
This is the Full Version of the Extended Abstract that appears
in the Proceedings of the 16th International Conference on Practice and Theory in Public-Key Cryptography (PKC ’13)
(26 February – 1 March 2013, Nara, Japan)
Kaoru Kurosawa Ed., Springer-Verlag, LNCS 7778, pages 292–311.

Tighter Reductions for Forward-Secure Signature Schemes

Michel Abdalla Fabrice Ben Hamouda David Pointcheval

Departement d’Informatique, École normale supérieure
45 Rue d’Ulm, 75230 Paris Cedex 05, France

{Michel.Abdalla,Fabrice.Ben.Hamouda,David.Pointcheval}@ens.fr
http://www.di.ens.fr/users/{mabdalla,fbenhamo,pointche}

Abstract

In this paper, we revisit the security of factoring-based signature schemes built via the Fiat-Shamir
transform and show that they can admit tighter reductions to certain decisional complexity assumptions
such as the quadratic-residuosity, the high-residuosity, and the φ-hiding assumptions. We do so by
proving that the underlying identification schemes used in these schemes are a particular case of the
lossy identification notion recently introduced by Abdalla et al. at Eurocrypt 2012. Next, we show how
to extend these results to the forward-security setting based on ideas from the Itkis-Reyzin forward-
secure signature scheme. Unlike the original Itkis-Reyzin scheme, our construction can be instantiated
under different decisional complexity assumptions and has a much tighter security reduction. Finally,
we show that the tighter security reductions provided by our proof methodology can result in concrete
efficiency gains in practice, both in the standard and forward-security setting, as long as the use of
stronger security assumptions is deemed acceptable. All of our results hold in the random oracle model.

1 Introduction

A common paradigm for constructing signature schemes is to apply the Fiat-Shamir transform [FS87]
to a secure three-move canonical identification protocol. In these protocols, the prover first sends a
commitment to the verifier, which in turn chooses a random string from the challenge space and sends
it back to the prover. Upon receiving the challenge, the prover sends a response to the verifier, which
decides whether or not to accept based on the conversation transcript and the public key. To obtain the
corresponding signature scheme, one simply makes the signing and verification algorithms non-interactive
by computing the challenge as the hash of the message and the commitment. As shown by Abdalla et al.
in [AABN02], the resulting signature scheme can be proven secure in the random oracle model as long
as the identification scheme is secure against passive adversaries and the commitment has large enough
min-entropy. Unfortunately, the reduction to the security of the identification scheme is not tight and
loses a factor qh, where qh denotes the number of queries to the random oracle.

If one assumes additional properties about the identification scheme, one can avoid impossibility
results such as those in [GBL08, PV05, Seu12] and obtain a signature scheme with a tighter proof of
security. For instance, in [MR02], Micali and Reyzin introduced a new method for converting identification
schemes into signature schemes, known as the “swap method”, in which they reverse the roles of the
commitment and challenge. More precisely, in their transform, the challenge is chosen uniformly at
random from the challenge space and the commitment is computed as the hash of the message and
the challenge. Although they only provided a tight security proof for the modified version of Micali’s
signature scheme [Mic94], their method generalizes to any scheme in which the prover can compute the
response given only the challenge and the commitment, such as the factoring-based schemes in [FFS88,
FS87, GQ90, OO90, OS90]. This is due to the fact that the prover in these schemes possesses a trapdoor
(such as the factorization of the modulus in the public key) which allows it to compute the response. On
the other hand, their method does not apply to discrete-log-based identification schemes in which the
prover needs to know the discrete log with respect to the commitment when computing the response,
such as in [Sch90].

In 2003, Katz and Wang [KW03] showed that tighter security reductions can be obtained even with
respect to the Fiat-Shamir transform, by relying on a proof of membership rather than a proof of knowl-
edge. In particular, using this idea, they proposed a signature scheme with a tight security reduction
to the hardness of the DDH problem. They also informally mentioned that one could obtain similar
results based on the quadratic-residuosity problem by relying on a proof that shows that a set of ele-
ments in Z∗N are all quadratic residues. This result was recently extended to other settings by Abdalla et
al. [AFLT12], who presented three new signature schemes based on the hardness of the short exponent
discrete log problem [PS98, vW96], on the worst-case hardness of the shortest vector problem in ideal
lattices [LM06, PR06], and on the hardness of the Subset Sum problem [IN96, MM11]. Additionally,
they also formalized the intuition in [KW03] by introducing the notion of lossy identification schemes and
showing that any such schemes can be transformed into a signature scheme via the Fiat-Shamir transform
while preserving the tightness of the reduction.

Tight security from lossy identification. In light of these recent results, we revisit in this paper
the security of factoring-based signature schemes built via the Fiat-Shamir transform. Even though the
swap method from [MR02] could be applied in this setting (resulting in a slightly different scheme),
our first contribution is to show that these signature schemes admit tight security reductions to certain
decisional complexity assumptions such as the quadratic-residuosity, the high-residuosity [Pai99], and the
φ-hiding [CMS99] assumptions. We do so by showing that the underlying identification schemes used in
these schemes are a particular case of a lossy identification scheme [AFLT12]. As shown in Section 4.1
in the case of the Guillou-Quisquater signature scheme [GQ90], our tighter security reduction can result
in concrete efficiency gains with respect to the swap method. However, this comes at the cost of relying
on a stronger security assumption, namely the φ-hiding [CMS99] assumption.

1

Tighter reductions for forward-secure signatures. Unlike the swap method of Micali and
Reyzin, the prover in factoring-based signature schemes built via the Fiat-Shamir transform does not
need to know the factorization of the modulus in order to be able to compute the response. Using this
crucial fact, the second main contribution of this paper is to extend our results to the forward-security
setting. To achieve this goal, we first introduce in Section 3 the notion of lossy key-evolving identification
schemes and show how the latter can be turned into forward-secure signature schemes using a generalized
version of the Fiat-Shamir transform. As in the case of standard signature schemes, this transformation
does not incur a loss of factor of qh in the security reduction. Nevertheless, we remark that the reduction
is not entirely tight as we lose a factor T corresponding to the total number of time periods.

After introducing the notion of lossy key-evolving identification schemes, we show in Section 4.2 that
a variant of the Itkis-Reyzin forward-secure signature scheme [IR01] (which can be seen as an extension of
the Guillou-Quisquater scheme to the forward-security setting) admits a much tighter security reduction,
albeit to a stronger assumption, namely the φ-hiding assumption.

Concrete security. As in the case of standard signature schemes, the tighter security reductions
provided by our proof methodology can result in concrete efficiency gains in practice. More specifically,
as we show in Section 5, our variant of the Itkis-Reyzin scheme outperforms the original scheme for most
concrete choices of parameters.

Generic factoring-based signatures and forward-secure signatures. As an additional con-
tribution, we show in Section 6 that all the above-mentioned schemes can be seen as straightforward
instantiations of a generic factoring-based forward-secure signature scheme. This enables us to not only
easily prove the security properties of these schemes, but to also design a new forward-secure scheme
based on a new assumption, the 2t-strong-residuosity.

Organization. After recalling some definitions in Section 2, we introduce the notion of key-evolving
lossy identification scheme and show how to transform such a scheme into a forward-secure signature
scheme in Section 3. Then, in Section 4, we apply our security proof methodology to two cases: the
Guillou-Quisquater scheme and its extension to the forward-secure case (i.e., our variant of the Itkis-
Reyzin scheme). In Section 5, we compare this second scheme with the original Itkis-Reyzin scheme and
the MMM scheme by Malkin, Micciancio and Miner [MMM02]. Finally, we introduce our generic lossy
key-evolving identification scheme and show various instantiations of it in Section 6.

2 Definitions

2.1 Notation and Conventions

Let N denote the set of natural numbers. If n ∈ N, then {0, 1}n denotes the set of n-bit strings, and
{0, 1}∗ is the set of all bit strings. The empty string is denoted ⊥. If x is a string then |x| denotes its

length, and if S is a set then |S| denotes its size. If S is finite, then x
$← S denotes the assignment to

x of an element chosen uniformly at random from S. If A is an algorithm, then y ← A(x) denotes the

assignment to y of the output of A on input x, and if A is randomized, then y
$← A(x) denotes that the

output of an execution of A(x) with fresh coins assigned to y. Unless otherwise indicated, an algorithm
may be randomized. We denote by k ∈ N the security parameter. Let P denote the set of primes and P`e
denote the set of primes of length `e. All our schemes are in the random oracle model [BR93].

2.2 Complexity Assumptions

The security of the signature schemes being analyzed in this paper will be based on decisional assump-
tions over composite-order groups: the e-residuosity assumption, the φ-hiding assumption and a new
assumption called the strong-2t-residuosity. We also need to recall the strong-RSA assumption to be able
to compare our scheme with the Itkis-Reyzin scheme [IR01].

2

Let N be the product of distinct large primes p1 and p2. We call such N an RSA modulus. Informally,
the e-residuosity assumption states that the problem of deciding whether a given element y in Z∗N is
an e-residue or not is intractable without knowing the factorization of N . Remember that an element
y ∈ Z∗N is said to be an e-residue if there exists an element x ∈ Z∗N such that y = xe mod N . If e = 2, this
assumption is called the quadratic-residuosity assumption. Furthermore, if we extend it to N = e2,
with e an RSA modulus, this is called the high-residuosity assumption [Pai99]. Likewise, the φ-hiding
assumption, introduced by Cachin, Micali, and Stadler in [CMS99], states that it is hard for an adversary
to tell whether a prime number e divides the order of the group Z∗N or not. Next, we introduce the
strong-2t-residuosity assumption that states that it is hard for an adversary to decide whether a given
element y in Z∗N is a 2t-residue or is even not a 2-residue, when 2t divides p1 − 1 and p2 − 1. Finally, the
strong-RSA assumption states that, given an element y ∈ Z∗N , it is hard for an adversary to find an
integer e ≥ 2 and an element x ∈ Z∗N such that y = xe mod N .

For each of these assumptions, the underlying problem is said to be (t, ε)-hard, if no adversary running
in time at most t is able to solve the problem with probability at least ε. Formal descriptions of the
assumptions can be found in Appendix A.2.

2.3 Forward-Secure Signature Schemes

A forward-secure signature scheme is a key-evolving signature scheme in which the secret key is updated
periodically while the public key remains the same throughout the lifetime of the scheme [BM99]. Each
time period has a secret signing key associated with it, which can be used to sign messages with respect to
that time period. The validity of these signatures can be checked with the help of a verification algorithm.
At the end of each time period, the signer in possession of the current secret key can generate the secret
key for the next time period via an update algorithm. Moreover, old secret keys are erased after a key
update.

Formally, a key-evolving signature scheme is defined by a tuple of algorithms FS = (KG,Sign,Ver,

Update) and a message space M, providing the following functionality. Via (pk , sk)
$← KG(1k , 1T), a

user can run the probabilistic key generation algorithm KG to obtain a pair (pk , sk1) of public and secret
keys for a given security parameter k and a given total number of periods T . sk1 is the secret key
associated with time period 1. Via sk i+1 ← Update(sk i), the user in possession of the secret key sk i
associated with time period i ≤ T can generate a secret key sk i+1 associated with time period i+ 1. By

convention, skT+1 = ⊥. Via 〈σ, i〉 $← Sign(sk i,M), the user in possession of the secret key sk i associated
with time period i ≤ T can generate a signature 〈σ, i〉 for a message M ∈ M for period i. Finally,
via d ← Ver(pk , 〈σ, i〉,M), one can run the deterministic verification algorithm to check if σ is a valid
signature for a message M ∈ M for period i and public key pk , where d = 1 if the signature is correct
and 0 otherwise. For correctness, it is required that for all honestly generated keys (sk1, . . . , skT) and for
all messages M ∈M, Ver(pk ,Sign(sk i,M),M) = 1 holds with all but negligible probability.

Informally, a key-evolving signature scheme is existentially forward-secure under adaptive chosen-
message attack (EUF-CMA), if it is infeasible for an adversary —also called forger— to forge a signature
σ∗ on a message M ∗ for a time period i∗, even with access to the secret key for a period i > i∗ (and thus
to all the subsequent secret keys; this period i is called the breakin period) and to signed messages of his
choice for any period (via a signing oracle), as long as he has not requested a signature on M ∗ for period
i∗ to the signing oracle. This notion is a generalization of the existential unforgeability under adaptive
chosen-message attacks (EUF-CMA for signature schemes) [GMR85] to key-evolving signature scheme
and a slightly stronger variant of the definition in [BM99]. In particular, we do not restrict the adversary
to only perform signing queries with respect to the current time period.

In the remainder of the paper, we also use a stronger notion: forward security (SUF-CMA). In
this notion, the forger is allowed to produce a signature σ∗ on a message M ∗ for a period i∗, such that
the triple (M ∗, i∗, σ∗) is different from all the triples produced by the signing oracle. More formally,
a key-evolving signature scheme is (t, qh, qs, ε)-(existentially)-forward-secure if no adversary running in

3

time at most t and making at most qh queries to the random oracle and qs queries to the signing oracle
can break the (existential) forward security with probability at least ε. All the formal security notions
and the comparison with [BM99], together with other security notions (used for detailed comparisons),
can be found in Appendices A.3 and A.4.

3 Lossy Key-Evolving Identification and Signature Schemes

In this section, we present a new notion, called lossy key-evolving identification scheme, which combines
the notions of lossy identification schemes [AFLT12], which can be transformed to tightly secure signature
scheme, and key-evolving identification schemes [BM99], which can be transformed to forward-secure
signature via a generalized Fiat-Shamir transform (not necessarily tight, and under some conditions).
Although this new primitive is not very useful for practical real-world applications, it is a tool that will
enable us to construct forward-secure signatures with tight reductions, via the generalized Fiat-Shamir
transform described in Section 3.2.

3.1 Lossy Key-Evolving Identification Scheme

The operation of a key-evolving identification scheme is divided into time periods 1, . . . , T , where a
different secret is used in each time period, and such that the secret key for a period i + 1 can be
computed from the secret key for the period i. The public key remains the same in every time period. In
this paper, a key-evolving identification scheme is a three-move protocol in which the prover first sends
a commitment cmt to the verifier, then the verifier sends a challenge ch uniformly at random, and
finally the prover answers by a response rsp. The verifier’s final decision is a deterministic function of
the conversation with the prover (the triple (cmt , ch, rsp)), of the public key, and of the index of the
current time period.

Informally, a lossy key-evolving identification scheme has T + 1 kinds of public keys: normal public
keys, which are used in the real protocol, and i-lossy public keys, for i ∈ {1, . . . , T}, which are such that
no prover (even not computationally bounded) should be able to make the verifier accept for the period i
with non-negligible probability. Furthermore, for each period i, it is possible to generate a i-lossy public
key, such that the latter is indistinguishable from a normal public key even if the adversary is given access
to any secret key for period i′ > i.

More formally, a lossy key-evolving identification scheme ID is defined by a tuple (KG, LKG,Update,
Prove, `c,Ver) such that:

• KG is the normal key generation algorithm which takes as input the security parameter k and the
number of periods T and outputs a pair (pk , sk1) containing the public key and the prover’s secret
key for the first period.

• LKG is the lossy key generation algorithm which takes as input the security parameter k and the
number of periods T and a period i and outputs a pair (pk , sk i+1) containing a i-lossy public key pk
and a prover’s secret key for period i+ 1 (skT+1 = ⊥).

• Update is the deterministic secret key update algorithm which takes as input a secret key sk i for
period i and outputs a secret key sk i+1 for period i+ 1 if sk i is a secret key for some period i < T ,
and ⊥ otherwise. We write Updatej the function Update composed j times with itself (Updatej(sk i)
is a secret key sk i+j for period i+ j, if i+ j ≤ T).

• Prove is the prover algorithm which takes as input the secret key for the current period, the current
conversation transcript (and the current state st associated with it, if needed) and outputs the next
message to be sent to the verifier, and the next state (if needed). We suppose that any secret key
sk i for period i always contains i, and so i is not an input of Prove.

• `c is a polynomial; `c(k) (often simply denoted `c) is the length of the challenge sent by the verifier.

4

• Ver is the deterministic verification algorithm which takes as input the conversation transcript and
the period i and outputs 1 to indicate acceptance, and 0 otherwise.

A randomized transcript generation oracle TrID
pk ,sk i,k

is associated to each ID, k , and (pk , sk i). Tr
ID
pk ,sk i,k

takes no inputs and returns a random transcript of an “honest” execution for period i. More precisely,
the transcript generation oracle TrID

pk ,sk i,k
is defined as follows:

function TrID
pk ,sk i,k

(cmt , st)
$← Prove(sk i) ; ch

$← {0, 1}`c ; rsp
$← Prove(sk i, cmt , ch, st)

return (cmt , ch, rsp)
An identification scheme is said to be lossy if it has the following properties:

(1) Completeness of normal keys. ID is said to be complete, if for every period i, every security

parameter k and all honestly generated keys (pk , sk1)
$← KG(1k), Ver(pk , cmt , ch, rsp, i) = 1 holds

with probability 1 when (cmt , ch, rsp)
$← TrID

pk ,sk i,k
(), with sk i = Updatei−1(sk1).

(2) Simulatability of transcripts. Let (pk , sk1) be the output of KG(1k) for a security parameter
k , and sk i be the output of Updatei−1(sk1). Then, ID is said to be ε-simulatable if there exists a

probabilistic polynomial time algorithm T̃r
ID
pk ,i,k with no access to any secret key, which can generate

transcripts {(cmt , ch, rsp)} whose distribution is statistically indistinguishable from the transcripts
output by TrID

pk ,sk i,k
, where ε is an upper-bound for the statistical distance. When ε = 0, then ID is

said to be simulatable.

(3) Indistinguishability of keys. Consider the two following experiments Expind-keys-real
ID,k ,i (Di) and

Expind-keys-lossy
ID,k ,i (Di) (i ∈ {1, . . . , T}):

Expind-keys-real
ID,k ,i (Di)

(pk , sk1)
$← KG(1k , 1T) ; sk i+1

$← Updatei(sk1)
return Di(pk , sk i+1)

Expind-keys-lossy
ID,k ,i (Di)

(pk , sk i+1)
$← LKG(1k , 1T , i)

return Di(pk , sk i+1)

D is said to (t, ε)-solve the key-indistinguishability problem for period i if it runs in time t and∣∣∣Pr
[

Expind-keys-real
ID,k ,i (Di) = 1

]
− Pr

[
Expind-keys-lossy

ID,k ,i (Di) = 1
]∣∣∣ ≥ ε. Furthermore, we say that

ID is (t, ε)-key-indistinguishable, if, for any i, no algorithm (t, ε)-solves the key-indistinguishability
problem for period i.

(4) Lossiness. Let Ii be an impersonator for period i (i ∈ {1, . . . , T}), st be its state. We consider the

experiment Explos-imp-pa
ID,k ,i (Ii) played between Ii and a hypothetical challenger:

Explos-imp-pa
ID,k ,i (Ii)

(pk , sk i+1)
$← LKG(1k , 1T , i) ; (cmt , st)

$← Ii(pk , sk i+1) ; ch
$← {0, 1}`c ; rsp

$← Ii(ch, st)
return Ver(pk , cmt , ch, rsp, i)

Ii is said to ε-solve the impersonation problem with respect to i-lossy public keys if Pr
[
Explos-imp-pa

ID,k ,i (Ii) = 1
]
≥

ε. Furthermore, ID is said to be ε-lossy if, for any period i ∈ {1, . . . , T}, no (computationally unre-
stricted) algorithm ε-solves the impersonation problem with respect to i-lossy keys.

We remark that, for T = 1, a key-evolving lossy identification scheme becomes a standard lossy
identification scheme1, described in [AFLT12].

Finally, we say that ID is response-unique if for all normal public keys pk or for all lossy keys pk ,
for all periods i ∈ {1, . . . , T}, for all messages M , for all bit strings cmt2, and for all challenges ch, there
exists at most one response rsp such that Ver(pk , cmt , ch, rsp, i) = 1.

1Contrary to the definition of lossiness given in [AFLT12], the impersonator I1 does not have access to an oracle T̃r
ID
pk,1,k

in Explos-imp-pa
ID,k,1 (I1). However, we remark that this has no impact on the security definition as the execution of T̃r

ID
pk,1,k does

not require any secret information.
2Not necessarily a correctly generated commitment, but any bit string.

5

KG(1k , 1T)

(pk , sk1)
$← KG(1k , 1T)

return (pk , sk1)

Update(sk i)

sk ← Update(sk i)
return sk

Sign(sk i,M)

(cmt , st)
$← Prove(sk i)

ch ← H(〈cmt ,M , i〉)
rsp

$← Prove(sk i, cmt , ch, st)
σ ← (cmt , rsp)
return 〈σ, i〉

Ver(pk , 〈σ, i〉,M)

(cmt , rsp)← σ
ch ← H(〈cmt ,M , i〉)
d← Ver(pk , cmt , ch, rsp, i)
return d

Figure 3.1: Generalized Fiat-Shamir transform for forward-secure signature

3.2 Generalized Fiat-Shamir Transform

The forward-secure signature schemes considered in this paper are built from a key-evolving identification
scheme via a straightforward generalization of the Fiat-Shamir transform [FS87], depicted in Figure 3.1.
More precisely, the signature for period i is just the signature obtained from a Fiat-Shamir transform
with secret key sk i = Updatei−1(sk1) (with the period i included in the random oracle input).

Let FS [ID] = (KG, Sign,Ver) be the signature scheme obtained via this generalized Fiat-Shamir
transform. The following theorem is a generalization of (a special case of) Theorem 1 in [AFLT12], where
we assume perfect completeness.

Theorem 3.1 Let ID = (KG, LKG,Update,Prove, `c,Ver) be a key-evolving lossy identification scheme
whose commitment space has min-entropy at least β (for every period i), let H be a random oracle, and
let FS [ID] = (KG, Sign,Ver) be the signature scheme obtained via the generalized Fiat-Shamir transform.
If ID is εs-simulatable, complete, (t′, εk)-key-indistinguishable, and ε`-lossy, then FS [ID] is (t, qh, qs, ε)-
existentially-forward-secure in the random oracle model for:

ε = T (εk + (qh + 1)ε`) + qsεs + (qh + 1)qs/2
β

t ≈ t′ − (qs tSim−Sign + (T − 1) tUpdate)

where tSim−Sign denotes the average time of a query to the simulated transcript function T̃r
ID
pk ,i,k and tUpdate

denotes the average time of a query to Update. Furthermore, if ID is response-unique, FS [ID] is also
(t, qh, qs, ε)-forward-secure.

Actually, if we choose T = 1 in the previous theorem, we get a slightly improved special case of
Theorem 1 in [AFLT12], since the forward security for T = 1 is exactly the strong unforgeability for a
signature scheme. The proof of this theorem can be found in Appendix C and is very similar to the proof
in [AFLT12], except that we need to guess the period i∗ of the signature output by the adversary, in
order to choose the correct lossy key. That is why we lose a factor T in the reduction.

Remark 3.2 As in the standard Fiat-Shamir transform, the signature obtained via the generalized
transform consists of a commitment-response pair. However, in all schemes proposed in this paper,
the commitment can be recovered from the challenge and the response (as in the scheme depicted in
Figure G.1). Hence, since the challenge is often shorter than the commitment, it is generally better to
use the challenge-response pair as the signature in our schemes. Obviously, this change does not affect
the security of our schemes.

6

Prover Verifier
Input: sk i = (N, e, S) Input: pk = (N, e, U)

R
$← Z∗N

Y ← Re mod N Y -
c� c

$← {0, . . . , c− 1}
Z ← R · Sc mod N Z -

if Z /∈ Z∗N or Ze 6= Y · Uc

return reject
return accept

Figure 4.1: Description of the GQ identification scheme (U = Se mod N).

4 Tighter Security Reductions for Guillou-Quisquater-like Schemes

In this section, we prove tighter security reductions for the Guillou-Quisquater scheme (GQ, [GQ90]) and
for a slight variant of the Itkis-Reyzin scheme (IR, [IR01]), which can also be seen as a forward-secure
extension of the GQ scheme. We analyze the practical performance of this new scheme in the next section
of this article. Detailed proofs for these schemes are available in Appendix G.2.13.

4.1 Guillou-Quisquater Scheme

Let us describe the identification scheme corresponding to the GQ signature scheme, before presenting
our tight reduction and comparing it with the swap method.

Scheme. Let N be a product of two distinct `N -bit primes p1, p2 and let e be a `e-bit prime, coprime
with φ(N) = (p1 − 1)(p2 − 1), chosen uniformly at random. Let S be an element chosen uniformly at
random in Z∗N and let U = Se mod N . Let c = 2`e . The public key is pk = (N, e, U) and the secret key
is sk = (N, e, S).

The goal of the identification scheme is to prove U is a e-residue. The identification scheme is depicted
in Figure 4.1 and works as follows. First, the prover chooses a random element R ∈ Z∗N , computes
Y ← Re mod N . It sends Y to the verifier, which in turn chooses c ∈ {0, . . . , c− 1} and returns it to the
prover. Upon receiving c, the prover computes Z ← R · Sc mod N and sends this value to the verifier.
Finally, the verifier checks whether Z ∈ Z∗N and Ze = Y · U c and accepts only in this case4.

Security. The previous proofs of the GQ schemes looses a factor qh in the reduction. In this paragraph,
we prove the previously described identification scheme ID is a lossy identification scheme, under the
φ-hiding assumption. This yields a security proof of the strong unforgeability of the GQ scheme, with a
tight reduction to this assumption.

The algorithm LKG chooses e and N = p1p2 such that e divides p1 − 1, instead of being coprime
with φ(N), and chooses U uniformly at random among the non-e-residue modulo N . Proposition D.13
and Proposition D.14 show that if U is chosen uniformly at random in Z∗N , it is not an e-residue with
probability 1 − 1/e and that it is possible to efficiently check whether U is an e-residue or not if the
factorization of N is known: U is a e-residue if and only if, for any k ∈ {1, 2}, e does not divide pk − 1
or U (pk−1)/e = 1 mod pk.

The proof that ID is complete follows immediately from the fact that, if U = Se mod N , an honest
execution of the protocol will always result in acceptance as Ze = (R · Sc)e = Re · (Se)c = Y · U c .

The simulatability of ID follows from the fact that, given pk = (N, e, U), we can easily generate
transcripts whose distribution is perfectly indistinguishable from the transcripts output by an honest

3However the proofs in this appendix use our generic factoring-based scheme described in Section 6.
4The test Z ∈ Z∗N can be replaced by the less expensive test Z mod N 6= 0, as explained in Appendix G.1.

7

execution of the protocol. This is done by choosing Z uniformly at random in Z∗N and c uniformly at
random in {0, . . . , c− 1}, and setting Y = Ze/U c .

Let us prove the key indistinguishability. The distribution of normal public keys is indistin-
guishable from the one where e divides φ(N) and U is chosen uniformly at random, according to the
φ-hiding assumption. And in this latter distribution, U is not a e-residue with probability 1−1/e, so this
distribution is statistically close to the distribution of lossy keys. Therefore, ID is key indistinguishable.

To show that ID is lossy, we note that, when the public key is lossy, for every element Y chosen
by the adversary, there exists only one value of c ∈ {0, . . . , c − 1} for which there exists a response Z
which is considered valid by the verifier. To see why, assume for the sake of contradiction that there
exist two different values c1 and c2 in {0, . . . , c − 1} for which there exists a valid response. Denote by
Z1 and Z2 one of the valid responses in each case. Without loss of generality, assume that c1 < c2. Since
Ze1 = Y ·U c1 and Ze2 = Y ·U c2 , we have that (Z2/Z1)e = U c2−c1 . As c2− c1 is a positive number smaller
than 2`e , it is coprime with e (since e is a prime and e ≥ 2`e). Therefore, according to Bezout theorem,
there exists two integers u, v such that: ue+ v(c1 − c2) = 1. So:

U = Uue+v(c1−c2) = (Uu)e(U c2−c1)v = (Uu(Z2/Z1)v)e

and U is a e-residue, which is impossible. This means that the probability that a valid response Zi exists
in the case where U is not a e-residue is at most 1/c. It follows that ID is 1/c-lossy.

Comparison with the swap method. Applying the swap method [MR02] to the GQ identification
scheme can also provide a signature with a tight reduction, to the RSA problem. However, in this case, the
signing algorithm needs to compute the e-root of the output of the random oracle modulo N . Therefore,
instead of requiring two exponentiation modulo N with a `e-bit exponent, the signing algorithm requires
one such exponentiation and one exponentiation modulo N with a `N -bit exponent. And our signing
algorithm will be `N/(2`e) faster, for the same parameters and the same security level, if we consider
the φ-hiding problem is as hard as the RSA problem. Furthermore, the swap method cannot be directly
extended to the forward-secure extension of the GQ scheme, described in the next section, because the
prover has to know the factorization of N .

A slight variant of the scheme. We can also chooses e uniformly at random among the `e-bit
primes (without forcing that e is coprime with φ(N) in KG), because, with high probability, such a prime
number will be coprime with φ(N).

4.2 Variant of the Itkis-Reyzin Scheme

Scheme. The idea of this forward-secure extension of the GQ scheme consists in using a different e for
each period. More precisely, let e1, . . . , eT be T distinct `e-bit primes chosen uniformly at random. Let
fi = ei+1 . . . eT , fT = 1 and E = e1 . . . eT . Let S be an element chosen uniformly at random in Z∗N and
let U = SE mod N . Let Si = SE/ei and S′i = SE/fi . Then the public key is pk = (N, e1, . . . , eT , U) and
the secret key for period i is sk i = (N, ei, . . . , eT , Si, S

′
i). We remark we can easily compute sk i+1 from

sk i, since Si+1 = S′
fi+1

i mod N and S′i+1 = S′
ei+1

i mod N .

For period i, the identification scheme works exactly as the previous one with public key pk =
(N, ei, U) and secret key sk = (N, ei, Si).

For the sake of simplicity, in this naive description of the scheme, we store the exponents e1, . . . , eT
in the public key and in the secret key. Therefore, the keys are linear in T , the number of periods. It is
possible to have constant-size key, either by using fixed exponents, or by computing the exponents using
a random oracle. This will be discussed in Section 5.1.

Security. The security proof is similar to the one for the previous scheme, with the main difference
being the description of the lossy key generation algorithm LKG. More precisely, on input (1k , 1T , i), the
algorithm LKG generates ei and N = p1p2 such that ei divides p1−1, instead of being coprime with φ(N),

8

Table 5.1: Choice of parameters

k qh qs `e εp `N

80 280 230 123 2−80 ≥ 1248
128 2128 246 171 2−128 ≥ 3248

and chooses U ′ uniformly at random among the non-ei-residues modulo N . Then it chooses T −1 distinct
random `e-bit primes e1, . . . , ei−1, ei+1, . . . , eT , and sets U = U ′ei+1···eT mod N , Si+1 = U ′ei+2···eT mod N
and S′i+1 = U ′ei+1 mod N . The public key is pk = (N, e1, . . . , eT , U) and the secret key for period i + 1
is sk i+1 = (N, ei+1, . . . , eT , Si+1, S

′
i+1) (or ⊥ if i = T). We remark that, since U ′ is a non-ei-residue, U is

also a non-ei-residue and so the public key pk is i-lossy.

5 Analysis of our Variant of the Itkis-Reyzin Scheme

In this section, we analyze our variant of the IR scheme and compare it with the original IR scheme [IR01]
and the MMM scheme [MMM02].

5.1 Computation of the exponents e1, . . . , eT

As explained before, storing the exponents e1, . . . , eT in the keys is not a good idea since the key size
becomes linear in T . Since we need e1, . . . , eT to be random primes to be able to do the reduction of
key indistinguishability to the φ-hiding assumption, we can use a second random oracle H′ which outputs
prime numbers of length `e, and set ei = H′(i).

An implementation of a random oracle for prime numbers using a classical random oracle is presented
in Appendix I.2. The construction is close to the construction of a PRF mapping to prime numbers
in [HW09]. The idea is to hash the input value concatenated to a counter and to increment the counter
until we get a prime number. One can prove that it behaves like a random oracle uniform over all primes,
and that we can program it efficiently (property which is needed for the security reductions).

We finally remark that, we can always store ei in the secret key for period i. The secret key length
is increased only by a small amount and the signing algorithm becomes faster, since it does not need to
recompute ei.

5.2 Choice of Parameters

In order to be able to compare the original IR scheme with our scheme, we need to choose various
parameters. In Table 5.1, we show our choice of parameters for two security levels: k = 80 bits and
k = 128 bits. When choosing these parameters, we considered a value of T = 220, as it enables to update
the key every hour for up to 120 years. In both cases, εp denotes the maximum error probability of the
probabilistic primality test used in the random oracle for primes numbers H′, whereas qh and qs specify
the maximum number of queries to the random oracle and to the signing oracle, respectively, in the
forward-security game.

Let us explain our choice for `e. As in [MR02], we supposed Tε, δ ≥ 2−20 ≈ 10−6 (we use Tε instead
of ε because of the way weak security notions are defined, see Remark B.4 to understand this choice.
And we chose `e ≈ k + 43 to satisfy inequalities in security reductions in Theorem G.2 and Theorem I.15.
In the sequel, all the parameters are fixed except the length `N of the modulus.

5.3 Comparison with Existing Schemes

Comparison with the Itkis-Reyzin scheme. In this section, we compare the original IR scheme

5The constant 43 comes from − log2 ε− log2 δ+ 3 (for our scheme) and − log2 ε+ log2 T + 3 (for the original IR scheme).

9

Table 5.2: Time of verification algorithm (using parameters of Table 5.1)

exponentiation prime generation verification orig.a verification newb

k `N mul.c msd mul.c msd mul.c msd mul.c msd

k `N
3
2 `e `N

2 n/a (3
2 kp +

2 `e) `e
3

n/a 3 `e `N
2 n/a 3 `e `N

2 +
(3
2 kp +

2 `e) `e
3

n/a

80 1248 0.29 · 109 0.15 0.68 · 109 0.26 0.58 · 109 0.30 1.26 · 109 0.56
80 1920 0.68 · 109 0.34 0.68 · 109 0.26 1.36 · 109 0.68 2.04 · 109 0.94
80 6848 8.65 · 109 3.09 0.68 · 109 0.26 17.3 · 109 6.18 1.26 · 109 6.44
128 3248 2.71 · 109 1.19 2.67 · 109 0.82 5.42 · 109 2.38 8.09 · 109 3.10

a verification time of the original scheme (also equal to the signature time for both schemes), estimated
using the time of the two exponentiations.

b verification time of our scheme, estimated using the time of the two exponentiations and of the prime
generation.

c approximate theoretical complexity (see Appendix I.2).
d time on an Intel Core i5 750 (2.67 GHz), using GMP version 5.0.4 (http://gmplib.org, a pseudo-random

number generator is used as a random oracle.

without optimization with our scheme (in which ei is stored in the secret key sk i, as in the IR scheme).
The original IR scheme is very close to our scheme. The only differences are that the IR scheme requires
that the factors p1 and p2 of the modulus N are safe primes6 and that IR signatures for period i contain
the used exponent ei. Therefore the IR verification algorithm does not need to recompute the exponent,
and is faster. In order to prevent an adversary from using an exponent for the breakin period to sign
messages for an older period, the exponent has to be in a different set for each period. The security of the
scheme comes from the strong-RSA assumption. Unfortunately, we cannot use such an optimization with
our security reduction for our scheme, because we need to know which exponent the adversary will use to
make the key lossy for this exponent. However, we remark in Appendix I.3 that the other optimizations
of the original IR scheme can also be applied to our scheme.

Let us now compare the two schemes with the same security parameters (k , `e, `N), before analyzing
the exact security. We first remark that for the same security parameters, our key generation algorithm is
slightly faster since it does not require safe primes; and our signing and key update algorithms are as fast
as the IR ones. The key and signature lengths of the signatures are nearly the same as the IR ones (IR
signatures are only `e-bits longer than our signatures). The real difference is the verification time since
our verification algorithm needs to recompute the ei, contrary to the IR scheme. Verification consists of
two exponentiations (modulo N with a `e-bit exponent) for the original scheme and two exponentiations
and an evaluation of the random prime oracle (roughly equivalent to a random prime generation) for our
scheme.

Let us now focus on the exact security of the two schemes. As explained by Kakvi and Kiltz in [KK12],
the best known attacks against the φ-hiding problems are the factorization of N . Let us also consider it
is true for the strong RSA problem (since it just strengthens our result if it is not the case). According
to Section G.3.1 and Section I.1, with our choice of parameters, if we want k = 80 bits of security, we
need to choose a modulo length `N such that the factorization is k + log2(T) = 100-bit hard (for our
scheme) and k +log2(Tqh) = 180-bit hard (for the original scheme). This corresponds to about `N ≈ 1920
and `N ≈ 6848 respectively, according to Ecrypt II [ECR11]. In this case, according to Table 5.2, our
verification algorithm is about 6 times faster (0.94ms vs 6.18ms) and our signing algorithm is about 9
times faster (0.68ms vs 6.18ms). And our scheme generates 3.5 times shorter signatures.

Comparison with the MMM scheme. The MMM scheme [MMM02] is one of the most efficient generic

6A safe prime p is an odd prime such that (p− 1)/2 is also prime. This assumption is needed for the security reduction
of the IR scheme.

10

http://gmplib.org

constructions of forward-secure signatures (from any signature scheme), to the best of our knowledge.
Furthermore, it does not require to fix the number of periods T . However, in the security proof, we have
to bound the number of periods T the adversary can use (as query for the oracles Sign and Breakin).
Its forward security can be reduced to the strong unforgeability of the underlying signature scheme with
a loss of a factor T .

If we want to compare the MMM scheme with our variant of the IR scheme, the fairest solution
is to instantiate the MMM scheme with the GQ scheme. Then we can use our tight reduction of the
GQ scheme to the φ-hiding problem, to prove that the resulting MMM scheme is forward-secure with
a relatively tight (losing only a factor T) reduction to the φ-hiding problem. In this setting, the MMM
scheme and our scheme have approximatively the same proven security. And the comparison of the MMM
scheme with our scheme is roughly the same as the comparison in [MMM02] between the IR scheme and
the MMM scheme (which did not take into account the tightness of the reduction).

Very roughly, we can say that the MMM key generation and key update algorithms are faster (about
T times faster). However, MMM private keys are longer. And, even if MMM public keys are shorter
(more than 30 times for k = 80, `N = 1248), in most cases, it is not really useful since signatures with
the MMM scheme are about four times longer than signatures with our scheme (4`N + (log(k) + log T)k
compared to `N + k), and also about twice as long as the sum of the length of a public key of our scheme
and a signature. Therefore, since the public key is used for verification, the total memory needed to store
input data needed for the verification of a signature with the MMM scheme is still twice the amount of
the one needed with our scheme. Furthermore, our scheme outperforms the MMM scheme with respect
to verification time (considering Table 5.2, since the MMM verification algorithm verifies two classical
GQ signatures). This means that, if verification time, signing time, and signature size are critical (for
example, if verification or signing has to be performed on a smartcard), our scheme is better than the
MMM scheme. And, even more generally, if key updates are not performed often and if T can be bounded
by a reasonable constant (for example, if keys are updated each day and are expected to last 3 years,
T = 210, and key update time is not really a problem), our scheme is also better than the MMM scheme.

6 Generic Factoring-Based Forward-Secure Signature Scheme

In this section, we show that all our previous results on the GQ scheme and its forward-secure extension
can be generalized and applied to several other schemes. To do so, we first introduce a new generic
factoring-based key-evolving lossy identification scheme and then show that several factoring-based sig-
nature and forward-secure signature schemes can be seen as simple instantiations of this generic scheme.

6.1 Generic Factoring-Based Forward-Secure Signature Scheme

Let ` be a security parameter, let N be a product of large primes, and let e1, . . . , eT be T integers
and E be the least common multiple of e1, . . . , eT . Let S1, . . . , S` be a set of elements in Z∗N

` and
let U1, . . . , U` ∈ Z∗N

` be the set of elements containing the corresponding E-powers. That is, for each
j ∈ {1, . . . , `}, Uj = SEj mod N . The public key is pk = (N, e1, . . . , eT , U1, . . . , U`) (as for our variant of
the IR scheme, we can use a random oracle to avoid storing the exponents in the keys, as explained in
Section 5.1). Let fi be the least common multiple of ei+1, . . . , eT for each i ∈ {1, . . . , T} (fT = 1) and let

Sj,i = S
E/ei
j and S′j,i = S

E/fi
j , for each 1 ≤ i ≤ T and each 1 ≤ j ≤ `. Then, the secret key for period

1 ≤ i ≤ T is sk i = (i,N, ei, . . . , eT , S1,i, . . . , S`,i, S
′
1,i, . . . , S

′
`,i). We remark that it is possible to compute

sk i+1 from sk i by computing: Sj,i+1 = S
′fi/ei+1

j,i mod N and S′j,i+1 = S
′fi/fi+1

j,i mod N .

The identification scheme is depicted in Figure 6.1 and is a straightforward extension of the one of
our variant of the IR scheme in Section 4.2. For period i, its goal is to prove that the elements U1, . . . , U`
are all ei-residues, and works as follows. First, the prover chooses an element Rj ∈ Z∗N and computes
Yj ← Reij mod N , for j ∈ {1, . . . , `}. It then sends Y1, . . . , Y` to the verifier, which in turn chooses

11

Prover Verifier
sk i = (N, e1, . . . , eT , pk = (N, e1, . . . , eT ,

S1,i, . . . , S`,i, . . .) U1, . . . , U`)

for j = 1, . . . , `

Rj
$← Z∗N

Yj ← Rei
j mod N Y1, . . . , Y` -

c1, . . . , c`� c1, . . . , c`
$← {0, . . . , c− 1}`

for j = 1, . . . , `
Zj ← Rj · S

cj
j,i mod N Z1, . . . , Z` -

for j = 1, . . . , `
if Zj /∈ Z∗N or Zei

j 6= Yj · U
cj
j

return reject
return accept

Figure 6.1: Description of the generic identification scheme ID for proving that the elements U1, . . . , U` in pk are
all ei-residues (for each j ∈ {1, . . . , `}, Uj = Se

j,i mod N).

c1, . . . , c` ∈ {0, . . . , c − 1}` and returns it to the prover. Upon receiving c1, . . . , c`, the prover computes
Zj ← Rj · S

cj
j,i mod N for j ∈ {1, . . . , `} and sends these values to the verifier. Finally, the verifier

checks whether Zj ∈ Z∗N and Zeij = Yj · U
cj
j for j ∈ {1, . . . , `} and accepts only if this is the case. The

corresponding factoring-based forward-secure signature scheme is depicted in Figure 6.2.
In Appendix E, we prove that the previous scheme is existentially forward-secure, under the following

condition:

Condition 6.1 There exists a normal key generation algorithm KG and a lossy key generation algorithm
LKG which takes as input the security parameter and the period i and outputs a pair (pk , sk ′i+1) such that,
for every i ∈ {1, . . . , T}:
• (pk , sk ′i+1) is indistinguishable from a pair (pk , sk i+1) generated by KG and i calls to Update (to get

sk i+1 from sk1);

• for all c ∈ {0, . . . , c− 1}, none of U1, . . . , U` is a e′(e, c, N)-residue, where e′(e, c, N) is:

e′(e, c, N) = gcd
i∈{1,...,m}

e ∧ (pkii − p
ki−1
i)

c ∧ e ∧ (pkii − p
ki−1
i)

e′i,

with N = pk11 . . . pkmm the prime decomposition of N and e′i the greatest divisor of e coprime with

pkii − p
ki−1
i , and where a ∧ b is the greatest common divisor (gcd) of a and b.

The second part of the condition ensures that the scheme is 1/c`-lossy.

6.2 Some Instantiations

In addition to the GQ scheme and our variant of the IR scheme, there are other possible instantiations
of our generic scheme.

Quadratic-Residuosity-Based Signature Scheme. The case where e = c = 2 and T = 1 is an
important instantiation of the generic scheme as it coincides with the quadratic-residuosity-based scheme
informally suggested by Katz and Wang in [KW03]. This scheme is existentially unforgeable based on
the hardness of the quadratic-residuosity problem as long as ` is large enough to make the term qh/2

`

negligible.

2t-Root Signature Scheme by Ong and Schnorr. The case where e = c = 2t, ` = 1, and T = 1
coincides with the 2t-root identification scheme by Ong and Schnorr [OS90]. If N = p1p2 is an RSA

12

KG(1k , 1T)

Generate N, e1, . . . , eT
E ← lcm(e1, . . . , eT)
for i = 1, . . . , T
fi ← lcm(ei+1, . . . , eT)

for j = 1, . . . , `

Sj
$← Z∗N

Sj,1 ← S
E/e1
j mod N

S′j,1 ← S
E/f1
j mod N

Uj ← SE
j mod N

pk ← (N, e1, . . . , eT ,
U1, . . . , U`)

sk1 ← (1, N, e1, . . . , eT ,
S1,1, . . . , S`,1,
S′1,1, . . . , S

′
`,1)

return (pk , sk1)

Update(sk ,M)

(i,N, e1, . . . , eT ,
S1,i, . . . , S`,i,
S′1,i, . . . , S

′
`,i)← sk

if i = T then
return ⊥

fi ← lcm(ei+1, . . . , eT)
fi+1 ← lcm(ei+2, . . . , eT)
for j = 1, . . . , `

Sj,i+1 ← S
′fi/ei+1

j,i

S′j,i+1 ← S
′fi/fi+1

j,i

sk i+1 ← (i+ 1, N, ei+1, . . . , eT ,
S1,i+1, . . . , S`,i+1,
S′1,i+1, . . . , S

′
`,i+1)

return sk i+1

Ver(pk , 〈σ, i〉,M)

(N, e1, . . . , eT ,
U1, . . . , U`)← pk

((Y1, . . . , Y`), (Z1, . . . , Z`))← σ
(c1, . . . , c`)← H(〈(Y1, . . . , Y`),M , i〉)
for j = 1, . . . , `

if Zj /∈ Z∗N or Zei
j 6= Yj · U

cj
j then

return reject
return accept

Sign(sk ,M)

(i,N, ei, . . . , eT ,
S1,i, . . . , S`,i,
S′1,i, . . . , S

′
`,i)← sk

for j = 1, . . . , `

Rj
$← Z∗N

Yj ← Rei
j mod N

(c1, . . . , c`)← H(〈(Y1, . . . , Y`),M , i〉)
for j = 1, . . . , `
Zj ← Rj · S

cj
j mod N

σ ← ((Y1, . . . , Y`), (Z1, . . . , Z`))
return 〈σ, i〉

Figure 6.2: Factoring-based forward-secure signature scheme

modulus such that 2t divides p1 − 1 and p2 − 1, this scheme is existentially unforgeable based on the
hardness of the strong-2t-residuosity problem as long as t is large enough to make the term qh/2

t negligible.

Paillier Signature Scheme. The case where ` = 1, T = 1, and e = p1p2 is an RSA modulus,
N = e2 = p2

1p
2
2 and c ≤ min(p1, p2) coincides with the Paillier signature scheme [Pai99]. This scheme is

existentially unforgeable based on the hardness of the high-residuosity problem of [Pai99].

2t-Root Forward-Secure Signature Scheme. The case in which ei = 2t(T−i+1) with t a positive
integer and c = 2i is a generalization of the quadratic-residuosity-based scheme and the 2t-root scheme.
In this case, fi = ei, and we do not need to store S′1,i. If N = p1p2 is an RSA modulus such that 2tT

divides p1 − 1 and p2 − 1, this scheme is existentially forward-secure based on the hardness of a variant
of the strong-2tT -assumption, as long as the exponents t and ` are large enough to make the term qh/2

t`

negligible. Although this scheme appears to be new, it is of limited interest as its public key and secret
key sizes are linear in the number T of time periods.

Proof details for the above instantiations can be found in Appendix G.

Acknowledgments

We would like to thank Mihir Bellare and Eike Kiltz for their helpful comments on a preliminary version
of this paper and the anonymous referees of PKC 2013 for their valuable input.

This work was supported in part by the French ANR-10-SEGI-015 PRINCE Project and in part by the

13

European Commission through the FP7-ICT-2011-EU-Brazil Program under Contract 288349 SecFuNet
and the ICT Program under Contract ICT-2007-216676 ECRYPT II.

References

[AABN02] Michel Abdalla, Jee Hea An, Mihir Bellare, and Chanathip Namprempre. From identifica-
tion to signatures via the Fiat-Shamir transform: Minimizing assumptions for security and
forward-security. In Lars R. Knudsen, editor, EUROCRYPT 2002, volume 2332 of LNCS,
pages 418–433, Amsterdam, The Netherlands, April 28 – May 2, 2002. Springer, Berlin, Ger-
many. (Cited on page 1.)

[AFLT12] Michel Abdalla, Pierre-Alain Fouque, Vadim Lyubashevsky, and Mehdi Tibouchi. Tightly-
secure signatures from lossy identification schemes. In David Pointcheval and Thomas Jo-
hansson, editors, EUROCRYPT 2012, volume 7237 of LNCS, pages 572–590, Cambridge,
UK, April 15–19, 2012. Springer, Berlin, Germany. (Cited on pages 1, 4, 5, and 6.)

[BM99] Mihir Bellare and Sara K. Miner. A forward-secure digital signature scheme. In Michael J.
Wiener, editor, CRYPTO’99, volume 1666 of LNCS, pages 431–448, Santa Barbara, CA,
USA, August 15–19, 1999. Springer, Berlin, Germany. (Cited on pages 3, 4, and 20.)

[BNN07] Mihir Bellare, Chanathip Namprempre, and Gregory Neven. Unrestricted aggregate signa-
tures. In Lars Arge, Christian Cachin, Tomasz Jurdzinski, and Andrzej Tarlecki, editors,
ICALP 2007, volume 4596 of LNCS, pages 411–422, Wroclaw, Poland, July 9–13, 2007.
Springer, Berlin, Germany. (Cited on page 22.)

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for designing
efficient protocols. In V. Ashby, editor, ACM CCS 93, pages 62–73, Fairfax, Virginia, USA,
November 3–5, 1993. ACM Press. (Cited on page 2.)

[BR96] Mihir Bellare and Phillip Rogaway. The exact security of digital signatures: How to sign with
RSA and Rabin. In Ueli M. Maurer, editor, EUROCRYPT’96, volume 1070 of LNCS, pages
399–416, Saragossa, Spain, May 12–16, 1996. Springer, Berlin, Germany. (Cited on page 22.)

[BR06] Mihir Bellare and Phillip Rogaway. The security of triple encryption and a framework for
code-based game-playing proofs. In Serge Vaudenay, editor, EUROCRYPT 2006, volume 4004
of LNCS, pages 409–426, St. Petersburg, Russia, May 28 – June 1, 2006. Springer, Berlin,
Germany. (Cited on page 17.)

[BS96] Eric Bach and Jeffrey Shallit. Algorithmic Number Theory. MIT Press, August 1996. (Cited
on pages 18 and 42.)

[CD95] Ronald Cramer and Ivan Damg̊ard. Escure signature schemes based on interactive proto-
cols. In Don Coppersmith, editor, CRYPTO’95, volume 963 of LNCS, pages 297–310, Santa
Barbara, CA, USA, August 27–31, 1995. Springer, Berlin, Germany. (Cited on page 37.)

[CMS99] Christian Cachin, Silvio Micali, and Markus Stadler. Computationally private information
retrieval with polylogarithmic communication. In Jacques Stern, editor, EUROCRYPT’99,
volume 1592 of LNCS, pages 402–414, Prague, Czech Republic, May 2–6, 1999. Springer,
Berlin, Germany. (Cited on pages 1, 3, and 17.)

[Dus98] P. Dusart. Autour de la fonction qui compte le nombre de nombres premiers. These, Université
de Limoges, page 36, 1998. (Cited on page 31.)

[ECR11] ECRYPT II yearly report on algorithms and keysizes, 2011. (Cited on page 10.)

14

[FFS88] Uriel Feige, Amos Fiat, and Adi Shamir. Zero-knowledge proofs of identity. Journal of
Cryptology, 1(2):77–94, 1988. (Cited on page 1.)

[FS87] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification and
signature problems. In Andrew M. Odlyzko, editor, CRYPTO’86, volume 263 of LNCS, pages
186–194, Santa Barbara, CA, USA, August 1987. Springer, Berlin, Germany. (Cited on
pages 1 and 6.)

[GBL08] Sanjam Garg, Raghav Bhaskar, and Satyanarayana V. Lokam. Improved bounds on security
reductions for discrete log based signatures. In David Wagner, editor, CRYPTO 2008, volume
5157 of LNCS, pages 93–107, Santa Barbara, CA, USA, August 17–21, 2008. Springer, Berlin,
Germany. (Cited on page 1.)

[GMR85] Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A “paradoxical” solution to the sig-
nature problem (abstract) (impromptu talk). In G. R. Blakley and David Chaum, editors,
CRYPTO’84, volume 196 of LNCS, page 467, Santa Barbara, CA, USA, August 19–23, 1985.
Springer, Berlin, Germany. (Cited on page 3.)

[GQ90] Louis C. Guillou and Jean-Jacques Quisquater. A “paradoxical” indentity-based signature
scheme resulting from zero-knowledge. In Shafi Goldwasser, editor, CRYPTO’88, volume 403
of LNCS, pages 216–231, Santa Barbara, CA, USA, August 21–25, 1990. Springer, Berlin,
Germany. (Cited on pages 1, 7, and 33.)

[HW09] Susan Hohenberger and Brent Waters. Short and stateless signatures from the RSA assump-
tion. In Shai Halevi, editor, CRYPTO 2009, volume 5677 of LNCS, pages 654–670, Santa
Barbara, CA, USA, August 16–20, 2009. Springer, Berlin, Germany. (Cited on pages 9
and 41.)

[IN96] Russell Impagliazzo and Moni Naor. Efficient cryptographic schemes provably as secure as
subset sum. Journal of Cryptology, 9(4):199–216, 1996. (Cited on page 1.)

[IR01] Gene Itkis and Leonid Reyzin. Forward-secure signatures with optimal signing and verifying.
In Joe Kilian, editor, CRYPTO 2001, volume 2139 of LNCS, pages 332–354, Santa Barbara,
CA, USA, August 19–23, 2001. Springer, Berlin, Germany. (Cited on pages 2, 7, 9, 18, 40,
and 42.)

[KK12] Saqib A. Kakvi and Eike Kiltz. Optimal security proofs for full domain hash, revisited.
In David Pointcheval and Thomas Johansson, editors, EUROCRYPT 2012, volume 7237 of
LNCS, pages 537–553, Cambridge, UK, April 15–19, 2012. Springer, Berlin, Germany. (Cited
on page 10.)

[KOS10] Eike Kiltz, Adam O’Neill, and Adam Smith. Instantiability of RSA-OAEP under chosen-
plaintext attack. In Tal Rabin, editor, CRYPTO 2010, volume 6223 of LNCS, pages 295–313,
Santa Barbara, CA, USA, August 15–19, 2010. Springer, Berlin, Germany. (Cited on page 17.)

[KW03] Jonathan Katz and Nan Wang. Efficiency improvements for signature schemes with tight
security reductions. In Sushil Jajodia, Vijayalakshmi Atluri, and Trent Jaeger, editors, ACM
CCS 03, pages 155–164, Washington D.C., USA, October 27–30, 2003. ACM Press. (Cited
on pages 1, 12, and 35.)

[LM06] Vadim Lyubashevsky and Daniele Micciancio. Generalized compact Knapsacks are collision
resistant. In Michele Bugliesi, Bart Preneel, Vladimiro Sassone, and Ingo Wegener, editors,
ICALP 2006, Part II, volume 4052 of LNCS, pages 144–155, Venice, Italy, July 10–14, 2006.
Springer, Berlin, Germany. (Cited on page 1.)

15

[Mic94] Silvio Micali. A secure and efficient digital signature algorithm. Technical Memo
MIT/LCS/TM-501b, Massachusetts Institute of Technology, Laboratory for Computer Sci-
ence, April 1994. (Cited on page 1.)

[MM11] Daniele Micciancio and Petros Mol. Pseudorandom knapsacks and the sample complexity of
LWE search-to-decision reductions. In Phillip Rogaway, editor, CRYPTO 2011, volume 6841
of LNCS, pages 465–484, Santa Barbara, CA, USA, August 14–18, 2011. Springer, Berlin,
Germany. (Cited on page 1.)

[MMM02] Tal Malkin, Daniele Micciancio, and Sara K. Miner. Efficient generic forward-secure signatures
with an unbounded number of time periods. In Lars R. Knudsen, editor, EUROCRYPT 2002,
volume 2332 of LNCS, pages 400–417, Amsterdam, The Netherlands, April 28 – May 2, 2002.
Springer, Berlin, Germany. (Cited on pages 2, 9, 10, and 11.)

[MR99] Silvio Micali and Leonid Reyzin. Improving the exact security of digital signature schemes.
In Rainer Baumgart, editor, CQRE’99, volume 1740 of LNCS, pages 167–182, Düsseldorf,
Germany, November 30 – December 2, 1999. Springer, Berlin, Germany. (Cited on page 16.)

[MR02] Silvio Micali and Leonid Reyzin. Improving the exact security of digital signature schemes.
Journal of Cryptology, 15(1):1–18, 2002. Full version of [MR99]. (Cited on pages 1, 8, 9, 19,
20, 35, 37, 38, 39, and 40.)

[OO90] Kazuo Ohta and Tatsuaki Okamoto. A modification of the Fiat-Shamir scheme. In Shafi
Goldwasser, editor, CRYPTO’88, volume 403 of LNCS, pages 232–243, Santa Barbara, CA,
USA, August 21–25, 1990. Springer, Berlin, Germany. (Cited on page 1.)

[OS90] H. Ong and Claus-Peter Schnorr. Fast signature generation with a Fiat-Shamir-like scheme.
In Ivan Damg̊ard, editor, EUROCRYPT’90, volume 473 of LNCS, pages 432–440, Aarhus,
Denmark, May 21–24, 1990. Springer, Berlin, Germany. (Cited on pages 1, 12, and 35.)

[Pai99] Pascal Paillier. Public-key cryptosystems based on composite degree residuosity classes. In
Jacques Stern, editor, EUROCRYPT’99, volume 1592 of LNCS, pages 223–238, Prague, Czech
Republic, May 2–6, 1999. Springer, Berlin, Germany. (Cited on pages 1, 3, 13, 18, and 36.)

[PR06] Chris Peikert and Alon Rosen. Efficient collision-resistant hashing from worst-case assump-
tions on cyclic lattices. In Shai Halevi and Tal Rabin, editors, TCC 2006, volume 3876 of
LNCS, pages 145–166, New York, NY, USA, March 4–7, 2006. Springer, Berlin, Germany.
(Cited on page 1.)

[PS98] Sarvar Patel and Ganapathy S. Sundaram. An efficient discrete log pseudo random genera-
tor. In Hugo Krawczyk, editor, CRYPTO’98, volume 1462 of LNCS, pages 304–317, Santa
Barbara, CA, USA, August 23–27, 1998. Springer, Berlin, Germany. (Cited on page 1.)

[PS00] David Pointcheval and Jacques Stern. Security arguments for digital signatures and blind
signatures. Journal of Cryptology, 13(3):361–396, 2000. (Cited on page 37.)

[PV05] Pascal Paillier and Damien Vergnaud. Discrete-log-based signatures may not be equivalent to
discrete log. In Bimal K. Roy, editor, ASIACRYPT 2005, volume 3788 of LNCS, pages 1–20,
Chennai, India, December 4–8, 2005. Springer, Berlin, Germany. (Cited on page 1.)

[Sch90] Claus-Peter Schnorr. Efficient identification and signatures for smart cards (abstract) (rump
session). In Jean-Jacques Quisquater and Joos Vandewalle, editors, EUROCRYPT’89, vol-
ume 434 of LNCS, pages 688–689, Houthalen, Belgium, April 10–13, 1990. Springer, Berlin,
Germany. (Cited on page 1.)

16

[Seu12] Yannick Seurin. On the exact security of schnorr-type signatures in the random oracle model.
In David Pointcheval and Thomas Johansson, editors, EUROCRYPT 2012, volume 7237 of
LNCS, pages 554–571, Cambridge, UK, April 15–19, 2012. Springer, Berlin, Germany. (Cited
on page 1.)

[vW96] Paul C. van Oorschot and Michael J. Wiener. On Diffie-Hellman key agreement with short
exponents. In Ueli M. Maurer, editor, EUROCRYPT’96, volume 1070 of LNCS, pages 332–
343, Saragossa, Spain, May 12–16, 1996. Springer, Berlin, Germany. (Cited on page 1.)

A Notations

A.1 Games

The definitions and proofs in this paper use code-based game-playing [BR06]. In such games, there
exist procedures for initialization (Initialize) and finalization (Finalize) and procedures to respond
to adversary oracle queries. A game G is executed with an adversary A as follows. First, Initialize
executes and its outputs are the inputs to A. Then A executes, its oracle queries being answered by
the corresponding procedures of G. When A terminates, its output becomes the input to the Finalize
procedure. The output of the latter, denoted G(A), is called the output of the game, and “G(A)⇒ y”
denotes the event that the output takes a value y. The running time of an adversary is the worst case
time of the execution of the adversary with the game defining its security, so that the execution time of
the called game procedures is included.

A.2 Computational Assumptions

φ-hiding assumption [CMS99, KOS10]. To define φ-hiding assumption more formally, we adopt the
notation and formalization given in [KOS10]. Let k be a security parameter, let `N be a function of k
and let RSA`N denote the set of all tuples (N, p1, p2) such that N = p1p2 is a `N -bit number which is
the product of two distinct `N/2-bit primes. We call such a number an RSA modulo. As in [KOS10], we

denote by (N, p1, p2)
$← RSA`N the process of sampling (N, p1, p2) according to the uniform distribution

on RSA`N . Likewise, let R be a relation on p1 and p2. We denote by RSA`N [R] the subset of RSA`N
for which the relation R holds on p1 and p2 and by (N, p1, p2)

$← RSA`N [R] the process of sampling
(N, p1, p2) according to the uniform distribution on RSA`N [R]. Consider for instance the example given
in [KOS10] where e is a prime and the relation is p1 = 1 mod e. Then, RSA`N [p1 = 1 mod e] is the set
of all (N, p1, p2) for which N = p1p2 is the product of two `N/2-bit primes p1 and p2 with p1 = 1 mod e.
That means that the relation R(p1, p2) is true for values of p1 such that p1 = 1 mod e and for arbitrary
values of p2. Finally, we denote by KGrsa and KGrsa[R] an algorithm which samples (N, p1, p2) according
to the uniform distribution on RSA`N and RSA`N [R], respectively.

Let c be a public positive constant smaller than 1/4 and denote by e
$← Pc`N the process of sam-

pling a prime e according to the uniform distribution on Pc`N , the set of primes of length c`N . Let

ExpφH-0
k (A) denote the game in which the procedure Initialize samples e

$← Pc`N and (N, p1, p2)
$←

RSA`N [gcd(e, φ(N)) = 1] and returns (N, e) to the adversaryA (φ(N) is the order of Z∗N). Let ExpφH-1
k (A)

denote the game in which the procedure Initialize samples e
$← Pc`N and (N, p1, p2)

$← RSA`N [p1 =
1 mod e] and returns (N, e) to A. In both games, the adversary A eventually queries the procedure Fi-

nalize with a guess β, which becomes the output of the game. The advantage AdvφH
k (A) of an adversary

A in solving the φ-hiding problem is then defined as the probability that ExpφH-0
k (A) outputs 1 minus

the probability that ExpφH-1
k (A) outputs 1. We say that the φ-hiding problem is (t, ε)-hard if for all

adversary A with running time at most t, AdvφH
k (A) is at most ε.

17

We remark that the procedure Initialize in ExpφH-0
A (k) and ExpφH-0

A (k) can be implemented effi-
ciently if we assume the widely-accepted Extended Riemann Hypothesis (Conjecture 8.4.4 of [BS96]).

e-residuosity. Let N be an RSA modulus and let e is an integer that divides φ(N). Let HRN [e] denote
the set of all e-residues modulo N . That is, HRN [e] = {ge s.t. g ∈ Z∗N}. Let JN [e] be a subgroup of Z∗N
including HRN [e] whose membership can be efficiently checked and for which we expect the problem of
testing whether an element x ∈ HRN [e] or x ∈ JN [e]\HRN [e] is hard. We refer to JN [e]\HRN [e] as the set
of pseudo-e-residues modulo N . For instance, in the case where e = 2, we can define JN [2] as the set of
elements in Z∗N with Jacobi symbol 1. The latter case is known as the quadratic-residuosity problem.
Likewise, in the extended case where e = p1p2 and N = p2

1p
2
2 for large primes p1 and p2, we have that

JN [e] = Z∗N . The latter case was introduced by Paillier in [Pai99] and the problem of deciding whether
x ∈ HRN [e] or x ∈ JN [e] \HRN [e] when given (N, e, x) is known as the high-residuosity problem. Since
the exact way in which N is generated will depend on the specific e-residuosity assumption on which
we are relying, we assume that there exists an efficient parameter generation algorithm KG which on
input k outputs (N, e). We remark that if e is a constant, generating random a random RSA modulus N
such that e divides φ(N) can be done efficiently (in time linear in e), if we assume the widely-accepted
Extended Riemann Hypothesis (Conjecture 8.4.4 of [BS96]).

To define the e-residuosity problem more precisely, where e is an integer that divides φ(N), we
will define games Exphr-0

k (A) and Exphr-1
k (A). In game Exphr-0

k (A), the procedure Initialize samples

(N, e)
$← KG(k), chooses x ∈ Z∗N uniformly at random, computes y = xe mod N , and returns (N, e, y) to

the adversary A. Clearly, we have y ∈ HRN [e] in this case. In game Exphr-1
k (A), the procedure Initialize

samples (N, e)
$← KG(k), chooses y ∈ JN [e] \HRN [e] uniformly at random, and returns (N, e, y) to A. In

both games, the adversary A eventually queries the procedure Finalize with a guess β, which becomes
the output of the game. The advantage Advhr

k (A) of an adversary A in solving the e-residuosity problem
is then defined as the probability that Exphr-0

k (A) outputs 1 minus the probability that Exphr-1
k (A)

outputs 1. We say that the e-residuosity problem is (t, ε)-hard if for all adversary A with running time
at most t, Advhr

k (A) is at most ε.

Strong-2t-residuosity. This assumption is a slightly stronger assumption than the 2t-residuosity
because we force 2t to divide p1 − 1 and p2 − 1 (and not only φ(N)), and we want to distinguish a
2t-residue from a non 2-residue (instead of a non 2t-residue). However, we expect that, in practice, to
solve the problem, the best algorithm is still roughly as efficient as factorizing N , as for all the other
complexity assumptions made in this article.

To define the 2t-residuosity problem more precisely, we will define two games: Exphr-0
k (A) and

Exphr-1
k (A). Let e = 2t. In game Expshr-0

k (A), the procedure Initialize samples (N, p1, p2)
$← RSA`N [p1 =

1 mod e ∧ p2 = 1 mod e], chooses x ∈ Z∗N uniformly at random, computes y = xe mod N , and returns
(N, e, y) to the adversary A. Clearly, we have y ∈ HRN [e] in this case. In game Expshr-1

k (A), the proce-

dure Initialize samples (N, p1, p2)
$← RSA`N [p1 = 1 mod e ∧ p2 = 1 mod e], chooses y ∈ JN [2] \ HRN [2]

uniformly at random, and returns (N, e, y) to A. In both games, the adversary A eventually queries the
procedure Finalize with a guess β, which becomes the output of the game. The advantage Advshr

k (A)
of an adversary A in solving the strong-2t-residuosity problem is then defined as the probability that
Expshr-0

k (A) outputs 1 minus the probability that Expshr-1
k (A) outputs 1. We say that the strong-2t-

residuosity problem is (t, ε)-hard if for all adversary A with running time at most t, Advshr
k (A) is at most

ε.

Strong-RSA. We use the variant of the strong-RSA assumption described in [IR01]. More precisely, we
fix a security parameter `e. Let ExpSRSA

k (A) denote the game in which the procedure Initialize samples

(N, p1, p2)
$← RSA`N [p1 and p2 are safe7] and y

$← Z∗N and returns (N, y) to the adversary A. In the
game, the adversary A eventually queries the procedure Finalize with a pair (x, e). ExpSRSA

k (A) outputs

7A prime number p is safe if it can be written as p = 2q + 1 with q a prime number.

18

Game Expeuf-cma
FS ,k ,T (A) and Expw-euf-cma

FS ,k ,T (A)

Initialize(1k , 1T)

ı̃
$← {1, . . . , T}

S ← ∅
b← T + 1

(pk , sk1)
$← KG(1k , 1T)

for i = 1, . . . , T − 1
sk i+1 ← Update(sk i)

return (pk , T)

Sign(M , i)

〈σ, i〉 $← Sign(sk i,M)
S ← S ∪ {(M , i)}
return 〈σ, i〉

Breakin(i)

if b = T + 1
and 1 ≤ i ≤ T then

b← i
return sk i

else
return ⊥

Finalize(M ∗, 〈σ∗, i∗〉)
d ← Ver(pk , 〈σ∗, i∗〉,M ∗)
if (M ∗, i∗) ∈ S

then d ← 0
if i∗ ≥ b

then d ← 0

if i∗ 6= ı̃

then d ← 0
return (d = 1)

Figure A.1: Game Expeuf-cma
FS ,k ,T (A) (and Expw-euf-cma

FS ,k ,T (A)) defining the EUF-CMA (and W-EUF-CMA) security

of a key-evolving signature scheme FS = (KG,Sign,Ver,Update). Expw-euf-cma
FS ,k ,T (A) includes the boxed codes in

Initialize and in Finalize but Expeuf-cma
FS ,k ,T (A) does not.

1 if and only if e ≤ 2`e and y = xe mod N . The advantage AdvSRSA
k (A) of an adversary A in solving

the strong-RSA problem is then defined as the probability that ExpSRSA
k (A) outputs 1. We say that the

strong-RSA problem is (t, ε)-hard if for all adversary A with running time at most t, AdvSRSA
k (A) is at

most ε.

A.3 Weak Security Notions

In addition to classical security notions defined in Section 2.3, we consider two even weaker notions:
the weak forward security and the weak existential forward security. For these notions, the
challenger of the adversary, picks a period ı̃ uniformly at random at the beginning and reject the forged
signature if it does not correspond to the period ı̃. Then we say that a key-evolving signature scheme
is (t, qh, qs, ε, δ)-weakly-(existentially)-forward-secure if there is no adversary (running in time at most t,
doing at most qh requests to the random oracle, and qs requests of signatures), such that, with probability
at least δ, the challenger chooses a period ı̃ and a key pair (pk , sk1), such that the adversary forges a
correct signature for period ı̃ with probability at least ε. The idea of this definition is to distinguish the
probability from the choice of the period and of the key pair. This is actually a (not so straightforward)
extension of the security definition of Micali and Reyzin in [MR02].

A.4 Formal Security Notions

This section gives the formal notions of security corresponding to the informal ones, introduced in Sec-
tion 2.3 and Section A.3.

The precise definitions of existential forward security (EUF-CMA) and (strong) forward security
(SUF-CMA) consider the games Expeuf-cma

FS ,k ,T (A) and Expsuf-cma
FS ,k ,T (A), respectively, described in Figure A.1

and Figure A.2. Expeuf-cma
FS ,k ,T (A) and Expsuf-cma

FS ,k ,T (A) contain four procedures, which are executed with an

adversary A as follows. The procedure Initialize generates a pair of public and secret keys (pk , sk1)
$←

KG(1k , 1T) and all the secret keys sk i for 2 ≤ i ≤ T , where sk i is the secret key for time period i and
T is the total number of time periods, and returns (pk , T) to A. During the execution of the game,
the adversary is allowed to make queries (M , i) to the Sign procedure, where M ∈ M, and i is the
time period of the requested signature. To answer it, the game Expeuf-cma

FS ,k ,T (A) generates a signature

σ
$← Sign(sk i,M) and gives (σ, i) to A. The adversary is also allowed to make one query i to the

Breakin procedure, which returns the secret key sk i of the period i. Eventually, the adversary ends
the game by querying the Finalize procedure with a message-signature-period triple (M ∗, 〈σ∗, i∗〉). The
advantage Adveuf-cma

FS ,k ,T (A) (Advsuf-cma
FS ,k ,T (A)) of the adversary A in breaking the EUF-CMA (SUF-CMA)

19

Game Expsuf-cma
FS ,k ,T (A) and Expw-suf-cma

FS ,k ,T (A)

Initialize(1k , 1T)

ı̃
$← {1, . . . , T}

S ← ∅
b← T + 1

(pk , sk1)
$← KG(1k , 1T)

for i = 1, . . . , T − 1
sk i+1 ← Update(sk i)

return (pk , T)

Sign(M , i)

〈σ, i〉 $← Sign(sk i,M)
S ← S ∪ {(M , 〈σ, i〉)}
return 〈σ, i〉

Breakin(i)

if b = T + 1
and 1 ≤ i ≤ T then

b← i
return sk i

else
return ⊥

Finalize(M ∗, 〈σ∗, i∗〉)
d ← Ver(pk , 〈σ∗, i∗〉,M ∗)
if (M ∗, 〈σ∗, i∗〉) ∈ S

then d ← 0
if i∗ ≥ b

then d ← 0

if i∗ 6= ı̃

then d ← 0
return (d = 1)

Figure A.2: Game Expsuf-cma
FS ,k ,T (A) (and Expw-suf-cma

FS ,k ,T (A)) defining the SUF-CMA (and W-SUF-CMA) security

of a key-evolving signature scheme FS = (KG,Sign,Ver,Update). Expw-suf-cma
FS ,k ,T (A) includes the boxed code in

Initialize and in Finalize but Expsuf-cma
FS ,k ,T (A) does not.

security of FS is then defined as the probability that the game Expeuf-cma
FS ,k ,T (A) (Expsuf-cma

FS ,k ,T (A)) outputs

true. If Adveuf-cma
FS ,k ,T (A) ≥ ε, we say that A (t, qh, qs, ε)-breaks the existential forward security of FS . If

Advsuf-cma
FS ,k ,T (A) ≥ ε, we say that A (t, qh, qs, ε)-breaks the forward security of FS . Finally, we say that FS

is (t, qh, qs, ε)-(existentially)-forward-secure, if no adversary A (t, qh, qs, ε)-breaks the (existential) forward
security of FS .

We remark that our definition of forward security is slightly stronger than the one proposed by [BM99].
Indeed, the adversary can choose the breakin period after seeing signatures for following periods. The
advantage of this definition is that the game is somehow simpler than the one with the definition of
Bellare and Miner in [BM99]. Anyway, it seems that most of the current schemes (maybe even all of
them) also verify this stronger notion.

The precise definitions of weak existential forward security (W-EUF-CMA) and weak forward security
(W-SUF-CMA) consider the games Expw-euf-cma

FS ,k ,T (A) and Expw-suf-cma
FS ,k ,T (A) described in Figure A.1 and

Figure A.2. The only difference with the games Expeuf-cma
FS ,k ,T (A) and Expsuf-cma

FS ,k ,T (A) is that Initialize picks
a random period ı̃ ∈ {1, . . . , T} and Finalize rejects any signature which period i∗ is not ı̃. An adversary
A (t, qh, qs, ε, δ)-weakly-breaks the (existential) forward security of FS if, with probability at least δ,
Initialize picks (pk , sk1, ı̃), such that Advw-euf-cma

FS ,k ,T (A) ≥ ε (for W-EUF-CMA and Expw-suf-cma
FS ,k ,T (A)

for W-SUF-CMA) for this (pk , sk1, ı̃), A runs in time at most t and does at most qh queries to the
random oracle and at most qs queries to the signature oracle. We then say that FS is (t, qh, qs, ε, δ)-
weakly-(existentially)-forward-secure if no adversary (t, qh, qs, ε, δ)-weakly-breaks the (existential) forward
security of FS .

This notion is weaker than the previous one in the following way: if a scheme is (t, qh, qs, T εδ)-forward-
secure, then it is (t, qh, qs, ε, δ)-weakly-forward-secure, as proven in Appendix B. More details on relations
between these two security notions can be found in Appendix B.

B Relations Between Security Notions

Micali and Reyzin introduces the (t, qh, qs, ε, δ)-weak-security notion for signature in [MR02] but without
explaining its relation with the standard (t, qh, qs, ε)-security notion. We generalize this weak notion to for-
ward security in Section 2.3 (W-SUF-CMA and W-EUF-CMA). And, in this appendix, we present some
propositions to try to understand the relation between the two notions. These propositions apply indif-
ferently to weak forward security (W-SUF-CMA) and weak existential forward security (W-EUF-CMA).
Therefore, for sake of clarity, we only write the proposition for weak forward security.

Firstly, we have the following straightforward proposition:

20

Proposition B.1 Let ε, δ ∈ [0, 1]2, such that Tεδ < 1. A (t, qh, qs, T εδ)-forward-secure scheme is also
(t, qh, qs, ε, δ)-weakly-forward-secure.

Proof: Let A be an adversary which (t, qh, qs, ε, δ)-weakly-breaks the scheme. Then, it is clear from
the definitions that Advw-euf-cma

FS ,k ,T (A) ≥ εδ. But we also have Advw-euf-cma
FS ,k ,T (A) = 1

T Adveuf-cma
FS ,k ,T (A).

Therefore Adveuf-cma
FS ,k ,T (A) ≥ Tεδ, and A (t, qh, qs, T εδ)-breaks the scheme.

Unfortunately, the converse is not necessarily true. Let ε, δ, η ∈]0, 1]3 and qh ≥ 1. Let suppose there
exists a (t, qh, qs, 0)-secure scheme8 FS . Then we can construct a (t, qh, qs, ε, δ)-weakly-secure scheme FS ′
which is not (t, qh, qs, (1−η)δ)-secure. The scheme FS ′ be the same as FS except that the key generation
algorithm KG includes the secret key sk1 in the public key pk with probability δ(1− η). There exists an
adversary which (t, qh, qs, (1 − η)δ)-breaks FS ′, but no adversary can (t, qh, qs, ε, δ)-weakly-breaks FS ′,
since only a proportion δ(1−η) of the keys are breakable. A corollary of this is that if you only prove that
a scheme is (t, qh, qs, ε, δ)-weakly-secure, no matter how small is ε, if δ′ < δ, the scheme is not necessarily
(t, qh, qs, δ

′)-secure.
We can also construct a (t, qh, qs, ε, δ)-weakly-secure scheme FS ′ which is not (t, qh, qs, (1− η)ε)-

secure, if there exists a scheme FS for which the best adversary A wins the game Expw-euf-cma
FS ,k ,T (A) with

probability (1 − η)ε (independently of the choice of the period i, and of the key pair (pk , sk1))9. A
corollary of this is that if you only prove that a scheme is (t, qh, qs, ε, δ)-weakly-secure, no matter how
small is δ, if ε′ < ε, the scheme is not necessarily (t, qh, qs, ε

′)-secure.
After all these negative results, let us now present a positive result.

Proposition B.2 Let suppose there are λ different key pairs (pk , sk1, i), and that KG choose uniformly
at random one of them10. Let FS be a key-evolving scheme. Let ε′ ∈]0, 1[and α = 1 + log(λT).

If FS is (t, qh, qs, ε, δ)-weakly-forward-secure for any ε, δ ∈]0, 1]2 such that εδ ≥ ε′/(αT), then FS is
(t, qh, qs, ε

′)-forward-secure.

Proof: Let A be an adversary which (t, qh, qs, ε
′)-breaks the scheme. Then we have Adveuf-cma

FS ,k ,T (A) ≥ ε′,
and as in the previous proof, we also have

Advw-euf-cma
FS ,k ,T (A) = Adveuf-cma

FS ,k ,T (A)/T ≥ ε′/T.

Let us consider the advantages Advw-euf-cma
FS ,k ,T (A) for each triple (pk , sk1, i). Let us sort them in decreasing

order and write them ε′1 ≥ · · · ≥ ε′λT . By hypothesis, all triples are equiprobable, therefore, we have

ε′

T
≤ Advw-euf-cma

FS ,k ,T (A) =
ε′1 + · · ·+ ε′λT

λT
.

We remark that since ε′1 ≥ · · · ≥ ε′λT , if one of the j first triples is used in the game, the advantage
Advw-euf-cma

FS ,k ,T (A) is at least ε′j . Therefore, for any j, A (t, qh, qs, ε
′
j , j/(λT))-weakly-breaks FS . So we

just need to prove that for some j, ε′jj/(λT) ≥ ε′/(αT). Let us suppose for all j, ε′j < (λε′)/(αj), by
contrapositive. Then, we can sum these inequalities and we get

λTε′ =

λT∑
j=1

ε′j <
λε′

α

λT∑
j=1

1

j
< λε′

(the right inequality comes from the well-known inequality for harmonic series
∑λT

j=1
1
j < α). This is

contradictory. So we have proven the proposition.

8We could use a (t, qh, qs, ε
′)-secure scheme with ε′ small enough but this complicates the proof.

9By best, we mean that, for any fixed period i and key pair (pk , sk1), no adversary can win the game with probability
more than (1− η)ε.

10This is the case with most currently used schemes.

21

Corollary B.3 Under the same assumptions as in Proposition B.2, if FS is (t, qh, qs, ε
′/(αT), ε′/(αT))-

weakly-forward-secure, then FS is (t, qh, qs, ε
′)-forward-secure.

Proof: We just need to remark that if εδ ≥ ε′/(αT), then, since δ, ε ≤ 1, ε, δ ≥ ε′/(αT) and so FS is
also (t, qh, qs, ε, δ)-weakly-forward-secure. And we apply Proposition B.2.

Remark B.4 However, we may consider that an attacker which can attack only a ridiculously small
portion of the keys is quite strange, and do not consider it. In order to be able to compare different
schemes, we think it is better to suppose any attacker which (t, qh, qs, ε)-breaks the forward security of a
scheme also (t, qh, qs, ε, 1/2)-breaks it11. This means, we suppose that the (t, qh, qs, ε, 1/2)-weakly-forward
security implies the (t, qh, qs, T ε)-forward-security. As you will see in Section 5.3, it enables us to do quite
fair comparison, if we consider the security of a (t, qh, qs, T ε)-forward-secure scheme is log2(t/(Tε)) bits,
which is the intuitive notion of security.

C Proof of Theorem 3.1 and of a Slight Variant

C.1 Recall on Code-Based Game-Playing Proofs

Our proof will use code-based game-playing [BR96]. We recall some background here. The boolean flag
bad is assumed initialized to false. We say that games Gi,Gj are identical until bad if their codes differ
only in statements that follow the setting of bad to true. For examples, games G0,G1 of Figure C.1 are
identical until bad.

This lemma was stated in [BR96].

Lemma C.1 ([BR96]) Let Gi,Gj be identical until bad games, and A an adversary. Then

Pr [Gi(A)⇒ 1]− Pr [Gj(A)⇒ 1] ≤ Pr [Gi sets bad].

The following was stated in [BNN07] and its proof is implicit in [BR96].

Lemma C.2 ([BNN07]) Let Gi,Gj be identical until bad games, and A an adversary. Let Goodi,Goodj
be the events that bad is never set in games Gi,Gj, respectively. Then,

Pr [Gi(A)⇒ 1 ∧ Goodi] = Pr [Gj(A)⇒ 1 ∧ Goodj].

C.2 Weak Key Indistinguishability

Before proving Theorem 3.1, we need to introduce a new notion: weak key indistinguishability and to
prove that this notion is weaker than the key indistinguishability

Consider the experiments Expweak-ind-keys-real
ID,k (D) and Expweak-ind-keys-lossy

ID,k (D):

Expweak-ind-keys-real
ID,k (D)

ı̃
$← {1, . . . , T}

(pk , sk1)
$← KG(1k , 1T) ; sk ı̃+1

$← Updateı̃(sk1)
return D(pk , sk ı̃+1)

Expweak-ind-keys-lossy
ID,k (D)

ı̃
$← {1, . . . , T}

(pk , sk ı̃+1)
$← LKG(1k , 1T , ı̃)

return D(pk , sk ı̃+1)

D is said to (t, ε)-solve the weak key indistinguishability problem if it runs in time t and∣∣∣Pr
[

Expweak-ind-keys-real
ID,k (D) = 1

]
− Pr

[
Expweak-ind-keys-lossy

ID,k (D) = 1
]∣∣∣ ≥ ε.

Furthermore, we say that ID is (t, ε)-weak-key-indistinguishable, if no algorithm (t, ε)-solves the weak-
key-indistinguishability problem.

111/2 is just an arbitrary constant. It can be any reasonable constant.

22

Lemma C.3 If ID is (t, ε)-key-indistinguishable, then, ID is (t, ε)-weak-key-indistinguishable.

Proof: Suppose ID is not (t, ε)-weak-key-indistinguishable. Let D be a distinguisher that (t, ε)-solve the
weak key indistinguishability problem.

ε ≤
∣∣∣Pr
[

Expweak-ind-keys-real
ID,k (D) = 1

]
− Pr

[
Expweak-ind-keys-lossy

ID,k (D) = 1
]∣∣∣

=

∣∣∣∣∣
T∑
i=1

Pr
[
Expweak-ind-keys-real

ID,k (D) = 1 ∧ i = ı̃
]
− Pr

[
Expweak-ind-keys-lossy

ID,k (D) = 1 ∧ i = ı̃
]∣∣∣∣∣

=
1

T

∣∣∣∣∣
T∑
i=1

Pr
[

Expweak-ind-keys-real
ID,k (D) = 1 | i = ı̃

]
− Pr

[
Expweak-ind-keys-lossy

ID,k (D) = 1 | i = ı̃
]∣∣∣∣∣

=
1

T

∣∣∣∣∣
T∑
i=1

Pr
[

Expind-keys-real
ID,k ,i (D) = 1

]
− Pr

[
Expind-keys-lossy

ID,k ,i (D) = 1
]∣∣∣∣∣

≤ 1

T

T∑
i=1

∣∣∣Pr
[

Expind-keys-real
ID,k ,i (D) = 1

]
− Pr

[
Expind-keys-lossy

ID,k ,i (D) = 1
]∣∣∣

Therefore, there exists some i∗ ∈ {1, . . . , T}, such that:

ε ≤
∣∣∣Pr
[

Expind-keys-real
ID,k ,i∗ (D) = 1

]
− Pr

[
Expind-keys-lossy

ID,k ,i∗ (D) = 1
]∣∣∣

otherwise the previous inequality is false.

Then D is a distinguisher that (t, ε)-solve the weak key indistinguishability problem for period i∗, and so
ID is not (t, ε)-key-indistinguishable.

C.3 Proof of Theorem 3.1

Let us suppose there exists an adversary A which (t, qh, qs, ε)-breaks the existential forward security
of FS . Let us consider the games G0, . . . ,G9 of Figure C.1 and Figure C.2. The random oracle H is
simulated using a table HT containing all the previous queries to the oracle and responses of the oracle.

Firstly, we will assume that the set of queries to the random oracle made by the adversary always
contains the query 〈cmt∗,M ∗〉. This is without loss of generality because, given any adversary, we can
always create an adversary (with the same success probability and approximately the same running time)
that performs this query before calling Finalize. It only increases the total amount of hash queries by 1.

G0 corresponds to a slightly stronger game than the game Expeuf-cma
FS ,k ,T (A) defining the existential

forward security of a key-evolving signature built from a key-evolving scheme via generalized Fiat-Shamir
transform. We force the forged signature by the adversary to be such that 〈cmt∗,M ∗, i∗〉 (instead of
〈M ∗, i∗〉) is different from all the previous queries to the signing oracle. We have inlined the code of
the random oracle in the procedure Sign, and set bad when H(〈cmt ,M 〉) is already defined. We have
also modified the code of the random oracle H such that the fpth query is answered by ch∗, a random
challenge chosen in Initialize. These modifications do not change the output of the original game.

To compute the probability Pr [G0 sets bad], we can assume the worst-case scenario where the qh
hash-queries are made before the qs signing queries. For each signing query, the probability that there is
a collision (i.e., bad is set for this query) is at most (qh + 1)/2β. By summing over all j, we have

Pr [G0 sets bad] ≤ (qh + 1)qs/2
β.

23

Initialize(k , T) Game G0,G1,G2,G3,G4

001 hc← 1 ; b← T + 1

002 fp
$← {1, . . . , qh + 1} ; ch∗

$← {0, 1}`c
003 (pk , sk1)

$← KG(1k , 1T)
004 for i = 1, . . . , T − 1
005 sk i+1 ← Update(sk i)
006 return (pk , T)

H(x) Game G0, . . . ,G9

011 if HT(x) =⊥ then
012 QT(hc)← x
013 if hc 6= fp then

014 HT(x)
$← {0, 1}`c

015 else

016 HT(x)
$← ch∗

017 hc← hc + 1
018 return HT(x)

Breakin(i) Game G0,G1,G2,G3,G4

021 if b = T + 1
022 and 1 ≤ i ≤ T then
023 b← i
024 return sk i

025 else
026 return ⊥

Sign(M , i) Game G0, G1

031 (cmt , st)
$← Prove(sk i)

032 if S(cmt ,M , i) 6=⊥ then
033 σ ← (cmt , S(cmt ,M , i))
034 return 〈σ, i〉
035 if HT(〈cmt ,M , i〉) 6=⊥ then
036 bad← true

037 HT(〈cmt ,M , i〉) $← {0, 1}`c
038 else

039 HT(〈cmt ,M , i〉) $← {0, 1}`c
040 ch

$← HT(〈cmt ,M , i〉)
041 rsp

$← Prove(sk i, cmt , ch, st)
042 σ ← (cmt , rsp)
043 S(〈cmt ,M , i〉)← rsp
044 return 〈σ, i〉

Sign(M , i) Game G2

231 (cmt , st)
$← Prove(sk i)

232 if S(cmt ,M , i) 6=⊥ then
233 σ ← (cmt , S(cmt ,M , i))
234 return 〈σ, i〉
235 ch

$← {0, 1}`c
236 HT(〈cmt ,M , i〉)← ch

237 rsp
$← Prove(sk i, cmt , ch, st)

238 σ ← (cmt , rsp)
239 S(〈cmt ,M , i〉)← rsp
240 return 〈σ, i〉
Sign(M , i) Game G3

331 (cmt , ch, rsp)
$← TrID

pk ,ski,k

332 if S(cmt ,M , i) 6=⊥ then
333 σ ← (cmt , S(cmt ,M , i))
334 return 〈σ, i〉
335 HT(〈cmt ,M , i〉)← ch
336 σ ← (cmt , rsp)
337 S(〈cmt ,M , i〉)← rsp
338 return 〈σ, i〉
Sign(M , i) Game G4, . . . ,G9

431 (cmt , ch, rsp)
$← T̃r

ID
pk ,i,k

432 if S(cmt ,M , i) 6=⊥ then
433 σ ← (cmt , S(cmt ,M , i))
434 return 〈σ, i〉
435 HT(〈cmt ,M , i〉)← ch
436 σ ← (cmt , rsp)
437 S(〈cmt ,M , i〉)← rsp
438 return 〈σ, i〉
Finalize(M ∗, 〈σ∗, i∗〉) Game G0,G1,G2,G3,G4

051 d ← Ver(pk , 〈σ∗, i∗〉,M ∗)
052 if i∗ ≥ b then
053 d ← 0
054 (cmt∗, rsp∗)← σ∗

055 if S(〈cmt∗,M ∗, i∗〉) 6=⊥ then
056 d ← 0
057 return d

Figure C.1: Games G0, . . . ,G4 for proof of Theorem 3.1. G1 includes the boxed code at line 037 but G0 does not.

24

Initialize(k , T) Game G5,G6,G7

501 hc← 1 ; b← T + 1

502 fp
$← {1, . . . , qh + 1} ; ch∗

$← {0, 1}`c
503 ı̃

$← {1, . . . , T}
504 (pk , sk1)

$← KG(1k , 1T)
505 for i = 1, . . . , T − 1
506 sk i+1 ← Update(sk i)
507 return (pk , T)

Initialize(k , T) Game G8,G9

801 hc← 1 ; b← T + 1

802 fp
$← {1, . . . , qh + 1} ; ch∗

$← {0, 1}`c
803ı̃

$← {1, . . . , T}
804 (pk , sk ı̃+1)

$← LKG(1k , 1T , ı̃)
805 for i = 1, . . . , ı̃
806 sk i ← ⊥
807 for i = ı̃+ 1, . . . , T − 1
808 sk i+1 ← Update(sk i)
809 return (pk , T)

H(x) Game G0, . . . ,G9

011 if HT(x) =⊥ then
012 QT(hc)← x
013 if hc 6= fp then

014 HT(x)
$← {0, 1}`c

015 else

016 HT(x)
$← ch∗

017 hc← hc + 1
018 return HT(x)

Breakin(i) Game G5, G6

521 if b = T + 1
522 and 1 ≤ i ≤ T then
523 b← i
524 if i ≤ ı̃
525 bad← true

526 return ⊥
527 return sk i

528 else
529 return ⊥

Breakin(i) Game G7,G8,G9

721 if b = T + 1
722 and 1 ≤ i ≤ T then
723 b← i
724 if i ≤ ı̃
725 return ⊥
726 return sk i

727 else
728 return ⊥
Sign(M , i) Game G4, . . . ,G9

431 (cmt , ch, rsp)
$← T̃r

ID
pk ,i,k

432 if S(cmt ,M , i) 6=⊥ then
433 σ ← (cmt , S(cmt ,M , i))
434 return 〈σ, i〉
435 HT(〈cmt ,M , i〉)← ch
436 σ ← (cmt , rsp)
437 S(〈cmt ,M , i〉)← rsp
438 return 〈σ, i〉

Finalize(M ∗, 〈σ∗, i∗〉) Game G5, G6

551 d ← Ver(pk , 〈σ∗, i∗〉,M ∗)
552 if i∗ ≥ b then
553 d ← 0
554 if i∗ 6= ı̃ then
555 bad← true

556 d ← 0
557 (cmt∗, rsp∗)← σ∗

558 if S(〈cmt∗,M ∗, i∗〉) 6=⊥ then
559 d ← 0
560 return d

Finalize(M ∗, 〈σ∗, i∗〉) Game G7,G8, G9

751 d ← Ver(pk , 〈σ∗, i∗〉,M ∗)
752 if i∗ ≥ b or i∗ 6= ı̃ then
753 d ← 0
754 (cmt∗, rsp∗)← σ∗

755 if QT(fp) 6= (cmt∗,M ∗) then
756 bad← true

757 d ← 0
758 if S(〈cmt∗,M ∗, i∗〉) 6=⊥ then
759 d ← 0
760 return d

Figure C.2: Games G5, . . . ,G9 for proof of Theorem 3.1. G6 includes the boxed code at lines 526 and 556 but G5

does not; G9 includes the boxed code at line 757 but G7 and G8 do not.

25

In G1, when bad is set, a new random value for H(〈cmt ,M 〉) is set in Sign. Since G0 and G1 are
identical until bad, thanks to Lemma C.1, we have

Pr [G0⇒ 1]− Pr [G1⇒ 1] ≤ Pr [G0 sets bad] ≤ (qs + qh)qs/2
β

In G2, bad is no more set and the procedure Sign is rewritten in an equivalent way. Since the latter
does not change the output of the game, we have Pr [G1(A)⇒ 1] = Pr [G2(A)⇒ 1].

In G3, the procedure Sign is changed such that the values (cmt , ch, rsp) are computed using the
transcript generation function TrID

pk ,sk ,k . Since the latter does not change the output of the game, we have
Pr [G2(A)⇒ 1] = Pr [G3(A)⇒ 1].

In G4, the qs calls to the transcript generation function TrID
pk ,sk i,k

are replaced by qs calls to the

simulated transcript generation function T̃r
ID
pk ,i,k . Since the statistical distance between the distributions

output by TrID
pk ,sk i,k

and by T̃r
ID
pk ,i,k is at most εs, we have

Pr [G3(A)⇒ 1]− Pr [G4(A)⇒ 1] ≤ qsεs.

In G5, a period ı̃ ∈ {1, . . . , T} is chosen uniformly at random, and bad is set when the adversary
queries Breakin (for the first time) with period b ≤ ı̃ or when the adversary outputs a signature for
a period i∗ 6= ı̃. Since if G5 outputs 1, we have i∗ < b, “bad is never set and G5 outputs 1” (event
G5(A)⇒ 1 ∧ Good5) if and only if “i∗ = ı̃ and G5 outputs 1”. Therefore, we have:

Pr [G5(A)⇒ 1 ∧ Good5] = Pr [G5(A)⇒ 1 ∧ i∗ = ı̃]

=
T∑
i=1

Pr [G5(A)⇒ 1 ∧ i∗ = i ∧ ı̃ = i]

=

T∑
i=1

Pr [G5(A)⇒ 1 ∧ i∗ = i]Pr [ı̃ = i]

=
1

T

T∑
i=1

Pr [G5(A)⇒ 1 ∧ i∗ = i] =
1

T
Pr [G5(A)⇒ 1].

So, we have

Pr [G4(A)⇒ 1] = Pr [G5(A)⇒ 1] = T Pr [G5(A)⇒ 1 ∧ Good5].

In G6, the empty string ⊥ is returned if Breakin is queried with period b ≤ ı̃, and the game outputs
0 if i∗ 6= ı̃. Since G5 and G6 are identical until bad, according to Lemma C.2, we have

Pr [G5(A)⇒ 1 ∧ Good5] = Pr [G6(A)⇒ 1 ∧ Good6] = Pr [G6(A)⇒ 1].

In G7, some procedures have been rewritten in an equivalent way, and bad is now set when the query
(cmt∗,M ∗) is not the fpth query to the random oracle. Since the latter does not change the output of
the experiment, we have Pr [G6(A)⇒ 1] = Pr [G7(A)⇒ 1].

In G8, the key is generated using the lossy key generation algorithm LKG for period ı̃ instead of the
normal key generation algorithm KG. From any adversary A to G8, it is straightforward to construct an
adversary which (t′′, ε′′)-solves the weak key indistinguishability problem with t′′ ≈ t + (qstSim−Sign +
(T − 1)tUpdate) and ε′′ = |Pr [G7(A)⇒ 1]− Pr [G8(A)⇒ 1]|. Therefore, thanks to the (t′, ε′)-key-
indistinguishability of ID, and thanks to Lemma C.3, if the adversary runs in time approximately at
most t′ − (qstSim−Sign + (T − 1)tUpdate):

Pr [G7(A)⇒ 1]− Pr [G8(A)⇒ 1] ≤ εk. (C.1)

26

In G9, the game outputs 0 if the signature does not corresponds to the challenge ch∗. Since we have

Pr [G8(A)⇒ 1 ∧ Good8] = Pr [G8(A)⇒ 1] · Pr [QT(fp) = (cmt∗,M ∗)] =
1

1 + qh
Pr [G8(A)⇒ 1],

and Pr [G9(A)⇒ 1 ∧ Good9] = Pr [G9(A)⇒ 1], according to Lemma C.2, we have

Pr [G8(A)⇒ 1] = (1 + qh)Pr [G9(A)⇒ 1].

From any adversary A to G9, it is straightforward to construct an adversary I (not necessarily com-
putationally bounded) which ε′-solves the impersonation problem with ε′ = Pr [G9(A)⇒ 1]. Therefore,
we have

Pr [G9(A)⇒ 1] ≤ ε`.

From the previous equalities and inequalities, we deduce that, for any adversary A running in time
approximately at most t′ − (qstSim−Sign + (T − 1)tUpdate):

ε ≤ Pr [G0(A)] ≤ T (εk + (1 + qh)ε`) + qsεs + (qh + 1)qs/2
β

Proof of forward security if ID is response-unique Let us now prove that FS is strongly forward-
secure (with the same parameters) if ID is response-unique. We first remark that, if we replace line 055
of G0 in Figure C.1 by

if S(〈cmt∗,M ∗, i∗〉) = rsp∗ then
then we get exactly the game for forward security.

Therefore, if normal keys are response-unique, it is clear that this new game is equivalent to the
original game G0, since if S(〈cmt∗,M ∗, i∗〉) is defined, it is the only possible response rsp∗.

If lossy keys are response-unique, to prove forward security, it is sufficient to replace lines 055, 558
and 758 for games G0, . . . ,G9 in Figure C.1 and Figure C.2 by

if S(〈cmt∗,M ∗, i∗〉) = rsp∗ then
Then the probability the adversary wins the new game G9 is still bounded by εl since if S(〈cmt∗,M ∗, i∗〉)
is defined, it is the only possible response rsp∗.

C.4 A slight variant

The following theorem is a slight variant of Theorem 3.1 which makes easier the comparison between the
various schemes:

Theorem C.4 Let ID = (KG, LKG,Update,Prove, `c,Ver) be a key-evolving lossy identification scheme
whose commitment space has min-entropy at least β (for every period i), let H be a random oracle, and let
FS [ID] = (KG,Sign,Ver) be the signature scheme obtained via the generalized Fiat-Shamir transform. If
ID is εs-simulatable, complete, (t′, ε′)-key-indistinguishable, and ε`-lossy, then FS [ID] is (t, qh, qs, ε, δ)-
weakly-existentially-forward-secure in the random oracle model for:

t ≈
(
t′ − (T − 1) tUpdate

)
·
(
ε− qsεs − (qh + 1)qs/2

β
)
− qstSim−Sign

as long as

ε > qsεs + (qh + 1)qs/2
β and ε′ ≤ δ

(
1− 1

e

)
− (1 + qh) ε`
ε− qsεs − (qh + 1)qs/2β

where tSim−Sign denotes the average time of a query to the simulated transcript function T̃r
ID
pk ,i,k and tUpdate

denotes the average time of a query to Update. Furthermore, if ID is response-unique, FS [ID] is also
(t, qh, qs, ε, δ)-weakly-forward-secure.

And here is a straightforward corollary:

27

Corollary C.5 Under the same hypothesis of Theorem C.4, FS [ID] is (t, qh, qs, ε, δ)-weakly-existential-
ly-forward-secure in the random oracle model for:

t ≈
(t′ − (T − 1) tUpdate) · ε

2
− qstSim−Sign

as long as

ε ≥ 2
(
qsεs + (qh + 1)qs/2

β
)

and ε′ ≤ δ
(

1− 1

e

)
− 2 (1 + qh) ε`

ε
.

Furthermore, if ID is response-unique, FS [ID] is also (t, qh, qs, ε, δ)-weakly-forward-secure.

Proof of Corollary C.5 from Theorem C.4: It is a direct corollary of Theorem C.4. The condition

ε > 2
(
qsεs + (qh + 1)qs/2

β
)

ensures that
ε− qsεs − (qh + 1)qs/2

β ≥ ε/2.

Proof of Theorem C.4: Let us suppose there exists an adversary A which (t, qh, qs, ε, δ)-breaks DS .
In particular, A (t, qh, qs, εδ)-breaks DS .

The proof of Theorem C.4 is very similar to the proof of Theorem 3.1. We use the same games, except for
Initialize and Finalize of games G1, . . . ,G5 which are replaced by the ones of game G6. Indeed, in the
game of the weak-security, a period ı̃ is chosen in Initialize and the adversary has to forge a signature
for this period. Then the proof is identical except that

Pr [G4(A)⇒ 1] = Pr [G5(A)⇒ 1] = Pr [G6(A)⇒ 1]

and except for the inequality of Equation (C.1).

We remark that, if we write γ =
(
qsεs + (qh + 1)qs/2

β
)
:

Pr [G7(A)⇒ 1] ≥ ε− γ with probability at least δ over (pk , sk1, ı̃) (C.2)

Pr [G8(A)⇒ 1] ≤ (1 + qh) ε` (C.3)

Let us construct an adversary B which (t′′, ε′′)-breaks the key-indistinguishability with t′′ ≈ t+qstSim−Sign

ε−γ +

(T − 1)tUpdate and ε′′ ≥ δ
(
1− 1

e

)
− 1

ε−γ (1 + qh) ε`. B takes as input a period ı̃, a public key pk and a

secret key sk ı̃+1 for period ı̃ + 1. It then runs A 1
ε−γ times and simulates the oracles as in game G7 (or

G8 which is the same), except for Initialize where it uses directly its inputs ı̃, pk and sk ı̃+1 (instead of
picking them at random). If A outputs a correct forgery during one of its run, B outputs 1. Otherwise,
it outputs 0.

Clearly B perfectly simulates the environment of A in the game G7, if pk is not lossy, or in the game G8,
if pk is lossy. According to Equation (C.2), if pk is not lossy, we have

Pr [B ⇒ 1 | pk normal] ≥ δ Pr [B ⇒ 1 | pk normal and Pr [G7(A)⇒ 1] ≥ ε− γ]

≥ δ
(

1− (1− (ε− γ))
1

ε−γ
)
≥ δ

(
1− 1

e

)
and, according to Equation (C.3), if pk is lossy, we have

Pr [B ⇒ 1 | pk lossy] ≤ 1

ε− γ
Pr [G8(A)⇒ 1] ≤ 1

ε− γ
(1 + qh) ε`.

Therefore, the advantage of B is ε′′ ≥ δ
(
1− 1

e

)
− 1

ε−γ (1 + qh) ε`. Its running time is t′′ ≈ t+qstSim−Sign

ε−γ +
(T − 1)tUpdate. This proves the theorem.

28

D Results on Residues

This appendix presents various results on multiples (i.e., residues for an additive law) in cyclic groups
and then uses them to prove results on residues of Z∗N , with N ≥ 3 an odd number.

D.1 Multiples in Cyclic Groups

Let n be an integer greater or equal to 2. Let a be an element of Zn.

D.1.1 Definition

Definition D.1 Let α be a positive integer. a is a α-multiple (modulo n) if and only if there exists
b ∈ Zn, such that a = αb.

D.1.2 Characterization of α-Multiples in Zn

Let gcd(u, v) = u ∧ v be the greatest common divisor of two integers u and v.

Remark D.2 If β is an integer which divides n, β divides (a mod n) if and only if it divides any (a+ ln)
(l an integer). In this case, we say that β divides a.

Theorem D.3 Let α be a positive integer. a is an α-multiple if and only if gcd(α, n) divides a.

Proof: If a is an α-multiple, there exists b ∈ Zn such that a = αb mod n, so there exists an integer m
such that α divides a−mn. Therefore gcd(α, n) divides a−mn and gcd(α, n) divides a.

Suppose d = gcd(α, n) divides a. There exists b such that a = db. Thanks to Bezout theorem, there
exists two integers u and v such that uα+ vn = d. Then, in Zn:

a = db = db− vnb = uαb

and a is a α-multiple.

Corollary D.4 There are exactly n
gcd(α,n) α-multiples modulo n. Furthermore for each α-multiples mod-

ulo n, there exists gcd(α, n) elements b ∈ Zn, such that a = αb.

Proof: Thanks to the previous theorem, the α-multiples are the elements gcd(α, n) · a, with a ∈ {0, . . . ,
n

gcd(α,n) − 1}. And if a is an α-multiple, there exists b such that a = αb, and then a = α · (b + i n
gcd(α,n)),

for each i ∈ {0, . . . , gcd(α, n)− 1}.

In addition, we have the following corollary, which leads to an efficient way of checking e-residuosity
in Z∗N in the section after next:

Corollary D.5 Let α be a positive integer. a is an α-multiple if and only if n
gcd(α,n)a = 0 (in Zn).

Proof: Thanks to the previous theorem, it is sufficient to prove that n
gcd(α,n)a = 0 if and only if gcd(α, n)

divides a. If gcd(α, n) divides a, clearly n
gcd(α,n)a = 0. Otherwise, let us write a = gcd(α, n)q + r, with

0 ≤ r < gcd(α, n), then n
gcd(α,n)a = nr

gcd(α,n) 6= 0 in Zn.

29

D.1.3 Main Theorem

Theorem D.6 Let α, β, γ be three positive integers. Suppose γ is coprime with n. Then, βa is a
α-multiple, if and only if a is a γ α∧n

α∧β∧n -multiple.

Remark D.7 Let us choose a = α∧n
α∧β∧n . Then βa is divisible by α ∧ n and so is a α-multiple. But,

for any divisor γ 6= 1 of n, which does not divides α∧n
α∧β∧n , a is not a γ-multiple. Hence, we can see the

theorem as optimal.

Proof: If a is a γ α∧n
α∧β∧n -multiple, a is divisible by gcd(γ α∧n

α∧β∧n , n) = α∧n
α∧β∧n and so βa is divisible by α∧n

and a is a α-multiple.

If βa is a α-multiple, βa is divisible by α ∧ n. α∧n
α∧β∧n is coprime with β

α∧β∧n and divides β
α∧β∧na. So,

thanks to Gauss theorem, a is divisible by α∧n
α∧β∧n . Since gcd(γ α∧n

α∧β∧n , n) = α∧n
α∧β∧n , a is a γ α∧n

α∧β∧n -multiple.

D.2 Residues of Z∗N
We can then use the previous results to prove some results on residues of Z∗N .

Definition D.8 Let e be a positive integer. A ∈ Z∗N is a e-residue modulo N if and only if there exists
B ∈ Z∗N such that A = Be.

Remark D.9 Let p be an odd prime number and k a positive integer. It is well know there exists a
group isomorphism ψpk from Z∗

pk
to Zpk−pk−1 . And we can see that, for any A ∈ Z∗

pk
, A is a e-residue

modulo pk if and only if ψpk(A) is a e-multiple (in Zpk−pk−1).

Let N = pk11 . . . pkmm be the prime decomposition of N .
The following lemma comes directly from the Chinese Remain Theorem:

Lemma D.10 A ∈ Z∗N is a e-residue modulo N if and only is it is an e-residue modulo pkii for all i.

And then, thanks to Theorem D.6, Remark D.9 and Lemma D.10, we have the following theorem:

Theorem D.11 Let e, c be two positive integer, and U,Z two elements of Z∗N such that Ze = U c (i.e.,

U c is a e-residue). Then U is a e′-residue, with e′ the gcd of all
e∧(p

ki
i −p

ki−1
i)

c∧e∧(p
ki
i −p

ki−1
i)

ei, with ei the greatest

divisor of e coprime with pkii − p
ki−1
i .

Remark D.12 The optimality of this theorem comes from the optimality of Theorem D.6.

Thanks to Remark D.9, Lemma D.10 and Corollary D.4, we also have the following proposition:

Proposition D.13 The number of e-residues modulo N is:

φ(N, e) =
m∏
i=1

pki − pki−1

e ∧ (pki − pki−1)

Furthermore, each e-residue modulo N has exactly φ(N)/φ(N, e) roots.

And thanks to Remark D.9, Lemma D.10 and Corollary D.5, we also have the following proposition,
which yields an efficient algorithm to know if an integer U is an e-residue modulo N or not (if the
factorization of N is known):

Proposition D.14 U ∈ Z∗N is an e-residue modulo N if and only if, for all i:

U
pki−pki−1

e∧(pki−pki−1) = 1 mod pki .

30

E Generic Forward-Secure Scheme Proofs

In this appendix, we give a detailed proof that our generic forward-secure scheme described in Section 6
is forward-secure under Condition 6.1. Let us prove it for the case T = 1 and forget indexes i to make
the proof easier to understand. The key-evolving extension is trivial.

Informally, the condition 6.1 ensures that, in a lossy setting, given a commitment, there cannot be
more than one challenge for which there exists a response. This follows from some arithmetical results
on residues, described in Appendix D, and namely in Theorem D.11. Formally, we have to show that ID
meets the simulatability, completeness, key indistinguishability, and lossiness conditions.

The proof that ID is complete follows immediately from the fact that, if Uj = Sej mod N for

j ∈ {1, . . . , `}, an honest execution of the protocol will always result in acceptance as Zej = (Rj · S
cj
j)e =

Rei · (Sej)cj = Yj · U
cj
j .

The simulatability of ID follows from the fact that, given pk = (N, e, U1, . . . , U`), we can easily
generate transcripts whose distribution is perfectly indistinguishable from the transcripts output by an
honest execution of the protocol. This is done by choosing Zj uniformly at random in Z∗N and cj uniformly
at random in {0, . . . , c− 1}, and setting Yj = Zej /U

cj
j for j ∈ {1, . . . , `}.

The key indistinguishability directly follows from Condition 6.1.

To show that ID is lossy, we note that, when the public key is lossy, for every element Yj chosen by
the adversary, there exists only one value of ci ∈ {0, . . . , c− 1} for which there exists a valid response Zj
which passes the test. To see why, assume for the sake of contradiction that there exist two different values
cj,1 and cj,2 in {0, . . . , c− 1} for which there exists a valid response. Denote by Zj,1 and Zj,2 one of the
valid responses in each case. Without loss of generality, assume that cj,1 < cj,2. Since Zej,1 = Yj ·U

cj,1
i and

Zej,2 = Yj · U
cj,2
j , we have that (Zj,2/Zj,1)e = U

cj,2−cj,1
j . As cj,2 − cj,1 is a positive number smaller than c,

this means that Uj is an e′(e, cj,2− cj,1, N)-residue, according to Theorem D.11, which is a contradiction.
This means that the probability that a valid response Zj exists in the case where Uj is pseudo-e-residue
is at most 1/c. Since there are ` challenges, it follows that ID is ε`-lossy, with ε` = 1/c`.

More formally, we have proven the following theorem:

Theorem E.1 Under Condition 6.1, ID is complete, 1-simulatable, key indistinguishable and 1/c`-lossy.
Furthermore, the min-entropy β of the commitment scheme is at least the minimum over i ∈ {1, . . . , T}
of ` log2(φ(N, e)) where φ(N, ei) is the number of ei-residues modulo N .

Therefore, thanks to Theorem 3.1, we can prove that our generic forward-secure signature scheme FS is
existentially forward-secure.

F Some Propositions on Prime Numbers

This section shows some known results on primes numbers.

Let π(x) be the number of primes not greater than x. The following lemma is a direct corollary of
Theorem 1.10 in [Dus98]:

Lemma F.1 For x ≥ 599,

x

log x

(
1 +

1

log x

)
≤ π(x) ≤ x

log x

(
1 +

1.28

log x

)
From this lemma, we can prove the following proposition:

Proposition F.2 The number of primes of length `e is at least 2`e−1/(`e − 1), if `e ≥ 11.

31

Proof: If `e ≥ 11, 2`e−1 ≥ 599, so the previous lemma applies to x = 2`e and x = 2`e−1.

The number of primes of length `e is

π(2`e)− π(2`e−1)

≥ 2`e

log 2`e

(
1 +

1

log 2`e

)
− 2`e−1

log 2`e−1

(
1 +

1.28

log 2`e−1

)
=

2`e − 1

`e − 1

`e − 1

log 2

(
25 log(2) (`e − 1)3 + 18 (`e − 1)2 − (25 log(2) + 64) (`e − 1)− 32

25 log(2) (`e − 1)2 `e
2

)
The derivative of `e−1

log 2

(
25 log(2) (`e−1)3+18 (`e−1)2−(25 log(2)+64) (`e−1)−32

25 log(2) (`e−1)2 `e
2

)
is

2(`e − 1)

log 2

(
(25 log(2)− 9) (`e − 1)3 + (25 log(2) + 73) (`e − 1)2 + 48 (`e − 1) + 16

25 log(2) (`e − 1)3 `e
3

)
Therefore, this function is increasing. Since its value in `e = 11 is greater than 1.0, we have the following
result

π(2`e)− π(2`e−1) ≥ 2`e−1

`e − 1

for any `e ≥ 11.

Let us now introduce a new proposition useful to prove key indistinguishability in the GQ scheme
(Section 4.1).

Proposition F.3 Let `N , `e be two positive integers. Suppose `e < `N and `N ≥ 10. Let N be a `N -bit
integer. Let D0 be the uniform distribution for `e-bit primes. Let D1 be the uniform distribution for `e-bit
primes, coprime with φ(N). The statistical distance between D0 and D1 is at most 2 `N+1

2`e−1 .

Proof: Let N0 be the number of `e-bit primes and N1 be the number of `e-bit primes, coprime with
φ(N). We remark that a `e-bit prime is at least 2`e−1, and so there are at most (`N + 1)/(`e − 1) such
primes which divide φ(N). Otherwise, their product is greater than 2`N and it divides φ(N) < 2k+1,
which is impossible. Therefore, N1 ≥ N0− (`N + 1)/(`e− 1). Furthermore, according to Proposition F.2:
N0 ≥ 2`e−1/(`e − 1).

The statistical distance is

D =
∑
x∈P`e

∣∣∣Pr
e

$←D0
[e = x]− Pr

e
$←D1

[e = x]
∣∣∣

=
∑
x∈P`e

gcd(x,φ(n))=1

∣∣∣Pr
e

$←D0
[e = x]− Pr

e
$←D1

[e = x]
∣∣∣

+
∑
x∈P`e

gcd(x,φ(n))=x

∣∣∣Pr
e

$←D0
[e = x]− Pr

e
$←D1

[e = x]
∣∣∣

=
∑
x∈P`e

gcd(x,φ(n))=1

∣∣∣∣ 1

N0
− 1

N1

∣∣∣∣+
∑
x∈P`e

gcd(x,φ(n))=x

∣∣∣∣ 1

N0
− 0

∣∣∣∣
= N1

∣∣∣∣ 1

N0
− 1

N1

∣∣∣∣+ (N0 −N1)

∣∣∣∣ 1

N0
− 0

∣∣∣∣ = 1− N1

N0
+ 1− N1

N0
= 2

N0 −N1

N0

32

We have N0 −N1 ≤ (`N + 1)/(`e − 1) and, according to Proposition F.2, N0 ≥ 2`e−1/(`e − 1), so:

D ≤ 2
`N + 1

2`e−1

G Instantiations of our Generic Factoring-Based Signature and Forward-
Secure Signature Schemes

This section goes into the details of the GQ scheme (Section 4.1), our variant of the IR scheme (Section 4.2)
and the schemes described in 6.2, after describing a slight optimization of the generic scheme for our cases.

G.1 An Optimization

Let us present an optimization of the generic scheme for our cases. We consider the case of a classical
signature scheme (T = 1) for the sake of simplicity.

We can remark that if the factorization12 of N is hard, then we can replace the test Zj ∈ Z∗N by
Zj mod N = 0, in the identification scheme depicted in Figure 6.1. We just need to remark that the
(existential) forward-security (or unforgeability) game with the original verification and the one with the
new verification are identical until the following bad event happens: one of the Zj is not equal to 0
modulo N , nor coprime with N . But this bad event only happens with low probability, because it leads
to factorizing N . More precisely, if the key-indistinguishability is easier than the factorization (meaning
that knowing the factorization of N solves the key-indistinguishability problem with probability close to 1
— which is the case with all our instantiation), the security reductions of Theorem 3.1 and Theorem C.4
are still valid with our new scheme.

Let us prove this for Theorem 3.1, we use the same proofs except the games G0, . . . ,G7 use the new
scheme (i.e., check only that rsp∗ 6= 0 instead of rsp∗ ∈ Z∗N) and the next ones use the old scheme.
We just need to prove Equation (C.1) still holds. From adversary A, we create an adversary B for the
key indistinguishability, which simulates A in the environment of game G7 or G8. If A outputs a correct
forgery for the old scheme (rsp∗ ∈ Z∗N), it outputs 1; if A outputs a correct forgery for the new scheme but
not the old scheme (rsp∗ /∈ Z∗N), it factorizes N , solves the key-indistinguishability problem and outputs
1 if the key is normal, and 0 if the key is lossy; finally, if A does not output a forgery for the old scheme,
it outputs 0. Therefore, if the key provided is normal, with probability at least Pr [G7(A)⇒ 1], B will
output 1, because, if G7(A)⇒ 1, either rsp∗ ∈ Z∗N , in which case B output 1, either rsp∗ /∈ Z∗N , in which
case B can solve the key-indistinguishability problem and output 1. And if the key provided is lossy, with
probability at least Pr [G8(A)⇒ 0], B will output 0, because, if G8(A)⇒ 0, either rsp∗ ∈ Z∗N , in which
case B output 0, either rsp∗ /∈ Z∗N , in which case B can solve the key-indistinguishability problem and
output 0. Therefore the advantage of B to solve the key-indistinguishability is at least

Pr [G7(A)⇒ 1]− (1− Pr [G8(A)⇒ 0]) = Pr [G7(A)⇒ 1]− Pr [G8(A)⇒ 1].

This proves Equation (C.1). The same proof also applies to Theorem C.4.

G.2 Signature Schemes

G.2.1 Guillou-Quisquater Signature Scheme

This scheme, where e is a `e-bit prime number, with `e a security parameter, and ` = 1 approximately
coincides with the GQ identification scheme [GQ90]. A complete description of the scheme with some

12By factorization, we mean finding any non-trivial factor of N .

33

KG(1k , 1T)

(N, p1, p2)
$← RSA`N

e
$← P`e

S
$← Z∗N

U ← S−e

pk ← (N, e, U)
sk ← (N, e, f, S)
return (pk , sk)

Sign(sk ,M)

(N, eT , S)← sk

R
$← Z∗N

Y ← Re mod N
c ← H(〈Y,M 〉)
Z ← RSc mod N
σ ← (c, Z)
return σ

Ver(pk , σ,M)

(N, e, U)← pk
(c, Z)← σ
if Z mod N = 0

return reject
Y ← ZeUc mod N
if H(〈Y,M 〉) = c

return accept
else

return reject
KGswap(1k , 1T)

(N, p1, p2)
$← RSA`N

e
$← P`e

f ← e−1 mod N

S
$← Z∗N

U ← S−e

pk ← (N, e, U)
sk ← (N, e, S)
return (pk , sk)

Signswap(sk ,M)

(N, eT , S)← sk

c
$← {1, . . . , 2`e−1}

Y ← H(〈c,M 〉)
R← Y f mod N
Z ← RSc mod N
σ ← (c, Z)
return σ

Verswap(pk , σ,M)

(N, e, U)← pk
(c, Z)← σ
if Z mod N = 0

return reject
Y ← ZeUc mod N
if H(〈c,M 〉) = Y

return accept
else

return reject

Figure G.1: GQ signature scheme

optimizations (using, in particular, the Remark 3.2 and the fact that the inversion is a permutation over
Z∗N) is depicted in Figure G.1.

Formal Proof of Security. To formally prove the key indistinguishability of ID, we first note that,
the statistical distance between the distribution D0 of (N, e, U) for a normal key and the distribution D1

of (N, e, U) where e is coprime with φ(N) and U is still generated as U = Se, is at most 2 `N+1
2`e−1 according

to Proposition F.3. Furthermore, in the distribution D1, U is a random element of Z∗N due to the fact that
the function f(x) = xe mod N is a permutation over Z∗N when gcd(e, φ(N)) = 1. If the φ-hiding problem
is (t′′, ε′′)-hard, the distribution D1 is indistinguishable from the distribution D2 of (N, e, U), where U is a
random element of Z∗N and e divides φ(N). Then, the statistical distance between the distribution D2 and
the distribution D3 of (N, e, U) for lossy keys is 2/e ≤ 1/2`e−2. The proof is straightforward and similar
to the proof of Proposition F.3, since there are exactly φ(N)/e e-residues among the φ(N) elements of
Z∗N , according to Proposition D.13. As a result, ID is (t′, ε′)-key-indistinguishable where t′ = t′′ − O(1)
and ε′ = ε′′ + 2`N+3

2`e−2 .
In addition, e′(e, c, N) = e for any c ∈ {1, . . . , c − 1}. Indeed, if e ∧ (pi − 1) = e, e′i = 1; otherwise

e∧ (pi − 1) = 1 and e′i = e, because e is prime. Therefore (e∧ (pi − 1))e′i = e and e∧ c ∧ (pi − 1) = 1, for
i ∈ {1, 2}. And, for any j ∈ {1, . . . , `}, for lossy keys, Uj is not a e-residue. So, Condition 6.1 is verified.

Finally, the scheme is clearly response-unique for keys of D1 (since the function f(x) = xe mod N
is a permutation over Z∗N when gcd(e, φ(N)) = 1). We can see that it is sufficient13 to have the strong
unforgeability (instead of the existential unforgeability). And we have the following theorem:

Theorem G.1 If the φ-hiding problem is (t′, ε′)-hard, then the previous scheme is (approximately)
(t, qh, qs, ε, δ)-weakly-forward-secure in the random oracle model for:

t ≈ t′ · ε
2
− qstSim−Sign

as long as

ε ≥ 2
(qh + 1)qs
2`N−2`e−2

and ε′ +
2`N + 3

2`e−2
≤ δ

(
1− 1

e

)
− 2 (1 + qh)

ε 2`e−1
.

13Although D1 is not exactly the distribution of normal keys, it is statistically very close to it.

34

The theorem is not exact since for normal keys, factorization of N enables to distinguish normal keys
from lossy keys with a very high probability but not 1, due to the statistical distance between D0 and
D1. For sake of simplicity we do not take into account this completely negligible fact.

Swap Method. Applying the swap method [MR02] to the Guillou Quisquater identification scheme
can also provide a signature with a tight reduction, to the RSA problem. The corresponding algorithm
is depicted in Figure G.1 (where we suppose H is a random oracle for elements in Z∗N , which can be
roughly implemented by a random oracle for elements in {1, . . . , N − 1}14). We see that, this algorithm
requires two exponentiations modulo N , one with a `e-bit exponent e and one with a `N -bit exponent
f , whereas our signing algorithm only requires two exponentiations modulo N with a `e-bit exponent e.
So our signing algorithm is `N/(2`e) faster, for the same parameters and the same security level, if we
consider the φ-hiding problem is as hard as the RSA problem, and if we disregard the small differences
of the exact tightness of the reductions.

G.2.2 Quadratic-Residuosity-Based Scheme

This scheme, where e = 2, coincides with the quadratic-residuosity-based scheme informally suggested
by Katz and Wang in [KW03].

Suppose c = e, N = p1p2 is an RSA modulus and the algorithm LKG chooses U1, . . . , Ul uniformly at
random from the set JN [e] \ HRN [e]. Let us prove that Condition 6.1 is verified.

To prove the key indistinguishability, we use the fact that the e-residuosity problem is random-self-
reducible. That is, the distribution (U1, . . . , U`) where Ui is chosen uniformly at random from HRN [e]
is indistinguishable from the distribution (U,Uαe2 mod N, . . . , Uαe` mod N) where U is chosen uniformly
at random from HRN [e] and αi for i ∈ {2, . . . , `} is chosen uniformly at random from Z∗N . The latter
distribution is clearly indistinguishable from the distribution (U1, . . . , U`) where Ui is chosen uniformly
at random from JN [e] \ HRN [e] due to the hardness of the e-residuosity problem. As a result, ID (t′, ε)-
key-indistinguishable where t′ = t−O((`− 1) · texp) where texp denotes the average time to compute an
exponentiation with respect to exponent e.

Furthermore, e′(e, c, N) = 2 for any c ∈ {1, . . . , c−1} (i.e., c = 1), since e∧(pi−1) = 2, e∧c∧(pi−1) =
1 and e′i = 1, for i ∈ {1, 2}.

According to our security proof, this scheme is existentially unforgeable in the random oracle model
based on the hardness of the quadratic-residuosity problem as long as ` is large enough to make the term
qh/2

` negligible. And the reduction is tight.

G.2.3 2t-Root Scheme by Ong and Schnorr

This scheme, where e = 2t is a t-power of 2 and ` = 1, coincides with the 2t-root identification scheme
by Ong and Schnorr [OS90].

Suppose c = e, N = p1p2 is an RSA modulus such that 2t divides p1− 1 and p2− 1 and the algorithm
LKG chooses U1, . . . , Ul uniformly at random from the set JN [2] \ HRN [2]. Let us prove that, if the
strong-2t-residuosity problem is hard, Condition 6.1 is verified.

Indeed, the key indistinguishability directly comes from the strong-2t-residuosity. Furthermore,
e′(e, c, N) is a multiple of 2 for any c ∈ {1, . . . , c− 1}, since e∧ (pi − 1) = 2t, e∧ c ∧ (pi − 1) divides 2t−1

and e′i = 1, for i ∈ {1, 2}. So, Condition 6.1 is verified.

According to our security proof, this scheme is existentially unforgeable in the random oracle model
based on the hardness of the strong-2t-residuosity problem as long as t is large enough to make the term
qh/2

t negligible. And the reduction is tight.

We can easily extend this scheme to ` > 1. The self-reducibility of the strong-2t-residuosity problem
enables to prove the key indistinguishability. In this case, we only need the term qh/2

`t to be negligible.

14The probability that a random non-zero element of ZN is non-invertible is negligible.

35

G.2.4 Paillier Signature Scheme

This scheme, where ` = 1 and e = p1p2 is an RSA modulus and N = e2 = p2
1p

2
2, coincides with the

Paillier signature scheme [Pai99]. Let us prove that Condition 6.1 is verified.

Suppose c ≤ min(p1, p2) (we can choose for example, c = b
√
e/2c, if p1, p2 ≥

√
e/2) and the algorithm

LKG chooses U1, . . . , Ul uniformly at random from the set JN [e] \ HRN [e]. The key indistinguishably is
similar to the one of the above schemes.

In addition, e′(e, c, N) = p1p2 = e for any c ∈ {1, . . . , c − 1}. Indeed, if e ∧ (pi − 1) = p3−i,
e∧ (p2

i − pi) = p1p2 and e′i = 1; otherwise e∧ (p2
i − pi) = pi and e′i = p3−i. Therefore (e∧ (p2

i − pi))e′i = e
and e ∧ c ∧ (pi − 1) = 1, for i ∈ {1, 2}. So, Condition 6.1 is verified.

According to our security proof, the construction provides a signature scheme existentially unforgeable
with a tight security reduction to the N -residuosity problem of [Pai99].

G.3 Forward-Secure Signature Schemes

G.3.1 Variant of the Itkis-Reyzin Scheme

This section goes into the detail of the security of our variant of the IR scheme presented in Section 4.2.
We have the following theorem, which follows from the analysis, Corollary C.5 and Theorem E.1:

Theorem G.2 If the φ-hiding problem is (t′, ε′)-hard, then our variant of the IR scheme is (approxi-
mately) (t, qh, qs, ε, δ)-weakly-forward-secure in the random oracle model for:

t ≈
(t′ − (T − 1) tUpdate) · ε

2
− qstSim−Sign

as long as

ε ≥ 2
(qh + 1)qs
2`N−2`e−2

and ε′ ≤ δ
(

1− 1

e

)
− 2 (1 + qh)

2`e−1 ε
.

For this theorem, for sake of simplicity, we did not take into account the statistical distance between D0

and D1, and D1 and D2, from Section 4.2. That is why the theorem is a (very) slight approximation.

Under the assumption of Remark B.4, if we suppose tSim−Sign = 0 and tUpdate = 0, we can say that
the scheme is about (tε2 , qh, qs, T ε)-forward-secure if the φ-hiding problem is (t, (1 − 1/e)/2)-hard. This
means roughly that if we want k -bits of security, the modulus has to correspond to a security level of
k ′ = k + log2(T) bits (k′ being an approximate solution of 2k

′
= 2kε

2
1
Tε).

G.3.2 Power-of-2-Root Forward-Secure Scheme

For this scheme, ei = 2t(T−i+1) with t a positive integer, c = 2i. We remark that, in this case, fi = ei,
and one can easily change the algorithm such that we only store Sj,i = Seij .

As for the 2t-root signature scheme, we need to choose N = p1p2 such that 2tT divides p1 − 1 and
p2 − 1. Unfortunately this means the keys and signatures have a length linear in T .

The proof that Condition 6.1 is verified, is quite similar to the proof in Section 6.2. To generate a

lossy key for period ı̃, LKG chooses S1,̃ı, . . . , S`,̃ı uniformly at random in JN [2] \ HRN [2], Sj,i = S
eı̃/ei
j,̃ı

for i > ı̃, and Uj = Seı̃j,̃ı. We then remark that the key-indistinguishability for period ı̃ can trivially be

reduced to the key-indistinguishability problem for the 2t-root scheme by Ong and Schnorr in Section 6.2,
which itself can be reduced to the strong-2t(T−ı̃+1)-assumption. The lossiness can also be proven as for
the 2t-root scheme by Ong and Schnorr.

Therefore, this scheme is existentially forward-secure in the random oracle model based on the hard-
ness of the strong-2ti-assumption, for all i ∈ {1, . . . , T}, as long as the exponents t and ` are large enough
to make the term qh/2

t` negligible. And the reduction is relatively tight (we only lose a factor T).

36

H Generic Proofs of Security Based on the Forking Lemma for Key-
Evolving Collision-Intractable Identification Schemes

In this appendix, we introduce generic proofs of security based on the forking lemma for signatures ob-
tained from some particular key-evolving identification schemes via the generalized Fiat-Shamir transform
described in Section 3.2. This is a generalization of [MR02], which itself is based on [PS00].

H.1 Key-Evolving Collision-Intractable Identification Schemes

In this section we extend the notion of collision-intractable identification scheme introduced in [CD95]
to key-evolving identification scheme. Let ID be a key-evolving identification scheme, as described in
Section 3.1.

Informally, ID is collision-intractable if an adversary cannot output two valid transcripts (cmt , ch,
rsp) and (cmt , ch ′, rsp′) with ch 6= ch ′, for a period ı̃+ 1, even with access to the public key pk and the
secret key sk ı̃ for period ı̃.

More formally, let A be an adversary and k be a security parameter. Let Expcol-int
ID,k (A) be the following

experiment played between A and a hypothetical challenger:

Expcol-int
ID,k (A)

(pk , sk1)
$← KG(1k) ; ı̃

$← {1, . . . , T} ; sk ı̃+1 = Updateı̃(sk1)

(cmt , ch, rsp, ch ′, rsp′)
$← A(̃ı, pk , sk ı̃+1)

d = Ver(pk , cmt , ch, rsp, i) ∧ Ver(pk , cmt , ch ′, rsp′, ı̃) ∧ ch 6= ch ′

return d

A is said to (t, ε)-breaks the collision-intractability problem if A runs in time at most t and its probability

of success is Pr
[
Expcol-int

ID,k (A) = 1
]
≥ ε. Furthermore, ID is said to be (t, ε)-collision-intractable if no

adversary (t, ε)-breaks the collision-intractability problem

H.2 Generalized Fiat-Shamir Transformation

Theorem H.1 Let ID = (KG,Update,Prove, `c,Ver) be a key-evolving identification scheme whose com-
mitment space has min-entropy β, and whose challenge space has `c bits, let H be a random oracle, and
let FS [ID] = (KG, Sign,Ver) be the signature scheme obtained via the generalized Fiat-Shamir transform.
If ID is εs-simulatable, complete, (t′, ε′)-collision-intractable, then FS [ID] is (t, qh, qs, ε, δ)-existentially-
weakly-forward-secure in the random oracle model for:

t ≈
(t′ − (T − 1) tUpdate) ·

(
ε− qs εs − (qh + 1) qs/2

β − (qh + 1)/2`c−1
)

2qh + 3
− qs tSim−Sign

as long as

ε > qsεs +
(qh + 1)qs

2β
+
qh + 1

2`c−1
and ε′ ≤ δ

(
1− 1

e

)2

where tSign denotes the average time of a query to the simulated transcript function T̃r
ID
pk ,i,k and tUpdate

denotes the average time of a query to Update. Furthermore, if ID is response-unique (for normal keys),
FS [ID] is (t, qh, qs, ε, δ)-weakly-forward-secure.

Corollary H.2 Under the same hypothesis of H.1, FS [ID] is (t, qh, qs, ε, δ)-weakly-forward-secure in the
random oracle model for:

t ≈
(t′ − (T − 1) tUpdate) · ε

4qh + 6
− qstSim−Sign

37

Initialize(k , T) Game G7,G
′
8

701 hc← 1 ; b← T + 1

702 fp
$← {1, . . . , qh + 1} ; ch∗

$← {0, 1}`c
703 ı̃

$← {1, . . . , T}
704 (pk , sk1)

$← KG(1k , 1T)
705 for i = 1, . . . , T − 1
706 sk i+1 ← Update(sk i)
707 return (pk , T)

H(x) Game G7,G
′
8

711 if HT(x) =⊥ then
712 QT(hc)← x
713 if hc 6= fp then

714 HT(x)
$← {0, 1}`c

715 else

716 HT(x)
$← ch∗

717 hc← hc + 1
718 return HT(x)

Breakin(i) Game G7,G
′
8

721 if b = T + 1
722 and 1 ≤ i ≤ T then
723 b← i
724 if i ≤ ı̃
725 return ⊥
726 return sk i

727 else
728 return ⊥

Sign(M , i) Game G7,G
′
8

731 (cmt , ch, rsp)
$← T̃r

ID
pk ,i,k

732 if S(cmt ,M , i) 6=⊥ then
733 σ ← (cmt , S(cmt ,M , i))
734 return 〈σ, i〉
735 HT(〈cmt ,M , i〉)← ch
736 σ ← (cmt , rsp)
737 S(〈cmt ,M , i〉)← rsp
738 return 〈σ, i〉

Finalize(M ∗, 〈σ∗, i∗〉) Game G7, G′8

751 d ← Ver(pk , 〈σ∗, i∗〉,M ∗)
752 if i∗ ≥ b or i∗ 6= ı̃ then
753 d ← 0
754 (cmt∗, rsp∗)← σ∗

755 if QT(fp) 6= (cmt∗,M ∗) then
756 bad← true

757 d ← 0
758 if S(〈cmt∗,M ∗, i∗〉) 6=⊥ then
759 d ← 0
760 return (d = 1)

Figure H.1: Games G7,G
′
8 for proof of Theorem H.1. G′8 includes the boxed code at line 757 but G7 does not.

as long as

ε ≥ 2

(
qsεs +

(qh + 1)qs
2β

+
qh + 1

2`c−1

)
and ε′ ≤ δ

(
1− 1

e

)2

.

Proof of Corollary H.2: It is a direct corollary of Theorem H.1. The condition

ε ≥ 2
(
qsεs + (qh + 1)qs/2

β + (qh + 1)2−`c+1
)

ensures that
ε− qsεs − (qh + 1)qs/2

β − (qh + 1)2−`c+1 ≥ ε/2.

Proof of Theorem H.1: We use the same methods as Micali and Reyzin in [MR02]. Let us suppose
there exists an adversary A which (t, qh, qs, ε, δ)-breaks DS . In particular, A (t, qh, qs, εδ)-breaks DS . Let
us consider the games G0, . . . ,G7 of Figure C.1 and Figure C.2, modified as for the proof of Theorem C.4
(using Initialize and Finalize of G6 for games G0, . . . ,G5), and G′8 of Figure H.1.

Assume pk , sk1, ı̃ are chosen such that Pr [G1⇒ 1] ≥ ε − γ in G7. It happens with probability at least
δ. As in Section C.3, according to Equation (C.2), if we write γ = qsεs + (qh + 1)qs/2

β:

Pr [G7(A)⇒ 1] ≥ ε− γ with probability at least δ over (pk , sk1, ı̃).

In G′8, the game outputs 0 if the signature does not corresponds to the challenge ch∗. Since we have

Pr [G7(A)⇒ 1 ∧ Good7] = Pr [G7(A)⇒ 1] · Pr [QT(fp) = (cmt∗,M ∗)] =
1

1 + qh
Pr [G7(A)⇒ 1],

38

and Pr
[

G′8(A)⇒ 1 ∧ Good′8
]

= Pr [G′8(A)⇒ 1], according to Lemma C.2, we have

Pr [G7(A)⇒ 1] = (1 + qh)Pr
[

G′8(A)⇒ 1
]
.

And so

Pr
[

G′8(A)⇒ 1
]
≥ ε− γ

1 + qh
with probability at least δ over (pk , sk1, ı̃).

Let a = ε−γ
1+qh

. Let us now construct an adversary B which breaks the collision-intractability problem.

In the first part, B runs A α times and simulates the oracles as in G′8, except for Initialize where it
uses directly its inputs ı̃, pk and sk ı̃+1 (instead of picking them uniformly at random). Every repetition
starts completely anew, i.e., with a new random tape for A and new answers for the random oracle.
With probability 1 − (1 − α)α

−1 ≥ 1 − 1/e, the adversary A outputs at least a correct forgery accepted
by Finalize, i.e., a forgery for period i∗ = ı̃ and with the challenge corresponding to the fpth query to
the random oracle, fp being chosen uniformly at random at each run of A. The adversary B stores the
first correct output forgery (M ∗, 〈σ∗, i∗〉). Let (cmt∗, rsp∗) = σ and ch∗ = H(〈cmt∗,M ∗〉), such that
(cmt∗, ch∗, rsp∗) is a correct transcript.

Now we can run again A a certain number of times with the same random tape s and the same answers
for the random oracle queries up to the fpth query, and then use new uniform random answers.

Let us compute the probability that A will again output a correct forgery. Let ξ be the random variable
(s, fp, h1, . . . , hfp−1) with s the random tape of the adversary A and h1, . . . , hfp−1 be the answers to the
fp − 1 first queries to the random oracle, for the first run where A managed to output again a correct
forgery. Let E be the event that the adversary A outputs a correct forgery if it is simulated in the
environment of game G′8. For λ = (s′, fp′, h′1, . . . , h

′
fp−1), let Eλ be the event that in such simulations, the

random tape of A is s = s′, the fp chosen by Initialize is fp′, and the answers to the fp− 1 first queries
to the random oracle are h′1, . . . , h

′
fp. The events Eλ are disjoint,

∑
λ Pr [Eλ] = 1, and, because of the

choice of ξ, we also have Pr [ξ = λ] = Pr [Eλ |E]. In addition Pr [E] ≥ α.

We can then apply the following lemma stated and proven in [MR02] (Lemma 3).

Lemma H.3 ([MR02]) Let E be an event with probability α. Let Λ a finite set and let (Eλ)λ∈Λ be dis-
joint events such that

∑
λ Pr [Eλ] = 1. Let ξ be a Λ-valued random variable with the following distribution

Pr [ξ = λ] = Pr [Eλ |E]. Then

Prξ

[
Pr [E |Eξ] ≥ α

2

]
≥ 1

2
.

Therefore, we have

Prξ

[
Pr [E |Eξ] ≥ α

2

]
≥ 1

2
.

which means that with probability 1/2, the probability α′ that the adversary A will do a forgery under
condition ξ is at least α/2. Assume ξ is such that α′ ≥ α/2. Then the probability that A will output a
forgery corresponding to a “good” transcript (cmt∗, ch ′∗, rsp′∗) with ch ′∗ 6= ch∗ is at least α/2− 2−`c .

So, in the second part, B runs A (α/2− 2−`c)−1 times under the condition ξ. The probability that A will
output a forgery corresponding to a “good” transcript is(

1−
(

1− (α/2− 2−`c)
)(α/2−2−`c)−1

)
≥ 1− 1/e.

Therefore, with probability (1 − 1/e)2/2, B gets two transcripts (cmt∗, ch∗, rsp∗) and (cmt∗, ch ′∗, rsp′∗)
with ch∗ 6= ch ′∗. This corresponds to the expected output for the game of collision-intractability.

We can now slightly improve the running time of B. Instead of simulating the environment of G′8, let B
simulates the environment of G7 when it runs A, in the first part. The only difference is that B accepts

39

any forgery (in the first part) instead of accepting only forgeries for the fpth query to the random oracle,
where fp is chosen uniformly at random. Therefore, B just needs to run A 1

ε−γ times instead of 1+qh
ε−γ , to

have a forgery with probability at least 1− 1/e. As explained in [MR02], the probability distribution of
ξ is still the same and so it does not change the rest of the proof.

Let us now analyze the running time of B. The first part takes 1
ε−γ (t+ qstSim−Sign) and the second part

takes 1
α/2−2−`c

(t+ qstSim−Sign). Therefore B (t′, ε′)-breaks the collision intractability with

t′ ≤
(

1

ε− γ
+

1

(ε− γ)/(2(qh + 1))− 2−`c

)
(t+ qstSim−Sign) + (T − 1) tUpdate

≤
(

1

ε− γ − (qh + 1) 2−`c+1
+

2 (qh + 1)

ε− γ − (qh + 1) 2−`c+1

)
(t+ qstSim−Sign) + (T − 1) tUpdate

≤
(2qh + 3) (t+ qstSim−Sign)

ε− γ − (qh + 1) 2−`c+1
+ (T − 1) tUpdate

and

ε′ = δ

(
1− 1

e

)2

as long as ε ≥ γ + (qh + 1) 2−`c+1.

We can remark this is exactly the bound of [MR02] (if T2 = 0 in their paper, and tUpdate = 0), which is quite
normal since the existential weak forward security is very close to the classical existential unforgeability.

I Analysis of our Variant of the Itkis-Reyzin Scheme

I.1 Security of the Itkis-Reyzin Scheme

In this section, we present another security analysis of the original Itkis-Reyzin scheme in [IR01], based
on the forking lemma. We use a generalization of the method described in [MR02] to prove a security
result more useful for a fair comparison. According to Appendix H, and more precisely to Corollary H.2,
we just need to prove that the underlying identification key-evolving identification scheme is collision-
intractable; informally, this means, it is hard for an adversary to find two correct transcripts (cmt , ch, rsp)
and (cmt , ch ′, rsp′) for a period ı̃ such that ch 6= ch ′, given the public key pk, the period ı̃, and the secret
key sk ı̃+1 for period ı̃+ 1. For the IR scheme, it is straightforward to see that the identification scheme
is (t′, ε′)-collision intractable if the strong-RSA problem is (t′, ε′)-hard. It is also response-unique exactly
for the same reason as our scheme in Section G.3.1. Therefore, thanks to Corollary H.2, we have the
following theorem:

Theorem I.1 If the strong-RSA problem is (t′, ε′)-hard, then the previous scheme is (t, qh, qs, ε, δ)-weakly-
forward-secure in the random oracle model for:

t ≈
(t′ − (T − 1) tUpdate) · ε

4qh + 6
− qstSim−Sign

as long as

ε ≥ 2

(
(qh + 1)qs
2`N−2`e−2

+
(qh + 1)

2`e−1

)
and ε′ ≤ δ

(
1− 1

e

)2

.

Under the assumption of Remark B.4, if we suppose tSim−Sign = 0 and tUpdate = 0, we can say that the
scheme is about (tε

4qh
, qh, qs, T ε)-forward-secure if the strong-RSA problem is (t, (1− 1/e)2/2)-hard. This

means roughly that if we want k -bits of security, and if we suppose strong-RSA is as hard as factorization,
the modulus has to correspond to a security level of about k ′ ≈ k + log2(Tqh) (k being an approximate

solution of 2k
′

= 2kε
4qh

1
Tε).

40

AlgH′(i)

001 found ← false
002 cpt ← 0
003 while found 6= true
004 x← H′(i‖cpt)
005 x← x with bits (`e − 1) and 0 set
006 if isPrime(x) then
007 break
008 cpt ← cpt + 1
009 return x

AlgProgH′′x∗(i‖cpt)

010 if HT′(i‖cpt) =⊥ then

011 y
$← {0, 1}`e

012 y ← y with bits (`e − 1) and 0 set
013 if isPrime′(y) then
014 HT′(i‖cpt)← x∗(i)
015 else
016 HT′(i‖cpt)← y
017 return HT′(i‖cpt)

Figure I.1: Algorithm AlgH′ which simulates a random prime oracle H′ using a classical random oracle H′′ and
algorithm AlgProgH′′ which simulates H′′ such that the output of AlgH is x∗(i) on input i. isPrime is a probabilistic
or deterministic primality test and isPrime′ is a deterministic one.

I.2 Random Oracle for Prime Numbers

As explained in Section 5.1, we need a random oracle for prime numbers in order to be able to generate
the exponents ei for our scheme. Here is a description of a construction of such a random oracle from
a classical random oracle. This construction is close to the construction of a PRF mapping to prime
numbers in [HW09].

If we have access to a classical random oracle H′′ with output of length `e, we simulate H′ using the
algorithm AlgH′ depicted in Figure I.1. It is clear that the outputs of such AlgH′ is uniform over P`e the
set of primes of length `e. Notice, we only force the output of H′′ to be odd by setting bit 0 of the output.
Furthermore, the algorithm AlgProgH′′x∗ depicted in Figure I.1 simulates the random oracle H′′ such that
AlgH′ outputs x∗(i) on inputs but that H′′ still has a random uniform distribution (as soon as x∗(i) is
uniform over P`e).

Let write C the random variable equal to the number of primality tests needed in AlgH′ (i.e., the final
value of cpt + 1), if the primality tests are deterministic. According to Proposition F.2, C is a geometric
random variable of parameter at least 1/(`e − 1). So its expectation E [C], the average number of calls
to isPrime is at most `e − 1.

For efficiency purpose, it is necessary to use a probabilistic primality test for isPrime, such as Miller-
Rabin. Let suppose the error probability of the test (i.e., the probability a composite number is considered
prime) is εp = 2−kp . In this case, the error probability of AlgH′ for input i is at most

ε′ =
∞∑
j=0

Pr
[
C = j ∧ isPrime has done an error on H′(i‖0),H′(i‖1), . . . or H′(i‖j)

]
≤

∞∑
j=0

Pr [C = j] j ε = E [C] ε ≤ (`e − 1)ε.

We can adapt the proof of security in Appendix C: we just replace isPrime in AlgH′ in the verification in
Finalize by a deterministic algorithm isPrime′. This just add a term (`e − 1)εp to the final probability
for the adversary to win the original game.

We can notice that it is now possible for the algorithms Sign and Update to output an incorrect value.
But the probability is at most (`e − 1)εp, which should be negligible.

Let us now analyze the performance of AlgH′. If we forget the probability of errors of the primality test
and do not take into account the time to call H′′15, the average time of AlgH′ is (E [C]−1)tisPrime−composite+
tisPrime−prime, where tisPrime−composite is the average running time of isPrime if its input is a composite
number, and tisPrime−composite is the average running time of isPrime if its input is a prime.

15In practice, H′′ will be implemented using a hash function which is hundred times faster than any primality test.

41

For Miller-Rabin test, if the input is prime, the algorithm roughly does kp/2 exponentiation modulo
a `e-bit number with a `e-bit exponent. Otherwise, if the input is a composite number, it does fewer than
4/3 such exponentiation in average16. Therefore, tisPrime−prime ≈ kp 3

2 `e
3 and tisPrime−composite ≈ 3

2
4
3 `e

3,
therefore the total time is about (3

2kp + 2`e)`e
3. In comparison, the time of a signature or a verification

(if the ei are stored) is the time of two exponentiation with a modulus of length `N and an exponent of
length `e, that means about 2`Nk2. A practical comparison can be found in Table 5.2.

I.3 Optimizations

In this section, we analyze optimizations of the original IR scheme and see that they can be applied to
our scheme too. We also propose a specific optimization for our scheme.

ei power of small primes. If we slightly change the ei to be power of small primes εi: ei = ε
`e/blog(εi)
i ,

we can make the generation of ei faster since generating a small `e
′-bit prime εi is about (`e/`e

′)4 faster
than generating a `e-bit prime ei. However, we need to change the φ-hiding assumption in order to be
able to do the security reduction17.

Pebbling. We also remark that the pebbling mechanism described in [IR01] can directly be applied to
our scheme.

Storing cpt. Another possible trade-off consists in storing the last cpt of AlgH′ for each i, in the public
and secret keys. Since E [C] ≤ `e − 1, the expected size of cpt is log2 `e and storing them increase the
size of the keys by T log2 `e. For small values of T this can be useful, since this completely remove the
necessity of isPrime in Sign, Ver and Update.

16Actually, a Miller-Rabin test should be a little faster than an exponentiation since we can stop the exponentiation before
the end, in some cases.

17More precisely, we need e in the φ-assumption to be chosen as a power of a small prime number. The distribution
of N = p1p2 such that e divides p1 can be sampled in polynomial time, if we assume the extended Riemann hypothesis
(Conjecture 8.4.4 of [BS96]), exactly as when e is a prime. But we are not sure the assumption actually still holds...

42

	Introduction
	Definitions
	Notation and Conventions
	Complexity Assumptions
	Forward-Secure Signature Schemes

	Lossy Key-Evolving Identification and Signature Schemes
	Lossy Key-Evolving Identification Scheme
	Generalized Fiat-Shamir Transform

	Tighter Security Reductions for Guillou-Quisquater-like Schemes
	Guillou-Quisquater Scheme
	Variant of the Itkis-Reyzin Scheme

	Analysis of our Variant of the Itkis-Reyzin Scheme
	Computation of the exponents
	Choice of Parameters
	Comparison with Existing Schemes

	Generic Factoring-Based Forward-Secure Signature Scheme
	Generic Factoring-Based Forward-Secure Signature Scheme
	Some Instantiations

	Acknowledgments
	References
	Notations
	Games
	Computational Assumptions
	Weak Security Notions
	Formal Security Notions

	Relations Between Security Notions
	Proof of Theorem 3.1 and of a Slight Variant
	Recall on Code-Based Game-Playing Proofs
	Weak Key Indistinguishability
	Proof of Theorem 3.1
	A slight variant

	Results on Residues
	Multiples in Cyclic Groups
	Definition
	Characterization of alpha-Multiples in Z/nZ
	Main Theorem

	Residues of Z/NZ*

	Generic Forward-Secure Scheme Proofs
	Some Propositions on Prime Numbers
	Instantiations of our Generic Factoring-Based Signature and Forward-Secure Signature Schemes
	An Optimization
	Signature Schemes
	Guillou-Quisquater Signature Scheme
	Quadratic-Residuosity-Based Scheme
	Power of 2-Root Scheme by Ong and Schnorr
	Paillier Signature Scheme

	Forward-Secure Signature Schemes
	Variant of the Itkis-Reyzin Scheme
	Power-of-2-Root Forward-Secure Scheme

	Generic Proofs of Security Based on the Forking Lemma for Key-Evolving Collision-Intractable Identification Schemes
	Key-Evolving Collision-Intractable Identification Schemes
	Generalized Fiat-Shamir Transformation

	Analysis of our Variant of the Itkis-Reyzin Scheme
	Security of the Itkis-Reyzin Scheme
	Random Oracle for Prime Numbers
	Optimizations

