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Abstract. “Grid” technology enables complex interactions among computational and data re-
sources; however, to be deployed in production computing environments “Grid” needs to imple-
ment additional security mechanisms. Recent compromises of user and server machines at Grid
sites have resulted in a need for secure password-authentication key-exchange technologies. AuthA

is an example of such a technology considered for standardization by the IEEE P1363.2 working
group. Unfortunately in its current form AuthA does not achieve the notion of forward-secrecy in
a provably-secure way nor does it allow a Grid user to log into his account using an un-trusted
computer. This paper addresses this void by first proving that AuthA indeed achieves this goal, and
then by modifying it in such a way that it is secure against attacks using captured user passwords
or server data.

1 Introduction

Motivation. Next generation distributed infrastructures integrate the ongoing work in Web
Services (WS) with the state-of-the-art in distributed systems to enable seamless interaction
among computational and data resources. “Grid” technology for example links computers, stor-
age systems, and other devices through common interfaces and infrastructure to create powerful
distributed computing capabilities [9, 11]. In this model of distributed computing, researchers
and businesses not only plug into a global network of computer systems to access information
but also to access distributed processing power. In parallel with the growth of Grid concepts and
software in the scientific communities, commercial interests have been developing Web Services
(WS) for the next generation business-to-business applications. Interest in both communities has
grown to combine the techniques and concepts of Grid computing with the functionality of WS.
This has led to the development of the Web Service Resource Framework (WSRF) specification
and other elements of the Open Grid Services Architecture (OGSA) within several standard
bodies such as the OASIS [19] and the Global Grid Forum (GGF) [12].
Security is one of the major requirements of Grid computing. Any Grid deployment must

provide the security services of authentication, authorization, and secure session establishment.
These services are provided by the Grid security infrastructure which was initially built upon
the Transport Layer Security (TLS) protocol [10] and with the migration towards Web Services
is now being built upon the WS-security primitives [9]. The current implementation of the Grid
security infrastructure is based on public-key certificates. Recent security hacks of Grid sites due
to the compromise of client and server machines, however, have led to a trend where many Grid
sites are changing their security policies. The new policy prohibits long-term private keys from
being stored on the Grid user’s machines but requires that the keys are stored on servers in data
centers where their integrity can be better protected. Grid users will authenticate to the data
centers using a (one-time) human-memorable password and be issued short-lived certificates.
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Human-memorable passwords are short strings (e.g, 4 decimal digits) chosen from a relatively
small dictionary so that they can be remembered easily.
The unique requirement of Grid provides security researchers with the opportunity to design

and develop “provably-secure” cryptographic technologies that will play an essential role in
securing next generation distributed infrastructures. The most immediate cryptographic need is
certainly a “provably-secure” One-time Password-authentication and Key-eXchange technology
(OPKeyX) for two-party [8].

Contributions. This paper is the third tier in the treatment of Encrypted Key Exchange
(EKE), where the Diffie-Hellman key-exchange flows are encrypted using a password, in the direct
model of Bellare-Pointcheval-Rogaway [1]. The first tier showed that under the computational
Diffie-Hellman (CDH) assumption the AuthA password-authenticated key-exchange protocol is
secure in both the random-oracle and ideal-cipher models [6]; the encryption primitive used is a
password-keyed symmetric cipher. The second tier provided a very ”elegant” and compact proof
showing that under the CDH assumption the AuthA protocol is secure in the random-oracle
model only [7]; the encryption primitive used is a mask generation function. In the present
paper, we propose a slightly different variant of AuthA, where both flows are encrypted using
separate mask generation functions, similarly to [18]. This Two-Mask Encrypted Key Exchange
(EKE– both flows are encrypted) was not created for the sake of having one more variant, but
simply because it allows us to provide the first complete proof of forward-secrecy for AuthA. The
forward-secrecy of AuthA was indeed explicitly stated as an open problem in [2, 18]. Our result
shows that under the Gap Diffie-Hellman assumption [20] this variant of AuthA is forward-secure
in the random-oracle model. This is a significant achievement over other works which we hope
will leverage our work to obtain tighter and more meaningful security measurements for the
forward-secrecy of their EKE-like protocols.
We have furthermore augmented the Two-Mask protocol with two cryptographic mechanisms

to reduce the risk of corruption of the server and the client. Corruption of a server occurs when
an attacker gains access to the server’s local database of passwords. If client’s passwords are
stored directly in the database, then the attacker can immediately use any of these passwords
to impersonate these clients. Fortunately, there is a means to prevent an attacker from doing
just that: verifier-based password-authentication. Of course, this mechanism will not prevent an
adversary from mounting (off-line) dictionary attacks but it will slow him or her down and thus
give the server’s administrator time to react appropriately and to inform its clients. Corruption
of a client occurs when a client is using an un-trusted machine which happens frequently these
days as hackers run password sniffers on the Internet. There is a means to prevent a client’s
password from being captured: one-time password-based authentication. Passwords sniffed by
hackers are of no use since users’ passwords change from one session to the other. The end
result is a “provably-secure” One-time Password-authentication and Key-eXchange (OPKeyX)
technology for Grid computing.
The remainder of the paper is organized as follows. We first present the related work. In

Section 2, we define the formal security model which we use through the rest of the paper. In
Section 3, we present the computational assumptions upon which the security of Two-Mask and,
thus, our OPKeyX technology are based upon. In Section 4, we describe the Two-Mask protocol
itself and prove that the latter is forward-secure via a reduction from the Two-Mask protocol
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to the Gap Diffie-Hellman problem. In Section 5, we augment the Two-Mask protocol to reduce
the risk of stolen server databases and captured client passwords to construct a technology for
OPKeyX.

Related Work. The seminal work in this area is the Encrypted Key Exchange (EKE) proto-
col proposed by Bellovin and Merritt in [3, 4]. EKE is a classical Diffie-Hellman key exchange
wherein either or both flows are encrypted using the password as a common symmetric key.
The encryption primitive can be instantiated via either a password-keyed symmetric cipher or a
mask generation function computed as the product of the message with the hash of a password.
Bellare et al. sketched a security proof for the flows at the core of the EKE protocol in [1],
and specified a EKE-structure (called the AuthA protocol) in [2]. Boyko et al. proposed very
similar EKE-structures (called the PAK suite) and proved them secure in Shoup’s simulation
model [5, 18]. The PPK protocol in the PAK suite is similar to our Two-Mask Encrypted Key
Exchange protocol; however, arguments in favor of forward-secrecy under the computational
Diffie-Hellman (CDH) assumption do not give many guarantees on its use in practice [18]. The
KOY protocol [16] is also proved to be forward-secure but it is not efficient enough to be used
in practice.

The PAK suite is in the process of being standardization by the IEEE P1363.2 Standard
working group [15]. Server machines store images of the password under a one-way function
instead of a plaintext password when the “augmented” versions of the PAK suite are used.
”Augmented” EKE-like protocols indeed limit the damage due to the corruption of a server
machine, but do not protect against attacks replaying captured users’ passwords. On the other
hand, One-Time Password (OTP) systems protect against the latter kind of attacks but pro-
vide neither privacy of transmitted data nor protection against active attacks such as session
hijacking [14]. The present paper designs and develops a cryptographic protocol for one-time
“augmented” password-authenticated key exchange.

2 Password-based Authenticated Key Exchange

In this section, we recall the security model of Bellare et al. [1] for password-based authenticated
key exchange protocol.

2.1 Overview

A password-based authenticated key exchange protocol P is a protocol between two parties,
a client A ∈ client and a server S ∈ server. Each participant in a protocol may have several
instances, called oracles, involved in distinct, possibly concurrent, executions of P . We let U i

denote the instance i of a participant U , which is either a client or a server.

Each client A ∈ client holds a password pwA. Each server S ∈ server holds a vector pwS =
〈pwS [A]〉A∈client with an entry for each client, where pwS [A] is the derived-password defined
in [1]. In the symmetric model, pwS [C] = pwC , but they may be different in general, as in our
verifier-based scheme. pwC and pwS are also referred to as the long-lived keys of client C and
server S. Each password pwA is considered to be a low-entropy string, drawn from the dictionary
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Password according to the distribution PW. As in [7], we let PW(q) denote the probability to
be in the most probable set of q passwords:

PW(q) = max
P⊆Password

{

Pr
pw∈PW

[pw ∈ P |#P ≤ q]

}

.

Note that, if we denote by UN the uniform distribution among N passwords, then UN (q) = q/N .

2.2 The Security Model

The interaction between an adversary A and the protocol participants occurs only via oracle
queries, which model the adversary capabilities in a real attack (see literature for more details [1,
7].) The types of oracles available to the adversary are as follows:

– Execute(Ai, Sj): The output of this query consists of the messages exchanged during the
honest execution of the protocol.

– Reveal(U i): This query is only available to A if the attacked instance actually “holds” a
session key and it releases the latter to A.

– Send(U i,m): The output of this query is the message that the instance U i would generate
upon receipt of message m. A query Send(Ai, Start) initializes the key exchange protocol,
and thus the adversary receives the initial flow that client instance Ai would send to the
server S.

2.3 Security Notions

In order to define a notion of security for the key exchange protocol, we consider a game in
which the protocol P is executed in the presence of the adversary A. In this game, we first draw
a password pw from Password according to the distribution PW, provide coin tosses and oracles
to A, and then run the adversary, letting it ask any number of queries as described above, in
any order.

AKE Security. In order to model the privacy (semantic security) of the session key, we consider
a new game Gameake(A, P ), in which an additional oracle is available to the adversary: the
Test(U i) oracle.

– Test(U i): This query tries to capture the adversary’s ability to tell apart a real session key
from a random one. In order to answer it, we first flip a (private) coin b and then forward
to the adversary either the session key sk held by U i (i.e., the value that a query Reveal(U i)
would output) if b = 1 or a random key of the same size if b = 0.

The Test-oracle can be queried at most once by the adversary A and is only available to A if
the attacked instance U i is Fresh (which roughly means that the session key is not “obviously”
known to the adversary). When playing this game, the goal of the adversary is to guess the
hidden bit b involved in the Test-query, by outputting a guess b′. Let Succ denote the event in
which the adversary is successful and correctly guesses the value of b. The AKE advantage
of an adversary A is then defined as Advake

P (A) = 2Pr[Succ] − 1. The protocol P is said to be
(t, ε)-AKE-secure if A’s advantage is smaller than ε for any adversary A running with time t.
Note that the advantage of an adversary that simply guesses the bit b is 0 in the above definition
due to the rescaling of the probabilities.
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Forward-Secrecy. One additional security property to consider is that of forward secrecy.
A key exchange protocol is said to be forward-secure if the security of a session key between
two participants is preserved even if one of these participants is later compromised. In order to
consider forward secrecy, one has to account for a new type of query, the Corrupt-query, which
models the compromise of a participant by the adversary. This query is defined as follows:

– Corrupt(U): This query returns to the adversary the long-lived key pwU for participant U .
As in [1], we assume the weak corruption model in which the internal states of all instances
of that user are not returned to the adversary.

In order to define the success probability in the presence of this new type of query, one should
extend the notion of freshness so as not to consider those cases in which the adversary can
trivially break the security of the scheme. In this new setting, we say that a session key sk is
FS-Fresh if all of the following hold: (1) the instance holding sk has accepted, (2) no Corrupt-
query has been asked since the beginning of the experiment; and (3) no Reveal-query has been
asked to the instance holding sk or to its partner (defined according to the session identification).
In other words, the adversary can only ask Test-queries to instances which had accepted before
the Corrupt query is asked.
Let Succ denote the event in which the adversary successfully guesses the hidden bit b used

by Test oracle. The FS-AKE advantage of an adversary A is then defined as Advake−fs
P (A) =

2Pr[Succ]− 1. The protocol P is said to be (t, ε)-FS-AKE-secure if A’s advantage is smaller
than ε for any adversary A running with time t.

Verifier-Based and One-Time-Password Protocols. In order to mitigate the amount of
damage that can be caused by corruptions in the server and in the client, we consider two
extensions to the standard notion of EKE protocols which we call Verifier-Based and One-Time-
Password protocols.
In a Verifier-Based protocol, the goal is to keep the attacker capable of corrupting the server

from obtaining the password for all the clients in the system. To achieve this goal, we need to
adopt the asymmetric model in which the server no longer knows the password of a user, but
only a function of it, which we call the verifier. In other words, only the client should know its
password in a verifier-based protocol. Even though off-line dictionary attacks cannot be avoided
in this case, the main idea of such protocols is to force an adversary who breaks into a server to
have to perform an off-line dictionary attack for each password that it wants to crack based on
its verifier. Therefore, the security of verifier-based protocols is directly related to the difficulty
of recovering the original password from the verifier. In a One-Time-Password protocol, on the
other hand, the goal is to limit the damage caused by an attacker who breaks into a client’s
machine or sniffs the password. This is achieved by forcing the user to use a different password
in each session. That is, passwords are good for one session only and cannot be reused.

3 Algorithmic Assumptions

The arithmetic is in a finite cyclic group G = 〈g〉 of order a `-bit prime number q, where the
operation is denoted multiplicatively. We also denote by G

? the subset G\{1} of the generators
of G.
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Client Server

pw ∈ Password,PWas = G(A‖S‖pw),PWsa = G(S‖A‖pw) ∈ G

accept← false accept← false

x
R
← Zq y

R
← Zq

X ← gx Y ← gy

X? ← X × PWas A,X?

−−−−−−−−→ X ← X?/PWas

Y ← Y ?/PWsa S, Y ?

←−−−−−−−− Y ? ← Y × PWsa

sk = H(A‖S‖X?‖Y ?‖pw‖Y x) sk = H(A‖S‖X?‖Y ?‖pw‖Xy)

accept← true accept← true

Fig. 1. An execution of the EKE protocol.

A (t, ε)-CDHg,G attacker, in a finite cyclic group G of prime order q with g as a generator, is
a probabilistic machine ∆ running in time t such that its success probability Succcdh

g,G(∆), given
random elements gx and gy to output gxy, is greater than ε:

Succcdh
g,G(∆) = Pr[∆(g

x, gy) = gxy] ≥ ε.

We denote by Succcdh
g,G(t) the maximal success probability over every adversaries running within

time t. The CDH-Assumption states that Succcdh
g,G(t) ≤ ε for any t/ε not too large.

A (t, n, ε)-GDHg,G attacker is a (t, ε)-CDHg,G attacker, with access to an additional oracle:
a DDH-oracle, which on any input (gx, gy, gz) answers whether z = xy mod q. Its number of

queries is limited to n. As usual, we denote by Succ
gdh
g,G(t) the maximal success probability over

every adversaries running within time t. The GDH-Assumption states that Succ
gdh
g,G(t) ≤ ε for

any t/ε not too large.

4 The EKE Protocol: Encrypted Key Exchange

4.1 Description of the Scheme

A hash function from {0, 1}? to {0, 1}` is denotedH. While G denotes a full-domain hash function
from {0, 1}? into G. As illustrated on Figure 1 (with an honest execution of the EKE protocol),
the protocol runs between two parties A and S, and the session-key space SK associated to this
protocol is {0, 1}` equipped with a uniform distribution. It works as follows. The client chooses
at random a private random exponent x and computes its Diffie-Hellman public value gx. The
client encrypts the latter value using a password-based mask, as the product of a Diffie-Hellman
value with a full-domain hash of the password, and sends it to the server. The server in turn
chooses at random a private random exponent y and computes its Diffie-Hellman public value gy
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which it encrypts using another password-based mask1. The client (resp. server) then decrypts
the flow it has received and computes the session key.

4.2 Security Result

In this section, we assert that under the intractability of the Diffie-Hellman problem, the EKE

protocol, securely distributes session keys: the key is semantically secure. The proof, which is an
improvement of [7], can be found in Appendix A.

Theorem 1 (AKE Security). Let us consider the above EKE protocol, over a group of prime
order q, where Password is a dictionary equipped with the distribution PW. Let A be an adversary
against the AKE security within a time bound t, with less than qs active interactions with the
parties (Send-queries) and qp passive eavesdroppings (Execute-queries), and, asking qg and qh

hash queries to G and H respectively. Then we have

Advake
eke(A) ≤ 2× PW(qs) + 4q

2
h × Succcdh

g,G(t+ 5τe) +
(qp + qs)

2 + 3(qg + qh)
2

2q
,

where τe denotes the computational time for an exponentiation in G.

Let us now enhance the result to cover forward-secrecy. The proof will be different from
previous proofs for EKE-like protocols since the simulation still must be independent of any
password (so that we can say that the adversary has a minute of chance to guess the correct
one), while after a corruption the adversary will be able to check the consistency. To reach
this aim, we will need to rely on a stronger assumption: the Gap Diffie-Hellman problem. The
Decisional Diffie-Hellman oracle will be used to identify the public random oracle H to the
private one H′ when the input is a valid Diffie-Hellman value.

Theorem 2 (FS-AKE Security). Let us consider the above EKE protocol, over a group of
prime order q, where Password is a dictionary equipped with the distribution PW. Let A be an
adversary against the FS-AKE security within a time bound t, with less than qs active inter-
actions with the parties (Send-queries) and qp passive eavesdroppings (Execute-queries), and,
asking qg and qh hash queries to G and H respectively. Then we have

Advake−fs
eke (A) ≤ 2× PW(qs) + 4× Succ

gdh
g,G(qh, t+ 5τe) +

(qp + qs)
2 + 3(qg + qh)

2

2q
,

where τe denotes the computational time for an exponentiation in G.

Proof. As usual, we incrementally define a sequence of games starting at the real game G0 and
ending up atG5. We are interested in the event S, which occurs if the adversary correctly guesses
the bit b involved in the Test-query. Let us remember that in this attack game, the adversary is
provided with the Corrupt-query.

1 this differs from the classical EKE protocol, which uses a common mask [7]. But this helps to improve the
security result.
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Game G0: This is the real protocol, in the random-oracle model. By definition of event S0,
which means that the adversary correctly guesses the bit b involved in the Test-query, we have

Advake−fs
eke (A) = 2Pr[S0]− 1.

Game G1: In this game, we simulate the hash oracles (G and H, but also an additional hash
function H′ : {0, 1}? → {0, 1}` that will appear in the Game G3) as usual by maintaining hash
lists ΛG , ΛH and ΛH′ (see Figure 2). Except that we query G(A‖S‖pw) and G(S‖A‖pw) as

G
a
n
d
H

o
ra
cl
es

For a hash-query G(q) such that a record (q, r, ?) appears in ΛG , the answer is r. Otherwise the answer
r is defined according to the following rule:

IRule G(1)

Choose a random element r ∈ G. The record (q, r,⊥) is added to
ΛG .

Note: the third component of the elements of this list will be explained later.
For a hash-query H(q) such that a record (q, r) appears in ΛH, the answer is r. Otherwise, q is parsed
as (A‖S‖X?‖Y ?‖pw‖K), one first asks for G(A‖S‖pw) and G(S‖A‖pw), using the above simulation,
then the answer r is defined according to the following rule:

IRule H(1)

Choose a random element r ∈ {0, 1}`.

One adds the record (q, r) to ΛH.
For a hash-query H′(q), such that a record (q, r) appears in ΛH′ , the answer is r. Otherwise, one
chooses a random element r ∈ {0, 1}`, answers with it, and adds the record (q, r) to ΛH′ .

Fig. 2. Simulation of the EKE protocol (random oracles)

soon as A, S and pw appear in a H-query. This just increases the number of G queries. We also
simulate all the instances, as the real players would do, for the Send-queries and for the Execute,
Reveal, Test and Corrupt-queries (see Figure 3).

From this simulation, we easily see that the game is perfectly indistinguishable from the real
attack.

Game G2: First, we cancel games in which some collisions appear:

– collisions on the transcripts ((A,X?), (S, Y ?));

– collisions on the output of G.

Pr[Coll2] ≤
(qp + qs)

2

2q
+
(qg + qh)

2

2q
.

Game G3: In this game, we do not compute the session key sk using the oracle H, but using
the private oracle H′ so that the value sk is completely independent not only from H, but also
from pw and thus from both KA and KS . We reach this aim by using the following rule:
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S
en

d
-q
u
er
ie
s
to

A

We answer to the Send-queries to an A-instance as follows:

– A Send(Ai, Start)-query is processed according to the following rule:
IRule A1(1)

Choose a random exponent θ ∈ Zq, compute X = gθ and X? =
X × PWas.

Then the query is answered with (A,X?), and the instance goes to an expecting state.
– If the instance Ai is in an expecting state, a query Send(Ai, (S, Y ?)) is processed by computing

the session key. We apply the following rules:
IRule A2(1)

Compute Y = Y ?/PWsa and KA = Y θ.

IRule A3(1)

Compute the session key skA = H(A‖S‖X?‖Y ?‖pw‖KA).

Finally the instance accepts.

S
en

d
-q
u
er
ie
s
to

S

We answer to the Send-queries to a S-instance as follows:

– A Send(Sj , (A,X?))-query is processed according to the following rules:
IRule S1(1)

Choose a random exponent ϕ ∈ Zq, compute Y = gϕ and Y ? =
Y × PWsa.

Then the query is answered with (S, Y ?), and the instance applies the following rules.
IRule S2(1)

Compute X = X?/PWas and KS = Xϕ.

IRule S3(1)

Compute the session key skS = H(A‖S‖X?‖Y ?‖pw‖KS).

Finally, the instance accepts.

O
th
er

q
u
er
ie
s An Execute(Ai, Sj)-query is processed using successively the above simulations of the Send-queries:

(A,X?) ← Send(Ai, Start) and (S, Y ?) ← Send(Sj , (A,X?)), and outputting the transcript
((A,X?), (S, Y ?)).
A Reveal(U)-query returns the session key (skA or skS) computed by the instance I (if the latter has
accepted).
A Test(U)-query first gets sk from Reveal(U), and flips a coin b. If b = 1, we return the value of the
session key sk, otherwise we return a random value drawn from {0, 1}`.
A Corrupt(U)-query returns password pw of the user U .

Fig. 3. Simulation of the EKE protocol (Send, Reveal, Execute, Test and Corrupt queries)
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IRule A3/S3(3)

Compute the session key skA/S = H
′(A‖S‖X?‖Y ?).

Since we do no longer need to compute the values KA and KS , we can also simplify the second
rules:

IRule A2/S2(3)

Do nothing.

The games G3 and G2 are indistinguishable unless A queries the hash function H on either
A‖S‖X?‖Y ?‖pw‖KA or A‖S‖X

?‖Y ?‖pw‖KS , for some execution transcript ((A,X?), (S, Y ?)).
We hope to prove that for all the transcripts of accepted sessions, the probability of such an
event is negligible. However, there is no hope for proving it about sessions accepted after the
corruption of the password, since the adversary may know the x and thus KA (or y and KS).
One should note that sessions accepted after the corruption may have been started before. There
is no way in our simulation to anticipate different answers for the Send-queries according to that.
Therefore, we have to make answers from H and H′ (when they correspond to the same query,
which can be checked with the DDH-oracle) to be the same for sessions accepted after the
corruption of the password:

IRule H(3)

– Before the corruption, randomly choose r ∈ {0, 1}`.
– After the corruption, knowing the correct password, if

• pw is the correct password;
• A,S,X?, Y ? corresponds to the session ID of a session accepted
after the corruption;

• K = CDHg,G(X
?/PWas, Y ?/PWsa) (checked using the DDH-

oracle);
then r is set to H′(A‖S‖X?‖Y ?).
Else, choose a random element r ∈ {0, 1}`.

This new rule for the simulation of H just replaces some random values by other random val-
ues. The games G3 and G2 are now indistinguishable unless A queried the hash function H
on either A‖S‖X?‖Y ?‖pw‖KA or A‖S‖X?‖Y ?‖pw‖KS , for some accepted-session transcript
((A,X?), (S, Y ?)), before corrupting the password: event AskHbC. This means that, for some
transcript ((A,X?), (S, Y ?)), the tuple (A,S,X?, Y ?, pw ,CDHg,G(X

?/PWas, Y ?/PWsa)) lies in
the list ΛH.
On the other hand, the session key (associated to a session accepted before the corruption)

is computed with a random oracle that is private to the simulator, then one can remark that it
cannot be distinguished by the adversary unless the same transcript ((A,X?), (S, Y ?)) appeared
in another session, for which a Reveal-query has been asked (which event has been excluded in
the previous game). The adversary correctly guesses the bit b involved in the Test-query (event
S3) only by chance: Pr[S3] = 1/2.
Actually, one does not need the Diffie-Hellman values KA or KS for computing sk, but the

password: we can formally simplify again some rules but thus without modifying anything w.r.t.
the probabilities:
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IRule A1(3)

Choose a random element x ∈ Zq and compute X? = gx.

IRule S1(3)

Choose a random element y ∈ Zq and compute Y ? = gy.

Game G4: In order to evaluate the probability of event AskHbC, let us modify the simulation
of the oracle G, with two random elements P,Q ∈ G\{1} (which are thus generators of G, since
the latter has a prime order q). The simulation introduces values in the third component of the
elements of ΛG , but does not use it. It would let the probabilities unchanged, but we exclude
the cases PWas = 1 or PWsa = 1:

IRule G(4)

– If q = “A‖S‖?′′, randomly choose k ∈ Z
?
q , and compute r = P−k;

– If q = “S‖A‖?′′, randomly choose k ∈ Z
?
q , and compute r = Q−k;

– Else, choose a random element r ∈ G, and set k = ⊥.

The record (q, r, k) is added to ΛG .

Since we just exclude k = 0, we have:

|Pr[AskHbC4]− Pr[AskHbC3] | ≤
qg + qh

q
.

Game G5: It is now possible to evaluate the probability of the event AskHbC. Indeed, one can
remark that the password is never used during the simulation, before the corruption. It thus does
not need to be chosen in advance, but at the time of the corruption (or at the very end only). At
that time, one can check whether the event AskHbC happened or not. To make this evaluation
easier, we cancel the games wherein for some pair (X?, Y ?) ∈ G

2, involved in a communication,
there are two passwords pw such that the tuple (A,S,X?, Y ?, pw ,CDHg,G(X

?/PWas, Y ?/PWsa))
is in ΛH (which event is denoted CollH5). Hopefully, event CollH5 can be upper-bounded, granted
the following Lemma:

Lemma 3. For any pair (X?, Y ?) involved in a communication, there is at most one password
pw such that (A,S,X?, Y ?, pw ,CDHg,G(X

?/PWas, Y ?/PWsa)) is in ΛH, unless one can solve the
Diffie-Hellman problem:

Pr[CollH5] ≤ Succ
gdh
g,G(qh, t+ 5τe).

Proof. Assume there exist (X? = gx, Y ? = gy) ∈ G
2 involved in a communication, PWas

0 =
P−k0 6= 1, PWsa

0 = Q−k′
0 6= 1, and PWas

1 = P−k1 6= 1, PWsa
1 = Q−k′

1 6= 1 such that the two
following tuples (for i = 0, 1) are in ΛH:

(A,S,X?, Y ?, pw i, Zi = CDHg,G(X
?/PWas

i , Y ?/PWsa
i )).

Then, Zi = CDHg,G(X
? × P ki , Y ? × Qk′

i). Since (X?, Y ?) ∈ G
2 has been involved in a commu-

nication (either from Send-queries or an Execute-query), one of X? = gx or Y ? = gy, has been
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simulated: at least one of x or y is known. Without loss of generality, we can assume we know
x:

Zi = (Y
? ×Qk′

i)x × CDHg,G(Y
?, P )ki × CDHg,G(P,Q)kik

′
i

Zk0
1 /Zk1

0 =
(

Y ?k0−k1 × PWsa
0

k1/PWsa
1

k0

)x
× CDHg,G(P,Q)k0k1(k′

1−k′
0)

CDHg,G(P,Q) =
(

((PWsa
1 /Y ?)xZ1)

k0 / ((PWsa
0 /Y ?)xZ0)

k1

)u
,

where u is the inverse of k0k1(k
′
1−k′0) in Zq. The latter exists since PWas

0 , PWsa
0 , PWas

1 , PWsa
1 6= 1,

and they are all distinct from each other (we have excluded collisions for G). Since we have access
to a DDH-oracle, one can find the two useful H-queries. ut

For a more convenient analysis, we can split the event AskHbC in two disjoint sub-cases:

1. AskHbC-Passive, where the transcript ((A,X?), (S, Y ?)) involved in the crucial H-query
comes as an answer from an Execute-query;

2. AskHbC-Active, the other cases.

About the active case (the event AskHbC-Active5), the above Lemma 3 applied to games
where the event CollH5 did not happen states that for each pair (X

?, Y ?) involved in an active
transcript, there is at most one pw such that the corresponding tuple is in ΛH:

Pr[AskHbC-Active5] ≤ PW(qs).

Moreover, in the particular case of passive transcripts, one can state a stronger result:

Lemma 4. For any pair (X?, Y ?) ∈ G
2, involved in a passive transcript, there is no password

pw such that (A,S,X?, Y ?, pw ,CDHg,G(X
?/PWas, Y ?/PWsa)) is in ΛH, unless one can solve the

Diffie-Hellman problem:

Pr[AskHbC-Passive5] ≤ Succ
gdh
g,G(qh, t+ 4τe).

Proof. Assume there exist (X? = gx, Y ? = gy) ∈ G
2 involved in a passive transcript, and values

PWas = P−k 6= 1, PWsa = Q−k′

6= 1 such that the tuple

(A,S,X?, Y ?, pw , Z = CDHg,G(X
?/PWas, Y ?/PWsa))

is in ΛH. Then, as above (but with x and y known),

CDHg,G(P,Q) = (Z × PWsax × PWasy/gxy)u ,

where u is the inverse of kk′ in Zq. By using the DDH-oracle, one easily gets the crucial H-query.
ut

As a conclusion,
Pr[AskHbC5] ≤ Succ

gdh
g,G(qh, t+ 4τe) + PW(qs).

Combining all the above equations, one gets

Advake−fs
eke (A) ≤ 2×





PW(qs) + Succ
gdh
g,G(qh, t+ 4τe) + Succ

gdh
g,G(qh, t+ 5τe)

+
qg + qh

q
+
(qg + qh)

2

2q
+
(qp + qs)

2

2q



 .

ut
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Client Server

pw ∈ Zq pw = gpw

PWas = G(A‖S‖pw),PWsa = G(S‖A‖pw) ∈ G

accept← false accept← false

x
R
← Zq, X ← gx y

R
← Zq, Y ← gy

Y ← Y ?/PWsa S, Y ?

←−−−−−−−− Y ? ← Y × PWsa

X? ← X × PWas

r
R
← Zq, R← gr, ρ = f(R)

e = H1(A‖S‖X
?‖Y ?‖ρ‖pw‖Y x)

s = r − e · pw mod q
A,X?, ρ, s
−−−−−−−−→ X ← X?/PWas

e = H1(A‖S‖X
?‖Y ?‖ρ‖pw‖Y x)

if ρ = f(gspwe),
then accept← true

sk = H(A‖S‖X?‖Y ?‖ρ‖pw‖Y x) sk = H(A‖S‖X?‖Y ?‖ρ‖pw‖Xy)

accept← true

Fig. 4. An execution of the VB-EKE protocol.

5 The OPKeyX Protocol

The basic EKE protocol withstands password corruption, by providing forward-secrecy. But this
just protects the secrecy of session keys established before the corruption. Nothing is guaranteed
for future sessions. We can even show that one easily breaks the semantic security of their session
keys, by simply impersonating one of the parties with the knowledge of the password.
In the above protocol, the password can be extracted from both machines: the server and

the client. And moreover, the server stores many passwords (since its is aimed at establishing
sessions with many clients), then the corruption of the server does not just leak one password,
but a huge number of them. This would be quite useful to be able to reduce the damages of
such a corruption. We propose below two different ways to achieve this task.

5.1 Stealing the Server Database

In a verifier-based protocol, the client owns a password, but the server just knows a verifier
of the latter (which is actually a hash value, or the image by a one-way function), not the
password itself. Hence, the corruption of the server just reveals this verifier. Of course, an off-
line dictionary attack thereafter leads to the password. Such an exhaustive search cannot be
prevented but should be the most efficient one: by including salts (sent back to the client by the
server in the first flow) would reduce even more the impact of the corruption, since a specific
dictionary attack should be performed towards each specific user, and could not be generic.
A verifier-based enhancement of EKE is proposed on Figure 4. It is basically the previous

EKE scheme using first the verifier as common password. Then, the client furthermore proves his
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knowledge of the password which matches the password-verifier relation. In our proposal, the
relation is the pairs (x, gx), and thus the proof is a Schnorr-like proof of knowledge of a discrete
logarithm [21], with a multi-collision resistant function f [13]. To prevent dictionary attacks, we
introduce the Diffie-Hellman secret in the hash input to get the challenge e, so that the latter
can be computed by the two parties only: it is semantically secure for external adversaries for
exactly the same reasons the session key is. Because of this semantic security, dictionary attacks
are still prevented, since the additional proof of knowledge does not reveal any information: the
verification relation is actually secret, because of the secrecy of e. As a consequence, the private
property of e makes that the proof does not leak any information about both the password and
the verifier to external parties. The zero-knowledge property of this proof makes that even the
server does not learn any additional information about the password.
To improve efficiency, we also swapped the flows, so that the protocol remains a 2-pass one.

Indeed, the client has to be the last, since it has to send its proof of knowledge of the password.
By swapping the two flows of the basic EKE protocol, the latter proof of knowledge can be
concatenated to the last flow, which does not increase the communication cost.
From a more practical point of view, this inversion better suits the Transport Layer Security

(TLS) protocol [23]. The flows of the VB-EKE protocol thus have to comply with the key-
exchange phase, which happens right after the hello flows (the first is from the client to the
server, then the second goes back from the server to the client) and precedes the finish phase
(the first finish message is again from the client to the server). In short, the first message of the
VB-EKE protocol would simply map to the ServerKeyExchange flows while the second message
to the ClientKeyExchange message.

5.2 Capturing the Client Password

The above modified scheme does not really increase the communication cost, since additional
data can be concatenated to existing flows. But both parties have more computation to do, and
namely a few exponentiations. The password-verifier relation can be more efficient, using any
one-way function. However, for such a general function, a zero-knowledge proof of knowledge of
the password may not be easy to perform. But the zero-knowledge property is not required, if
we move to the one-time password scenario: f(pw) is first used as a common password, then
the client eventually reveals the password, which will thereafter be the future common data (or
verifier) if pw = fn(seed) [17]. The computation of fn(pw) is performed by a one-time password
generator which derives successive passwords from a seed. Since one-time password generators
do not require reader devices they are much more adapted for the Grid environment than contact
tokens (e.g, smart-card, USB tokens). This discussion leads to the One-time Password-enhanced
version of VB-EKE which is proposed on Figure 5. The communication of the password has
indeed to be sent in a private way, since it will become the future common data, hence the use
of an ephemeral session key, which is trivially semantically secure (due to Theorem 2).

6 Conclusion

This paper provides strong security arguments to support the EKE-like protocols being standard-
ized by the IEEE P1363.2 Standard working group (namely the PPK series). We have reached
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Client Server

pw ∈ Password, n, pwn = fn(pw) n, pw = f(pwn)
PWas = G(A‖S‖pw),PWsa = G(S‖A‖pw) ∈ G

accept← false accept← false

x
R
← Zq, X ← gx y

R
← Zq, Y ← gy

n correct?
S, Y ?, n
←−−−−−−−− Y ? ← Y × PWsa

Y ← Y ?/PWsa

X? ← X × PWas

s = H1(A‖S‖X
?‖Y ?‖pw‖Y x)

c = Es(pwn)
A,X?, c
−−−−−−−−→ X ← X?/PWas

s = H1(A‖S‖X
?‖Y ?‖pw‖Y x)

p = Ds(c), if pw = f(p),
then pw ← p, n← n− 1,

accept← true

sk = H(A‖S‖X?‖Y ?‖pw‖Y x) sk = H(A‖S‖X?‖Y ?‖pw‖Xy)

accept← true

Fig. 5. An execution of the OPKeyX protocol.

this aim by slightly modifying the original AuthA protocol (the two encryption primitives are in-
stantiated using separate mask generation functions but derived from a unique shared password)
to be able to achieve the security notion of forward-secrecy in a provably-secure way. Our result
is a slight departure from previously known results on EKE-like structures since the security of
AuthA is now based on the Gap Diffie-Hellman problem. Moreover, we have extended AuthA into
a One-time Password-authentication and Key eXchange (OPKeyX) technology which allows a
user to securely log into his account using a remote un-trusted computer and limits the damages
of corruption of the server.
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A Proof of Theorem 1

This proof is very similar to the proof presented in [7]. But the two distinct masks provide a
better security reduction. As usual, in this proof, we incrementally define a sequence of games
starting at the real game G0 and ending up at G5. We use the Shoup’s lemma [22] to bound the
probability of each event in these games. Here, we are interested in the event S, which occurs if
the adversary correctly guesses the bit b involved in the Test-query.

Game G0: This is the real protocol, in the random-oracle model. By definition, we have

Advake
eke(A) = 2Pr[S0]− 1.

Game G1: In this game, we simulate the hash oracles (G and H, but also an additional hash
function H′ : {0, 1}? → {0, 1}` that will appear in the Game G3) as usual by maintaining hash
lists ΛG , ΛH and ΛH′ (see Figure 2). Except that we query G(A‖S‖pw) and G(S‖A‖pw) as soon
as A, S and pw appear in a H-query. This just increases the number of G queries. We also
simulate all the instances, as the real players would do, for the Send-queries and for the Execute,
Reveal and Test-queries (see Figure 3). From this simulation, we easily see that the game is
perfectly indistinguishable from the real attack.

Game G2: For an easier analysis in the following, we cancel games in which some collisions
appear:

– collisions on the transcripts ((A,X?), (S, Y ?));

– collisions on the output of G.

Both probabilities are bounded by the birthday paradox:

Pr[Coll2] ≤
(qp + qs)

2

2q
+
(qg + qh)

2

2q
.

Game G3: In this game, we do not compute the session key sk using the oracle H, but using
the private oracle H′ so that the value sk is not only completely independent from H, but also
independent from pw and thus from both KA and KS . We reach this aim by using the following
rules:

IRule A3/S3(3)

Compute the session key skA/S = H
′(A‖S‖X?‖Y ?).

Since we do no longer need to compute the values KA and KS , we can also simplify the second
rules:

IRule A2/S2(3)

Do nothing.
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The gamesG3 andG2 are indistinguishable unless the following event AskH occurs:A queries
the hash function H on A‖S‖X?‖Y ?‖pw‖KA or on A‖S‖X?‖Y ?‖pw‖KS , for some execution
transcript ((A,X?), (S, Y ?)). This means that, for some transcript ((A,X?), (S, Y ?)), which
number is upper-bounded by qs+ qp, the tuple (A,S,X?, Y ?, pw ,CDHg,G(X

?/PWas, Y ?/PWsa))
lies in the list ΛH.
On the other hand, the session key is computed with a random oracle that is private to

the simulator, then one can remark that it cannot be distinguished by the adversary unless the
same transcript ((A,X?), (S, Y ?)) appeared in another session, for which a Reveal-query has
been asked (which event has been excluded in the previous game):

Pr[S3] =
1

2
.

Actually, one does not need the password for the simulation either: we can formally simplify
again some rules but thus without modifying anything w.r.t. the probabilities:

IRule A1(3)

Choose a random element x ∈ Zq and compute X? = gx.

IRule S1(3)

Choose a random element y ∈ Zq and compute Y ? = gy.

Game G4: In order to evaluate the probability of event AskH, let us modify the simulation
of the oracle G, with two random elements P,Q ∈ G\{1} (which are thus generators of G, since
the latter has a prime order q). The simulation introduces values in the third component of the
elements of ΛG , but does not use it. It would let the probabilities unchanged, but we exclude
the cases PWas = 1 or PWsa = 1:

IRule G(4)

– If q = “A‖S‖?′′, randomly choose k ∈ Z
?
q , and compute r = P−k;

– If q = “S‖A‖?′′, randomly choose k ∈ Z
?
q , and compute r = Q−k;

– Else, choose a random element r ∈ G, and set k = ⊥.

The record (q, r, k) is added to ΛG .

Since we just exclude k = 0, we have:

|Pr[AskH4]− Pr[AskH3] | ≤
qg + qh

q
.

Game G5: It is now possible to evaluate the probability of the event AskH. Indeed, one
can remark that the password is never used during the simulation. It thus does not need
to be chosen in advance, but at the very end only, to check whether the event AskH hap-
pened or not. To make this evaluation easier, we cancel the games wherein for some pair
(X?, Y ?) ∈ G

2, involved in a communication, there are two passwords pw such that the tu-
ple (A,S,X?, Y ?, pw ,CDHg,G(X

?/PWas, Y ?/PWsa)) is in ΛH (which event is denoted CollH5)
2.

Hopefully, event CollH5 can be upper-bounded, granted the following Lemma:

2 We remind that as soon as A, S and pw appear in a H query, they are forwarded to G queries, which define
the appropriate PWas and PWsa.
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Lemma 5. For any pair (X?, Y ?) ∈ G
2, involved in a communication, there is at most one

password pw such that (A,S,X?, Y ?, pw ,CDHg,G(X
?/PWas, Y ?/PWsa)) is in ΛH, unless one

can solve the Diffie-Hellman problem:

Pr[CollH5] ≤ q2
h × Succcdh

g,G(t+ 5τe).

Proof. Assume there exist (X? = gx, Y ? = gy) ∈ G
2 involved in a communication, PWas

0 =
P−k0 6= 1, PWsa

0 = Q−k′
0 6= 1, and PWas

1 = P−k1 6= 1, PWsa
1 = Q−k′

1 6= 1 such that the tuples
(for i = 0, 1)

(A,S,X?, Y ?, pw i, Zi = CDHg,G(X
?/PWas

i , Y ?/PWsa
i ))

are in ΛH, for i = 0, 1. Then,

Zi = CDHg,G(X
? × P ki , Y ? ×Qk′

i)

= CDHg,G(X
?, Y ?)× CDHg,G(X

?, Q)k
′
i × CDHg,G(Y

?, P )ki × CDHg,G(P,Q)kik
′
i

Since (X?, Y ?) ∈ G
2 has been involved in a communication (either from Send-queries or an

Execute-query), one of X? = gx or Y ? = gy, has been simulated: at least one of x or y is known.
Without loss of generality, we can assume we know x:

Zi = (Y
? ×Qk′

i)x × CDHg,G(Y
?, P )ki × CDHg,G(P,Q)kik

′
i

Zk0
1 /Zk1

0 =
(Y ? ×Qk′

1)xk0 × CDHg,G(Y
?, P )k1k0 × CDHg,G(P,Q)k1k′

1k0

(Y ? ×Qk′
0)xk1 × CDHg,G(Y ?, P )k0k1 × CDHg,G(P,Q)k0k′

0k1

=
(

Y ?k0−k1 ×Qk′
1k0−k′

0k1

)x
× CDHg,G(P,Q)k0k1(k′

1−k′
0)

=
(

Y ?k0−k1 × PWsa
0

k1/PWsa
1

k0

)x
× CDHg,G(P,Q)k0k1(k′

1−k′
0)

CDHg,G(P,Q) =
(

((PWsa
1 /Y ?)xZ1)

k0 / ((PWsa
0 /Y ?)xZ0)

k1

)u
,

where u is the inverse of k0k1(k
′
1−k′0) in Zq. The latter exists since PWas

0 ,PWsa
0 ,PWas

1 ,PWsa
1 6= 1,

and they are both distinct to each other (we have excluded collisions for G.) By guessing the
two queries asked to H, one concludes the proof. ut

For a more convenient analysis, we can split the event AskH in two disjoint sub-cases:

1. AskH-Passive, where the transcript ((A,X?), (S, Y ?)) involved in the crucial H-query comes
as an answer from an Execute-query;

2. AskH-Active, the other cases.

About the active case (the event AskH-Active5), the above Lemma 5 applied to games where
the event CollH5 did not happen states that for each pair (X

?, Y ?) involved in an active tran-
script, there is at most one pw such that the corresponding tuple is in ΛH:

Pr[AskH-Active5] ≤ PW(qs).

Moreover, in the particular case of passive transcripts, one can state a stronger result:
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Lemma 6. For any pair (X?, Y ?) ∈ G
2, involved in a passive transcript, there is no password

pw such that (A,S,X?, Y ?, pw ,CDHg,G(X
?/PWas, Y ?/PWsa)) is in ΛH, unless one can solve the

Diffie-Hellman problem:

Pr[AskH-Passive5] ≤ qh × Succcdh
g,G(t+ 4τe).

Proof. Assume there exist (X? = gx, Y ? = gy) ∈ G
2 involved in a passive transcript, and values

PWas = P−k 6= 1, PWsa = Q−k′

6= 1 such that the tuple

(A,S,X?, Y ?, pw , Z = CDHg,G(X
?/PWas, Y ?/PWsa))

is in ΛH. Then, as above,

Z = CDHg,G(X
?/PWas, Y ?/PWsa)

= CDHg,G(X
?, Y ?)× CDHg,G(P,Q)kk′

/CDHg,G(X
?,PWsa)× CDHg,G(Y

?,PWas)

= CDHg,G(P,Q)kk′

× gxy/(PWsax × PWasy).

As a consequence,
CDHg,G(P,Q) = (Z × PWsax × PWasy/gxy)u ,

where u is the inverse of kk′ in Zq. By guessing the query asked to H, one concludes the proof.
ut

As a conclusion,
Pr[AskH5] ≤ qh × Succcdh

g,G(t+ 4τe) + PW(qs).

Combining all the above equations, one gets

Advake
eke(A) ≤ 2×





PW(qs) + qh × Succcdh
g,G(t+ 4τe) + q2

h × Succcdh
g,G(t+ 5τe)

+
qg + qh

q
+
(qg + qh)

2

2q
+
(qp + qs)

2

2q



 .

ut


