
The extended abstract of this work appears in Andrew Patrick and Moti Yung, editors, Financial

Cryptography and Data Security – FC 2005, Lectures Notes in Computer Science Vol. 3570, pages
341–356, Roseau, The Commonwealth Of Dominica, Feb. 28 – Mar. 3, 2005. Springer-Verlag,
Berlin, Germany.

Interactive Diffie-Hellman Assumptions With

Applications to Password-Based Authentication

Michel Abdalla David Pointcheval

Departement d’Informatique
École normale supérieure

45 Rue d’Ulm, 75230 Paris Cedex 05, France
{Michel.Abdalla,David.Pointcheval}@ens.fr

http://www.di.ens.fr/users/{mabdalla,pointche}.

Abstract

The area of password-based authenticated key exchange protocols has been the subject of a
vast amount of work in the last few years due to its practical aspects. In these protocols, the goal
is to enable users communicating over an unreliable channel to establish a secure session key even
when the secret key that they share is drawn from a small set of values. Despite the attention
given to it, it was only recently that this problem has been formally addressed in the three-party
setting. In this setting, the users trying to establish a secret session key are only required to
share a password with a trusted server and not directly among themselves. In this paper, we
introduce a new three-party password-based authenticated key exchange protocol based on the
two-party encrypted key exchange of Bellovin and Merritt. Our protocol is reasonably efficient
and has a per-user computational cost that is comparable to that of the underlying two-party
encrypted key exchange. The proof of security is in the random oracle model and is based
on new and apparently stronger variants of the decisional Diffie-Hellman problem which are of
independent interest.

Keywords: password, authenticated key exchange, Diffie-Hellman assumptions, multi-party
protocols.

Contents

1 Introduction 1

2 Definitions 4

2.1 Communication model . 4
2.2 Security definitions . 5

3 Diffie-Hellman assumptions 5

3.1 Definitions . 5
3.2 Relations . 9

4 Our 3-party password-based protocol 10

4.1 Description . 10
4.2 Security . 12
4.3 Concluding remarks . 13

A Proof of security for 3PAKE 16

B Proof of lemmas 29

B.1 The splitting lemma . 29
B.2 Proof of Lemma 3.5 . 30
B.3 Proof of Lemma 3.6 . 31
B.4 Proof of Lemma 3.9 . 32

1 Introduction

Motivation. Key exchange protocols are cryptographic primitives that allow users communicating
over an unreliable channel to establish secure sessions keys. They are widely used in practice and
can be found in several different flavors. In this paper, we are interested in the setting in which
the secret keys shared among the users are not uniformly distributed over a large space, but are
rather drawn from a small set of values (e.g., a four-digit pin). This seems to be a more realistic
scenario since, in practice, these keys are usually chosen by humans. Moreover, they also seem to
be more convenient to use as they do not require the use of more specialized hardware for storing
or generating secret keys.

Due to the low entropy of the secret keys, password-based protocols are always subject to
password-guessing attacks. In these attacks, also known as dictionary attacks, the adversary tries
to impersonate a user by simply guessing the value of his password. Since these attacks cannot
be completely ruled out, the goal of password-based protocol is to limit the adversary’s capability
to the online case only. In an online attack, whose success probability is still non-negligible, the
adversary needs be present and interact with the system during his attempt to impersonate a user.
In other words, the adversary has no means of verifying off-line whether or not a given password
guess is correct. The idea of restricting the adversary to the online case only is that we can limit
the damage caused by such attacks by using other means, such as limiting the number of failed
login attempts or imposing a minimum time interval between failed attempts.

password-based protocols in the 3-party model. Due to their practical aspects, password-
based key exchange protocols have been the subject of extensive work in the recent years. But
despite the attention given to them, it was only recently [2] that the problem has been formally
addressed in the three-party model, where the server is considered to be a trusted third party
(TTP). This is the same scenario used in the popular 3-party Kerberos authentication system. The
main advantage of these systems is that users are only required to remember a single password, the
one they share with a trusted server, while still being able to establish secure sessions with many
users. The main drawback is the need of the trusted server during the establishment of these secure
sessions.

In [2], the authors put forth a formal model of security for 3-party password-based authenticated
key exchange (PAKE) and present a natural and generic construction of a 3-party password-based
authenticated key exchange from any secure 2-party one. There are three phases in their generic
construction. In the first phase, a high-entropy session key is generated between the server and each
of the two clients using an instance of the 2-party PAKE protocol for each client. In the second
phase, a message authentication code (MAC) key is distributed by the server to each client using a
3-party key distribution protocol. In the final phase, both clients execute an authenticated version
of the Diffie-Hellman key exchange protocol [?] using the MAC keys obtained in the previous phase.

Efficient 3-party password-based protocols. Though attractive and natural, the construc-
tion given in [2] is not particularly efficient. Not only does it require a large amount of computation
by the server and the clients, but it also has a large number of rounds. In this paper, we show how
to improve both measures when the underlying 2-party password-based key exchange protocol is
based on the encrypted key exchange protocol of Bellovin and Merritt [8].

In order to understand our construction, let us first recall the example given in [2] of an insecure
3-party password-based key exchange protocol, which we reproduce in Figure 1. As noted in [2],
this protocol is not secure because it allows one user in the system to perform an off-line dictionary
attack against other users.

Re-encryption with randomization. The main problem with the protocol in Figure 1 resides in

1

Public information: G, g, p, E ,D,H

Client A Server Client B
pwA ∈ D pwA,pwB ∈ D pwB ∈ D

x
R

← Zp ; XA ← gx y
R

← Zp ; YB ← gy

X⋆
A ← Epw

A
(XA) Y ⋆

B ← Epw
B
(YB)

X⋆
A−→

Y ⋆
B←−

XS ← Dpw
A
(X⋆

A)
YS ← Dpw

B
(Y ⋆

B)
Y ⋆

S ← Epw
A
(YS)

X⋆
S ← Epw

B
(XS)

Y ⋆
S←−

X⋆
S−→

YA ← Dpw
A
(Y ⋆

S) XB ← Dpw
B
(X⋆

S)
KA ← Y x

A KB ← Xy
B

SKA ← H(A ‖B ‖S ‖KA) SKB ← H(A ‖B ‖S ‖KB)

Figure 1: An example of an insecure 3-party password-based encrypted key exchange protocol [2].

the fact that the same value is encrypted twice, once using pwA and once using pwB, thus allowing
both users A and B to learn each other’s password via an off-line dictionary attack. To overcome
this problem, it is crucial that the server randomizes the value received from one participant before
re-encrypting it using the password of the other participant.

Starting from this idea, we can design a provably-secure protocol, based on the encrypted key
exchange of Bellovin and Merritt [8]. The new protocol, whose simplified description is given in
Figure 2, is quite simple and elegant and, yet, we can prove its security (see Section 4). Moreover,
it is also rather efficient, specially when compared to the generic construction in [2]. In particular,
the costs for each participant of the new 3-party protocol are comparable to those of a 2-party key
exchange protocol. The main drawback of the new 3-party protocol is that it relies on stronger
assumptions than those used by the generic construction in addition to being in the random oracle
model.

New Diffie-Hellman assumptions. Despite the simplicity of the protocol, its proof of security
does not follow directly from the standard Diffie-Hellman assumptions and requires the introduction
of some new variants of these standard assumptions. We call them chosen-basis Diffie-Hellman
assumptions due to the adversary’s capability to choose some of the bases used in the definition
of the problem. These assumptions are particularly interesting when considered in the context of
password-based protocols and we do expect to find applications for them other than the ones in
this paper. Despite being apparently stronger than the standard Diffie-Hellman assumptions, no
separations or reductions between these problems are known. 1

Related Work. Password-based authenticated key exchange has been quite extensively studied
in recent years. While the majority of the work deals with different aspects of 2-party key exchange
(e.g., [4, 9, 10, 15, 16, 18, ?]), only a few take into account the 3-party scenario (e.g., [2, 11, 17, 20,

1This is no longer true, since in [25], Szydlo presents two simple and very efficient attacks against the two versions
of the chosen-basis decisional Diffie-Hellman problem being introduced in this paper. As a result, the chosen-basis
decisional Diffie-Hellman assumptions must no longer be considered to be valid assumptions. It is also important
to point out that, in previous versions of this paper, lower bound proofs in the generic model for the chosen-basis
decisional Diffie-Hellman assumptions were also presented. Unfortunately, those proofs contained mistakes (which
were exploited in the attack by Szydlo) and are no longer included in the current version of the paper. More details
will be included in future versions of this paper.

2

Public information: G, g, p, E ,D,H

Client A Server S Client B
pwA ∈ D pwA,pwB ∈ D pwB ∈ D

x
R

← Zp ; X ← gx r
R

← Zp y
R

← Zp ; Y ← gy

X⋆ ← Epw
A
(X) Y ⋆ ← Epw

B
(Y)

A,B,X⋆

−−−−−−→
B,A, Y ⋆

←−−−−−
X ← Dpw

A
(X⋆)

Y ← Dpw
B
(Y ⋆)

X ← Xr

Y ← Y r

Y
⋆
← Epw

A
(Y)

X
⋆
← Epw

B
(X)

S,B, Y
⋆

←−−−−−
S,A,X

⋆

−−−−−→
Y ← Dpw

A
(Y

⋆
) X ← Dpw

B
(X

⋆
)

K ← Y
x

K ← X
y

SK ← H(Transcript ‖K) SK ← H(Transcript ‖K)

Figure 2: An efficient 3-party password-based encrypted key exchange protocol.

24, 26, 27]). Moreover, to the best of our knowledge, with the exception of the generic construction
in [2], none of the password-based schemes in the 3-party scenario enjoys provable security. Other
protocols, such as the Needham and Schroeder protocol for authenticated key exchange [22] and the
symmetric-key-based key distribution scheme of Bellare and Rogaway [6], do consider the 3-party
setting, but not in the password-based scenario. As we mentioned above, the goal of the present
work is to provide a more efficient and provably-secure alternative to the generic protocol of [2].

Contributions. We make two main contributions in this paper.

An efficient construction in Random Oracle model. We present a new construction of a
3-party password-based (implicitly) authenticated key exchange protocol, based on the encrypted
key exchange protocols in [7, 21, 10]. The protocol is quite efficient, requiring only 2 exponentiations
and a few multiplications from each of the parties involved in the protocol. This amounts to less
than half of the computational cost for the server if the latter were to perform two separate key
exchange protocols, as in the generic construction of [2]. The gain in efficiency, however, comes at
the cost of stronger security assumptions. The security proof is in the Random Oracle model and
makes use of new and stronger variations of the Decisional Diffie-Hellman assumption.

New Diffie-Hellman assumptions. The proof of security of our protocol makes use of new
non-standard variations of the standard Diffie-Hellman assumptions. These assumptions are of
independent interest as they deal with interesting relations between the computational and the
decisional versions of the Diffie-Hellman assumption. We call them chosen-basis decisional Diffie-
Hellman assumptions, given the adversary’s capability to choose some of the bases used in the
definition of the problem. Despite being apparently stronger than the standard Diffie-Hellman
assumptions, no separations or reductions between these problems are known 1.

Organization. In Section 2, we recall the formal model of security for 3-party password-based
authenticated key exchange. Next, in Section 3, we recall the definitions of the standard Diffie-
Hellman assumptions and introduce some new variants of these assumptions, on which the security
of our protocol is based. We also present some relations between these assumptions. Section 4 then

3

presents our 3-party password-based key exchange protocol, called 3PAKE, along with its security
claims. Some important remarks are also presented in Section 4.3. We conclude our paper by
presenting detailed security proofs for 3PAKE and for the several lemmas described in the paper,
respectively, in Appendix A and Appendix B.

2 Definitions

We now recall the formal security model for 3-party password-authenticated key exchange protocols
introduced in [2], which in turn builds upon those of Bellare and Rogaway [5, 6] and that of Bellare,
Pointcheval, and Rogaway [4]. In doing so, we omit the definitions for forward security as the latter
is out of the scope of the present paper.

2.1 Communication model

Protocol participants. The distributed system we consider is made up of three disjoint sets:
S, the set of trusted servers; C, the set of honest clients; and E , the set of malicious clients. We
also denote the set of all clients by U . That is, U = C ∪ E . As in [2], we also assume S to contain
only a single trusted server.

Long-lived keys. Each participant U ∈ U holds a password pwU . The server S holds a vector
pwS = 〈pwU 〉U∈U with an entry for each client.

Execution of the protocol. The interaction between an adversary A and the protocol par-
ticipants occurs only via oracle queries, which model the adversary capabilities in a real attack.
While in a concurrent model, several instances may be active at any given time, only one active
user instance is allowed for a given intended partner and password in a non-concurrent model. Let
U i denote the instance i of a participant U and let b be a bit chosen uniformly at random. These
queries are as follows:

• Execute(U i1
1 , Sj , U i2

2): This query models passive attacks in which the attacker eavesdrops on
honest executions among client instances U i1

1 and U i2
2 and the server instance Sj . The output

of this query consists of the messages that were exchanged during the honest execution of the
protocol.

• Reveal(U i): This query models the misuse of session keys by clients. It returns to the
adversary the session key of client instance U i, if the latter is defined.

• SendClient(U i, m): This query models an active attack. It outputs the message that client
instance U i would generate upon receipt of message m.

• SendServer(Sj , m): This query models an active attack against a server. It outputs the
message that server instance Sj would generate upon receipt of message m.

• Test(U i): This query is used to measure the semantic security of the session key of client
instance U i, if the latter is defined. If the key is not defined, it returns ⊥. Otherwise, it
returns either the session key held by client instance U i if b = 0 or a random of key of the
same size if b = 1.

4

2.2 Security definitions

Notation. Following [2], which in turn follows [5, 6], an instance U i is said to be opened if a query
Reveal(U i) has been made by the adversary. We say an instance U i is unopened if it is not opened.
We say an instance U i has accepted if it goes into an accept mode after receiving the last expected
protocol message.

Partnering. The definition of partnering uses the notion of session identifications (sid), which
in our case is the partial transcript of the conversation between the clients and the server before
the acceptance. More specifically, two instances U i

1 and U j
2 are said to be partners if the following

conditions are met: (1) Both U i
1 and U j

2 accept; (2) Both U i
1 and U j

2 share the same sid ; (3) The

partner identification for U i
1 is U j

2 and vice-versa; and (4) No instance other than U i
1 and U j

2 accepts

with a partner identification equal to U i
1 or U j

2 .

Freshness. An instance U i is considered fresh if that it has accepted, both U i and its partner (as
defined by the partner function) are unopened and they are both instances of honest clients.

AKE semantic security. Consider an execution of the key exchange protocol P by the adversary
A, in which the latter is given access to the Execute, SendClient, SendServer, and Test oracles and
asks at most one Test query to a fresh instance of an honest client. Let b′ be his output. Such
an adversary is said to win the experiment defining the semantic security if b′ = b, where b is the
hidden bit used by the Test oracle. Let Succ denote the event in which the adversary wins this
game.

The advantage of A in violating the AKE semantic security of the protocol P and the advantage

function of the protocol P , when passwords are drawn from a dictionary D, are defined, respectively,
as follows:

Advake
P,D(A) = 2 · Pr[Succ]− 1

Advake
P,D(t, R) = max

A
{Advake

P,D(A) } ,

where maximum is over all A with time-complexity at most t and using resources at most R (such
as the number of oracle queries). The definition of time-complexity is the usual one, which includes
the maximum of all execution times in the experiments defining the security plus the code size [1].
The probability rescaling was added to make the advantage of an adversary that simply guesses
the bit b equal to 0.

A 3-party password-based key exchange protocol P is said to be semantically secure if the
advantage Advake

P,D is only negligibly larger than kn/|D|, where n is number of active sessions and
k is a constant. Note that k = 1 is the best one can hope for since an adversary that simply guesses
the password in each of the active sessions has an advantage of n/|D|.

3 Diffie-Hellman assumptions

In this section, we recall the definitions of standard Diffie-Hellman assumptions and introduce some
new variants, which we use in the security proof of our protocol. We also present some relations
between these assumptions.

3.1 Definitions

Henceforth, we assume a finite cyclic group G of prime order p generated by an element g. We also
call the tuple G = (G, g, p) a represented group.

5

Computational Diffie-Hellman assumption: CDH. The CDH assumption in a represented
group G states that given gu and gv, where u, v were drawn at random from Zp, it is hard to compute
guv. This can be defined more precisely by considering an Experiment Expcdh

G
(A), in which we

select two values u and v in Zp, compute U = gu, and V = gv, and then give both U and V to A. Let
Z be the output of A. Then, the Experiment Expcdh

G
(A) outputs 1 if Z = guv and 0 otherwise. We

define the advantage of A in violating the CDH assumption as Advcdh
G (A) = Pr[Expcdh

G
(A) = 1]

and the advantage function of the group, Advcdh
G (t), as the maximum value of Advcdh

G (A) over all
A with time-complexity at most t.

Decisional Diffie-Hellman assumption: DDH. Roughly, the DDH assumption states that
the distributions (gu, gv, guv) and (gu, gv, gw) are computationally indistinguishable when u, v, w
are drawn at random from Zp. As before, we can define the DDH assumption more formally by
defining two experiments, Expddh-real

G
(A) and Expddh-rand

G
(A). In both experiments, we compute

two values U = gu and V = gv as before. But in addition to that, we also provide a third input,
which is guv in Expddh-real

G
(A) and gz for a random z in Expddh-rand

G
(A). The goal of the adversary

is to guess a bit indicating the experiment he thinks he is in. We define the advantage of A in
violating the DDH assumption, Advddh

G (A), as Pr[Expddh-real
G

(A) = 1]−Pr[Expddh-rand
G

(A) = 1].
The advantage function of the group, Advddh

G (t), is then defined in a similar manner.

Chosen-basis Decisional Diffie-Hellman assumptions. The security of our protocol relies on
two new variations of the DDH assumption, which we call Chosen-basis Decisional Diffie-Hellman

assumptions 1 and 2, where 1 and 2 denote the number of values outputted by the adversary at
the end of the first phase. So, let us start by motivating the first of these, the CDDH1 assumption.
A similar argument can be used to justify our second assumption, CDDH2, and hence we only
provide its formal definition.

The CDDH1 assumption considers an adversary running in two stages. In a find stage, the
adversary is given three values U = gu, V = gv, and X = gx, where u, v, and x are random
elements in Zp. The adversary should then select an element Y in G. Using Y , we then consider
two games. In the first game (b = 0), we pick a random bit b0 and set another bit b1 = b0 to the
same value. We then choose two secret random values r0 and r1, we compute two pairs of values
(X0, K0) and (X1, K1) using bits rb0 and rb1 as in Definition 3.1 below and the value Y ′ = Y r0 ,
and we give them to the adversary. In other words, in this game, we compute both pairs using the
same exponent, which may or may not be the same used in the computation of Y ′ from Y , the
value previously chosen by the adversary. The second game (b = 1) is similar to the first one except
that b1 is set to 1 − b0 and hence the pairs (X0, K0) and (X1, K1) are computed using different
exponents. The adversary wins if he guesses correctly the bit b = b0⊕b1.

To understand the subtlety of the assumption, let us consider the different strategies the ad-
versary may take. First, if the adversary chooses Y = gy knowing its discrete log y, then he can
compute CDH(X/U, Y) as well as gr0 . He can also verify that each key Ki is in fact Xy

i . Hence,

the keys Ki do not leak any additional information. Let g0 = X/U and g1 = X/V . Then Xi = g
rbi

i .
Thus, the adversary in this case needs to be able to tell whether the same exponent is used in Xi

knowing only gr0 . We believe this is not easy.

Now let us consider the case in which the adversary chooses Y as a function of the inputs that
he was given at the find stage (hence not knowing y). In this case, the adversary should not be
able to compute the CDH value and hence the values Ki are not of much help either. Consider the
case where he chooses Y = X/U . Then, using Y ′, the adversary can easily know the value of b0 by
checking whether X0 = Y ′. However, that does not seem to be of much help since he now needs to
tell whether X0 = g

rb0

0 was computed using the same exponent as X1 = g
rb1

1 . Knowing b0 does not
seem of any help. We now proceed with the formal definitions.

6

Definition 3.1 [CDDH1] Let G = (G, g, p) be a represented group and let A be an adversary.
Consider the following experiment, defined for b = 0, 1, where U , V , and X are elements in G and
r0 and r1 are elements in Zp.

Experiment Expcddh1
G,b (A, U, V, X, r0, r1)

(Y, s)
R
← A(find, U, V, X)

b0
R
← {0, 1} ; b1 = b ⊕ b0

X0 ← (X/U)rb0 ; K0 ← CDH(X/U, Y)rb0

X1 ← (X/V)rb1 ; K1 ← CDH(X/V, Y)rb1

Y ′ ← Y r0

d← A(guess, s, X0, K0, X1, K1, Y
′)

return d

Now define the advantage of A in violating the chosen-basis decisional Diffie-Hellman 1 assumption
with respect to (U, V, X, r0, r1), the advantage of A, and the advantage function of the group,
respectively, as follows:

Advcddh1
G (A, U, V, X, r0, r1) = 2 · Pr[Expcddh1

G,b (A, U, V, X, r0, r1) = b]− 1

Advcddh1
G (A) = EU,V,X,r0,r1

[
Advcddh1

G (A, U, V, X, r0, r1)
]

Advcddh1
G (t) = max

A
{Advcddh1

G (A) },

where the maximum is over all A with time-complexity at most t. ♦

Definition 3.2 [CDDH2] Let G = (G, g, p) be a represented group and let A be an adversary.
Consider the following experiment, defined for b = 0, 1, where U and V are elements in G and r0

and r1 are elements in Zp.

Experiment Expcddh2
G,b (A, U, V, r0, r1)

(X, Y, s)
R
← A(find, U, V)

b0
R
← {0, 1} ; b1 = b ⊕ b0

X0 ← (X/U)rb0 ; X1 ← (X/V)rb1 ; Y ′ ← Y r0

d← A(guess, s, X0, X1, Y
′)

return d

Now define the advantage of A in violating the chosen-basis decisional Diffie-Hellman 2 assump-
tion with respect to (U, V, r0, r1), the advantage of A, and the advantage function of the group,
respectively, as follows:

Advcddh2
G,A,U,V,r0,r1

= 2 · Pr[Expcddh2
G,b (A, U, V, r0, r1) = b]− 1

Advcddh2
G (A) = EU,V,r0,r1

[
Advcddh2

G (A, U, V, r0, r1)
]

Advcddh2
G (t) = max

A
{Advcddh2

G (A) },

where the maximum is over all A with time-complexity at most t. ♦

Password-based Chosen-basis Decisional Diffie-Hellman assumptions. The actual proof of
security of our protocol uses password-related versions of the chosen-basis decisional Diffie-Hellman
assumptions, which we call password-based chosen-basis decisional Diffie-Hellman assumptions 1
and 2.

7

Definition 3.3 [PCDDH1] Let G = (G, g, p) be a represented group and let A be an adver-
sary. Consider the following experiment, defined for b = 0, 1, where P is a random function from
{1, . . . , n} into G, X is an element in G, k is a password in {1, . . . , n}, and r0 and r1 are elements
in Zp.

Experiment Exp
pcddh1
G,n,b (A,P, X, k, r0, r1)

(Y, s)
R
← AP(find, X)

U ← P(k)
X ′ ← (X/U)rb ; K ← CDH(X/U, Y)rb

Y ′ ← Y r0

d← A(guess, s, X ′, Y ′, K, k)
return d

Now define the advantage of A in violating the password-based chosen-basis decisional Diffie-
Hellman 1 assumption with respect to (P, X, k, r0, r1), the advantage of A, and the advantage

function of the group, respectively, as follows:

Adv
pcddh1
G,n (A,P, X, k, r0, r1) = 2 · Pr[Exp

pcddh1
G,n,b (A,P, X, k, r0, r1) = b]− 1

Adv
pcddh1
G,n (A,P) = EX,k,r0,r1

[
Adv

pcddh1
G,n (A,P, X, k, r0, r1)

]

Adv
pcddh1
G,n (t,P) = max

A
{Adv

pcddh1
G,n (A,P) },

where the maximum is over all A with time-complexity at most t. ♦

Definition 3.4 [PCDDH2] Let G = (G, g, p) be a represented group and let A be an adver-
sary. Consider the following experiment, defined for b = 0, 1, where P is a random function from
{1, . . . , n} into G, k is a password in {1, . . . , n}, and r0 and r1 are elements in Zp.

Experiment Exp
pcddh2
G,n,b (A,P, k, r0, r1)

(X, Y, s)
R
← AP(find)

U ← P(k)
X ′ ← (X/U)rb

Y ′ ← Y r0

d← AP(guess, s, X ′, Y ′, k)
return d

Now define the advantage of A in violating the password-based chosen-basis decisional Diffie-
Hellman 2 assumption with respect to (P, k, r0, r1), the advantage of A, and the advantage function

of the group, respectively, as follows:

Adv
pcddh2
G,n (A,P, k, r0, r1) = 2 · Pr[Exp

pcddh2
G,n,b (A,P, k, r0, r1) = b]− 1

Adv
pcddh2
G,n (A,P) = Ek,r0,r1

[
Adv

pcddh2
G,n (A,P, k, r0, r1)

]

Adv
pcddh2
G,n (t,P) = max

A
{Adv

pcddh2
G,n (A,P) },

where the maximum is over all A with time-complexity at most t. ♦

8

3.2 Relations

Relations between the PCDDH1 and CDDH1 problems. The following two lemmas, whose
proofs are in Appendix B, present relations between the PCDDH1 and CDDH1 problems. The first
result is meaningful for small n (polynomially bounded in the asymptotic framework). The second
one considers larger dictionaries.

Lemma 3.5 Let G = (G, g, p) be a represented group and let n be an integer. If there exists a
distinguisher A such that

Adv
pcddh1
G,n (A) ≥

2

n
+ ǫ,

then there exists a distinguisher B and a subset S of G3×Z2
p of probability greater than ǫ/8n2 such

that for any (U, V, X, r0, r1) ∈ S,

Advcddh1
G,n (B, U, V, X, r0, r1) ≥

ǫ2

8
.

Lemma 3.6 Let G = (G, g, p) be a represented group and let n be an integer. If there exists a
distinguisher A such that

Adv
pcddh1
G,n (A) ≥ ǫ ≥

16

n
,

then there exists a distinguisher B and a subset S of G3 × Z2
p of probability greater than ǫ3/210

such that for any (U, V, X, r0, r1) ∈ S,

Advcddh1
G,n (B, U, V, X, r0, r1) ≥

ǫ2

8
.

Relations between the PCDDH2 and CDDH2 problems. The following two lemmas, whose
proofs can be easily derived from the proofs of the previous two lemmas, present relations between
the PCDDH2 and CDDH2 problems. While the first result is meaningful for small values of n, the
second one considers larger values.

Lemma 3.7 Let G = (G, g, p) be a represented group and let n be an integer. If there exists a
distinguisher A such that

Adv
pcddh2
G,n (A) ≥

2

n
+ ǫ,

then there exists a distinguisher B and a subset S of G2×Z2
p of probability greater than ǫ/8n2 such

that for any (U, V, r0, r1) ∈ S

Advcddh2
G,n (B, U, V, r0, r1) ≥

ǫ2

8
.

Lemma 3.8 Let G = (G, g, p) be a represented group and let n be an integer. If there exists a
distinguisher A such that

Adv
pcddh1
G,n (A) ≥ ǫ ≥

16

n
,

then there exists a distinguisher B and a subset S of G2 × Z2
p of probability greater than ǫ3/210

such that for any (U, V, r0, r1) ∈ S

Advcddh1
G,n (B, U, V, r0, r1) ≥

ǫ2

8
.

9

Distinguishers. In all of the above relations, we show that if there exists an adversary against the
password version of the chosen-basis decisional problem that is capable of doing better than just
guessing the password, then we can construct a distinguisher for underlying chosen-basis decisional
problem, whose success probability is non-negligible over a non-negligible subset of the probability
space. Even though these results provide enough evidence of the hardness of breaking the original
password-based problem, one may want a more concrete result that works for the most of the
probability space. The next lemma, whose proof is also in Appendix B, proves just that. More
precisely, it shows that if a good distinguisher exists for a non-negligible portion of the probability
space, then the same distinguisher is a good distinguisher either for the entire probability space or
for at least half of it.

Lemma 3.9 [Amplification Lemma] Let Eb(x) be an experiment for b ∈ {0, 1} and x ∈ S. Let D
be a distinguisher between two experiments E0(x) and E1(x) with advantage ǫ for x ∈ S′, where
S′ ⊂ S is of measure µ = |S′|/|S|:

Pr
x

[x ∈ S′] = µ; Pr
b,x

[Eb(D, x) = b | x ∈ S′] ≥
1

2
+

ǫ

2
.

Then either D is a good distinguisher on the whole set S:

Pr
b,x

[Eb(D, x) = b] ≥
1

2
+

µǫ

4
,

or D is a good distinguisher for S′ and S\S′, one of which is a subset of measure greater than or
equal to one half:

Pr
x

[x ∈ S′] = µ Pr
b,x

[Eb(D, x) = b | x ∈ S′] ≥
1

2
+

ǫ

2
;

Pr
x

[x ∈ S\S′] = 1− µ Pr
b,x

[Eb(D, x) = b | x ∈ S\S′] ≤
1

2
−

µǫ

4
.

4 Our 3-party password-based protocol

In this section, we introduce our new protocol, a non-concurrent 3-party password-based authenti-
cated key exchange protocol called 3PAKE, whose security proof is in the random oracle model. It
assumes that the clients willing to establish a common secret session key share passwords with a
common server. Even though the proof of security assumes a non-concurrent model, we outline in
Section 4.3 ways in which one can modify our protocol to make it concurrent.

4.1 Description

Our 3-party password-based protocol, 3PAKE, is based the on password-based key exchange pro-
tocols in [7, 10, 21], which in turn are based on the encrypted key exchange of Bellovin and
Merritt [8]. The description of 3PAKE is given in Figure 3, where (G, g, p) is the represented group;
ℓr and ℓk are security parameters; and G1 : U2 × D→G, G2 : U2 × {0, 1}ℓr × D × G→G, and
H : U3 × {0, 1}ℓr ×G4→{0, 1}ℓk are random oracles.2

2In previous versions of this paper as well as in the extended abstract [3], there was a discrepancy between the
scheme description being presented in the main body of the paper and the one being used in the proof of security in
the appendix. More precisely, in the scheme description in the main body of the paper, the identities of the clients
were incorrectly omitted from the input of the hash functions G1 and G2. As shown in [13], such an omission can
lead to an attack when static corruptions of players are allowed in the model. In this new version, this discrepancy
has been fixed.

10

The protocol consists of two rounds of message. First, each client chooses an ephemeral public
key by choosing a random element in Zp and raising g to the that power, encrypts it using the
output of the hash function G1 with his password, his own identity, and the identity of his intended
partner as the input, and sends it to the server. Upon receiving a message from each client, the
server decrypts these messages to recover each client’s ephemeral public key, chooses a random
index r ∈ Zp and a random element R ∈ {0, 1}ℓr , exponentiates each of the ephemeral public keys
to the r-th power, and re-encrypts them using the output of the hash function G2, with R and the
appropriate first-round message and password as input.

In the second round of messages, the server sends to each client the encrypted value of the
randomized ephemeral public key of their partner along with the messages that the server exchanged
with that partner, which are omitted in Figure 3 for clarity. Upon receiving a message from the
server, each client recovers the randomized ephemeral public key of his partner, computes the Diffie-
Hellman key K, and the session key SK via a hash function H using as input K and the transcript
of the conversation among the clients and the server. The session identification is defined to be the
transcript T = (R, X⋆, Y ⋆, X

⋆
, Y

⋆
) of the conversation among the server and clients, along with

their identity strings.

Public information: G, g, p, ℓr, ℓk, G1, G2, H

Client A Server S Client B

pwA ∈ D pwA, pwB ∈ D pwB ∈ D

x
R

← Zp ; X ← gx r
R

← Zp ; R
R

← {0, 1}ℓr y
R

← Zp ; Y ← gy

pwA,1 ← G1(A, B, pwA) pwB,1 ← G1(A, B, pwB)
X⋆ ← X · pwA,1 Y ⋆ ← Y · pwB,1

X⋆

−→
Y ⋆

←−
pwA,1 ← G1(A, B, pwA)
pwB,1 ← G1(A, B, pwB)

X ← X⋆/pwA,1

Y ← Y ⋆/pwB,1

X ← Xr

Y ← Y r

pwA,2 ← G2(A, B, R, pwA, X⋆)
pwB,2 ← G2(A, B, R, pwB , Y ⋆)

Y
⋆
← Y · pwA,2

X
⋆
← X · pwB,2

R, Y
⋆

←−−−
R, X

⋆

−−−→
pwA,2 ← G2(A, B, R, pwA, X⋆) pwB,2 ← G2(A, B, R, pwB , Y ⋆)

Y ← Y
⋆
/pwA,2 ; K ← Y

x
X ← X

⋆
/pwB,2 ; K ← X

y

T ← R, X⋆, Y ⋆, X
⋆
, Y

⋆
T ← R, X⋆, Y ⋆, X

⋆
, Y

⋆

SK ← H(A, B, S, T, K) SK ← H(A, B, S, T, K)

Figure 3: 3PAKE: A provably-secure 3-party password-based authenticated key exchange protocol.

Correctness. In an honest execution of the protocol in Figure 3, we have Y = Y r = gyr and
X = Xr = gxr. Hence, K = Y

x
= X

y
= gxyr.

Efficiency. 3PAKE is quite efficient, not requiring much computational power from the server.
Note that the amount of computation performed by the server in this case is comparable to that of
each user. That is at least half the amount of computation that it would be required if the server
were to perform a separate 2-party password-based encrypted key exchange with each user.

Rationale for the scheme. As pointed out in the introduction, the random value r is used by
the server to hide the password of one user with respect to other users. For this same reason, it is

11

also crucial that the server rejects any value X⋆ or Y ⋆ whose underlying value X or Y is equal to
1. This is omitted in Figure 3 for clarity reasons only.

The reason for using two different masks pwA,1 and pwA,2 in each session, on the other hand, is
a little more intricate and is related to our proof technique. More precisely, in our proof of security,
we embed instances of the CDDH1 and CDDH2 problems in pwA,1 and pwA,2 and we hope to get
an answer for these problems from the list of queries that the adversary makes to the G1 and G2

oracles. Unfortunately, this does not appear to be possible when the values of pwA,1 and pwA,2 are
fixed for all sessions since a powerful adversary could be able to learn the values of pwA,1 and pwA,2

and break the semantic security of the scheme without querying the oracles for G1 and G2.

To see how, let us assume two fixed but random values for pwA,1 and pwA,2 and that we are
dealing with an adversary that knows the password of a legitimate but malicious user. Let us
also assume that the adversary is capable of breaking the computational Diffie-Hellman inversion
(CDHI) problem, in which the goal is to compute gy from g, gx, and gxy. Since in the security
model, the adversary is allowed to intercept and replay messages, he can play the role of the partner
of A and ask a given query (A, gx · pwA,1) twice to the server. From the answers to these queries,
the adversary would be able to compute two sets of values (gx · pwA,1, g

y, gxr, gyr · pwA,2) and

(gx ·pwA,1, g
y, gxr′ , gyr′ ·pwA,2) based on different values r and r′. By dividing the last two terms of

each set, the adversary can compute g(r′−r)x and g(r′−r)y. Moreover, since the adversary plays the
role of the partner of A and knows y, he can also compute gr′−r. Hence, the adversary can learn
the values of g, gr′−r, and g(r′−r)x as well as gx · pwA,1. By solving the CDHI problem, he can also

learn the value of gx from g, gr′−r, and g(r′−r)x. Thus, he can recover pwA,1 without querying the
oracle G1 on various inputs pw . Moreover, since such adversary is capable of computing gr from
g, gx, and grx, and hence capable of computing gry, he can also learn the value of pwA,2 without
querying the oracle G2.

4.2 Security

As the following theorem states, 3PAKE is a secure non-concurrent 3-party password-based key
exchange protocol as long as the CDH, DDH, PCDDH1, and PCDDH2 problems are hard in G.
As shown in Section 3, the latter two problems are hard as long as CDDH1 and CDDH2 are hard
in G. Please note that the proof of security assumes D to be a uniformly distributed dictionary.

Theorem 4.1 Let G = (G, g, p) be a represent group of prime order p and let D be a uniformly
distributed dictionary of size |D|. Let 3PAKE describe the encrypted key exchange protocol associ-
ated with these primitives as defined in Figure 3. Then, for any numbers t, qserver, qstart, qexe, qG1

,
qG2

, and qH ,

Advake
3PAKE,G,D(t, qserver, qstart, qexe, qG1

, qG2
, qH) ≤

2 qstart

|D|
+

q2
G1

+ q2
G2

+ (qexe + qstart)
2

p
+ 4 qexe Advddh

G (t) +

2 · qserver ·max{ 2 ·Adv
pcddh1
G,|D| (qstart · t) , Adv

pcddh2
G,|D| (t) }+

2 q2
G1

q2
G2

q2
H Advcdh

G (t + 3τe) + 2
qG1

+ qG2

p
+ 4

qH

p
,

where qH , qG1
, and qG2

represent the number of queries to the H, G1 and G2 oracles, respectively;
qexe represents the number of queries to the Execute oracle; qstart represents the number of queries

12

to the SendClient oracle used to initiate an client oracle instance; qserver represents the number of
queries to the SendServer oracle; and τe denotes the exponentiation computational time in G.

Proof idea. Here we only present a brief sketch of the proof. We refer the reader to Appendix A
for the full proof of security. The proof for 3PAKE defines a sequence of hybrid experiments, starting
with the real attack and ending in an experiment in which the adversary has no advantage. Each
experiment addresses a different security aspect.

Experiments 1 through 5 show that the adversary gains no information from passive attacks.
They do so by showing that keys generated in these sessions can be safely replaced by random ones
as long as the DDH assumption holds in G.

In Experiment 6, we change the simulation of the random oracle H in all those situations for
which the adversary may ask a valid test query. Such a change implies that the output of the test
query is random and hence the advantage of the adversary in this case is 0. However, the difference
between this experiment and previous still cannot be computed since it depends on the event AskH

that the adversary asks certain queries to the random oracle H. Our goal at this point shifts to
computing the probability of the event AskH.

In experiments 7 through 9, we deal with active attacks against the server. First, in Experiment
7, we show that the output values X

⋆
and Y

⋆
associated with honest users can be computed using

random values and independently of each other as long as the PCDDH1 and PCDDH2 assumptions
hold in G. More precisely, we show how to upper-bound the difference in the probability of the
event AskH using the PCDDH1 and PCDDH2 assumptions. Then, in the next two experiments,
we show that for those cases in which we replaced X

⋆
and Y

⋆
with random values, the password

is no longer used and that the Diffie-Hellman keys K used to compute the session keys for these
users are indistinguishable from random.

Finally, in Experiment 10, we consider active attacks against a user. More precisely, we show
that we can answer all SendClient queries with respect to honest users using random values, with-
out using the password of these users, and without changing the probability of the event AskH.
Moreover, at this moment, we also show how to bound the probability of the event AskH based
on the hardness of the CDH problem in G and on the probability that the adversary successfully
guesses the password of an honest user during an active attack against that user.

4.3 Concluding remarks

First, the main reason for assuming an underlying group G of prime order p is to ensure that
the exponentiation of an element in the group other than the unit yields a generator. For the
same reason, it is crucial for the server to check whether the elements to which it applies the
randomization step are different from the unit element. Both these assumptions are implicitly
made in several parts of the proof and they are essential for the security of our protocol.

Second, the proof of security for 3PAKE assumes a non-concurrent model, in which only one
instance of each player can exist at a time. One can argue that such proof is not worth much as
it rules out most interesting attack scenarios or makes the scheme too restrictive to be used in
practice. To address the first of these concerns, we argue that, even though the non-concurrent
scenario rules out a significant class of attacks, it still allows many interesting ones. For example,
the identity-misbinding attacks in [?, 19] still work in the non-concurrent scenario. To address the
second concern, we point out that several applications found in practice do not require concurrency.
And even when they do require concurrent sessions, it is usually between different pairs of users. A
simple modification is enough to make our protocol work in the latter case, by including the users’
identification in the input of the G1 and G2 hash functions.

13

Third, if full concurrency is required, then one could modify 3PAKE to make it work in this new
scenario by adding two extra flows at the beginning of the protocol going from the server to each
of the two users. Such flows would include nonces in the input of the G1 and G2 hash functions.
Each user would also have to add its own nonce to the input of the G1 and G2 hash functions, and
send it to the server along with X⋆ or Y ⋆. Moreover, the protocol’s efficiency would remain almost
the same, except for the number of rounds, but would still be significantly better than the round
complexity of the generic construction in [2].

Fourth, some of the problems that we found in our proof may be avoidable in the “ideal-cipher
model,” in which the encryption function is considered to be a truly random permutation. The
reason for that is that non-linear properties of the ideal cipher model naturally remove the algebraic
properties existent in the the “one-time pad” version of the encryption function. Nonetheless, we
opted to rely only on a single idealized model, the random oracle model, which is already a strong
assumption as other papers have shown (e.g., [12]).

Acknowledgements

This work has been supported in part by the European Commission through the IST Program
under Contract IST-2002-507932 ECRYPT. The information in this document reflects only the
author’s views, is provided as is and no guarantee or warranty is given that the information is fit
for any particular purpose. The user thereof uses the information at its sole risk and liability

References

[1] Michel Abdalla, Mihir Bellare, and Phillip Rogaway. The oracle Diffie-Hellman assumptions
and an analysis of DHIES. In David Naccache, editor, Topics in Cryptology – CT-RSA 2001,
volume 2020 of Lecture Notes in Computer Science, pages 143–158, San Francisco, CA, USA,
April 8–12, 2001. Springer-Verlag, Berlin, Germany.

[2] Michel Abdalla, Pierre-Alain Fouque, and David Pointcheval. Password-based authenticated
key exchange in the three-party setting. In Serge Vaudenay, editor, PKC 2005: 8th Interna-

tional Workshop on Theory and Practice in Public Key Cryptography, volume 3386 of Lecture

Notes in Computer Science, pages 65–84, Les Diablerets, Switzerland, January 23–26, 2005.
Springer-Verlag, Berlin, Germany.

[3] Michel Abdalla and David Pointcheval. Interactive Diffie-Hellman assumptions with applica-
tions to password-based authentication. In Andrew Patrick and Moti Yung, editors, Finan-

cial Cryptography 2005, volume 3570 of Lecture Notes in Computer Science, pages 341–356,
Roseau, The Commonwealth Of Dominica, February 28 – March 3, 2005. Springer-Verlag,
Berlin, Germany.

[4] Mihir Bellare, David Pointcheval, and Phillip Rogaway. Authenticated key exchange se-
cure against dictionary attacks. In Bart Preneel, editor, Advances in Cryptology – EURO-

CRYPT 2000, volume 1807 of Lecture Notes in Computer Science, pages 139–155, Bruges,
Belgium, May 14–18, 2000. Springer-Verlag, Berlin, Germany.

[5] Mihir Bellare and Phillip Rogaway. Entity authentication and key distribution. In Douglas R.
Stinson, editor, Advances in Cryptology – CRYPTO’93, volume 773 of Lecture Notes in Com-

puter Science, pages 232–249, Santa Barbara, CA, USA, August 22–26, 1994. Springer-Verlag,
Berlin, Germany.

14

[6] Mihir Bellare and Phillip Rogaway. Provably secure session key distribution — the three party
case. In 28th Annual ACM Symposium on Theory of Computing, pages 57–66, Philadephia,
Pennsylvania, USA, May 22–24, 1996. ACM Press.

[7] Mihir Bellare and Phillip Rogaway. The AuthA protocol for password-based authenticated
key exchange. Contributions to IEEE P1363, March 2000.

[8] Steven M. Bellovin and Michael Merritt. Encrypted key exchange: Password-based protocols
secure against dictionary attacks. In 1992 IEEE Symposium on Security and Privacy, pages
72–84, Oakland, California, USA, May 1992. IEEE Computer Society Press.

[9] Victor Boyko, Philip D. MacKenzie, and Sarvar Patel. Provably secure password-authenticated
key exchange using Diffie-Hellman. In Bart Preneel, editor, Advances in Cryptology – EURO-

CRYPT 2000, volume 1807 of Lecture Notes in Computer Science, pages 156–171, Bruges,
Belgium, May 14–18, 2000. Springer-Verlag, Berlin, Germany.

[10] Emmanuel Bresson, Olivier Chevassut, and David Pointcheval. New security results on en-
crypted key exchange. In Feng Bao, Robert Deng, and Jianying Zhou, editors, PKC 2004:

7th International Workshop on Theory and Practice in Public Key Cryptography, volume 2947
of Lecture Notes in Computer Science, pages 145–158, Singapore, March 1–4, 2004. Springer-
Verlag, Berlin, Germany.

[11] Jin Wook Byun, Ik Rae Jeong, Dong Hoon Lee, and Chang-Seop Park. Password-authenticated
key exchange between clients with different passwords. In Robert H. Deng, Sihan Qing, Feng
Bao, and Jianying Zhou, editors, ICICS 02: 4th International Conference on Information and

Communication Security, volume 2513 of Lecture Notes in Computer Science, pages 134–146,
Singapore, December 9–12, 2002. Springer-Verlag, Berlin, Germany.

[12] Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle methodology, revisited. In
30th Annual ACM Symposium on Theory of Computing, pages 209–218, Dallas, Texas, USA,
May 23–26, 1998. ACM Press.

[13] Kim-Kwang Raymond Choo, Colin Boyd, and Yvonne Hitchcock. Errors in computational
complexity proofs for protocols. In Bimal K. Roy, editor, Advances in Cryptology – ASI-

ACRYPT 2005, volume 3788 of Lecture Notes in Computer Science, pages 624–643, Chennai,
India, December 4–8, 2005. Springer-Verlag, Berlin, Germany.

[14] Ronald Cramer and Victor Shoup. A practical public key cryptosystem provably secure against
adaptive chosen ciphertext attack. In Hugo Krawczyk, editor, Advances in Cryptology –

CRYPTO’98, volume 1462 of Lecture Notes in Computer Science, pages 13–25, Santa Bar-
bara, CA, USA, August 23–27, 1998. Springer-Verlag, Berlin, Germany.

[15] Rosario Gennaro and Yehuda Lindell. A framework for password-based authenticated key
exchange. In Eli Biham, editor, Advances in Cryptology – EUROCRYPT 2003, volume 2656 of
Lecture Notes in Computer Science, pages 524–543, Warsaw, Poland, May 4–8, 2003. Springer-
Verlag, Berlin, Germany. http://eprint.iacr.org/2003/032.ps.gz.

[16] Oded Goldreich and Yehuda Lindell. Session-key generation using human passwords only. In
Joe Kilian, editor, Advances in Cryptology – CRYPTO 2001, volume 2139 of Lecture Notes in

Computer Science, pages 408–432, Santa Barbara, CA, USA, August 19–23, 2001. Springer-
Verlag, Berlin, Germany. http://eprint.iacr.org/2000/057.

15

[17] Li Gong. Optimal authentication protocols resistant to password guessing attacks. In
CSFW’95: The 8th IEEE Computer Security Foundation Workshop, pages 24–29, Kenmare,
County Kerry, Ireland, March 13–15, 1995. IEEE Computer Society.

[18] Shai Halevi and Hugo Krawczyk. Public-key cryptography and password protocols. ACM

Transactions on Information and System Security, 2(3):230–268, August 1999.

[19] Hugo Krawczyk. SIGMA: The “SIGn-and-MAc” approach to authenticated Diffie-Hellman and
its use in the IKE protocols. In Dan Boneh, editor, Advances in Cryptology – CRYPTO 2003,
volume 2729 of Lecture Notes in Computer Science, pages 400–425, Santa Barbara, CA, USA,
August 17–21, 2003. Springer-Verlag, Berlin, Germany.

[20] Chun-Li Lin, Hung-Min Sun, and Tzonelih Hwang. Three-party encrypted key exchange:
Attacks and a solution. ACM SIGOPS Operating Systems Review, 34(4):12–20, October 2000.

[21] Philip D. MacKenzie. The PAK suite: Protocols for password-authenticated key exchange.
Contributions to IEEE P1363.2, 2002.

[22] Roger M. Needham and Michael D. Schroeder. Using encryption for authentication in
large networks of computers. Communications of the Association for Computing Machinery,
21(21):993–999, December 1978.

[23] David Pointcheval and Jacques Stern. Security arguments for digital signatures and blind
signatures. Journal of Cryptology, 13(3):361–396, 2000.

[24] Michael Steiner, Gene Tsudik, and Michael Waidner. Refinement and extension of encrypted
key exchange. ACM SIGOPS Operating Systems Review, 29(3):22–30, July 1995.

[25] Michael Szydlo. A note on chosen-basis decisional Diffie-Hellman assumptions. In Giovanni Di
Crescenzo and Avi Rubin, editors, Financial Cryptography 2006, Lecture Notes in Computer
Science, Anguilla, British West Indies, February 27 – March 2, 2006. Springer-Verlag, Berlin,
Germany.

[26] Shuhong Wang, Jie Wang, and Maozhi Xu. Weaknesses of a password-authenticated key
exchange protocol between clients with different passwords. In Markus Jakobsson, Moti Yung,
and Jianying Zhou, editors, ACNS 04: 2nd International Conference on Applied Cryptography

and Network Security, volume 3089 of Lecture Notes in Computer Science, pages 414–425,
Yellow Mountain, China, June 8–11, 2004. Springer-Verlag, Berlin, Germany.

[27] Her-Tyan Yeh, Hung-Min Sun, and Tzonelih Hwang. Efficient three-party authentication and
key agreement protocols resistant to password guessing attacks. Journal of Information Science

and Engineering, 19(6):1059–1070, November 2003.

A Proof of security for 3PAKE

Our proof uses a hybrid argument consisting of a sequence of experiments, the first of which corre-
sponds to the actual attack. For each experiment Expn, we define an event Succn corresponding
to the case in which the adversary correctly guesses the bit b involved in the Test query.

16

H
an

d
G

i
or

ac
le

s – On hash query H(q) (resp. H ′(q)) for which there exists a record (q, r) in
the list ΛH (resp. ΛH), return r. Otherwise, choose an element r ∈ {0, 1}ℓk ,
add the record (q, r) to the list ΛH (resp. ΛH), and return r.

– On hash query Gi(q), for which there exists a record (q, r, ⋆) in the list
ΛGi

, return r. Otherwise, choose an element r ∈ G, add the record (q, r,⊥)
to the list ΛGi

, and return r.

Figure 4: Simulation of random oracles H, H ′, G1, and G2.

S
en

d
C

li
en

t
or

ac
le

– On a query SendClient(U i
1, (U2, start)), assuming U i

1 is in the correct
state, we proceed as follows:

θ
R
← Zp ; Θ← gθ

pw1 ← G1(U1, U2, pwU1
)

Θ⋆ ← Θ · pwU1,1

return (U1, U2, Θ
⋆)

– On a query SendClient(U i
1, (U2, S, RS , Φ

⋆
)), assuming U i

1 is in the correct
state and U2 is the intended partner, we proceed as follows:

pwU1,2 ← G2(U1, U2, RS , pwU1
, Θ⋆)

Φ← Φ
⋆
/pwU1,2

K ← Φ
θ

SKU1
← H(A, B, S, RS , Θ⋆, Φ⋆, Θ

⋆
, Φ

⋆
, K)

Figure 5: Simulation of SendClient oracle query.

Experiment Exp0. This experiment corresponds to the real attack, in the random oracle model.
By definition, we have

Advake
3PAKE,D(A) = 2 · Pr[Succ0]− 1 (1)

Experiment Exp1. In this experiment, we simulate the hash oracles G1, G2 and H as usual by
maintaining hash lists ΛG1

, ΛG2
, and ΛH (see Figure 4). In addition to these hash oracles, we also

simulate a private hash oracle H ′ which we will be using later. The Execute, Reveal, SendClient,
SendServer and Test oracles are also simulated as in the real attack (see Figure 5, Figure 6, and
Figure 7). One can easily see that this experiment is perfectly indistinguishable from the real
experiment. Hence,

Pr[Succ1] = Pr[Succ0] (2)

Experiment Exp2. In this experiment, we simulate all oracles as in Experiment Exp1, except
that we halt all executions in which a collision occurs in the output of the G1 and G2 oracles or in
the transcript ((U1, U2, X

⋆), (U2, U1, Y
⋆), (S, U2, R, Y

⋆
), (S, U1, R, X

⋆
)). According to the birthday

paradox, the probability of collisions in the output of the Gi oracle is at most q2
Gi

/(2p), for i = 1, 2.
Similarly, the probability of collisions in the transcripts is at most (qstart + qexe)

2/(2p), since either
X⋆ or Y ⋆ was simulated and thus chosen uniformly at random. Consequently,

∣∣Pr[Succ2]− Pr[Succ1]
∣∣ ≤

q2
G1

+ q2
G2

+ (qexe + qstart)
2

2p
(3)

17

S
en

d
S
er

v
er

or
ac

le

– On query SendServer(Si, ((U1, U2, Θ
⋆), (U2, U1, Φ

⋆))), proceed as follows:

r
R
← Zp

RS
R
← {0, 1}ℓr

pwU1,1 ← G1(U1, U2, pwU1
) ; pwU2,1 ← G1(U2, U1, pwU2

)

Θ← Θ⋆/pwU1,1 ; Φ← Φ⋆/pwU2,1

Θ← Θr ; Φ← Φr

pwU1,2 ← G2(U1, U2, RS , pwU1
, Θ⋆) ; pwU2,2 ← G2(U2, U1, RS , pwU2

, Φ⋆)

Φ
⋆
← Φ · pwU1,2 ; Θ

⋆
← Θ · pwU2,2

return ((U2, S, RS , Φ
⋆
), (U2, S, RS , Θ

⋆
))

Figure 6: Simulation of SendServer oracle query.

Experiment Exp3. In this experiment, we replace the Diffie-Hellman key K with a random
element in G for all sessions generated via an Execute oracle query. As the following lemma shows,
the difference between the current experiment and the previous one is negligible as long as the
DDH assumption holds.

Lemma A.1
∣∣Pr[Succ3]− Pr[Succ2]

∣∣ ≤ qexe ·Advddh
G (t) .

Proof: The proof of Lemma A.1 uses a sequence of hybrid experiments Hybrid3,j , where j is an
index between 0 and qexe. Let i represent the i-th query to a Execute oracle. We define Experiment
Hybrid3,j as follows. If i ≤ j, then we compute the Diffie-Hellman key K with a random element
in G for all sessions generated as we would in Experiment Exp2. Otherwise, we compute the
Diffie-Hellman key K as gk, where k is a random index in Zp. Note that Experiments Exp2 and
Exp3 are equivalent to Experiments Hybrid3,0 and Hybrid3,qexe

, respectively.

Let Pj be the probability of the event Succ in Experiment Hybrid3,j . Then,

Pr[Succ3] = Pqexe
and Pr[Succ2] = P0 ,

and

∣∣∣Pr[Succ3]− Pr[Succ2]
∣∣∣ =

∣∣∣
qexe∑

j=1

Pj − Pj−1

∣∣∣ =

qexe∑

j=1

∣∣Pj − Pj−1

∣∣ .

The lemma follows easily from the above by showing that
∣∣Pj −Pj−1

∣∣ is at most Advddh
G (t). To do

so, consider the following algorithm Dj against the Diffie-Hellman problem in G. Let X, Y , and W
be the input for Dj . Dj starts running A, answering all queries as in Experiment Hybrid3,j−1, up
until the j-th query to the Execute oracle. To answer to this query, Dj uses the values X and Y
that it received as input in place of Θ and Φ, respectively. It also sets the Diffie-Hellman keys KU1

and KU2
relative to users U1 and U2 to W r. All remaining Execute oracle queries are simulated as

in Experiment Exp2. Finally, Dj outputs the same bit b outputted by A as its guess.

In order to analyze the advantage of Dj , first note that if W = CDH(X, Y), then the probability
of Dj outputting 1 equals the probability of A outputting 1 in Experiment Hybrid3,j−1. If W

18

E
x
ec

u
te

,
R

ev
ea

l
an

d
T
es

t
q
u
er

ie
s.

– On query Reveal(U i), proceed as follows:
if session key SK is defined for instance Ui

then return SK ,
else return ⊥.

– On query Execute(U i
1, U

j
2 , Sk), proceed as follows:

(U1, U2, Θ
⋆)← SendClient(U i

1, (U2, start))

(U2, U1, Φ
⋆)← SendClient(U j

2 , (U1, start))

((U2, S, RS , Φ
⋆
), (U1, S, RS , Θ

⋆
))←

SendServer(Sk, ((U1, U2, Θ
⋆), (U2, U1, Φ

⋆)))

SendClient(U i
1, (U2, S, RS , Φ

⋆
))

SendClient(U j
2 , (U1, S, RS , Θ

⋆
))

return ((U1, U2, Θ
⋆), (U2, U1, Φ

⋆), (U2, S, RS , Φ
⋆
), (U1, S, RS , Θ

⋆
))

– On query Test(U i), proceed as follows:
SK ← Reveal(U i)
if SK = ⊥ then return ⊥
else

b
R
← {0, 1}

if b = 0 then SK ′ ← SK else SK ′
R
← {0, 1}ℓk

return SK ′

Figure 7: Simulation of Execute, Reveal and Test queries.

is a random element in G, then the probability of Dj outputting 1 equals the probability of A
outputting 1 in Experiment Hybrid3,j . Hence,

Advddh
G (Dj) =

∣∣Pj − Pj−1

∣∣ ,

and, given that Dj runs in time at most t,

∣∣Pj − Pj−1

∣∣ , ≤ Advddh
G (t)

Experiment Exp4. In this experiment, we once again change the simulation of queries to the
Execute oracle. This time, we change the way we compute the values Θ and Φ so that a different
value of r is used to compute each of them. That is, we make Θ = Θr and Φ = Φr′ for random
and independent values r and r′ in Zp. As the following lemma shows, the difference between the
current experiment and the previous one is negligible as long as the DDH assumption holds.

Lemma A.2
∣∣Pr[Succ4]− Pr[Succ3]

∣∣ ≤ qexe ·Advddh
G (t) .

Proof: The proof of Lemma A.2 is similar to that of Lemma A.1, so we only point out the differ-
ences here. First, the main difference between the two is that we now rely on the fact the adversary
should not be able to distinguish the case where the same random index r is used from the case
where different random indices r and r′ are used. As shown in [14], this problem is equivalent to
the DDH problem. The other difference is that the DDH problem is now embedded in the values
of Φ and Θ, and not in the Diffie-Hellman key K as in the proof of Lemma A.1.

19

Experiment Exp5. In this experiment, we change for the last time the simulation of queries
to the SendClient and SendServer oracles whenever we have a passive attack executed either via
Execute queries so that the output of the SendServer oracle queries are independent of its input

and of the passwords of honest users. More specifically, we now compute Θ
⋆

and Φ
⋆

as gθ
⋆

and

gφ
⋆

, respectively, where θ
⋆

and φ
⋆

are random indices in Zp.

In order to understand the differences between the current experiment and the previous one,
please note that in the previous experiment, the values Θ

⋆
and Φ

⋆
were both independent from the

session key and uniformly distributed in G, as both values were computed using a different random
index r in Zp. Hence, no information on the password is leaked through these values. As a result,
the current experiment and the previous one are perfectly indistinguishable.

Pr[Succ5] = Pr[Succ4] . (4)

Experiment Exp6. In this experiment, we change the way we compute the session keys of certain
sessions, by using our private random oracle H ′ instead of H. The goal is to make the session key
of those sessions not only independent of the password but also independent of the Diffie-Hellman
secret K. This is achieved by changing the simulation of the SendClient oracle so that the session
key SK is computed via H ′(U1, U2, S, R, Θ⋆, Φ⋆, Θ

⋆
, Φ

⋆
). That is, the Diffie-Hellman key K is no

longer used.

The sessions in which we modify the simulation of a SendClient oracle are all of those for which
one of the following conditions is met.

• Both U1 and U2 are honest players and U2 is the intended partner of instance U i
1, and the input

query to the SendClient oracle for instance U i
1 does not match the output of any SendServer

oracle query. In other words, the input query was generated by the adversary;

• Both U1 and U2 are honest players, U2 is the intended partner of instance U i
1, and the input

query to SendClient oracle for instance U i
1 matches the output a SendServer oracle Sk, the

input to which contains one part matching the output of SendClient query (U i
1, (U2, start))

and the other part not matching the output of any SendClient query.

Please note that we can test the occurrence of any of these events by looking up the list of inputs
and outputs of each simulated oracle instance.

Let AskHn denote the event in which the adversary asks a query (U1, U2, S, R, X⋆, Y ⋆, X
⋆
,

Y
⋆
, KU1

) or (U1, U2, S, R, X⋆, Y ⋆, X
⋆
, Y

⋆
, KU2

) to the random oracle H for some execution tran-
script ((U1, U2, X

⋆), (U2, U1, Y
⋆), (S, U2, R, Y

⋆
), (S, U1, R, X

⋆
)) when in Experiment Expn. That is,

AskHn denotes the event in Experiment Expn that either the oracle query (U1, U2, S, R, X⋆, Y ⋆,
X

⋆
, Y

⋆
, CDH(X⋆/pwU1,1, Y

⋆
/pwU1,2)) was asked to H and X⋆ was simulated or the oracle query

(U1, U2, S, R, X⋆, Y ⋆, X
⋆
, Y

⋆
, CDH(Y ⋆/pwU2,1, X

⋆
/pwU2,2)) was asked to H and Y ⋆ was simulated.

There are some important observations to be made regarding the differences between the current
experiment and the previous one. First, experiments Exp5 and Exp6 can only be told apart if
event AskH5 or event AskH6 occurs since this is the only scenario in which the answers to the
hash query H may differ. Therefore,

Pr
[
Succ6 | AskH6

]
= Pr

[
Succ5 | AskH5

]
. (5)

20

Second, the probability of the events AskH5 and AskH6 are the same as the adversary has
equal chance in both experiments of asking a crucial query. Thus,

Pr[AskH5] = Pr[AskH6], (6)

which, combined with Equation 5, leads to

∣∣Pr[Succ6]− Pr[Succ5]
∣∣ ≤ Pr[AskH6]. (7)

Third, and lastly, the replacement of the random oracle H by the private random oracle H ′ in
the current experiment together with the fact that the session key of passive attacks were already
made independent of the Diffie-Hellman key in previous experiments makes it impossible for the
adversary to tell apart the real session key from a random one in any valid Test query. This is so
because a random value is returned in all scenarios for which a valid Test query can be made and
because we removed transcripts collisions. Note that a transcript collision could have leaked the
session key to the adversary via a reveal query to the other session in which the transcript appears.
Therefore, the success probability of the adversary is exactly 1/2 in the current experiment.

Pr[Succ6] =
1

2
(8)

As the adversary can no longer tell apart real session keys from random ones, we will not
consider the success probability of the adversary in the remaining experiments. Instead, we will
concentrate on the event AskH whose probability we still need to evaluate in order to determine
an upper bound on the adversary’s success probability in the real attack (Experiment Exp0).

Experiment Exp7. The goal of this experiment is to bound the advantage of the adversary in
those cases where the latter is performing an active attack against the server. Such attacks occur
when at least one or both parts of the input of a SendServer oracle are generated by the adversary,
thus not matching the output of a previous SendClient oracle query. In this scenario, an active
adversary may try to use the server to learn information about the password of an honest user
and later use it to impersonate that user. To achieve our goal, we change the simulation of the
SendServer oracle so that any output value corresponding to an honest user is computed using a
random value and not the input provided by the SendServer oracle input.

Let (Sk, (U1, U2, Θ
⋆), (U2, U1, Φ

⋆)) be a SendServer oracle query to server instance Sk. If either
(U1, U2, Θ

⋆) or (U2, U1, Φ
⋆) or both match the output of previous SendClient queries, then we

change the simulation of the SendServer oracle query as follows. If U1 is an honest user, then we
compute Φ

⋆
as gφ · pwU1,2, where φ is a random index in Zp. Otherwise, we compute Φ

⋆
as we

would in Experiment Exp6. Likewise, If U2 is an honest user, then we compute Θ
⋆

as gθ · pwU2,2,

where θ is a random index in Zp. Otherwise, we compute Θ
⋆

as we would in Experiment Exp6.
As the following lemma shows, the adversary cannot do much better than simply guessing the

password.

Lemma A.3
∣∣AskH7 −AskH6

∣∣ ≤ qserver ·max{ 2 ·Adv
pcddh1
G,|D| (qstart · t) , Adv

pcddh2
G,|D| (t) } .

Proof: The proof of this lemma is based on a sequence of qserver +1 hybrid experiments Hybrid7,j ,
where j is an index between 0 and qserver. Let i represent the i-th query to a SendServer oracle
for which both parts of the input do not match the output of any SendClient oracle query, and
let (Sk, ((U1, U2, Θ

⋆), (U2, U1, Φ
⋆))) be this query. We define Experiment Hybrid7,j as follows. If

i ≤ j, then we check whether U1 and U2 are honest users. If U1 is an honest user, then we compute

21

Φ
⋆

as gφ · pwU1,2, where φ is a random index in Zp. Otherwise, we compute Φ
⋆

as we would in

Experiment Exp6. If U2 is an honest user, then we compute Θ
⋆

as gθ · pwU1,2, where θ is a random

index in Zp. Otherwise, we compute Θ
⋆

as we would in Experiment Exp6.

From the definition of the hybrid experiments, one can see that no changes are made to the sim-
ulation when j = 0 and, thus, experiments Hybrid7,0 and Exp6 are equivalent. Moreover, since
there are at most qserver such queries, Experiment Hybrid7,qserver

corresponds to the case where we
modify the simulation of all SendServer oracle queries with inputs coming from the adversary and,
thus, experiments Hybrid7,j and Exp7 are also equivalent. Let us define AskH7,j to be the event
AskH in Experiment Hybrid7,j . Then,

AskH6 = AskH7,0 and AskH6 = AskH7,qserver
, (9)

and
∣∣Pr[AskH7]− Pr[AskH6]

∣∣ ≤
qserver∑

j=1

∣∣Pr[AskH7,j]− Pr[AskH7,j−1]
∣∣ . (10)

We now claim that

∣∣Pr[AskH7,j]− Pr[AskH7,j−1]
∣∣ ≤ max{ 2 ·Adv

pcddh1
G,|D| (qstart · t) , Adv

pcddh2
G,|D| (t) } . (11)

Lemma A.3 follows easily from above claim by substituting Equation 11 in Equation 10.

Let us now prove the claim in Equation 11. Let D be a distinguisher for the event AskH in both
experiments Hybrid7,j−1 and Hybrid7,j . Using D, we will build two distinguishers M1 and M2

for the PCDDH1 and PCDDH2 problems, respectively. M1 will be used whenever only one part of
the input for the j-th SendServer oracle query comes from the adversary (Case1). M2 will be used
whenever both parts of the input for the j-th SendServer oracle query comes from the adversary
(Case2). There is no need for us to guess which case we are in as this information is available from
the simulation. Case1 and Case2 are mutually exclusive.

We now define our distinguisher M1 for the PCDDH1 problem. Let X be the input to M1’s find

stage. M1 starts its find stage by choosing a random index k between 1 and qstart. Next, M1 starts
running D, the distinguisher for the event AskH in experiments Exp7 and Exp6. M1 simulates all
oracles as it normally would in Experiment Exp6, with the exception of the SendServer oracle and
SendClient oracles. The simulation of the SendClient oracle is modified as follows. All queries to this
oracle are answered as in Experiment Exp6, except for the k-th query of the form (U1, U2, start).
To answer this query, we use the input X that we received and output (U1, U2, X). The simulation
of the SendServer oracle is as follows. Let i represent the i-th query to the SendServer oracle and
let (Sk, ((U1, U2, Θ

⋆), (U2, U1, Φ
⋆))) be this query. If i < j, then we check whether U1 and U2 are

honest users. If U1 is an honest user, then we compute Φ
⋆

as gφ ·pwU1,2, where φ is a random index

in Zp. Otherwise, we compute Φ
⋆

as we would in Experiment Exp6. If U2 is an honest user, then

we compute Θ
⋆

as gθ · pwU1,2, where θ is a random index in Zp. Otherwise, we compute Θ
⋆

as we
would in Experiment Exp6. If i = j, then let us assume wlog that (U1, U2, Θ

⋆) is the input that
comes from the simulated oracle and that (U2, U1, Φ

⋆) is the input that comes from the adversary.
At this point, M1 should check whether the tuple (U1, U2, Θ

⋆) matches the output of the k-th start
query. If there is no match, then M1 should restart D using fresh coins up to qstart times. If the
tuple (U1, U2, Θ

⋆) matches the output of the k-th start query, then M1 returns (s, Y) as the output
of its find stage, where s contains all the necessary information that M1 may need to continue
running the simulation of D in the guess stage.

22

Let (s, X ′, Y ′, K, k) be the input to the guess stage of M1. We then choose a random value for R in
{0, 1}ℓr and return ((R, S, U2, Y

′), (R, S, U1, X
′)) as the the answer to the j-th SendServer oracle

query. The rest of the simulation of all oracles is done as in Experiment Exp6. The only difference
is that, from now on, we define K as the Diffie-Hellman key associated with SendClient oracle.
Hence, we can check for the AskH event associated with this session using the Diffie-Hellman key
K and the other values that we used in the simulation of oracle U1. If our guess for the k-th start
query is correct, then one can see that the only difference between experiments Hybrid7,j−1 and
Hybrid7,j stems from the hidden bit associated with the PCDDH1 problem. Hence, we can use
the event AskH to guess the hidden bit used in the computation of X ′ and K given to us at the
input of the guess stage. If AskH occurs, then we output 0 else 1. Since we run this experiment up
to qstart times, the probability that one of our guess for the index k is right is at least 1−1/e ≥ 1/2,
where e is the base of the natural logarithm. Hence, given that we are in the correct scenario,
we know that probability of success of M1 is at least the difference between the probability of the
event AskH in experiments Hybrid7,j−1 and Hybrid7,j . Using the fact that the running time of
M1 is at most qstart · t, we have

∣∣Pr [AskH7,j | Case1]− Pr [AskH7,j−1 | Case1]
∣∣ ≤ 2 ·Adv

pcddh1
G,|D| (M1)

≤ 2 ·Adv
pcddh1
G,|D| (qstart · t) .

We now define the distinguisher M2 for the PCDDH2 problem. M2 starts its find stage by running
D, the distinguisher for the event AskH in experiments Exp7 and Exp6. M2 simulates all oracles as
it normally would in experiment Exp6, with the exception of the SendServer oracle. The simulation
of the SendServer oracle is as follows. Let i represent the i-th query to the SendServer oracle and
let (Sk, ((U1, U2, Θ

⋆), (U2, U1, Φ
⋆))) be this query. We only consider cases where at least one of

the users U1 or U2 is honest, since the bound in the claim follows trivially otherwise (experiments
Hybrid7,j and Hybrid7,j are perfectly indistinguishable when both U1 and U2 are dishonest in
the j-th query). If i < j, then we check whether U1 and U2 are honest users. If U1 is an honest

user, then we compute Φ
⋆

as gφ · pwU1,2, where φ is a random index in Zp. Otherwise, we compute

Φ
⋆

as we would in Experiment Exp6. If U2 is an honest user, then we compute Θ
⋆

as gθ · pwU1,2,

where θ is a random index in Zp. Otherwise, we compute Θ
⋆

as we would in Experiment Exp6. If
i = j, then let us assume wlog that U1 represents a honest player and we let the hidden k used in
the definition of the PCDDH2 problem be associated with the password of U1. Using the password
for the user U2 and the input Φ⋆, we then choose a random value for R in {0, 1}ℓr and compute
the masks pwU2,1 and pwU2,2 and the value Φ. Next, we return (s,Θ⋆, Φ) as the output of our find

stage, where s contains all the necessary information that we may need to continue running the
simulation of D in the guess stage.

Let (s, X ′, Y ′, k) be the input to the guess stage of M2. We set Θ
⋆

= X ′ · pwU2,2 and Φ
⋆

= Y ′

and return ((R, S, U2, Φ
⋆
), (R, S, U1, Θ

⋆
)) as the the answer to the j-th SendServer oracle query.

We also query the oracle P on input k and use U = P(k) as the mask pwU1,1 for user U1 when
computing answers to future queries to SendClient and SendServer oracles with respect to U1.
pwU1,1 is also used to check for event AskH with respect to oracles associated with user U1. The
rest of the simulation proceeds as in Experiment Exp6. As one can see, the only difference between
experiments Hybrid7,j−1 and Hybrid7,j stems from the hidden bit associated with the PCDDH2
problem. Hence, we can use the event AskH to guess the hidden bit used in the computation of
X ′ and Y ′ given to us at the input of the guess stage. If AskH occurs, then we output 0 else 1.
Given that we are in the correct scenario, we know that probability of success of M2 is at least the
difference between the probability of the event AskH in experiments Hybrid7,j−1 and Hybrid7,j .

23

Using the fact that the running time of M2 is at most t, we have

∣∣Pr [AskH7,j | Case2]− Pr [AskH7,j−1 | Case2]
∣∣ ≤ Adv

pcddh2
G,|D| (M2) ≤ Adv

pcddh2
G,|D| (t) . (12)

Since Case1 and Case2 are mutually exclusive,

Pr[Case1] + Pr[Case2] = 1 ,

and

∣∣Pr[AskH7,j]− Pr[AskH7,j−1]
∣∣

≤
∣∣Pr [AskH7,j | Case1] · Pr[Case1] + Pr [AskH7,j | Case2] · Pr[Case2]−

Pr [AskH7,j−1 | Case1] · Pr[Case1]− Pr [AskH7,j−1 | Case2] · Pr[Case2]
∣∣

≤ δAdv
pcddh1
G,|D| (qstart · t) · Pr[Case1] + Adv

pcddh2
G,|D| (t) · Pr[Case2]

≤ max{ δAdv
pcddh1
G,|D| (qstart · t) , Adv

pcddh2
G,|D| (t) } · Pr[Case1] +

max{ δAdv
pcddh1
G,|D| (qstart · t) , Adv

pcddh2
G,|D| (t) } · Pr[Case2]

≤ max{ δAdv
pcddh1
G,|D| (qstart · t) , Adv

pcddh2
G,|D| (t) } .

Remark A.4 This is the only part of the proof that does not work in the concurrent model. The
reason for that is that in order to be able convert an adversary against our protocol into an adversary
against the PCDDH1 problem, we must be able to detect the event AskH. However, when multiple
concurrent sessions are allowed, we may not be able to detect the event AskH associated with each
of the concurrent sessions. More specifically, consider the values k and U = P(k) used in the
experiment defining the PCDDH1 problem. In our proof, we associate these values to pwU1

and
pwU1,1, where U1 is the user whose password the adversary is trying to obtain. Hence, in order to
be able to detect the AskH event associated with sessions of user U1, we must be able to compute
CDH(X⋆/pwU1,1, Y

⋆
). In the case where we have only one session associated with U1, we can do

so using the key K given to us in the input of the guess stage. However, when multiple concurrent
sessions are allowed, we are only able to do so for sessions which are started after we learn the
value U = pwU1,1 (by making X⋆ = gx · pwU1,1). Unfortunately, this is not possible for sessions
that started prior to the moment in which we learn k and U , since for those sessions, we need to
be able to compute CDH(X⋆/pwU1,1, Y

⋆
) only knowing the discrete logarithm of X⋆.

Experiment Exp8. In this experiment, we modify the simulation of the SendServer oracle in
cases where only one part of its input comes from a previous simulated SendClient oracle so that
we no longer use the password when computing the response to be sent to the simulated oracle. in
fact, we want to make this answer independent of the input value provided in the query.

Let (Sk, (U1, U2, Θ
⋆), (U2, U1, Φ

⋆)) be a SendServer oracle query to server instance Sk so that
either (U1, U2, Θ

⋆) or (U2, U1, Φ
⋆) matches the output of previous SendClient queries. Let us assume

wlog that (U1, U2, Θ
⋆) is the part of the input that came from a simulated oracle for U1 (the other

case is equivalent) and that the latter is an honest user. Then, we compute Φ
⋆

as gφ
⋆

, where φ
⋆

is a random index in Zp. In order to maintain the consistency of the simulation, we also change

the computation of the Diffie-Hellman key KU1
, setting it to Xφ

⋆

, where X = pwU2,1. No change

is made to the computation of Θ
⋆
.

24

We claim that the current experiment and the previous one are indistinguishable. To see why
this is the case, first note that, in the previous experiment, the output being sent to the simulated
oracle was already computed using a different random value r than the one used in the part of the
output. This is still the case in this experiment. Second, also note that the relationship between
the output being sent to the simulated oracle and its Diffie-Hellman key used to detect the AskH

event is still preserved in the current experiment. Finally, no change was made to the part of the
output that do not correspond to an oracle. Therefore,

Pr[AskH8] = Pr[AskH7]. (13)

Experiment Exp9. In this experiment, we modify the simulation of the SendServer oracle once
again in cases where only one part of its input comes from a previous simulated SendClient oracle
so that the part of the output being sent to the non-simulated but honest party no longer uses the
password in its computation.

Let (Sk, (U1, U2, Θ
⋆), (U2, U1, Φ

⋆)) be a SendServer oracle query to server instance Sk so that
either (U1, U2, Θ

⋆) or (U2, U1, Φ
⋆) matches the output of previous SendClient queries. Let us assume

wlog that (U1, U2, Θ
⋆) is the part of the input that came from a simulated oracle for U1 (the other

case is equivalent) and that both U1 and U2 are honest players. Then, we compute Θ
⋆

as gθ
⋆

, where
φ

⋆
is a random index in Zp.
We claim that the current experiment and the previous one are indistinguishable. To see why

this is the case, just notice that, in the previous experiment, this output was already uniformly
distributed in G and already independent from the output being sent to the simulated oracle and
from the Diffie-Hellman keys, and hence, independent of the password. It follows that

Pr[AskH9] = Pr[AskH8] . (14)

Experiment Exp10. In this experiment, we change the simulation of SendClient oracles so that
we no longer use the password when answering to a (U i

1, (U2, start)) query, where U1 and U2 are
honest users. Such change does not change any of the probabilities associated with the previous
experiments since the passwords associated with these users were no longer being used in the
simulation of the SendServer oracle or in the computation of the session key. Thus, we have

Pr[AskH10] = Pr[AskH9] . (15)

Moreover, since the passwords of honest users are no longer used anywhere else, we can post-
pone choosing them until the very end of the simulation and only then use them to evaluate the
probability of the event AskH10. This is given by the following lemma.

Lemma A.5 Pr[AskH10] ≤ qstart/|D|+ q2
G1
· q2

G2
· q2

H ·Advcdh
G (t + 3τe) +

qG1
+qG2

p + 2 qH

p .

Proof: Please recall that AskHn denotes the event that, for some transcript ((U1, U2, X
⋆), (U2, U1,

Y ⋆), (S, U2, R, Y
⋆
), (S, U1, R, X

⋆
)) in Experiment Expn, either one of the crucial oracle queries (U1,

U2, S, R, X⋆, Y ⋆, X
⋆
, Y

⋆
, CDH(X⋆/pwU1,1, Y

⋆
/pwU1,2)) or (U1, U2, S, R, X⋆, Y ⋆, X

⋆
, Y

⋆
, CDH(Y ⋆/

pwU2,1, X
⋆
/pwU2,2)) lies in the list ΛH in one of following two cases:

AskH110: U1 and U2 are honest players, U2 is the intended partner of instance U i
1, and the input

query to the SendClient oracle for instance U i
1 matches the output a SendServer oracle Sk,

whose input only partially comes from a simulated oracle.

25

AskH210: U1 and U2 are honest players, U2 is the intended partner of instance U i
1, and the input

query (S, U2, R, X) to the SendClient oracle with respect to instance U i
1 was generated by the

adversary.

Before proceeding with the probability analyses of the events AskH110 and AskH210, let us make
two observations.

First, notice that we can disregard those cases for which the queries (U1, U2, pwU1
, R, X⋆) and

(U2, U1, pwU2
, R, Y

⋆
) were not asked to the G2 oracle since the probability of the event AskH is

negligible in this case as stated by the following claim.

Claim A.6 Let (X⋆, Y
⋆
, X

⋆
, Y ⋆) ∈ G4, R ∈ {0, 1}ℓr , S, U1, and U2 be a set of values involved

in the communication either with an instance i of a participant U1 in its role as an initiator or
an instance j of a participant U1 in its role as a responder, and let pwU1

and pwU2
represent the

passwords associated with U1 and U2. Let AskG2 denote the event in which either the query (U1,
U2, pwU1,2, R, X⋆) was asked to G2 when communicating with U i

1 or the query (U2, U1, pwU2,2, R,

Y ⋆) was asked to G2 when communicating with U j
2 . Then,

Pr[AskH10 ∧AskG2] ≤ 2
qH

p
,

Proof: The proof is straight-forward. Let us consider the case where the communication is with
instance U i

1 (CaseL). The other case is equivalent (CaseR). Let KU1
= CDH(X⋆/pwU1,1, Y

⋆
/

pwU1,2) be the key associated with values pwU1,1 = G1(U1, U2, pwU1
) and pwU1,2 = G2(U1, U2, pwU1

,
R, X⋆). Since the query (U1, U2, pwU1

, R, X⋆) has not been asked to the G2 oracle, both pwU1,2 and
pwU2,2 can take any value in G. Thus, the possible values for KU1

are also uniformly distributed in
G and the probability that a H query contains the value KU1

in it is exactly 1/p. Therefore,

Pr[AskH10 ∧AskG2 ∧CaseL] ≤ Pr
[
AskH10 ∧CaseL | AskG2

]

≤

qH∑

i=1

Pr
[
K ′i = KU1

| AskG2
]

≤

qH∑

i=1

1

p
=

qH

p
.

Similarly, we have

Pr[AskH10 ∧AskG2 ∧CaseR] ≤
qH

p
.

Since AskH10 is only defined for one of these cases, it follows that

Pr[AskH10 ∧AskG2] ≤ 2
qH

p
.

Second, as the following two claims show, we do not need to consider cases in which there are two
pairs of elements (pw1,1, pw1,2) and (pw2,1, pw2,2) outputted by the G1 and G2 oracles such that:

26

• the queries (U1, U2, S, R, X⋆, Y ⋆, X
⋆
, Y

⋆
, Kj = CDH(X⋆/pwj,1, Y

⋆
/pwj,2)), for j = 1, 2, were

asked of H and (X⋆, Y
⋆
, X

⋆
, Y ⋆) ∈ G4, R ∈ {0, 1}ℓr , S, U1, and U2 be a set of values involved

in the communication with an instance i of a participant U1 in its role as an initiator; or

• the queries (U1, U2, S, R, X⋆, Y ⋆, X
⋆
, Y

⋆
, Kj = CDH(X⋆/pwj,1, Y

⋆
/pwj,2)), for j = 1, 2, were

asked of H and (X⋆, Y
⋆
, X

⋆
, Y ⋆) ∈ G4, R ∈ {0, 1}ℓr , S, U1, and U2 be a set of values involved

in the communication with an instance i of a participant U2 in its role as a responder.

Claim A.7 Let (X⋆, Y
⋆
, X

⋆
, Y ⋆) ∈ G4, R ∈ {0, 1}ℓr , S, U1, and U2 be a set of values involved in

the communication with an instance i of a participant U1 in its role as an initiator, where both
U1 and U2 are honest and the latter is the intended partner. Let Coll denote the event in which
there exist two different pairs of elements (pw1,1, pw1,2) and (pw2,1, pw2,2) outputted by the G1 and

G2 oracles such that the queries (U1, U2, S, R, X⋆, Y ⋆, X
⋆
, Y

⋆
, Kj = CDH(X⋆/pwj,1, Y

⋆
/pwj,2)), for

j = 1, 2, were asked of H. Then,

Pr[Coll] ≤ q2
G1
· q2

G2
· q2

G ·Advcdh
G (t + 3τe) +

qG1
+ qG2

p
,

qG1
, qG2

, and qH are, respectively, the number of queries asked to the G1, G2, and H oracles.

Proof: The proof parallels the proof of Lemma 5 in [10]. Our goal is to use the event Coll in the
simulation of A to help us solve the CDH problem in G. Let Q1 and Q2 be the inputs to CDH
problem. Let us assume that Q1 and Q2 are different from 1 (this case is trivial).

We start running A simulating its oracles as in the current experiment except for the G1 and G2

oracles. These last two oracles are simulated as follows. In order to answer to a query (U1, U2, pw)
to the G1 oracle, we first pick an element k1 ∈ Z⋆

p uniformly at random and set pw1, the output

of G1, to Qk1

1 . Similarly, a G2 oracle query (U1, U2, RS , pw , X⋆) is answered by first picking an

element k2 ∈ Z⋆
p uniformly at random and setting pw2, the output of G2, to Qki

2 .

One can see that such change in the simulation is indistinguishable from Experiment Exp9, except
when one of the outputs of the G1 or G2 oracles in the original experiment is 1. This event occurs
with probability at most

qG1
+qG2

p . Everything else remains the same.

Next, we notice that (X⋆, Y
⋆
, X

⋆
, Y ⋆) being involved in the communication with an instance i of a

participant U1 in its role as an initiator implies that we simulated that instance. Hence, we know x⋆

such that X⋆ = gx⋆
. As (pw1,1, pw1,2) and (pw2,1, pw2,2) were outputted by the G1 and G2 oracles,

we also know k1,1, k1,2, k2,1, k2,2 in Zp such that pwj,1 = Q
kj,1

1 and pwj,2 = Q
kj,1

2 for j = 1, 2. Then,
in case K1 and K2 lies in ΛH , we have

Kj = CDH(X⋆/pwj,1, Y
⋆
/pwj,2)

= CDH(X⋆ ·Q
kj,1

1 , Y
⋆
·Q

kj,2

2)

= CDH(X⋆, Y
⋆
) · CDH(X⋆, Q

kj,2

2) · CDH(Q
kj,1

1 , Y
⋆
) · CDH(Q

kj,1

1 , Q
kj,2

2)

= CDH(X⋆, Y
⋆
) · CDH(X⋆, Q2)

kj,2 · CDH(Q1, Y
⋆
)kj,1 · CDH(Q1, Q2)

kj,1kj,2

= Y
⋆x⋆

·Q
x⋆kj,2

2 · CDH(Q1, Y
⋆
)kj,1 · CDH(Q1, Q2)

kj,1kj,2 .

27

Let Zj = Kj · Y
⋆−x⋆

·Q
−x⋆kj,2

2 . It follows that

Z
k2,1

1 /Z
k1,1

2 = CDH(Q1, Q2)
k1,1k2,1(k1,2−k2,2),

and

CDH(Q1, Q2) =
(
Z

k2,1

1 /Z
k1,1

2

)u
,

where u is the inverse of k1,1k2,1(k1,2 − k2,2) in Zp, guaranteed to exist because pw2,2 6= pw1,2. The
claim follows easily by guessing the two H queries, the two G1 queries, and the two G2 queries.

Claim A.8 Let (X⋆, Y
⋆
, X

⋆
, Y ⋆) ∈ G4, R ∈ {0, 1}ℓr , S, U1, and U2 be a set of values involved in

the communication with an instance i of a participant U2 in its role as a responder, where both
U1 and U2 are honest players and U1 is the intended partner of U2. Let Coll denote the event in
which there exist two different pairs of elements (pw1,1, pw1,2) and (pw2,1, pw2,2) outputted by the

G1 and G2 oracles such that the queries (U1, U2, S, R, X⋆, Y ⋆, X
⋆
, Y

⋆
, Kj = CDH(Y ⋆/pwj,1, X

⋆
/

pwj,2)), for j = 1, 2, were asked of H. Then,

Pr[Coll] ≤ q2
G1
· q2

G2
· q2

G ·Advcdh
G (t + 3τe) +

qG1
+ qG2

p
,

qG1
, qG2

, and qH are, respectively, the number of queries asked to the G1, G2, and H oracles.

Proof: The proof of this claim is similar to that of Claim A.7 and, hence, skipped here.

Let us now consider the event AskH110, in which both U1 and U2 are honest players, U2 is the
intended partner of instance U i

1, and the input query to the SendClient oracle for instance U i
1

matches the output a SendServer oracle Sk, whose input only partially comes from a simulated
oracle. This corresponds to the case where on one side of the SendServer oracle we have an oracle
instance and on the other side we have the adversary, playing the role of a honest user.

Let X⋆, Y
⋆
, X

⋆
, Y ⋆, R, S, U1, and U2 be a set of values involved in the communication with an

instance U i
1 in its role as an initiator, where U2 is the intended partner (the symmetric case, in

which the communication is with the responder, is similar). Note that since online guessing attacks
are always possible in this scenario, there is a non-negligible probability that event AskH110 occurs.

If the event Coll, defined in Claim A.7 and in Claim A.8, does not happen, then for each (X⋆, Y
⋆
,

X
⋆
, Y ⋆, R, S, U1, U2 set of values involved in the communication with an instance U i

1 in its role as
an initiator, where U2 is the honest intended partner, there is at most one pair of values (pw1, pw2)
such that Kj = CDH(X⋆/pw1, Y

⋆
/pw2) lies in the list ΛH . Since collisions in the output of G1

and G2 oracles were removed, the latter implies that there is one unique pw such that pw1 =
G1(U1, U2, pw) and pw2 = G2(U1, U2, R, pw , X⋆). Since we only choose pw at the very end of the
simulation, the probability that the latter collides with the ones chosen by the adversary is at most
qstart/|D|. In other words,

Pr
[
AskH110 ∧AskG2 | Coll

]
≤ qstart/|D| ,

and

Pr[AskH110 ∧AskG2] ≤ Pr
[
AskH110 ∧AskG2 | Coll

]
· Pr[Coll] +

Pr [AskH110 ∧AskG2 | Coll] · Pr[Coll]

≤ Pr
[
AskH110 ∧AskG2 | Coll

]
+ Pr[Coll]

≤ qstart/|D|+ Pr[Coll] .

28

Next, let us consider the event AskH210, in which U1 and U2 are honest players, U2 is the intended
partner of instance U i

1, and the input query (S, U2, R, X) to the SendClient oracle with respect to
instance U i

1 in its role as an initiator (the responder case is similar) was generated by the adversary.

Like in the previous case, if the event Coll does not happen, then for each (X⋆, Y
⋆
, X

⋆
, Y ⋆, R, S,

U1, U2 set of values involved in the communication with an instance U i
1 in its role as an initiator,

where U2 is the honest intended partner, there is at most one pair of values (pw1, pw2) such that
Kj = CDH(X⋆/pw1, Y

⋆
/pw2) lies in the list ΛH . Using a similar argument, we have

Pr
[
AskH210 ∧AskG2 | Coll

]
≤ qstart/|D| ,

and

Pr[AskH210 ∧AskG2] ≤ qstart/|D|+ Pr[Coll] .

Finally, we can compute the probability of the event AskH10 as follows.

Pr[AskH10] ≤ Pr[AskH10 ∧AskG2] · Pr[AskG2] +

Pr[AskH10 ∧AskG2] · Pr[AskG2]

≤ Pr[AskH10 ∧AskG2] + Pr[AskH10 ∧AskG2]

≤ Pr[AskH110 ∧AskG2] · Pr[Case1] +

Pr[AskH210 ∧AskG2] · Pr[Case2] + Pr[AskH10 ∧AskG2]

≤ (qstart/|D|+ Pr[Coll]) · Pr[Case1] +

(qstart/|D|+ Pr[Coll]) · Pr[Case2] + Pr[AskH10 ∧AskG2]

≤ qstart/|D|+ Pr[Coll] + Pr[AskH10 ∧AskG2]

≤ qstart/|D|+ q2
G1
· q2

G2
· q2

H ·Advcdh
G (t + 3τe) +

qG1
+ qG2

p
+ 2

qH

p
.

B Proof of lemmas

B.1 The splitting lemma

For simplicity, we reproduce here the splitting lemma presented in [23].

Lemma B.1 [Splitting Lemma] Let A ⊂ X×Y such that Pr[(x, y) ∈ A] ≥ ǫ. For any α < ǫ, define

B =

{
(x, y) ∈ X × Y Pr

y′∈Y
[(x, y′) ∈ A] ≥ ǫ− α

}
and B̄ = (X × Y)\B,

then the following statements hold:

(i) Pr[B] ≥ α

(ii) ∀(x, y) ∈ B,Pry′∈Y [(x, y′) ∈ A] ≥ ǫ− α.

Proof: In order to prove statement (i), we argue by contradiction. Assume that Pr[B] < α. Then

ǫ ≤ Pr[B] · Pr[A |B] + Pr[B̄] · Pr[A | B̄] < α · 1 + 1 · (ǫ− α) = ǫ.

This implies a contradiction, hence the result. Statement (ii) is a straightforward consequence of
the definition.

29

B.2 Proof of Lemma 3.5

Let R represent the set of all random functions from {1, . . . , n} to G and let R[(k0, U0), . . . , (ks, Us)]
denote the subset of R such that ki is mapped to Ui, for i = 0, . . . , s. Let A be an adversary against
the password-based chosen-basis decisional Diffie-Hellman 1 assumption with an advantage greater
than 2/n + ε. By the definition of Adv

pcddh1
G,n (A,P, X, k, r0, r1), we have

Pr[Exp
pcddh1
G,n,b (A,P, X, k, r0, r1) = b] ≥ 1/2 + 1/n + ε/2 ,

where the probability space is on Ω0 = {(ω1, ω2,P, X, k, b, r0, r1)} (ω1 and ω2 are the random tapes
of A in the first step and second steps, respectively).

By applying the splitting lemma on the product probability space Ω′1 × Ω1, where Ω′1 =
{(ω1,P, X, r0, r1)} and Ω1 = {(ω2, k, b)}, one can show that there exists a subset S1 of Ω′1 with
probability measure greater than ε/4 such that, for any (ω1,P, X, r0, r1) ∈ S1,

PrΩ1

[
Exp

pcddh1
G,b (A,P, X, k, r0, r1 ; ω1) = b

]
≥ 1/2 + 1/n + ε/4 ,

where the probability space is now on Ω1 = {(ω2, k, b)}. In this game, since (ω1,P, X) is fixed, so
is the output (Y, s) at the end of the first stage. Furthermore, since r0 is also fixed, then so is Y ′.

If we apply the splitting lemma once again on the product probability space Ω′2 × Ω2, where
Ω′2 = {k} and Ω2 = {(ω2, b)}, one can show that there exists a subset S2(ω1,P, X, r0, r1) of Ω′2
with probability measure greater than 1/n + ε/8 > 1/n such that, for any k in S2(ω1,P, X, r0, r1)
(if (ω1,P, X, r0, r1) is in S1),

PrΩ2

[
Exp

pcddh1
G,b (A,P, X, k, r0, r1 ; ω1) = b

]
≥ 1/2 + ε/8 ,

where the probability space is now on Ω2 = {(ω2, b)}.
Here, one sees that S2(ω1,P, X, r0, r1) is a subset of {1, . . . , n} of measure strictly greater than

1/n. Hence, it is at least 2/n. Therefore, there exist two values k0 and k1, and thus U0 and U1, for
which this adversary can decide b with advantage greater than ε/4 in the following experiment, for
i = 0, 1:

Experiment Exp
pcddh1
G,b (A,P, X, ki, r0, r1 ; ω1)

(Y, s)← AP(find, X ; ω1)
Ui ← P(ki)
X ← (X/Ui)

rb ; K ← CDH(X/Ui, Y)rb

Y ′ ← Y r0

d← A(guess, s, X, K, Y ′, ki)
return d

In other words, if one randomly choose k0, k1
R
← {1, . . . , n}, X

R
← G, r0, r1

R
← Zp, Ui

R
← G, for

i = 0, 1 and P
R
← R[(k0, U0), (k1, U1)], as well as a tape ω1, with probability greater than ε/4n2,

the above adversary can decide b with advantage greater than ε/4, for both i = 0 and i = 1.
Let us now use the splitting lemma one last time on the product probability space {(ω1, k0, k1,

r0, r1,P
′)} × {(X, U0, U1)}, where P ′ is randomly drawn from R[(k0, 1), (k1, g)], and when U0 and

U1 are defined, we set P to be equal to P ′ except that P(ki) is set to Ui. One can thus show that
there exists a subset S of {(ω1, k0, k1, r0, r1,P

′)} with probability measure greater than ε/8n2 such
that, for any (ω1, k0, k1, r0, r1,P

′) in S, with probability greater than ε/8n2 over (X, U0, U1), the
above adversary can decide b with advantage greater than ε/4, for both i = 0 and i = 1.

We now define an adversary against the CDDH1 problem as follows, for randomly chosen (ω1,
k0, k1, r0, r1,P

′), that we now assume to be in S:

30

Algorithm B(find, U, V, X)
P ← P ′ ; P(k0)← U ; P(k1)← V
(Y, s)← AP(find, X)
s̃← (U, V, s)
return (Y, s̃)

Algorithm B(guess, s̃, X0, K0, X1, K1, Y
′)

parse s̃ as (U, V, s)
d0 ← A

P(guess, s, X0, Y
′, K0)

d1 ← A
P(guess, s, X1, Y

′, K1)
return d = d0 ⊕ d1

If one denotes by εi,b the probability that di = 1 when bi = b in the game with experiment

Exp
pcddh1
G,n,b (A,P, X, ki, r0, r1 ; ω1), since the two games are independent (with independent bits b),

one gets

Pr[d = 1|b = 1]

= Pr[d0 = 1 ∧ d1 = 0|(b0 = 1 ∧ b1 = 0) ∨ (b0 = 0 ∧ b1 = 1)]

+ Pr[d0 = 0 ∧ d1 = 1|(b0 = 1 ∧ b1 = 0) ∨ (b0 = 0 ∧ b1 = 1)]

= 2× Pr[d0 = 1 ∧ d1 = 0 ∧ ((b0 = 1 ∧ b1 = 0) ∨ (b0 = 0 ∧ b1 = 1))]

+2× Pr[d0 = 0 ∧ d1 = 1 ∧ ((b0 = 1 ∧ b1 = 0) ∨ (b0 = 0 ∧ b1 = 1))]

= 2 Pr[d0 = 1 ∧ d1 = 0 ∧ b0 = 1 ∧ b1 = 0] + 2 Pr[d0 = 1 ∧ d1 = 0 ∧ b0 = 0 ∧ b1 = 1]

+2 Pr[d0 = 0 ∧ d1 = 1 ∧ b0 = 1 ∧ b1 = 0] + 2 Pr[d0 = 0 ∧ d1 = 1 ∧ b0 = 0 ∧ b1 = 1]

= 2 Pr[d0 = 1 ∧ b0 = 1] Pr[d1 = 0 ∧ b1 = 0] + 2 Pr[d0 = 1 ∧ b0 = 0] Pr[d1 = 0 ∧ b1 = 1]

+2 Pr[d0 = 0 ∧ b0 = 1] Pr[d1 = 1 ∧ b1 = 0] + 2 Pr[d0 = 0 ∧ b0 = 0] Pr[d1 = 1 ∧ b1 = 1]

= Pr[d0 = 1|b0 = 1] Pr[d1 = 0|b1 = 0] + Pr[d0 = 1|b0 = 0] Pr[d1 = 0|b1 = 1]

+ Pr[d0 = 0|b0 = 1] Pr[d1 = 1|b1 = 0] + Pr[d0 = 0|b0 = 0] Pr[d1 = 1|b1 = 1]

= ε0,1(1− ε1,0) + ε0,0(1− ε1,1) + (1− ε0,1)ε1,0 + (1− ε0,0)ε1,1

= ε0,0 + ε0,1 + ε1,0 + ε1,1 − 2ε0,1ε1,0 − 2ε0,0ε1,1

The same way, one gets

Pr[d = 1|b = 0] = ε0,0 + ε0,1 + ε1,0 + ε1,1 − 2ε0,0ε1,0 − 2ε0,1ε1,1.

Then, the advantage is

Pr[d = 1|b = 1]− Pr[d = 1|b = 0] = 2(ε0,0ε1,0 + ε0,1ε1,1 − ε0,1ε1,0 − ε0,0ε1,1)

= 2ε0,0(ε1,0 − ε1,1) + 2ε0,1(ε1,1 − ε1,0)

= 2(ε0,1 − ε0,0)(ε1,1 − ε0,1)

≥ 2× ε/4× ε/4 = ε2/8 .

B.3 Proof of Lemma 3.6

The proof of this lemma is similar to that of Lemma 3.5. Let A be an adversary against the
password-based chosen-basis decisional Diffie-Hellman 1 assumption with an advantage greater
than ε ≥ 16/n. By the definition of Adv

pcddh1
G,n (A,P, X, k, r0, r1), we have

Pr[Exp
pcddh1
G,n,b (A,P, X, k, r0, r1) = b] ≥ 1/2 + ε/2 ,

31

where the probability space is on Ω0 = {(ω1, ω2,P, X, k, b, r0, r1)} (ω1 and ω2 are the random tapes
of A in the first step and second steps, respectively).

By applying the splitting lemma on the product probability space Ω′1 × Ω1, where Ω′1 =
{(ω1,P, X, r0, r1)} and Ω1 = {(ω2, k, b)}, one can show that there exists a subset S1 of Ω′1 with
probability measure greater than ε/4 such that, for any (ω1,P, X, r0, r1) ∈ S1,

PrΩ1

[
Exp

pcddh1
G,b (A,P, X, k, r0, r1 ; ω1) = b

]
≥ 1/2 + ε/4 ,

where the probability space is now on Ω1 = {(ω2, k, b)}. In this game, since (ω1,P, X) is fixed, so
is the output (Y, s) at the end of the first stage. Furthermore, since r0 is also fixed, then so is Y ′.

If we apply the splitting lemma once again on the product probability space Ω′2 × Ω2, where
Ω′2 = {k} and Ω2 = {(ω2, b)}, one can show that there exists a subset S2(ω1,P, X, r0, r1) of Ω′2 with
probability measure greater than ε/8 ≥ 2/n such that, for any k in S2(ω1,P, X, r0, r1) (if (ω1,P,
X, r0, r1) is in S1),

PrΩ2

[
Exp

pcddh1
G,b (A,P, X, k, r0, r1 ; ω1) = b

]
≥ 1/2 + ε/8 ,

where the probability space is now on Ω2 = {(ω2, b)}.
Here, one sees that S2(ω1,P, X, r0, r1) is a subset of {1, . . . , n} of size at least 2/n. Therefore,

there exist two values k0 and k1, and thus U0 and U1, for which this adversary can decide b with
advantage greater than ε/4 in the following experiment, for i = 0, 1:

Experiment Exp
pcddh1
G,b (A,P, X, ki, r0, r1 ; ω1)

(Y, s)← AP(find, X ; ω1)
Ui ← P(ki)
X ← (X/Ui)

rb ; K ← CDH(X/Ui, Y)rb

Y ′ ← Y r0

d← A(guess, s, X, K, Y ′, ki)
return d

In other words, if one randomly choose k0, k1
R
← {1, . . . , n}, X

R
← G, r0, r1

R
← Zp, Ui

R
← G, for

i = 0, 1 and P
R
←R[(k0, U0), (k1, U1)], as well as a tape ω1, with probability greater than ε/4 · ε/8 ·

(ε/8 − 1/n) ≥ ε3/29, the above adversary can decide b with advantage greater than ε/4, for both
i = 0 and i = 1.

Let us now use the splitting lemma one last time on the product probability space {(ω1, k0, k1,
r0, r1,P

′)} × {(X, U0, U1)}, where P ′ is randomly drawn from R[(k0, 1), (k1, g)], and when U0 and
U1 are defined, we set P to be equal to P ′ except that P(ki) is set to Ui. One can thus show that
there exists a subset S of {(ω1, k0, k1, r0, r1,P

′)} with probability measure greater than ε3/210 such
that, for any (ω1, k0, k1, r0, r1,P

′) in S, with probability greater than ε3/210 over (X, U0, U1), the
above adversary can decide b with advantage greater than ε/4, for both i = 0 and i = 1.

Using the above facts, one can then build an adversary for for CDDH1 problem exactly as in the
proof of Lemma 3.5. Moreover, by using similar arguments, one can also show that the advantage
of this adversary would be at least ε2/8. The bound claimed in Lemma 3.6 then easily follows.

B.4 Proof of Lemma 3.9

Let us assume that D is not a good distinguisher:

Pr
b,x

[Eb(D, x) = b] ≤
1

2
+

α

2
,

32

for α ≤ µǫ/2. Then

1

2
+

α

2
≥ Pr

b,x
[Eb(D, x) = b]

≥ Pr
b,x

[Eb(D, x) = b ∧ x ∈ S′] + Pr
b,x

[Eb(D, x) = b ∧ x 6∈ S′]

≥

(
1

2
+

ǫ

2

)
× µ + Pr

b,x
[Eb(D, x) = b | x 6∈ S′]× (1− µ)

≥

(
1

2
+

ǫ

2

)
× µ +

(
1− Pr

b,x
[Eb(D, x) 6= b | x 6∈ S′]

)
× (1− µ)

≥
µ

2
+

µǫ

2
+ 1− µ− Pr

b,x
[Eb(D, x) 6= b | x 6∈ S′]× (1− µ)

≥ 1−
µ

2
+

µǫ

2
− Pr

b,x
[Eb(D, x) 6= b | x 6∈ S′]× (1− µ)

≥
1

2
+

µǫ

2
+

(
1

2
− Pr

b,x
[Eb(D, x) 6= b | x 6∈ S′]

)
× (1− µ)

α− µǫ

2
≥

(
1

2
− Pr

b,x
[Eb(D, x) 6= b | x 6∈ S′]

)
× (1− µ)

As a consequence,

Pr
b,x

[Eb(D, x) 6= b | x 6∈ S′] ≥
1

2
+

µǫ− α

2(1− µ)
≥

1

2
+

µǫ− α

2
≥

1

2
+

µǫ

4

33

