
Identity-Based Traitor Tracing

Michel Abdalla1, Alexander W. Dent2, John Malone-Lee3,
Gregory Neven1,4, Duong Hieu Phan5, and Nigel P. Smart3

1 Département d’Informatique, Ecole Normale Supérieure,
45 Rue d’Ulm, 75230 Paris Cedex 05, France.

Email: {Michel.Abdalla,Gregory.Neven}@ens.fr
2 Information Security Group, Royal Holloway, University of London,

Egham, Surrey, TW20 0EX, United Kingdom.
Email: a.dent@rhul.ac.uk

3 Department Computer Science, University of Bristol,
Woodland Road, Bristol, BS8 1UB, United Kingdom.

Email: {malone,nigel}@cs.bris.ac.uk
4 Department of Electrical Engineering, Katholieke Universiteit Leuven,

Kasteelpark Arenberg 10, B-3001 Heverlee, Belgium.
Email: Gregory.Neven@esat.kuleuven.be

5 France Télécom R&D, 38-40 rue du Général Leclerc,
92794 Issy les Moulineaux Cedex 9, France.
Email: duonghieu.phan@orange-ftgroup.com

Abstract. We present the first identity-based traitor tracing scheme.
The scheme is shown to be secure in the standard model, assuming the
bilinear decision Diffie-Hellman (DBDH) is hard in the asymmetric bi-
linear pairing setting, and that the DDH assumption holds in the group
defining the first coordinate of the asymmetric pairing. Our traitor trac-
ing system allows adaptive pirates to be traced. The scheme makes use
of a two level identity-based encryption scheme with wildcards (WIBE)
based on Waters’ identity-based encryption scheme.

1 Introduction

In 1984 Shamir proposed the concept of identity-based cryptography [15]. How-
ever, it took nearly twenty years for the problem of designing an efficient method
to implement identity-based encryption (IBE) to be solved. In 2000 and 2001
respectively Sakai, Ohgishi and Kasahara [13] and Boneh and Franklin [6] pro-
posed IBE schemes based on elliptic curve pairings. Also, in 2001 Cocks proposed
a system based on the quadratic residuosity problem [10].

The fourth author is a Postdoctoral Fellow of the Research Foundation – Flanders
(FWO). The work described in this paper has been supported in part by the Eu-
ropean Commission through the IST Programme under Contract IST-2002-507932
ECRYPT. The information in this document reflects only the author’s views, is pro-
vided as is and no guarantee or warranty is given that the information is fit for any
particular purpose. The user thereof uses the information at its sole risk and liability.

Identity-based encryption is often justified as a useful technology by its pos-
sible use in an e-mail application. However, many people, whilst having a small
set of e-mail identities, often belong to a larger set of e-mail groups. An e-mail
group, or shared address, is an e-mail address which allows the sender to send
a message to a large number of individual e-mail addresses without needing to
know the actual individual addresses. Using existing identity-based encryption
techniques one can easily implement such a scheme by giving each member of
the e-mail group the same ID-private key. Thus all members of the group will
share the same private key.

A common business model in PKI world is that the certificate authority
charges for each certificate, or block of certificates, issued. In the ID-based world
this model corresponds to the trust authority charging for each private key, or
block of private keys. However, in our group e-mail example this would mean
that the trust authority would only be able to charge for one private key for the
whole group, since as soon as one person had the private key they could share
it with the other members of the group. What is needed is a disincentive for the
group members to collaborate in this manner.

A similar situation occurs in the traditional symmetric or public key setting in
broadcast encryption. Here one solves the associated problem by using a traitor
tracing scheme, which allows any person (or set of colluding people) who creates
a new decryption device, or key, to be traced. Thus combining the above ideas
together we see that there is a possible need for an identity-based traitor tracing
scheme.

Surprisingly since the invention of identity-based cryptography by Shamir
[15] in 1984, no one seems to have considered this issue. Thus in this paper we
present the first identity-based traitor tracing scheme. Our scheme is based on
the Waters’ WIBE from [1], which is based on Waters’ identity-based encryption
scheme [17]. A WIBE is a variant of a hierarchical IBE (HIBE) scheme in that it
encrypts to an identity string which is defined on various layers. However, unlike
a HIBE, which allows only a single recipient, a WIBE allows one to encrypt
to a string which is “wildcarded” on a given set of levels. A WIBE allows one
to target a ciphertext at a given group of users by applying the appropriate
wildcards.

Our construction is relatively simple: we use a two level WIBE in which the
first level represents the name of the group and the second level represents the
unique index of a user. This allows e-mails to be addressed to the entire group
via the use of a wildcard in the second level. Group membership is ‘policed’ by
the trust authority, which only releases a decryption key to a user if the user
is entitled to decrypt messages sent to a particular group. The subtlety of our
construction is in the construction of a traitor tracing algorithm.

We prove that our scheme protects the confidentiality of encrypted messages
against passive attackers in the standard model, and show that it allows traitor
tracing against an adaptive traitor.

Unfortunately, our scheme is not practical due to the combination of Waters’
IBE and collusion secure codes [8], which results in infeasibly large public key

and ciphertext sizes. Thus we leave the construction of a truly efficient identity-
based traitor tracing scheme, even in the random oracle model [3], as an open
problem. In addition we leave as open the problem of creating a scheme which
allows a greater number of key extraction queries by the pirate than ours allows.
Furthermore, our scheme does not protect against pirate decoder manufacturers
mounting chosen-ciphertext attacks, however this later stronger pirate has not
been considered in the public-key setting either.

2 Preliminaries

2.1 Notation

Let N = {0, 1, 2, . . .} be the set of natural numbers and {0, 1}∗ the set of all bit
strings. If k ∈ N then {0, 1}k is the set of bit strings of length k and 1k is the

string of k ones. If A is a randomized algorithm, then y
$

← AO(x) denotes the
assignment to y of the output of A when run on input x with fresh random coins
and with access to oracle O; we write y ← AO(x) if A is deterministic. If S is a

finite set, then x
$

← S denotes the random generation of an element x ∈ S using
the uniform distribution. A function ν : N → [0, 1] is said to be negligible if for
all c ∈ N there exists a kc ∈ N such that ν(k) < k−c for all k > kc. It is said to
be non-negligible if there exists a c ∈ N such that ν(k) > k−c for all k ∈ N.

2.2 Computational Assumptions

Our scheme employs asymmetric pairings, which we now recall. Let G1, G2 and
GT denote three finite multiplicative abelian groups of prime order p > 2k. Let
g and h be generators of G1 and G2, respectively, and let ψ : G2 → G1 be
an efficiently computable isomorphism such that ψ(h) = g. We assume that
there exists an admissible bilinear map ê : G1 × G2 → GT, meaning that for
all a, b ∈ Zp (1) ê(ga, hb) = ê(g, h)ab, (2) ê(ga, hb) = 1 iff a = 0 or b = 0, and
(3) ê(ga, hb) is efficiently computable.

The advantage of an algorithmA in solving the computational bilinear Diffie–
Hellman (CBDH) problem in G2 is defined as

Advcbdh
A,G2

(k) = Pr
[

Z = ê(g, h)xyz : x, y, z
$

← Zp ; Z
$

← A(hx, hy, hz)
]

.

The advantage of A in solving the decisional variant of this problem, called the
decisional bilinear Diffie–Hellman (DBDH) problem in G2, is

Advdbdh
A,G2

(k) =

∣

∣

∣

∣

Pr
[

A(hx, hy, hz, Z) = 1 : x, y, z
$

← Zp ; Z ← ê(g, h)xyz
]

− Pr
[

A(hx, hy, hz, Z) = 1 : x, y, z
$

← Zp ; Z
$

← GT

]

∣

∣

∣

∣

.

We say that the CBDH and DBDH problems in G2 are hard if the respective
advantages are negligible functions in k for all algorithms A with running time
polynomial in k.

We also require that the DDH problem in G1 is hard, namely we require that
for all algorithms A, with running time polynomial in k, the following advantage
is a negligible function in k,

Advxddh
A,G1

(k) =

∣

∣

∣

∣

Pr
[

A(gx, gy, Z) = 1 : x, y
$

← Zp ; Z ← gxy
]

− Pr
[

A(gx, gy, Z) = 1 : x, y
$

← Zp ; Z
$

← G1

]

∣

∣

∣

∣

.

Note that if the DDH problem in G1 is hard, then there cannot exist a com-
putable isomorphism from G1 to G2 and thus we must be working in the asym-
metric pairing setting. The assumption that the DDH problem is hard in G1 is
referred to as the external DDH problem (XDDH) and has been used before in
[2, 4, 14].

3 Identity-Based Traitor Tracing

3.1 Syntax

In this section we will describe the general model for an identity-based traitor
tracing scheme. Broadcast groups are referred to by an identity string ID ∈
{0, 1}∗, individual users are referred to by an index i ∈ N. To make user i
member of the group ID , the trusted key distribution centre provides it with
a personal decryption key dID,i. Anyone can encrypt a message to the general
group ID such that all individual users belonging to the group can recover the
message.

Formally, an identity-based traitor tracing scheme IBT T consists of five
polynomial-time algorithms:

– A randomised key generation algorithm G(1k) taking as input the security
parameter k. This algorithm generates a set of domain parameters consisting
of a master public key mpk and a master secret key msk .

– A key extraction algorithm X (msk , ID , i) which given the master secret key
msk , a group identity ID ∈ {0, 1}∗ and a user index i generates a user secret
key dID,i. This algorithm could be probabilistic.

– A probabilistic encryption algorithm E(mpk , ID ,m) which on input of the
master public key mpk , a group identity ID and a message m outputs a
ciphertext C.

– A decryption algorithm D(dID,i, C) which on input of a user secret key dID ,i

and a ciphertext C outputs a plaintext message m, or ⊥ to indicate a de-
cryption error.

– A traitor tracing algorithm T D(msk , ID) which has oracle access to a “pi-
rate” decryption box D. The tracing algorithm takes as input the master
secret key msk and a group identity ID , and outputs a set of user identifiers
(called “traitors”) T ⊂ N.

An identity-based traitor tracing scheme whose tracing algorithm takes as input
mpk instead of msk is said to be publicly-traceable, since then anyone can exe-
cute the tracing algorithm. We shall assume that all “pirate” decryption boxes
are resettable [11], meaning that they retain no state between decryptions. In
particular, pirate boxes cannot self-destruct.

For correctness we require that D(d, E(mpk , ID ,m)) = m with probability

one for all k ∈ N, ID ,m ∈ {0, 1}∗, i ∈ N, (mpk ,msk)
$

← G(1k) and d
$

←
X (msk , ID , i).

3.2 Secrecy

We require that our ID-based traitor tracing scheme is semantically secure in the
presence of adaptive adversaries who have access to a key extraction oracle and,
in a chosen-ciphertext attack, a decryption oracle. These are standard notions
in ID-based cryptography first introduced in [6]. The extension to the setting we
have here is immediate, but for completeness we clarify it here.

Secrecy is defined by a two-stage game. The challenger first runs the key

generation algorithm to generate a master key pair (mpk ,msk)
$

← G(1k). The
master public key mpk is passed to the adversary. In the first stage of the game
the adversary has access to a key extraction oracle X (msk , ·, ·), which it can
query on arbitrary pairs (ID , i) of group identities ID and user indices i. In a
chosen-ciphertext attack, the adversary can also has access to a decryption oracle
D(X (msk , ·, ·), ·) from which it can obtain the decryption of any ciphertext C
using the key to any pair (ID , i). The first stage ends when the adversary outputs
two messages of equal length m0 and m1, plus a challenge group identity ID∗.

The challenger then selects a bit b and encrypts mb under the group identity
ID∗ to form the challenge ciphertext C∗ ← E(mpk , ID∗,mb). The challenge
ciphertext is returned to the adversary for the second stage of the game. In
this second stage the adversary can perform further queries to its oracles. At
the end of the second stage the adversary outputs its guess b′ as to the bit b.
The adversary wins the game if b = b′, if ID∗ never appeared in any of the key
extraction oracle queries, and, in a chosen-ciphertext attack, if C∗ was never
submitted to the decryption oracle with group identity ID∗.

The advantage Adv
ind-id-cpa
A,IBT T (k), respectively Adv

ind-id-cca
A,IBT T (k), of an adver-

sary A in breaking the indistinguishability of scheme IBT T is defined as the
probability of A winning the corresponding game minus one-half. We say that
the traitor tracing scheme is IND-ID-CPA, respectively IND-ID-CCA secure, if
this advantage is a negligible function in k for any adversary A with running
time polynomial in k.

3.3 Traceability

We extend the notion of traceability defined for the public key setting in [7]
to the identity-based setting. We provide definitions for both chosen-plaintext
and chosen-ciphertext attack; our scheme however is only proved secure in the

chosen-plaintext setting. We note that to our knowledge there is no public-key
traitor tracing system which has been considered in the presence of (the natural
analogue of) chosen-ciphertext attacks against the traceability property.

Let k, c ∈ N be two security parameters associated to the experiment. The

challenger first generates a master key pair (mpk ,msk)
$

← G(1k) and gives mpk
to the adversary. The adversary has access to a key extraction oracle X (msk , ·, ·)
to which it can submit pairs (ID , i) of its choosing. In a chosen-ciphertext attack,
it can also perform queries to a decryption oracle D(X (msk , ·, ·), ·) specifying a
group identity ID , a user index i and an arbitrary ciphertext C as in the above
secrecy game. The adversary terminates by outputting a group identity ID∗

and a pirate decoder D, which is the description of a probabilistic circuit that
takes as input ciphertexts and outputs messages. The challenger then runs the
tracing algorithm with black-box access to D to obtain a set of user identifiers

S
$

← T D(msk , ID∗).
By modelling the pirate decoder as a probabilistic circuit, we assume that

the decoder is resettable or stateless [11] in that it does not retain information
from previous decryptions, and in particular that it cannot self-destruct. Thus,
when being subjected to a series of tracing queries, the pirate decoder responds
to each query as if it were the first.

If we let T denote the set of user indices i that the adversary submitted to
the key extraction oracle in combination with the group identity ID∗, then we
say that the adversary wins the game if the following conditions hold:

– The decryption box decrypts a non-negligible fraction of random ciphertexts
encrypted under the group identity ID∗, i.e. for random messages m we
have that Pr[D(E(mpk , ID∗,m)) = m] ≥ δ(k) where δ(k) is a non-negligible
function and where the probability is taken over the random choice of m and
over the random coins of the encryption algorithm E and the pirate box D.

– Either S = ∅ or S 6⊆ T .
– A queried the key extraction oracle for at most c different user indices i.

We do not restrict the number of different group identities ID for which A
can obtain keys for each of these users (apart from being polynomial in k of
course). This reflects that colluding users can use all their decryption keys
to construct the pirate box, not just the key corresponding to ID∗. It also
means that the number of different groups a single user subscribes to is not
limited by c.

– In the chosen-ciphertext variant there are no restrictions on A’s queries to
the decryption oracle.

The advantage Adv
tra-id-cpa[c]
A,IBT T (k), respectively Adv

tra-id-cca[c]
A,IBT T (k), of A in break-

ing the traceability of the scheme IBT T is defined as its probability of winning
the above game. We say that IBT T is c-TRA-ID-CPA, respectively c-TRA-ID-
CCA secure, if this advantage is a negligible function in k for all adversaries A
with running time polynomial in k.

The above definition is essentially a full access model. One can, following [5]
and [7], define a minimal access model in which the oracle available to the tracing

algorithm only outputs whether the decoder successfully decrypted the input
ciphertext or not, but does not give it the resulting plaintext.

4 The Scheme

Our scheme makes use of the two-level WIBE scheme [1] based on Waters’ HIBE
scheme [17]. We assume that group identities ID are given by strings of length n1.
As user identifiers we associate to each user an element of a code. The mapping
between individual users, their indices and their codewords is maintained by the
trust authority. In practice the code will be a (c,N, ǫ)-collusion secure code [8],
where N is the maximum number users in the system, c is the maximum number
of colluders our tracing algorithm can tolerate, and ǫ is the probability of error
that a colluder is not traced. A (c,N, ǫ) collusion secure code can be produced
using codewords of size ℓ = O(c2(log(N) + log(1/ǫ))) over an alphabet of size
s = 2 [16]. Our use of collusion secure codes will result in a scheme which is not
publicly traceable, since the tracing algorithm for collusion secure codes requires
secret randomness.

Before giving a more precise definition of collusion-secure codes, we need to
introduce some additional notation. Let Σ be a symbol alphabet of size |Σ| = s.
If x = x1 . . . xℓ ∈ Σℓ is a string of ℓ symbols and I = {1 ≤ i1 < . . . < in ≤ ℓ} is a
set of indices, then x|I is the substring xi1 . . . xin

containing only those symbols
of x at positions in I. Let W = {w1, . . . , wc ∈ Σ

ℓ} be a set of symbol strings,
and let I be the set of all positions where all strings in W are equal, i.e. I is the
maximal set such that w1|I = w2|I = . . . = wc|I . Then the feasible set of W is
defined as the set of all strings that are equal to w1, . . . , wc at positions in I, i.e.

FS(W) = {x ∈ Σℓ : x|I = w1|I = . . . = wc|I} .

A (c,N, ǫ) collusion-secure code of length ℓ over alphabet Σ consists of a set C,

called the codebook, of indexed codewords w
(i)
r for 1 ≤ i ≤ N and r ∈ {0, 1}ρ,

and a tracing algorithm TC. These are such that for all collusions C ⊆ {1, . . . , N}

of size at most c, W = {w
(i)
r : i ∈ C}, and for all (unbounded) algorithms A it

holds that

Pr
[

TC(x, r) ∈ C | x ∈ FS(W); x
$

← A(W); r
$

← {0, 1}ρ
]

> 1− ǫ ,

where the probability is taken over the choice of r and the random coins of
TC and A. Our scheme uses codewords as “identity strings”. This presents a
small problem: the definition insists that the set C is chosen before A’s exe-
cution; whereas, we will allow the adversary to chose the set C adaptively via
key extraction queries. We solve this problem by introducing a randomly chosen

permutation on {1, 2, . . . , N}, denoted π
$

← Perm(N) (or if it is desired for effi-

ciency a pseudo-random permutation). We associate the codeword w
(π(i))
r with

the i-th user. It is therefore sufficient that

Pr

[

TC(x, r) ∈ C
∣

∣

∣

x ∈ FS(W); x
$

← A(W)

C
$

← P(C, c, r); r
$

← {0, 1}ρ

]

> 1− ǫ ,

where P(C, c, r) is the set of subsets of {wr ∈ C} of size c.

For non-binary alphabets, we use the natural encoding of symbols as bit
strings of length ⌈log2 s⌉, so that codewords are represented by bit strings of
length n2 = ⌈log2 s⌉ · ℓ.

To set up the scheme we define two sets V1 and V2 of random elements in
G2, denoted by Vi = (vi,0, vi,1, . . . , vi,ni

). We let ui,j ← ψ(vi,j) and let Ui denote
the image of the set Vi under the isomorphism ψ, i.e. Ui = (ui,0, ui,1, . . . , ui,ni

).
For a bit string B of length ni we use these sets to define the so-called Waters’
hash functions

Hi(B)← vi,0

∏

j∈B

vi,j ,

where the product is computed over all values of j for which the j-th bit of B is
one. To simplify notation we define

Gi(B)← ui,0

∏

j∈B

ui,j = ψ(Hi(B)).

Note that Gi(B) can be computed either from the set Vi using the isomorphism
ψ, or from the set Ui directly. Also note that vi,j = hκi,j and ui,j = gκi,j for
some, unknown, values κi,j ∈ Zp.

Our ID-based traitor tracing scheme can now be defined via the following
algorithms:

Setup G(1k) : The key distribution centre generates a set of pairing groups

G1,G2 as above at the security level k, along with the sets Vi
$

← (G∗
2)

ni for

i = 1, 2. A random value α
$

← Zp is selected, and one sets g1 ← gα ∈ G1 and

h1 ← hα ∈ G2. We require a second random element h2
$

← G∗
2 and we let

g2 ← ψ(h2). Finally, the secret random permutation π
$

← Perm(N) and the

secret randomness r
$

← {0, 1}ρ for the code C is chosen. The master public key
is defined to be mpk = (g, g1, h2, U1, U2) and the master secret key is msk =
(h, hα

2 , V1, V2, π, r).

Key Extraction X (msk , ID , i) : Let id be the codeword corresponding to index
i, i.e. the bit string of length n2 = ⌈log2 s⌉ · ℓ that is the binary encoding of

codeword w
(π(i))
r . The key distribution centre first select random values r1, r2

$

←
Zp and then define the private key as

dID,i = (id , a0, a1, a2) ← (id , hα
2H1(ID)r1H2(id)r2 , hr1 , hr2)

Encryption E(mpk , ID ,m) : A message is defined as an element in GT. The

sender first chooses a t
$

← Zp and then computes the ciphertext C = (C1, C2, C3,
C4) ∈ G1 ×G1 ×GT ×G

n2+1
1 as

C1 ← gt , C2 ← G1(ID)t , C3 ← m · ê(g1, h2)
t , C4 ← (ut

2,j)j=0,...,n2
.

Decryption D(dID ,i, C) : Decryption works as follows, on input of C we first
compute

C′
2 ← C

(0)
4 ·

∏

j∈id

C
(j)
4 = G2(id)t ,

where the last equality follows since C
(j)
4 = ut

2,j. Then we compute

C3 ·
ê(C2, a1) · ê(C′

2, a2)

ê(C1, a0)
= m · ê(g1, h2)

t ·
ê(G1(ID)t, hr1) · ê(G2(id)t, hr2)

ê(gt, hα
2H1(ID)r1H2(id)r2)

= m · ê(g1, h2)
t ·

ê(G1(ID)r1 , ht) · ê(G2(id)r2 , ht)

ê(gt, hα
2) · ê(gt, H1(ID)r1H2(id)r2)

= m ·
ê(gα, h2)

t

ê(gt, hα
2)
·
ê (gσ, ht)

ê (gt, hσ)

where σ = r1(κ1,0 +
∑

j∈ID

κ1,j) + r2(κ2,0 +
∑

j∈id

κ2,j)

= m ·
ê(gα, h2)

t

ê(gt, hα
2)

= m.

Traitor Tracing Algorithm T D(msk , ID) : Since we use a collusion-secure
code, the tracing step requires the secret randomness r, so tracing can only
be done by the key distribution centre. The tracing algorithm has access to a
pirate box D that correctly decrypts ciphertexts for ID with probability δ(k).

For convenience, we let C
(i,j)
4 denote the (⌈log2 s⌉(i− 1) + j)-th element of C4.

For each 1 ≤ i ≤ ℓ and 1 ≤ j ≤ ⌈log2 s⌉, initialise counter ctr i,j ← 0 and run
the following test n = 16k/δ(k) times:

1. Choose a random message m.

2. Encrypt m under the group identity ID to form a ciphertext

C ← (C1, C2, C3, C4).

3. Replace C
(i,j)
4 with a random element from G1.

4. Query the pirate decoder D on the altered ciphertext C.

5. If the decoder outputs the message m (or a valid ciphertext in the case of
minimal access) then increase ctr i,j .

After these iterations, reconstruct the bit string id ′ of length n2 as follows. Let
id ′

i,j denote the bit of id ′ at position ⌈log2 s⌉(i−1)+j. Set id ′
i,j ← 1 if ctr i,j < 4k,

or set id ′
i,j ← 0 otherwise. Next, decode the bit string id ′ as a symbol string x

of length ℓ, choosing any symbol if the corresponding bit string is not a valid
encoding of a symbol in Σ. Finally, use the tracing algorithm of the code to

compute S
$

← TC(x, r) and return the set of traitors π−1(S).

5 Security Results

The IND-ID-CPA security of our scheme under the DBDH assumption follows
from the security of the Waters’ HIBE from [17] and an analogue of Theorem
6 of [1]. As one notices that the scheme is simply the Waters WIBE from [1]
specialised to the 2-level case. In Appendix A we outline the asymmetric version
of Waters’ HIBE scheme that we are using.

The scheme as it stands is only secure against adversaries who do not make
decryption oracle queries. However, extending to chosen-ciphertext security can
be done using the techniques described in [1] based on the techniques of Canetti,
Halevi and Katz [9]. This extension will not affect our traitor tracing algorithm
given above.

We now turn to showing that our tracing algorithm works. Intuitively, for
the TC algorithm to work (with error probability ǫ), we need the reconstructed
symbol string x to fall within the feasible set of the codewords corresponding
to the collusion. This means that on those positions where all the codewords
in the collusion are the same, the symbols of x have to be the same as well.

We prove that if the ciphertext component C
(i,j)
4 that is being “tampered” with

corresponds to a bit position where all traitors’ codewords have a zero, then the
pirate box decrypts correctly, unless it can solve the DDH problem in G1. We
also prove that if the tampered component corresponds to an all-one position,
then the pirate box is unable to decrypt correctly, unless it can solve the CBDH
problem. The 8k/δ(k) iterations are needed because the pirate box only decrypts
correctly with probability δ(k); we use a Chernoff bound to analyse the overall
success probability of our tracing algorithm.

Theorem 1. The IBT T scheme described above is c-TRA-ID-CPA secure un-
der the assumptions that the underlying code is (c,N, ǫ) collusion-secure code of
length ℓ over an alphabet of size s, that the DDH problem in G1 is hard, and
that the CBDH problem in G2 is hard. More specifically, the advantage of any
polynomial-time adversary A in building an untraceable decoder that correctly
decrypts a fraction δ(k) of ciphertexts using the keys of a collusion of at most c
users is at most

Adv
tra-id-cpa[c]
A,IBT T (k) ≤ ǫ+ ℓ⌈log2 s⌉ ·

(

Advcbdh
B2,G2

(k) + e−k
)

whenever δ(k) ≥ 2 · Advxddh
B1,G1

(k) where B1,B2 are polynomial-time algorithms
depending on A and e is the base of the natural logarithm.

Proof. Let A be an attacker against the tracing property of the encryption
scheme; i.e. A takes as input mpk and outputs a pirate decryption box D. We
use A to define an attacker A′ against the tracing property of the collusion-
secure code; i.e. A′ will take as input a collection of c random codewords W =
{w1, . . . , wc} and output a value x. We will prove that if A successfully avoids
being traced, then, with high probability, A′ will successfully output a codeword
x that cannot be traced. This will provide the required contradiction.

A′ runs as follows. It chooses random unique indices i1, . . . , ic ∈ {1, . . . , N}
and mounts the following attack for the collusion C = {i1, . . . , ic}. On input

codewords W = {w
(ij)
r : j = 1, . . . , c}, it first generates a public key mpk ←

(g, g1, h2, U1, U2) as described in the setup algorithm G of the identity-based
traitor tracing scheme. A′ then runs A. A may query a key extraction oracle for
identities (ID, i) for at most c values of i. A′ responds to the j-th such query as

normal using the codeword w
(ij)
r . Since W contains codewords corresponding to

a random collusion C, and π is meant to be a random permutation, this response
is identically distributed to the response of a correct key extraction algorithm.
A terminates by outputting a pirate decryption box D.
A′ then applies the identity-based traitor tracing scheme’s tracing algorithm

T D to D, halting after T D determines the value of the symbol string x. A′ outputs
the value x. We prove that the symbol string x ∈ Σℓ reconstructed by our tracing
algorithm falls outside the feasible set FS(W) with probability at most

Pr [x 6∈ FS(W)] ≤ ℓ⌈log2 s⌉ ·
(

Advcbdh
B2,G2

(k) + e−k
)

.

The theorem statement then directly follows from the properties of the (c,N, ǫ)
collusion-secure code’s tracing algorithm TC.

Let I ⊆ {1, . . . , ℓ} be the maximal set of symbol positions such that w
(i)
r |I =

w
(j)
r |I for all i, j ∈ C. For positions of x not in I there is nothing to prove,

because they do not affect membership of FS(W). So we focus on the symbols
xi of x at positions i ∈ I. Let id i,j for i ∈ I and 1 ≤ j ≤ ⌈log2 s⌉ be the bits
in the binary representation of codewords corresponding to symbols at positions
i ∈ I. Because of the way we defined I, these bits are the same for all users in
the coalition. For a single iteration in the tracing algorithm at position (i, j), the
following lemmas upper-bound the probability that the decryption box correctly
decrypts m in case id i,j = 0 and that it does not correctly decrypt m in case
id i,j = 1. Hence, we can distinguish between bit positions which are all zeros and
all ones. This means we can recover the symbols which are the same in all the
codewords for which the attacker has the keys. If the bits in a given bit position
are different in the attacker’s codewords, then the attacker can detect the tracing
attempt and may output whatever they like. However, this does not matter as
we only need to recover the symbols which are the same for all codewords in
order to apply the code’s tracing algorithm. We postpone the proofs of these
lemmas until after the proof of the theorem.

Lemma 1. If id i,j = 0 in the codewords of all users in the collusion C, then D

correctly decrypts a random ciphertext that has been tampered with at position
(i, j) with probability

p0 ≥ δ(k)−Advxddh
B1,G1

(k) .

Lemma 2. If id i,j = 1 in the codewords of all users in the collusion C, then D

correctly decrypts a random ciphertext that has been tampered with at position
(i, j) with probability

p1 ≤ Adv
cbdh
B2,G2

(k) .

We also use the following adaptation of the Chernoff bound from [12].

Lemma 3. Let X1, . . . , Xn be independent, 0/1 valued random variables with
expected value p. Let X = X1 + . . .+Xn, let µ = E[X] = np and let 0 ≤ α ≤ 1
be a real number. Then we have

Pr [X < (1− α)µ] < e−µα2/2 .

We want to upper-bound the probability that xi 6= wi. For a position i, j where
id i,j = 0, we can see the final value of ctr i,j as the outcome of the sum of
n = 16k/δ(k) independent 0/1 random variables with expected value p = p0.
The expected value of ctr i,j is µ = np0. From Lemma 1 and the assumption that

Advxddh
B1,G1

(k) ≤ δ(k)/2, we know that

µ = np0 ≥ n
(

δ(k)−Advxddh
B1,G1

(k)
)

≥
nδ(k)

2
= 8k .

We can then apply the Chernoff bound of Lemma 3 with α = 1/2 to upper-bound
the probability that the tracing algorithm incorrectly decides that id ′

i,j = 1 by

Pr [ctr i,j < 4k] ≤ Pr [ctr i,j < µ/2]

< e−µ/8

≤ e−k .

On the other hand, for a position i, j where id i,j = 1, the probability that the
tracing algorithm incorrectly decides that id ′

i,j = 0 can be upper-bounded by

Pr [ctr i,j ≥ 4k] ≤ Pr [ctr i,j ≥ 1] = p1 ≤ Advcbdh
B2,G2

(k) .

The probability that xi 6= wi is upper-bounded by the probability that the
tracing algorithm makes an incorrect decision at any of the bit positions. Since
there are ⌈log2 s⌉ bits in the encoding of xi, we have that

Pr [xi 6= wi] ≤ ⌈log2 s⌉ ·
(

Advcbdh
B2,G2

(k) + e−k
)

,

so that the overall probability that the symbol string x reconstructed by the
tracing algorithm is not within the feasible set of W is

Pr [x 6∈ FS(W)] ≤ ℓ⌈log2 s⌉ ·
(

Adv
cbdh
B2,G2

(k) + e−k
)

,

from which the theorem follows. ⊓⊔

We have left to prove the two lemmas that we used above.

Proof (Lemma 1). For the sake of contradiction, let A denote an adversary
against the traitor tracing scheme that produces a decryption box that correctly
decrypts random ciphertexts with probability δ(k), but that correctly decrypts
ciphertexts that have been tampered with at position (i′, j′) with probability

p0 ≤ δ(k) − γ for some γ > 0. We will construct an algorithm B1 which uses A
to gain an advantage γ in solving the DDH problem in G1.

Let (gx, gy, Z) denote the input to our DDH algorithm B1 and let k′ =
s(i′−1)+j′−1. It constructs the master public keys of the ID-based by choosing

random exponents α, κi,j
$

← Z∗
p for a = 1, 2 and b = 0, . . . , na and a random

element h2
$

← G∗
2. It sets g1 ← gα, h1 ← hα, ui,j ← gκi,j , vi,j ← hκi,j , except

for u2,k′ and v2,k′ which it sets to u2,k′ ← gx and v2,k′ ← ⊥, respectively. It also

chooses secret randomness r
$

← {0, 1}ρ for the collusion-secure code.
B1 runs A on input mpk = (g, g1, h2, U1 = (u1,0, . . . , u1,n1

), U2 = (u2,0, . . . ,
u2,n2

)), responding to its key extraction queries (ID , i) as follows. Let id be the

encoding of the codeword w
(i)
r . We know from the preconditions of the lemma

that idk′ = 0. B1 chooses r1, r2
$

← Zp and computes the secret key dID,i =
(id , a0, a1, a2) = (id , hα

2H1(ID)r1H2(id)r2 , hr1 , hr2). Note that because idk′ =
0, B1 can compute H2(id), even though it does not know v2,k′ .

At the end of this stage A will output a pirate decoder D with respect to a
group identity ID of its choice.

All the identities used to create the box D will have the k′-th bit of their
binary code word id set to zero. Algorithm B then generates a random message
m and forms the ciphertext

C1 ← gy , C2 ← (gy)κ1,0 ·
∏

i∈ID
(gy)κ1,i ,

C3 ← m · ê(gy, h2)
α , C

(i)
4 ←

{

(gy)κ2,i for 0 ≤ i ≤ n2, i 6= k′ ,

Z for i = k′ .

This ciphertext is then passed to the decoder D. Algorithm B1 outputs 1 if the
decoder correctly decrypts m, or outputs 0 otherwise.

If Z = gxy, then the ciphertext C is a correctly-formed random ciphertext,
so D will correctly decrypt it with probability δ(k). If Z is random, then C
looks exactly like a ciphertext that has been tampered with at position (i′, j′),
so D will correctly decrypt it with probability at most δ(k)− γ. The advantage
of an algorithm in solving the DDH problem is defined as the difference of the
probability that it outputs 1 if Z = gxy and if Z is random, so for our algorithm
B1 we have that

Advxddh
B1,G1

(k) ≥ δ(k)− (δ(k)− γ) = γ ,

from which the lemma follows. ⊓⊔

Proof (Lemma 2). For the sake of contradiction, let A denote an adversary
against the traitor tracing scheme that will produce a decryption box D that
correctly decrypts ciphertexts that have been tampered with at position (i′, j′)
with probability p1. We will construct an algorithm B2 which uses A as a sub-
routine to solve the bilinear computational Diffie–Hellman problem.

Let hx, hy, hz, be B2’s input for the CBDH problem. Algorithm B2 chooses

random integers κi,j
$

← Zp for i = 1, 2 and 0 ≤ j ≤ ni. Let k′ = s(i′−1)+ j′−1.

It sets
g1 ← ψ(hx) h2 = hz

vi,j ← hκi,j and ui,j ← gκi,j for i = 1, 2 and 0 ≤ j ≤ ni

except for u2,k′ and v2,k′ which it sets to

v2,k′ ← hκ2,k′ /hx = hκ2,k′−x u2,k′ ← ψ(v2,k′) = gκ2,k′−x .

It also chooses secret randomness r
$

← {0, 1}ρ for the collusion-secure code. It
then runs A on input mpk = (g, g1, h2, (u1,0, . . . , u1,n1

), (u2,0, . . . , u2,n2
)).

Algorithm A will make c key extraction queries (ID , i). Let id be the code-
word corresponding to user i; we know from the preconditions of the lemma that
idk′ = 1 for all users in the collusion. The decryption key dID,i = (id , a0, a1, a2)

is generated by choosing r1, r2
$

← Zp at random and computing

a0 ← (hz)κ2,k′ · (hx)−r2 · hκ2,k′r2 ·H1(ID)r1 · (hz · hr2)
κ2,0 ·

∏

i∈id ,i6=k′

(hz · hr2)
κ2,i

= hzκ2,k′−xr2+κ2,k′r2 ·H1(ID)r1 ·

(

hκ2,0

∏

i∈id ,i6=k′

hκ2,i

)z+r2

= hxz−xz+zκ2,k′−xr2+κ2,k′r2 ·H1(ID)r1 ·

(

v2,0

∏

i∈id ,i6=k′

v2,i

)z+r2

= hxz ·H1(ID)r1 ·H2(id)z+r2

a1 ← hr1 ,

a2 ← hz · hr2 = hz+r2

At the end of this stage A will output a pirate decoder D with respect to a group
identity ID of its choice. Algorithm B2 then generates the challenge ciphertext
with

C1 ← ψ(hy) , C2 ← ψ(hy)
κ1,0

∏

i∈ID
ψ(hy)

κ1,i ,

C3
$

← GT , C
(i)
4 ←

{

ψ(hy)
κ2,i for 0 ≤ i ≤ n2, i 6= k′ ,

Z where Z
$

← G1 for i = k′ .

By our assumption on the pirate decoder D with this ciphertext will output, with

probability p1, the corresponding plaintext m as if C
(k′)
4 were chosen correctly

as uy
2,k′ . In this case B2 can recover ê(g, h)xyz by computing C3/m. Algorithm

B2 then returns this value as its solution to the bilinear computational Diffie–
Hellman problem, giving it an advantage

Advcbdh
B2,G2

(k) ≥ p1 ,

from which the lemma follows. ⊓⊔

Acknowledgements. We would like to thank Yevgeniy Dodis and Aggelos
Kiayias for suggesting that a simple method for the converting the q-ary alphabet
into binary is sufficient for our purposes.

References

1. M. Abdalla, D. Catalano, A. Dent, J. Malone-Lee, G. Neven, and N. Smart.
Identity-based encryption gone wild. In ICALP 2006, Part II, volume 4052 of
LNCS, pages 300–311. Springer-Verlag, 2006.

2. L. Ballard, M. Green, B. de Medeiros, and F. Monrose. Correlation-resistant
storage via keyword-searchable encryption. Cryptology ePrint Archive, Report
2005/417, 2005. http://eprint.iacr.org/.

3. M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing
efficient protocols. In ACM CCS 93, pages 62–73. ACM Press, 1993.

4. D. Boneh, X. Boyen, and H. Shacham. Short group signatures. In CRYPTO 2004,
volume 3152 of LNCS, pages 41–55. Springer-Verlag, 2004.

5. D. Boneh and M. K. Franklin. An efficient public key traitor tracing scheme. In
CRYPTO’99, volume 1666 of LNCS, pages 338–353. Springer-Verlag, 1999.

6. D. Boneh and M. K. Franklin. Identity-based encryption from the Weil pairing.
In CRYPTO 2001, volume 2139 of LNCS, pages 213–229. Springer-Verlag, 2001.

7. D. Boneh, A. Sahai, and B. Waters. Fully collusion resistant traitor tracing with
short ciphertexts and private keys. In EUROCRYPT 2006, volume 4004 of LNCS,
pages 573–592. Springer-Verlag, 2006.

8. D. Boneh and J. Shaw. Collusion-secure fingerprinting for digital data (extended
abstract). In CRYPTO’95, volume 963 of LNCS, pages 452–465. Springer-Verlag,
1995.

9. R. Canetti, S. Halevi, and J. Katz. Chosen-ciphertext security from identity-
based encryption. In EUROCRYPT 2004, volume 3027 of LNCS, pages 207–222.
Springer-Verlag, 2004.

10. C. Cocks. An identity based encryption scheme based on quadratic residues.
In Cryptography and Coding, 8th IMA International Conference, volume 2260 of
LNCS, pages 360–363. Springer-Verlag, 2001.

11. A. Kiayias and M. Yung. On crafty pirates and foxy tracers. In ACM CCS Digital

Rights Management Workshop 2001, volume 2320 of LNCS, pages 22–39. Springer-
Verlag, 2002.

12. R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University
Press, 1995.

13. R. Sakai, K. Ohgishi, and M. Kasahara. Cryptosystems based on pairing. In SCIS

2000, 2000.
14. M. Scott. Authenticated id-based key exchange and remote log-in with simple

token and pin number. Cryptology ePrint Archive, Report 2002/164, 2002. http:
//eprint.iacr.org/.

15. A. Shamir. Identity-based cryptosystems and signature schemes. In CRYPTO’84,
volume 196 of LNCS, pages 47–53. Springer-Verlag, 1985.

16. G. Tardos. Optimal probabilistic fingerprint codes. In 35th ACM STOC, pages
116–125. ACM Press, 2003.

17. B. R. Waters. Efficient identity-based encryption without random oracles. In
EUROCRYPT 2005, volume 3494 of LNCS, pages 114–127. Springer-Verlag, 2005.

A Waters’ HIBE with Asymmetric Pairings

Our scheme is built out of the HIBE suggested by Waters in [17], but in the
asymmetric pairing setting and using a scheme of depth 2. In this section we
describe the underlying HIBE in full generality.

A.1 Scheme Description

Suppose that we want a scheme of depth L. We define L sets V1, . . . , VL of
random elements in G2, with elements denoted Vi = (vi,0, vi,1, . . . , vi,ni

). We let
ui,j = ψ(vi,j) and let Ui denote the image of the set Vi under the isomorphism
ψ, i.e. Ui = (ui,0, ui,1, . . . , ui,ni

).
Just as in our traitor tracing scheme for a bit string B of length ni we use

these sets to define the Waters’ hash functions:

Hi(B) = vi,0

∏

j∈B

vi,j ,

where the products are over all the set bits in B. To simplify notation we define

Gi(B) = ui,0

∏

j∈B

ui,j = ψ(Hi(B)).

Note that ψ(Hi(B)) = Gi(B) can be computed either from the set Vi using
the isomorphism ψ, or from the set Ui directly. Also note that vi,j = hκi,j and
ui,j = gκi,j for some, unknown, values κi,j ∈ Zp.

Using the entities above, the various algorithms that make up Waters’ HIBE
scheme are as follows. We assume that id is a tuple (id1, . . . , id l) where l ≤ L
and id i is a bit string of length ni, applying a collision resistant hash function
if necessary.

Setup G(1k) : We generate a set of pairing groups as above at the security level
k, along with the sets V1, . . . , VL and U1, . . . , UL. We require a random element

h
$

← G2 and let g ← ψ(h) ∈ G1. A random value α
$

← Zp is selected, and we set
g1 ← gα and h1 ← hα. We require a second random element h2 ∈ G2 and we let
g2 ← ψ(h2). The master public key is defined to be mpk = {g, g1, h2, U1, . . . , UL}
and the master secret key is msk = {h, hα

2 , V1, . . . , VL}.

Key Extraction X (id ,msk) : We first select random values r1, . . . , rl ← Zp

and then define the private key as

did = (a0, a1, . . . , al)←

(

hα
2

l
∏

i=1

Hi(id i)
ri , hr1 , . . . , hrl

)

∈ G
l+1
2 .

Encryption E(id ,mpk ,m) : A message is defined as an element in GT . The
sender first choose a t← Zp and then computes the ciphertext

C = (C1, C2, C3) ∈ G1 ×G
l
1 ×GT

as
C1 ← gt, C2 ←

(

C2,i = Gi(id i)
t
)l

i=1
, C3 ← m · ê(g1, h2)

t.

Decryption D(C, did) : Compute

C3 ·

∏l
i=1 ê(C2,i, ai)

ê(C1, a0)
= m.

