk, sk);
the encryption algorithm Epk(m; r) which outputs a ciphertext c corresponding to the
plaintext m ∈M, using random coins r ∈ R; and the decryption algorithm Dsk(c)
which outputs the plaintext m associated to the ciphertext c.

2.1 Classical Security Notions

Beyond one-wayness, which is the basic security level for an encryption scheme, it is
now well-admitted to require semantic security (a.k.a. polynomial security or indistin-

guishability of encryptions [14], denoted IND): if the attacker has some a priori infor-
mation about the plaintext, it should not learn more with the view of the ciphertext.
More formally, this security notion requires the computational indistinguishability be-
tween two messages, chosen by the adversary, one of which has been encrypted, which
one has been actually encrypted with a probability significantly better than one half:
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the advantage Advind
S (A), where the adversary A is seen as a 2-stage Turing machine

(A1, A2), should be negligible, where Advind
S (A) is formally defined as

2× Pr

[

(pk, sk)← K(1k), (m0,m1, s)← A1(pk),

b
R
← {0, 1}, c = Epk(mb) : A2(m0,m1, s, c) = b

]

− 1.

Stronger security notions have also been defined thereafter (namely the non-malleab-

ility [8]), but we won’t deal with it since it is similar to the semantic security in several
scenarios [3, 5].

On the other hand, an attacker can use many kinds of attacks, according to the
available information: since we are considering asymmetric encryption, the adversary
can encrypt any plaintext of its choice with the public key, hence the basic chosen-

plaintext attack. But the strongest attack is definitely when the adversary has an
unlimited access to the decryption oracle itself, adaptive chosen-ciphertext attacks [24],
denoted CCA or CCA2 (by opposition to the earlier lunchtime attacks [17], denoted
CCA1, where this oracle access is limited until the challenge is known.) From now, we
simply use CCA instead of CCA2 since we focus on adaptive adversaries.

The strongest security notion that we now widely consider is the semantic security

against adaptive chosen-ciphertext attacks denoted IND-CCA —where the adversary
just wants to distinguish which plaintext, between two messages of its choice, had
been encrypted; it can ask any query to a decryption oracle (except the challenge
ciphertext).

2.2 Relaxed CCA-Security

First, at Eurocrypt ’02, An et al [1] proposed a “generalized CCA” security notion,
where the adversary is restricted not to ask, to the decryption oracle, ciphertexts
which are in relation with the challenge ciphertext. This relation must be an equiva-
lence relation, publicly and efficiently computable, and decryption-respecting: if two
ciphertexts are in relation, they necessarily encrypt identical plaintexts. This relax-
ation was needed in that paper, so that extra bits in the ciphertext, which can be
easily added or suppressed, should not make the scheme theoretical insecure, while its
security is clearly the same from a practical point of view.

More recently, another relaxation (an extra one beyond the above one) has been
proposed by Canetti et al [7]: informally, it extends the above relation to the (possibly
non-computable) equality of plaintexts. More precisely, if the adversary asks for a
ciphertext c to the decryption oracle, c is first decrypted into m. Then, if m is one
of the two plaintexts output in the first stage by the adversary, the decryption oracle
returns test, otherwise the actual plaintext m is returned. They called this variant the
“replayable CCA” security. They explain that this security level, while clearly weaker
than the usual CCA one, is enough in most of the practical applications. The classical
CCA security level is indeed very strong, too strong for the same reasons as explained
above for the first relaxation.

In this paper, we could work with the latter relaxation, the “replayable CCA”
scenario. But for a simpler security proof, as well as a more precise security result
(with nice corollaries for particular cases, such as the RSA one) we restrict it a little
bit into the “relaxed CCA” scenario, denoted RCCA. A scheme which is secure in
this scenario is trivially secure in the “replayable CCA” one, but not necessarily in
the “generalized CCA” or the usual CCA scenario. The actual relations between these
scenarios depend on the way the random string is split. In the formal notation of
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the encryption algorithm, we indeed split the randomness in two parts r and ρ: c =
Epk(m; r, ρ). The encryption algorithm is thus a function from M×R × R into the
ciphertext set. We know that for being an encryption scheme, this function must be
an injection with respect toM (several elements inM×R×R can map to the same
ciphertext, but all these elements must project uniquely onM: the plaintext.) In our
new relaxation, we split the randomness in R × R so that this function is also an
injection with respect to M×R.

Let us assume that the challenge ciphertext is c? = Epk(m
?; r?, ρ?). Let us consider

the ciphertext c = Epk(m; r, ρ). According to the above comment, (m?, r?) and (m, r)
are uniquely defined from c? and c respectively, while ρ? and ρ may not be unique.
Upon receiving c, the relaxed decryption oracle first checks whether (m?, r?) = (m, r)
in which case it outputs test. Otherwise, it outputs m.

Definition 2 (Relaxed CCA). In the “relaxed CCA” scenario, an adversary has an
unlimited access to the relaxed decryption oracle.

Property 3. Security in the “relaxed CCA” scenario implies security in the “replayable
CCA” one.

Proof. As already noticed, this is a trivial relation, since the decryption oracle in the
latter scenario can be easily simulated by the relaxed decryption oracle: if its output is
test, this value is forwarded, else the returned plaintext m is compared to the output of
the adversary at the end of the first stage. According to the result of the comparison,
either a test-answer is also given (if m ∈ {m0,m1}), or m.

This property was just to make clear that we do not relax more the CCA security, but
still keep it beyond what is clearly acceptable for practical use. Namely, note that if
R is the empty set, then the RCCA scenario is exactly the usual CCA one: if f is a
permutation from E onto F (the RSA case.)

3 OAEP 3-Round: A General and Efficient Padding

3.1 The Basic Primitive

Our goal is to prove that OAEP 3-round can be used with a large class of one-way
functions. More precisely, we need an injective probabilistic trapdoor one-way function
family (ϕpk)pk from a set Epk to a set Fpk, respectively to the index pk: almost any
encryption primitive, where the plaintext set is denoted Epk and the ciphertext set is
denoted Fpk, is fine: for any parameter pk (the public key), there exists the inverse
function ψsk (where sk is the private key) which returns the pre-image in Epk. An
injective probabilistic trapdoor one-way function f from E to F is actually a function
f : E × R → F, which takes as input a pair (x, ρ) and outputs y ∈ F. The element
x lies in E and is the important input, ρ is the random string in R which makes the
function to be probabilistic. Injectivity means that for any y there is at most one x
(but maybe several ρ) such that y = f(x, ρ). The function g which on input y outputs
x is the inverse of the probabilistic function f . Clearly, we need the function f to
be efficiently computable, but the one-wayness means that computing the unique x
(if it exists) such that y = f(x, ρ) is intractable (unless one knows the trapdoor g.)
These are the basic requirement for an asymmetric encryption primitive. But for our
construction to work, we need two additional properties:

– the function f : E×R→ F is a bijection;
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– without knowing the trapdoor, it is intractable to invert f in E, even for an
adversary which has access to the decisional oracle Samef (y, y′) which answers
whether g(y) = g(y′).

The latter property is exactly the “gap problem” notion, which is defined by the
following success probability Succ

gap
f (t, q), for any adversary A whose running time

is limited by t, and the number of queries to the decisional oracle Samef is upper-
bounded by q:

Succ
gap
f (t, q) = max

A
{x

R
← E, ρ

R
← R, y = f(x, ρ) : ASamef (y) = x}.

For a family of functions, this success probability includes the random choice of the
keys in the probability space, and assumes the inputs randomly drawn from the ap-
propriate sets, hence the notation Succgap

ϕ (t, q) for a family (ϕpk)pk.

3.2 Examples

Let us see whether the two above additional properties are restrictive or not in practice:

– The first example is clearly the RSA permutation [25], where for a given public key
pk = (n, e), the sets are E = F = Z

?
n and R is the empty set. Then, this is clearly an

injective (but deterministic) function, which is furthermore a bijection. Because of
the determinism, the decisional oracle Same(y, y ′) simply checks whether y = y′:
the gap problem is thus the classical RSA problem.

– The goal of our extension of OAEP is to apply it to the famous ElGamal en-
cryption [9] in a cyclic group G of order q, generated by g. Given a public key
pk = y ∈ G, the sets are E = G, R = Zq and F = G×G: ϕy(x, ρ) = (gρ, x× yρ),
which is a probabilistic injection from E onto F, and a bijection from E×R onto
F. About the decisional oracle, it should check, on inputs (a = gρ, b = x×yρ) and
(a′ = gρ′ , b′ = x′ × yρ′), whether x = x′, which is equivalent to decide whether
(g, y, a′/a = gρ′−ρ, b′/b = (x′/x) × yρ′−ρ) is a Diffie-Hellman quadruple: the gap
problem is thus the well-known Gap Diffie-Hellman problem [18, 19].

– One can easily see that the Paillier’s encryption [20] also fits this formalism.

3.3 Description of OAEP 3-Round

Notations and Common Parameters. For a simpler presentation, and an easy
to read analysis, we focus on the case where E = {0, 1}n (is a binary set). A similar
analysis as in [21] could be performed to deal with more general sets. On the other
hand, any function can be mapped into this formalism at some low cost [2].

The encryption and decryption algorithms use three hash functions: F , G, H (as-
sumed to behave like random oracles in the security analysis) where the security
parameters satisfy n = k + `:

F : {0, 1}k → {0, 1}` G : {0, 1}` → {0, 1}k H : {0, 1}k → {0, 1}`.

The encryption scheme uses any probabilistic injection family (ϕpk)pk, whose inverses
are respectively denoted ψsk, where sk is the private key associated to the public key
pk. The symbol “‖” denotes the bit-string concatenation and identifies {0, 1}k×{0, 1}`

to {0, 1}n.
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Encryption Algorithm. The space of the plaintexts isM = {0, 1}`, the encryption
algorithm uses random coins, from two distinct sets r ∈ R = {0, 1}k and ρ ∈ R, and
outputs a ciphertext c into F: on a plaintext m ∈M, one computes

s = m⊕F(r) t = r ⊕ G(s) u = s⊕H(t) c = ϕpk(t‖u, ρ).

Decryption Algorithm. On a ciphertext c, one first computes t‖u = ψsk(c), where
t ∈ {0, 1}k and u ∈ {0, 1}`, and then

s = u⊕H(t) r = t⊕ G(s) m = s⊕F(r).

4 Security Result

In this section, we state and prove the security of this construction. A sketch is pro-
vided in the body of the paper, the full proof can be found in the appendix.

Theorem 4. Let A be an IND-RCCA adversary against the OAEP 3-round construc-

tion with any trapdoor one-way probabilistic function family (ϕpk)pk, within time τ .
Let us assume that after qf , qg, qh and qd queries to the random oracles F , G and H,

and the decryption oracle respectively, its advantage Adv ind-rcca
oaep-3 (τ) is greater than ε.

Then, Succgap
ϕ (τ ′, qd(qgqh + qd)) is upper-bounded by

ε

2
− q2d ×

(

1

2`
+

6

2k

)

− (4qd + 1)×
(qg

2`
+
qf
2k

)

− qd ×
qf + 1

2k
,

with τ ′ ≤ τ+(qf +qg +qh+qd)Tlu+q2dTSame +(qd+1)qgqh(Tϕ +TSame), where Tϕ is the

time complexity for evaluating any function ϕpk, TSame is the time for the decisional

oracle Sameϕpk
to give its answer, and Tlu is the time complexity for a look up in a

list.

4.1 Trapdoor Permutations

Before proving this general result, let us consider the particular case where ϕpk is a
permutation from E onto F (i.e., a deterministic function.) The general result has
indeed several drawbacks:

– the reduction cost introduces a cubic factor qdqgqh which implies larger keys for
achieving a similar security level as for some other constructions;

– the security relies on a gap problem, which is a strong assumption in many cases;
– and we cannot achieve the usual IND-CCA security level.

These drawbacks are acceptable as the price of generality: this becomes one of the
best padding for ElGamal or Paillier strongly secure variants. However, for trapdoor
permutations, such as RSA, several OAEP variants achieve much better efficiency.

But one should interpret the above result in this particular case: first, the gap-
problem becomes the classical one-wayness, since the decisional oracle is simply the
equality test; Furthermore, the RCCA scenario becomes the classical CCA one; Finally,
because of the determinism of the permutation, with proper bookkeeping, one can
avoid the cubic factor, and fall back to the usual quadratic factor qgqh, as for any
OAEP-like constructions (OAEP+, SAEP and SAEP+). Then, one can claim a much
better security result:
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Theorem 5. Let A be an IND-CCA adversary against the OAEP 3-round construction

with a trapdoor one-way permutation family (ϕpk)pk, within time τ . Let us assume that

after qf , qg, qh and qd queries to the random oracles F , G and H, and the decryption

oracle respectively, its advantage Advind-cca
oaep-3 (τ) is greater than ε. Then, Succow

ϕ (τ ′) is

upper-bounded by

ε

2
− q2d ×

(

1

2`
+

6

2k

)

− (4qd + 1)×
(qg

2`
+
qf
2k

)

− qd ×
qf + 1

2k
,

with τ ′ ≤ τ + (qf + qg + qh + qd)Tlu + qgqhTϕ, where Tϕ is the time complexity for

evaluating any function ϕpk and Tlu is the time complexity for a look up in a list.

4.2 Sketch of the Proof

The proof is very similar to the one in [21], but the larger class (injective probabilis-
tic functions), and the improved security result (relative to the one-wayness) make
some points more intricate: for a permutation f , each value x maps to a unique image
y = f(x); whereas for a function f , each value x maps to several images y = f(x, ρ),
according to the random string ρ. Consequently, when used as an asymmetric encryp-
tion primitive, the adversary may have the ability to build another y ′ whose pre-image
is identical to the one of y: x = g(y) = g(y ′). Such a query to the decryption oracle
is not excluded in the CCA scenario, while we may not be able to either detect or an-
swer. Hence the relaxed version of chosen-ciphertext security, and the decisional oracle
Samef : the latter helps to detect ciphertexts with identical pre-images, the relaxed sce-
nario gives the ability to answer test in this case. Granted the decisional oracle Samef ,
we can also detect whether a decryption query c has the same pre-image as a previ-
ous decryption query c′ in which case we output the same plaintext. If it is a really
new ciphertext, by using again the decisional oracle Samef , we can check whether s
and t have both been asked to G and H, respectively, which immediately leads to the
plaintext m. In the negative case, a random plaintext can be safely returned.

4.3 More Details

The full proof can be found in the appendix, but here are the main steps, since the
proof goes by successive games in order to show that the above decryption simulation
is almost indistinguishable for the adversary. Then, a successful IND-RCCA adversary
can be easily used for inverting the one-way function.

G0: We first start from the real IND-RCCA attack game.
G1–G2: We then simulate the view of the adversary, first, as usual with lists for the random

oracles and the decryption oracle (see figures 1 and 2.)
We then modify the generation of the challenge ciphertext, using a random mask
f?, totally independent of the view of the adversary: the advantage of any adver-
sary is then clearly zero. The plaintext is indeed unconditionally hidden.

The only way for any adversary to detect this simulation is to ask F(r?) and then
detect that the answer differs from any possible f ?. We are thus interested in this
event, termed AskF, which denotes the event that r? is asked to F .

The main difference with the OAEP 2-round construction, as shown by Shoup with
his counter-example [27], is that here an adversary cannot make another ciphertext
with the same r as r?, in the challenge ciphertext, but either by chance, or if it had
asked for both G(s?) and H(t?). We now try to show this fact.
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F
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Query F(r): if a record (r, f) appears in F-List, the answer is f .
Otherwise the answer f is chosen randomly in {0, 1}k and the record (r, f) is added in
F-List.
Query G(s): if a record (s, g) appears in G-List, the answer is g.
Otherwise the answer g is chosen randomly in {0, 1}` and the record (s, g) is added in G-List.

IRule EvalGAdd(1)

Do nothing % To be defined later

Query H(t): if a record (t, h) appears in H-List, the answer is h.
Otherwise the answer h is chosen randomly in {0, 1}k and the record (t, h) is added in
H-List.

D
O

ra
cl

e Query Dsk(c): first, if we are in the second stage (the challenge c? as been defined), ask for
(c, c?) to the decisional oracle Sameϕpk

. In case of positive decision, the answer is test.
Else, for each (m′, c′) in D-List, ask for (c, c′) to the decisional oracle Sameϕpk

. In case of a
positive decision, the answer is the corresponding‘m′.
Otherwise, the answer m is defined according to the following rules:

IRule Decrypt-Init(1)

Compute t‖u = ψsk(c);

Look up for (t, h) ∈ H-List:

• if the record is found, compute s = u⊕ h.
Look up for (s, g) ∈ G-List:

∗ if the record is found, compute r = t⊕ g.
Look up for (r, f) ∈ F-List:

· if the record is found
IRule Decrypt-TSR(1)

h = H(t),
s = u⊕ h, g = G(s),
r = t⊕ g, f = F(r),
m = s⊕ f .

· else
IRule Decrypt-TSnoR(1)

same as rule Decrypt-TSR(1).
∗ else

IRule Decrypt-TnoS(1)

same as rule Decrypt-TSR(1).
• else

IRule Decrypt-noT(1)

same as rule Decrypt-TSR(1).

Answer m and add (m, c) to D-List.

Fig. 1. Formal Simulation of the IND-RCCA Game: Oracles
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C
h
a
ll
en

g
er

For two messages (m0,m1), flip a coin b and set m? = mb, choose randomly r? then answer
c? where

IRule Chal(1)

f? = F(r?), s? = m? ⊕ f?,

g? = G(s?), t? = r? ⊕ g?,

h? = H(t?), u? = s? ⊕ h?.

IRule ChalC(1)

and c? = ϕpk(t
?‖u?, ρ?), for random string ρ?.

Fig. 2. Formal Simulation of the IND-RCCA Game: Challenger

G3–G8: We thus modify the decryption process so that it makes no new query to G and
H. The sequence of games leads to the following new rules:

IRule Decrypt-noT(8)

Choose m
R
← {0, 1}`.

IRule Decrypt-TnoS(8)

Choose m
R
← {0, 1}`.

IRule Decrypt-TSnoR(8)

If s = s? but s? has not been directly asked by the adversary

yet: m
R
← {0, 1}`.

Else, one chooses m
R
← {0, 1}`, computes f = m ⊕ s and adds

(r, f) in F -List.

IRule EvalGAdd(8)

For each (t, h) ∈ H-List and each (m, c) ∈ D-List, choose an
arbitrary random ρ ∈ R and ask for (c, c′ = ϕpk(t‖h⊕s, ρ)) to the
decisional oracle Sameϕpk

. If the record is found (the decisional
oracle Sameϕpk

answers “yes”), we compute r = t ⊕ g and f =
m⊕ s, and finally add (r, f) in F -List.

Some bad cases may appear, which make our simulation to fail. But they are very
unlikely, we thus can safely cancel executions, applying the following rule

IRule Abort(8)

Abort and output a random bit:

• If s? has been asked to G by the adversary, while the latter
did not ask for H(t?).

• If a Decrypt-TSR/Decrypt-TSnoR rule has been applied with
t = t?, while H(t?) had not been asked by the adversary yet.

• If a Decrypt-TSR rule has been applied with s = s?, while
G(s?) had not been asked by the adversary yet.

The remaining bad case (termed AskGHA) is if both s? and t? have been asked
to G and H by the adversary. Such a case helps the adversary to distinguish our
simulation. On the other hand, this case helps to invert ϕpk.

G9: With these new rules for decryption, the simulation of the decryption oracle does
not use at all the queries previously asked to G and H by the generation of the
challenge, but just the queries directly asked by the adversary, which are available
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to the simulator (we remind that we are in the random-oracle model.) One can
thus make g? and h? to be values independent to the view of the adversary:

IRule Chal(9)

The two values r+ R
← {0, 1}k and f+ R

← {0, 1}` are given, as

well as g+ R
← {0, 1}k and h+ R

← {0, 1}` then r? = r+, f? = f+,
s? = m?⊕ f+, g? = g+, t? = r+⊕ g?, h? = h+ and u? = s?⊕h?.

And then the decryption oracle can be simply replaced by the classical plaintext-
extractor which looks up in the lists G-List and H-List (which only contain the
queries directly asked by the adversary) to obtain the values (s, g) and (t, h) which
match with c = ϕpk(t‖s⊕ h, ρ), using the decisional oracle Sameϕpk

, but without
using anymore ψsk. In case of failure, one answers a random plaintext m.

We simply conclude, since our reduction does not use any oracle, but can an-
swer any query of the adversary, in an indistinguishable way, unless the bad case
AskGHA happens: in which case we have inverted ϕsk.

The time complexity of one simulation is thus upper-bounded by qgqh × (Tϕ +
TSame), where Tϕ is the time to evaluate one function in the ϕ family, and TSame the
time for the decisional oracle, plus the initial look up in the D-List: Tlu + qdTSame.
Thus the global running time is bounded by (including all the list look up):

τ ′ ≤ τ + qdqgqh × (Tϕ + TSame) + q2
d × TSame + (qf + qg + qh + qd)× Tlu.

In the particular case where ϕpk is a permutation from E onto F (a deterministic
one), one can improve it, using an extra list of size qgqh, which stores all the tuples
(s, g = G(s), t, h = H(t), c′ = ϕpk(t‖s ⊕ h)). The time complexity then falls down to
τ + qgqh × Tϕ + (qf + qg + qh + qd)× Tlu.

5 Conclusion

All the OAEP variants [27, 6] applied to RSA, with general exponents (i.e., not Rabin
nor e = 3) admit, in the best cases, reductions to the RSA problem with a quadratic
loss in time complexity [23] – the original OAEP is even worst because of the reduction
to the partial-domain case, which requires a more time consuming reduction to the
full-domain RSA problem. Furthermore, for a security level in 2−k, a randomness of
2k bits is required, plus a redundancy of k bits.

In this paper, we show that the variant of OAEP with 3 rounds admits a reduction
as efficient as the best OAEP variants (to the full-domain RSA, when applied to the
RSA family) without having to add redundancy: one can thus earn k bits. But this is
not the main advantage.

Considering any criteria, OAEP with 3 rounds is at least as good as all the other
OAEP variants, but from a more practical point of view

– since no redundancy is required, implementation becomes easier, namely for the
decryption process [16];

– it applies to more general families than just (partial-domain) one-way trapdoor
permutations, but to any probabilistic trapdoor one-way function. It is thus safer
to use it with a new primitive [15].

As a conclusion, OAEP with 3 round is definitely the most generic and the simplest
padding to use with almost all the encryption primitives.
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A Proof of the Theorem 4

Game G0: This is the real IND-RCCA attack game, in which the adversary is fed
with the public key pk, and outputs a pair of messages (m0,m1). Next a challenge
ciphertext is produced by flipping a coin b and producing a ciphertext c? of m? = mb.

This ciphertext c? comes from the two random strings r? R
← {0, 1}k and ρ? R

← R:
c? = Epk(mb, r

?, ρ?) = ϕpk(t
?‖u?, ρ?). On input c?, A2 outputs bit b′ after an overall

running time bounded by τ . We denote by S0 the event b′ = b and use the same
notation Sn in any game Gn below. Note that the adversary is given access to the
decryption oracle Dsk during both steps of the attack. The adversary can also ask the
random oracles F , G and H.

Pr[S0] =
1

2
×

(

Advind-rcca
oaep-3 (τ) + 1

)

.

Advantage Zero. The goal of the first two games is to build a game in which b is
perfectly indistinguishable to any adversary.

Game G1: The simulation in this game is presented in figures 1 and 2. We simulate
the random oracles F , G and H, as well as the decryption oracle Dsk, by maintaining
lists: F -List, G-List and H-List as usual for the random oracles, and D-List to deal with
similar decryption queries. This perfect simulation does not modify any probability.

Game G2: In order to make the advantage of any (even powerful) adversary
exactly zero, we define the mask f ? so that it is totally independent of the view of the
adversary:

IRule Chal(2)

The two values r+ R
← {0, 1}k and f+ R

← {0, 1}` are given, then
r? = r+, f? = f+ and s? = m? ⊕ f+, g? = G(s?), t? = r+ ⊕
g?, h? = H(t?), u? = s? ⊕ h?.

The two games G2 and G1 are perfectly indistinguishable unless r? has been asked
for F (by the adversary or the decryption oracle). We thus define this event AskF2,
and we have:

|Pr[S2]− Pr[S1] | ≤ Pr[AskF2].

As hoped, in this game, f+ is used in the generation of the challenge, but does not
appear anywhere else since F(r+) is not defined to be equal to f+. Thus, the output
of A2 follows a distribution that does not depend on b. Accordingly, Pr[S2] = 1/2. We
thus obtain a first conclusion:

Advind-rcca
oaep-3 (t) ≤ 2× Pr[AskF2]. (1)

The main difference with the OAEP 2-round construction, as shown by Shoup with
his counter-example, is that here, an adversary cannot make another ciphertext with
the same r as r?, in the challenge ciphertext, but either by chance, or if its had asked
for both G(s?) and H(t?). We now try to show this fact. We are thus interested in the
event AskF.
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No G and H Queries in the Decryption Simulation. We modify the decryption
process so that it makes no new query to G and H.

Game G3: We begin to simulate the decryption oracle. First, we modify the rules
Decrypt-noT, Decrypt-TnoS and Decrypt-TSnoR by outputting a random message, and
choosing at random the F , G and H oracles outputs, without looking first in F -List

and G-List:

IRule Decrypt-noT(3)

Choose m
R
← {0, 1}`, h

R
← {0, 1}` and g

R
← {0, 1}k

Set s = u⊕ h, r = t⊕ g and compute f = m⊕ s.
Add (r, f) in F -List, (s, g) in G-List, (t, h) in H-List.

IRule Decrypt-TnoS(3)

Choose m
R
← {0, 1}` and g

R
← {0, 1}k

Set r = t⊕ g and compute f = m⊕ s.
Add (r, f) in F -List, (s, g) in G-List.

IRule Decrypt-TSnoR(3)

Choose m
R
← {0, 1}`.

Compute f = m⊕ s.
Add (r, f) in F -List.

The above rules are almost similar as before, except that inconsistencies may appear if
some elements were already in the lists. But inputs are random, and thus the collisions
are unlikely. More details are given in appendix B.1, to prove the following relation:

|Pr[AskF3]− Pr[AskF2] | ≤ qd ×

(

qg + qd
2`

+ 2×
qf + qd

2k

)

. (2)

Game G4: In the previous rules for the simulation of the decryption simulation,
the random oracles were almost perfectly simulated, adding new relations to the cor-
responding lists. We now make more technical modifications, which differ a lot from
previous proofs. Granted that, we can achieve a stronger result. We thus modify the
above rules by not storing anymore the new relations (s, g) in G-List, defined during
these simulations. Therefore, when g is no longer explicitly defined, we cannot com-
pute r and thus we do not store (r, f) in F -List either. However, as soon as G(s) is
known, we must define F(r) accordingly, and update the lists:

IRule Decrypt-TnoS(4)

Choose m
R
← {0, 1}`.

IRule Decrypt-noT(4)

Choose m
R
← {0, 1}` and h

R
← {0, 1}`.

Add (t, h) in H-List.

IRule EvalGAdd(4)

For each (t, h) ∈ H-List and each (m, c) ∈ D-List, choose an
arbitrary random ρ ∈ R and ask for (c, c′ = ϕpk(t‖h⊕s, ρ)) to the
decisional oracle Sameϕpk

. If the record is found (the decisional
oracle Sameϕpk

answers “yes”), we compute r = t ⊕ g and f =
m⊕ s, and finally add (r, f) in F -List.
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With the above new rules, the answers in the two games G4 and G3 are perfectly
indistinguishable unless r is asked to F before s is asked to G, which event is denoted
by AskRbS4. In fact, if r is asked after s, at the moment that s is asked, by the above
simulation of G (and the extra rule EvalGAdd), we will find out (t, h) and therefore
(r, f) is computed in a consistent way, exactly as it would have been in the game G3,
and added in F -List.

Note that for each ciphertext c, the value t is unique, and thus h, and consequently
s: this rule is thus applied at most once for each ciphertext asked to the decryption
oracle.

However, until s is asked, g is a uniformly distributed random variable, and r is
so too. Therefore, the probability that r has been asked to F is qf/2

k:

Pr[AskRbS4] ≤ qd ×
qf + qd

2k
.

A more important gap may appear because of the removal of some elements (s, g)
from G-List, and (r, f) from F -List, which may have some impact on the simulation of
later decryption queries, but also on the event AskF itself:

– if we remove (r, f) for r = r?, then the event AskF happened in the previous
game but does not occur in the new game. Fortunately, since r = t⊕ g where g is
randomly chosen, the probability of this event is 1/2k.

– in the simulation of a later decryption query c′ = ϕpk(t
′‖u′, ρ′), the element s′ = s

might have been found in the previous game, while it is no longer in the list in
the current game. A rule Decrypt-TSR/Decrypt-TSnoR is thus replaced by the rule
Decrypt-TnoS, which means that g was just defined during the first decryption,
in the previous game, but never revealed later. Therefore, the probability that
r′ = t′ ⊕ g′ = t′ ⊕ g is in the F -List is (qf + qd)/2

k (modification of Decrypt-TSR

into Decrypt-TnoS). In the case that r ′ was not in the F -List, m′ was and is still
random: modification of Decrypt-TSnoR into Decrypt-TnoS.

|Pr[AskF4]− Pr[AskF3] | ≤ Pr[AskRbS4]+qd×
qf + qd

2k
+qd×

1

2k
≤ 2qd×

qf + qd
2k

+qd×
1

2k
.

Game G5: We follow in simplifying the simulation of the decryption, by not storing
the new relations (t, h) in H-List either:

IRule Decrypt-noT(5)

Choose m
R
← {0, 1}`.

In the two games, the answers of the decryption simulations are identical, since they
are random values. Nevertheless, the H-List has been changed, which may impact
several other things:

– an F -answer can be changed. Indeed, if s is asked to G before t is asked to H,
which event is denoted by AskSbT5, the rule EvalGAdd will not apply. Otherwise,
when the event AskSbT5 does not happen, the F -List and the F simulation are
unchanged, after the EvalGAdd rule. Fortunately, until t is asked to H, h is a
uniformly distributed random variable, and s = u ⊕ h is so too. Therefore, the
probability that s has been asked to G is qg/2

` (since no new G relation is added
by the decryption simulation):

Pr[AskSbT5] ≤ qd ×
qg
2`
.
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– the removal of (t, h) from H-List, may have some impact on the simulation of a
later decryption query c′ = ϕpk(t

′‖u′, ρ′):
• if s′ is in the G-List and t′ = t, it was found in the previous game, but it is no

longer in the list. A rule Decrypt-TSR/Decrypt-TSnoR is thus replaced by the
rule Decrypt-noT. This event means that h′ = h was just defined during the
first decryption in the previous game, but never revealed later. The probability
for s′ = t′⊕h to be in the G-List was less than qg/2

`, which is an upper-bound
of this case to appear.
• if s′ is not in the G-List but t′ = t was found in the previous game, it may

not be in the list any longer. A rule Decrypt-TnoS is thus replaced by the
rule Decrypt-noT. In this case, the decryption is the same (it gives always a
random plaintext and adds no element in the lists).

Summing up for all decryption queries, we get:

|Pr[AskF5]− Pr[AskF4] | ≤ Pr[AskSbT5] + qd ×
qg
2`
≤ 2qd ×

qg
2`
.

Remark that the G-List and H-List contain now only the queries asked by the adver-
saries and by the generation of the challenge. The simulation of the decryption queries
does not make/simulate any new query to G or H, but to F only.

We denote by AskGA5 and AskHA5 the events that s? and t? (the values involved
in the challenge), respectively, are asked by the adversary. The event AskGHA5 is also
set to true when both AskGA5 and AskHA5 happen: AskGHA = AskGA∧AskHA. Note
that these two queries, s? and t?, are also asked for the generation of the challenge c?,
but we do not consider them for the events AskGA5 and AskHA5.

The Classical Plaintext Extractor. We now complete the modifications of the
decryption process so that it behaves exactly as the classical plaintext extractor, briefly
described in the sketch of the proof.

Game G6: Before going on in some other modifications, we exclude some executions,
with then a random output: the rule Abort is always checked. If it is true, we stop the
game with a random output b′.

IRule Abort(6)

Abort and output a random bit: If AskGA6 ∧ ¬AskHA6, at the
end.

When ¬AskHA6, H(t?) = u? ⊕ mb ⊕ f+ is never revealed, while f+ is a random
value independent to the adversary’s view. Therefore, H(t?) is a uniformly distributed
random variable: s? = u? ⊕ H(t?) is so too. Consequently, the probability that s? is
queried is qg/2

`. Consequently, the probability that this rule is applied is qg/2
`:

|Pr[AskF6]− Pr[AskF5] | ≤
qg
2`
.

Furthermore, Pr[AskF6] can easily be upper-bounded with the following relation, which
proof is detailed in the appendix B.2

Pr[AskF6] ≤
qf
2k

+ Pr[AskGHA6]. (3)

We can thus make another intermediate conclusion, which explains our interest in
Pr[AskGHA6]:

Pr[AskF2] ≤ q
2
d×

(

4

2k
+

1

2`

)

+(3qd+1)×
(qf

2k
+
qg
2`

)

+qd×
qf + 1

2k
+Pr[AskGHA6]. (4)
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Game G7: We furthermore abort some games during the execution, if one of the
following situations is met:

IRule Abort(7)

Abort and output a random bit:

– If AskGA7 ∧ ¬AskHA7, at the end.
– If a Decrypt-TSR/Decrypt-TSnoR rule has been applied with
t = t?, while H(t?) had not been asked by the adversary yet.

– If a Decrypt-TSR rule has been applied with s = s?, while
G(s?) had not been asked by the adversary yet.

The gap between the two games is detailed in the appendix B.3 with the proof of the
following relation:

|Pr[AskGHA7]− Pr[AskGHA6] | ≤ qd ×

(

qf + qd
2k

+
qg
2`

)

. (5)

Game G8: In this game, we complete the simulation of the decryption oracle, so
that it does not depend on the queries that the generation of the challenge makes.
The decryption oracle does not use anymore the element (s?, g?) if the adversary did
not ask for s?.

IRule Decrypt-TSnoR(8)

If s = s? but s? has not been directly asked by the adversary

yet: m
R
← {0, 1}`.

Else, one chooses m
R
← {0, 1}`, computes f = m ⊕ s and adds

(r, f) in F -List.

If s = s? but s? has not been asked to G by the adversary during a Decrypt-TSnoR

rule, f = F(r) is a uniformly distributed random variable, therefore, we can give a
random answer m. However, in this case, we do not store anymore (r, f) and this
could make some problems: if a latter decryption query c′ involves r′ = r. In this case
g?⊕t = g′⊕t′. Therefore, if s′ = s then t′ = t and the answer m′ should be equal to m,
which is checked out at the beginning of the simulation by using the decisional oracle
Sameϕpk

on (c, c′). In the case s′ 6= s, g = G(s) = g? is independent to g′. Moreover,
s? is not queried and thus r = g? ⊕ t is a uniformly distributed random variable: the
probability that a later decryption query c′ satisfies that is 1/2k:

|Pr[AskGHA8]− Pr[AskGHA7]| ≤
q2d
2k
.

Game G9: In the above game, one can remark that the simulation of the decryption
does not use at all the queries asked to G and H by the generation of the challenge:

– Decrypt-TSR

• with r = r?: is not possible if the query r? has not been queried directly
by the adversary, since it has not been queried during the generation of the
challenge;
• with s = s?: excluded in the game G7;
• with t = t?: excluded in the game G7;

– Decrypt-TSnoR
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• with s = s?: similar to Decrypt-TnoS since the game G8;
• with t = t?: excluded in the game G7;

– Decrypt-TnoS
• with t = t?: similar to Decrypt-noT since the game G5;

We can thus modify the simulation of the challenge, without querying G or H:

IRule Chal(9)

The two values r+ R
← {0, 1}k and f+ R

← {0, 1}` are given, as

well as g+ R
← {0, 1}k and h+ R

← {0, 1}` then r? = r+, f? = f+,
s? = m?⊕ f+, g? = g+, t? = r+⊕ g?, h? = h+ and u? = s?⊕h?.

As seen above, this does not impact at all the simulation of the decryption, and the rule
EvalGAdd either since the modification had already been considered in the game G5.
The probability distributions are thus unchanged.

In this game, the simulation of the decryption of c is the simple plaintext extrac-
tor [4, 12, 21] which looks up in the lists G-List and H-List (which only contain the
queries directly asked by the adversary) to obtain the values (s, g) and (t, h) which
match with c = ϕpk(t‖s⊕h, ρ), using the decisional oracle Sameϕpk

, but without using
anymore ψsk:

IRule Decrypt-Init(9)

Look up for (t, h) ∈ H-List and (s, g) ∈ G-List, we choose arbi-
trarily ρ ∈ R and compute c′ = ϕpk(t‖s⊕ h, ρ) and ask for (c, c′)
to the decisional oracle Sameϕpk

.

– if the record is found (a positive answer from the decisional
oracle Sameϕpk

), we found out the corresponding s and t,
and we furthermore define u = s⊕ h.

– otherwise, we take t = ⊥ and u = ⊥.

Note that the definitions t = ⊥ and u = ⊥ are just done to make the answer m to
be random in the following of the simulation. The time complexity of one simulation
is thus upper-bounded by qgqh × (Tϕ + TSame), where Tϕ is the time to evaluate one
function in the ϕ family, and TSame the time for the decisional oracle, plus the initial
look up in the D-List: Tlu + qdTSame. Thus the global running time is bounded by
(including all the list look up):

τ ′ ≤ τ + qdqgqh × (Tϕ + TSame) + q2
d × TSame + (qf + qg + qh + qd)× Tlu.

In the particular case where ϕpk is a permutation from E onto F (a deterministic
one), one can improve it, using an extra list of size qgqh, which stores all the tuples
(s, g = G(s), t, h = H(t), c′ = ϕpk(t‖s ⊕ h)). The time complexity then falls down to
τ + qgqh × Tϕ + (qf + qg + qh + qd)× Tlu.

Conclusion. The proof is almost finished, granted the permutation property of ϕpk

from E × R onto F. Indeed using a classical argument, one easily gets the relation,
formally proven in appendix B.4:

Pr[AskGHA9] ≤ Succgap
ϕ (τ ′ + qgqh(Tϕ + TSame), qdqgqh + q2d), (6)

where τ ′ is the above running time of the simulation, which concludes the proof of the
Theorem, since

Pr[AskGHA6] ≤
2q2d
2k

+qd×

(

qf
2k

+
qg
2`

)

+Succgap
ϕ (τ ′+qgqh(Tϕ+TSame), qdqgqh+q2d). (7)

18



B Relations for the Proof of the Theorem 4

B.1 Proof of the Relation (2)

To explain the relation (2), we exhibit a sub-sequence of games, starting from the
game G2.
Game G2.1: First, we do not query anymore the oracles G and H. Let us remind
that we focus here on queries c = ϕpk(t‖u, ρ) where H(t) has never been queried.

IRule Decrypt-noT(2.1)

Choose h
R
← {0, 1}` and set s = u⊕ h.

Choose g
R
← {0, 1}k and set r = t⊕ g.

Compute f = F(r) and set m = s⊕ f .
Add (s, g) in G-List, (t, h) in H-List.

The two games G2.1 and G2 are perfectly indistinguishable unless s is already in G-List.
Since h is randomly chosen, s = u ⊕ h is uniformly distributed. So, the probability
that s has already been queried to G is (qg + qd)/2

`:

|Pr[AskF2.1]− Pr[AskF2] | ≤ qd(qg + qd)/2
`.

Game G2.2: In this game, we do not query the oracle F either:

IRule Decrypt-noT(2.2)

Choose h
R
← {0, 1}` and set s = u⊕ h.

Choose g
R
← {0, 1}k and set r = t⊕ g.

Choose f
R
← {0, 1}` and set m = s⊕ f .

Add (r, f) in F -List, (s, g) in G-List, (t, h) in H-List.

The two games G2.2 and G2.1 are perfectly indistinguishable unless r is already in
F -List. Since g is randomly chosen, r = t⊕ g is uniformly distributed. So, the proba-
bility that r has already been queried to F is less than (qf + qd)/2

k:

|Pr[AskF2.2]− Pr[AskF2.1] | ≤ qd(qf + qd)/2
k.

Game G2.3: We now want to clearly show that m is uniformly distributed, thus
we make a formal change, which does not modify anything:

IRule Decrypt-noT(2.3)

Choose m
R
← {0, 1}`.

Choose h
R
← {0, 1}` and set s = u⊕ h.

Choose g
R
← {0, 1}k and set r = t⊕ g.

Compute f = m⊕ s.
Add (r, f) in F -List, (s, g) in G-List, (t, h) in H-List.

The two games G2.3 and G2.2 are perfectly indistinguishable, since we just define f
from a random m instead of defining m from a random f :

Pr[AskF2.3] = Pr[AskF2.2].

Game G2.4: We now modify the rule Decrypt-TnoS by not calling anymore the
oracles F and G. Note that here, we apply the rule on a ciphertext c = ϕpk(t‖u, ρ)
such that h = H(t) is known, but s = u⊕ h has never been queried to G.
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IRule Decrypt-TnoS(2.4)

Choose g
R
← {0, 1}k and set r = t⊕ g.

Choose f
R
← {0, 1}` and set m = s⊕ f .

Add (r, f) in F -List, (s, g) in G-List.

The two games G2.4 and G2.3 are perfectly indistinguishable unless r is already in
F -List. Since g is randomly chosen, r = t⊕ g as uniformly distributed. So, the proba-
bility that r is queried to F is less than (qf + qd)/2

k:

|Pr[AskF2.4]− Pr[AskF2.3] | ≤ qd(qf + qd)/2
k.

Game G2.5: As above, we now make clear that m is uniformly distributed, thus
we make a formal change, which does not modify anything:

IRule Decrypt-TnoS(2.5)

Choose m
R
← {0, 1}`.

Choose g
R
← {0, 1}k and set r = t⊕ g.

Compute f = m⊕ s.
Add (r, f) in F -List, (s, g) in G-List.

The two games G2.5 and G2.4 are perfectly indistinguishable:

Pr[AskF2.5] = Pr[AskF2.4].

Game G2.6: We eventually do the same for the rule Decrypt-TSnoR, but note that
s and t were already in G-List and H-List respectively: no more query is asked, but
F(r), which thus gives a random value. As above, we just need to make clear that
m is uniformly distributed, thus we make a formal change, which does not modify
anything:

IRule Decrypt-TSnoR(2.6)

Choose m
R
← {0, 1}`.

Compute f = m⊕ s.
Add (r, f) in F -List.

The two games G2.6 and G2.5 are perfectly indistinguishable:

Pr[AskF2.6] = Pr[AskF2.5].

This is exactly the game G3.

B.2 Proof of the Relation (3)

To explain the relation (3), we exhibit a sub-sequence of games, starting from the
game G6.
Game G6.1:

IRule Abort(6.1)

If AskGA6.1.

We have:
Pr[AskF6.1] = Pr[AskF6 ∧ ¬AskGA6].

Game G6.2: In this game, we modify the simulation of the challenge, so that s? is
really random.
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IRule Chal(6.2)

The values r+ R
← {0, 1}k , s+

R
← {0, 1}` and g+ R

← {0, 1}k are
given, then

r? = r+ s? = s+ g? = g+ f? = s+ ⊕m?

t? = r+ ⊕ g+ h? = H(t?) u? = s+ ⊕ h?.

This game and the previous game are perfectly indistinguishable unless s? is asked
for G by the adversary. But we know that this event has already been rejected in the
previous game, and the decryption simulation does not make any G-query. We have
thus:

Pr[AskF6.2] = Pr[AskF6.1].

In this game, r+ = t?⊕g+ is uniformly distributed, and independent of the adversary’s
view since g+ is never revealed:

Pr[AskF6.2] =
qf
2k
.

We deduce that:

Pr[AskF6] = Pr[AskF6 ∧ ¬AskGA6] + Pr[AskF6 ∧ AskGA6 ∧ ¬AskHA6]

+Pr[AskF6 ∧ AskGHA6]

≤ Pr[AskF6.1] + Pr[AskGA6 ∧ ¬AskHA6] + Pr[AskGHA6]

≤ Pr[AskF6.2] + 0 + Pr[AskGHA6] ≤
qf
2k

+ Pr[AskGHA6].

B.3 Proof of the Relation (5)

To explain the relation (5), we exhibit a sub-sequence of games. Note that we forget
the sub-sequence of games presented in the previous appendix B.2, but we indeed
start again from the game G6.
Game G6.1: We modify the game so that the simulation of the decryption oracle
does not depend on the queries made by the generation of the challenge. First, it does
not use anymore the element (t?, h?) if the adversary did not asked for t? to H:

IRule Abort(6.1)

– If AskGA6.1 ∧ ¬AskHA6.1, at the end.
– If a Decrypt-TSR/Decrypt-TSnoR rule has been applied with
t = t?, while H(t?) had not been asked by the adversary yet.

Until H(t?) is asked by the adversary, H(t) = H(t?) = u?⊕mb⊕f
+ has never been

revealed, while f+ is a random value, independent of the adversary’s view. Therefore,
H(t) is also a random value to A: s = u ⊕H(t?) is so too. Moreover, because of the
permutation property (on E × R → F) of the function ϕpk, knowing that t = t? and
that we’ve already dealt with queries which have a similar pre-image as the challenge
c? in the preliminary step of the decryption, s must be different to s?. Consequently,
the probability that s is in G-List (directly asked by the adversary) is less than qg/2

`:

|Pr[AskGHA6.1]− Pr[AskGHA6.6]| ≤
qg
2`
× qd.

Game G6.2: In this game, we continue to simulate the decryption oracle so that it
does not depend on the queries that the generation of the challenge makes. We show

21



that the adversary could not make a query in which r is in the list and s is implicitly
equal to s? while it did not make the query on s?.

IRule Abort(6.2)

– If AskGA6.2 ∧ ¬AskHA6.2, at the end.
– If a Decrypt-TSR/Decrypt-TSnoR rule has been applied with
t = t?, while H(t?) had not been asked by the adversary yet.

– If a Decrypt-TSR rule has been applied with s = s?, while
G(s?) had not been asked by the adversary yet.

As s = s? is not asked by the adversary, the value G(s?) = r+ ⊕ t? is a truly random
value (because of r+). Therefore, the probability that r = t ⊕ G(s?) has been asked
by the adversary is (qf + qd)/2

k:

|Pr[AskGHA6.2]− Pr[AskGHA6.1]| ≤
qf + qd

2k
× qd.

This is exactly the game G7.

B.4 Proof of the Relation (6)

To explain the relation (6), one just needs one more game:
Game G9.1: We now easily complete the proof, by using the challenge instance y
in F, on which one wants to get the pre-image x, as the challenge ciphertext c?. This
challenge y is uniformly distributed in the space F.

IRule ChalC(9.1)

Given the challenge y ∈ F, one defines c? = y.

The distribution of c? is clearly unchanged, because of the permutation property of
ϕpk. The values t? and u? were not used anymore in the simulation, thus everything
remains perfectly indistinguishable:

Pr[AskGHA9.1] = Pr[AskGHA9].

Finally, when AskGHA9.1 happens, a look up in G-List andH-List leads to (s, g) and
(t, h) such that the decisional oracle Sameϕpk

agrees with the pair (c?, ϕpk(t‖s⊕ h, ρ))
(for an arbitrary random ρ in R). We can thus invert the function ϕpk on c? = y:

Pr[AskGHA9.1] ≤ Succgap
ϕ (τ ′ + qgqh(Tϕ + TSame), qdqgqh + q2d),

where τ ′ is the above running time of the simulation.
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