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Introduction: some history, some philosophy

At the age of 7 or 8, Gauss was asked to produce the result of the sum of the
first n integers (or, perhaps, the question was slightly less general . . . ). He then
proved a theorem, by the following method:

1 2 ... n
n (n-1) ... 1

(n+1) (n+1) ... (n+1)

which gives Σn
1 i = n(n + 1)/2.

Clearly, the proof is not by induction. Given n, a uniform argument is pro-
posed, which works for any integer n. Following Herbrand, we will call proto-
type this kind of proof. Of course, once the formula is known, it is very easy to
prove it by induction, as well. But, one must know the formula, or, more gen-
erally, the “induction load”. A non-obvious issue in automatic theorem proving,
as we all know.

Let’s now speculate on the possible “cognitive” path which “brings to” (and
gives certainty!) to this proof. The reader can surely see, in his mental spaces,
the “number line”, that is the well-ordered sequence of integer numbers. They
are there, one after the other, in increasing order: you may see it on a straight
line, it may oscillate, but it should be, for you, from left to right (isn’t it? please
check . . . and give up doing mathematics, if you do not see the number line;
see [Dehaene98] for some data about it). It seems as if little Gauss has had the
mental courage to put it on paper and then . . . reverse it. No induction, just the
order and its inverse, and the proof works for any n, a perfectly rigorous proof.

Consider now a non-empty subset in your number line. You can surely see
that this set has a least element (look and see: if there is an element, there is
a least one among the finitely many preceding it, even if you may not know
which one). The “observation” imposes itself, by the (well-)ordering of the line,
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as geometric evidence, a very robust one. Moreover, one does not need to know
if and how the subset eventually goes to infinity: if it has one point somewhere
(the set is not empty), this is at some finite point and, then, there is a smaller
one which is the least of the “given” subset. In the conclusion, we will call this,
a “geometric judgement”.

In the few lines above, we hinted to an understanding of the ordering of
numbers with reference to a mental construction, in space (or time). Frege would
have called this approach “psychologism” (Herbart’s style, according to his 1884
book). Poincaré instead could be a reference for this view on certainty and
meaning of induction as grounded on intuition, possibly of space. In Brouwer’s
foundational proposal as well, the mathematician’s intuition of the sequence of
natural numbers, which founds Mathematics, relies on a phenomenal experience;
however, this experience should be grounded on the “discrete falling apart of
time”, as “twoness” (“the falling apart of a life moment into two distinct things,
one which gives way to the other, but is retained by memory”, [Brouwer48]).
Thus, “Brouwer’s number line” originates from (a discrete form of) phenomenal
time and induction derives meaning and certainty from it.

Intuition of ordering in space or time, actually of both, contributes to es-
tablish the number line, as an invariant of these active experiences: formal in-
duction follows from, it doesn’t found this intuition. This is my understand-
ing of Poincaré’s and Brouwer’s philosophy. By recent scientific evidence (see
[Dehaene98]), we seem to use extensively, in reasoning and computations, the
“intuitive” number line; these neuropsychological investigations are remarkable
facts, since they take us beyond the “introspection” that the founding fathers
used as the only way to ground mathematics on intuition. We are probably along
the lines of transforming the analysis of intuition from naive introspection to a
scientific, objective, investigation of our cognitive performances.

Let’s now go back to . . . the sum of the first n integers. About eighty years
later, Peano and Dedekind suggested that a proof, such as little Gauss’, was
certainly a remarkable achievement (in particular for such a young man), but
that one had to prove theorems, in Number Theory, by some sort of “formal and
uniform method”, defined as a “potentially mechanisable” one, insisted Peano
and Padoa. Then, they definitely specified “formal induction” as THE proof
principle for Arithmetic (Peano Arithmetic, PA).

Frege set induction at the basis of his logical approach to mathematics; he
considered it a key logical principle, and gave by this to PA the founding status
that it still has. Of course, Frege thought that logical induction (or PA) was
“categorical” (to put it in modern terms), that is that induction captured exactly
the theory of numbers, or that everything was said within PA: this logical theory
simply coincided, in his view, with the structure and properties of numbers (Frege
didn’t even make the distinction “theory vs. model” and never accepted it: the
logic was exactly the mathematics).

We all know how the story continues. In his 1899 book (The Foundation
of Geometry), Hilbert set geometry on formal grounds, as a solution of the
incredible situation where many claimed that the rigid bodies could be not so



rigid, that light rays could go along (possibly curved) geodetics . . . . Riemann’s
habilitation (under Gauss’ supervision), in 1854 ([Riemann54]), had started this
“delirium”, as Frege had called the intuitive–spatial meaning of the axiom for
geometry, [Frege84], p.20. Helmholtz, Clifford, Poincaré had insisted on this idea
of Riemann’s and on its possible relevance for the understanding physical action
at distance (gravitation, in particular): “in the physical world nothing else takes
place, but (continuous) variations of curvature of space” W.Clifford (1882 (!!)).
For these mathematicians, meaning, as reference to phenomenal space, and its
mathematical structuring preceded rigor and provided “foundation”, see [Boi95],
[Bottazzini95]: by mathematics, geometry in particular, they wanted to make the
physical world intelligible, more then just deriving theorems by rigorous tools
as formal/mechanical games of symbols (more on the connections between proof
principles in Mathematics and in Physics is in [BaillyLongo06]). Hilbert had a
very different foundational attitude: for the purposes of foundations (but only
for these purposes), forget the meaning in physical spaces of the axioms of non-
Euclidean geometries and interpret their purely formal presentation in PA. And
his 1899 book contains one of the earliest and most remarkable achievements in
“programming”: he fully formalized a unified approach to geometry, by closely
analysing several relative consistency issues, and “compiled” it in PA, by analytic
tools. Formal rigor and effective-finitistic reduction are at the core of it.

Thus, on one hand, the geometrization of physics, from Riemann to Einstein
and Weyl (via Helmholtz, Clifford and Poincaré), brought to a revolution in
that discipline, originating by breathtaking physico-mathematical theories (and
theorems); on the other, the attention to formal, potentially mechanisable rigor,
independent of meaning and intuition, gave us fantastic formal machines, from
Peano and Hilbert to Turing and our digital computers.

The following year, at the 1900 Paris conference, Hilbert definitely con-
tributed to give to PA (and to formal induction) their central status in founda-
tion, by suggesting to prove (formally) the consistency of PA: then the consis-
tency of the geometric axiomatizations would have followed from that of formal
Number Theory (with no need of reference to meaning, in time, in space or what-
ever). Moreover, a few years later, he proposed a further conjecture, the “final”
solution to all foundational problems, a jump into perfect rigor: prove the com-
pleteness of the formal axioms for Arithmetic. Independently of the heuristics of
a proof, its certainty had to be ultimately given by formal induction.

However, there was more than this in the attitudes of many at the time. That
is, besides foundation as “a-posteriori formalization”, the “potential mechaniza-
tion” of mathematics was truly dreamed, not only as a locus for certainty, but
also as a “complete” method for proving theorems (as mentioned above, the Ital-
ian logic school firmly insisted on this, with their “pasigraphy”, a universal for-
mal language, a mechanisable algebra for all aspects of human reasoning). Or, the
“sausage machine” for mathematics (and thought), as Poincaré ironically called
it, could be put at work: provide pigs (or axioms) as input, produce sausages (or



theorems) as output1. We know how the story of complete a-posteriori formaliza-
tion and, a fortiori, of potential mechanization ended . . . Hilbert’s conjectures on
the formally provable consistency, decidability and completeness of PA turned
out to be all wrong, and the 1931 proof of this fact originated (incomplete,
but) fantastic formal machines (by an early rigorous definition of “computable
function”). More generally, Gödel’s negative result started a major deepening of
Logic: besides Recursion Theory, also Model Theory (the fact that not all models
of PA are elementary equivalent strongly motivates futher investigations) and
Proof Theory (Gentzen) had a new start (negative results matter immensely in
Science, see [Longo06]). The later lead to the results by Girard and Friedman
we analyze below.

As for Number Theory, the main consequence is that formal induction is
incomplete and that one cannot avoid infinitary machinery in proofs (in the
rigorous sense of Friedman, see [Friedman97], for example). In some cases, this
can be described in terms of the structure of “prototype proofs”, as it will be
proposed below. Moreover, even the problem of the induction load, or of the pro-
totype proof in the inductive step, is a non-trivial issue in actual mechanization.
Clearly, a posteriori, the induction load may be generally described within the
formalism, but its “choice”, out of infinitely many possible ones, may require
some external euristics (typically: analogies).

The aim of this paper is to focus on some specific limits of formalization, by
a close analysis of some “concrete” but formally unprovable number-theoretic
statements. This is also done in order to encourage a broadening of the tools
for proofs, and stress the role of “interaction” man/machine in proof-assistants
and proof-checking: singling out the fully un-formalizable fragments is a crucial
component of the work in these areas. It may help to pass over to the machine
exactly the fully formalizable parts. Beyond the myth, and in full awareness
of the incompleteness of formalisms, we may further develop these remarkable
application of Proof Theory and Type Theory.

1 Herbrand’s prototype proofs.

“. . . when we say that a theorem is true for all x, we mean that for each x
individually it is possible to iterate its proof, which may just be considered a
prototype of each individual proof.” Herbrand (1930), see [Goldfarb87], pp.288-
9. Little Gauss’ theorem above is an example of such a proof. But any proof of a
universally quantified statement, over a structure that does not realize induction,
is a “prototype” (e.g., for any Euclidean triangle, the sum of the internal angles
is 180◦: take a generic triangle, draw the parallel line to one side etc.). Similarly,
if you want to prove a property for any element of a (non-trivial sub-)set of

1 At that time, the very beginning of the century, Poincaré, in correspondence with
Zermelo, hinted at the possible independence of the Continuum Hypothesis, CH, from
Zermelo’s formal axioms: he conjectured that there could be no sausage machine for
Set Theory either. This was rigorously proved by Gödel and Cohen some 30 and 60
years later, respectively.



reals, of complex numbers . . . . But, in Number Theory, one has an extra and
very strong proof-principle: induction. Clearly, in 1930, Herbrand thought that,
in the special case of integer numbers, their universally quantified properties
could always be proved by induction: completeness of PA was the current belief
(with a few remarkable exceptions, such as H. Weyl, who – though hesitantly
– conjectured the incompleteness of PA in Das Kontinuum, 1918 (!), and also
stressed that the dream of potential mechanization was a form of trivialization
of mathematics).

But what is the difference between prototype proofs and induction?
In a prototype proof, you must provide a reasoning which uniformly holds for

all arguments, and this uniformity allows (and it is guarantied by) the use of a
“generic” argument (see below). Induction provides an extra tool: the intended
property doesn’t need to hold for the same reasons for all arguments. Actually,
it may hold for different reasons for each of them. One only has to give a proof
for 0, and then provide a uniform argument to go from x to x + 1. That is,
uniformity of the reasoning is required only in the inductive step: this is where a
prototype proof steps in again, the argument from x to x +1. Yet, the situation
may be more complicated: in case of nested induction also this inductive step, a
universally quantified formula, may be given by induction on x. However, after
a finite number of nesting, one has to get to a prototype proof going from x to
x + 1 (induction is logically well-founded).

Thus, induction provides a rigorous proof principle, which, over well-orderings,
holds in addition to uniform (prototype) proofs, modulo the fact that, sooner or
later, a prototype proof steps in. Note though that the prototype/uniform argu-
ment in an inductive proof allows to derive, from the assumption of the thesis
for x, its validity for x + 1, in any possible model. Moreover, as we shall see, by
induction one may inherit properties from x to x + 1 (e.g., totality of a function
of x, see below).

Yet, one more point should be mentioned. In an inductive proof, one must
know in advance the formula (the statement) to be proved: little Gauss did not
know it, for example. A non minor problem in automatic theorem proving . . . .
Indeed, (straight) induction (i.e. induction with no problem in the choice of the
inductive statement or load) is closer to proof-checking than to “mathematical
theorem proving”: proving a theorem, in mathematics, in general, is answering
a question, not necessarily, not always, checking an already given formula.

Type Theory may help us to give a more rigorous description of what is a
prototype proof. Propositions are types and proofs are terms, for us. Then a
prototype proof, with a generic argument, is a term which may be uniformly
instantiated by that argument: a schema for each individual proof. Let’s see now
a very informal definition, just a suggestion of what should be formalized:

Definition (Very Informal Type Theory, VITT). Given a type A, a (closed)
term P is generic and a (proof-)term N : [P/x]A is a prototype, if there exists
a term M : A such that



[P/x]M = N : [P/x]A.

This is surely VITT, as it is not mentioned: what are types and variables, ex-
actly (1st order dependent types? Variable types? more?); what is equality?
which kind of restriction is assumed in the substitution operation [P/x]M ? A
rigorous definition of prototype proofs as lambda-terms, in Girard’s System F,
and a few results (coherence, decidability), are given in [Longo00]. As for now,
consider the informal definition above for what it is worth, with a first order
understanding of variables and dependent types (if there is provably no way
to make it rigorous, I will return the generous support for this invited lecture
. . . ). The point is that many different answers are possible for each of the three
questions above, and each would lead to different results.

Note that in a prototype proof, the generic input P must be typed, possibly
with reference to a semantics. It is clearly so in little Gauss’ proof in the intro-
duction: as it is, n must be an integer (it must have the type of the - standard -
integers). Yet, the proof may be extended to a non-standard model: the exten-
sion requires some technicalities related to the peculiar order-structure of the
non-standard part. In short, one may generalize Gauss’ proof by looking at a
two steps proof: if n is standard, go on as Gauss, otherwise adjust it “ad hoc” to
the pathologies of non-standard models of PA (try to write this down in full, as
an exercise: the required symmetry may be reconstructed, with some work; note
that, in any case, even a “unified proof”, working on all models at once, should
inevitably use the semantic information on the order-structure of models.) A
proof by induction, instead, in passing from x to x + 1, uses a formal variable,
which is typed just as a first order entity and may be interpreted in any model,
with no reference to their structure (but, of course, one must know the formula
in advance!). Thus, a prototype proof may use a strong information on types
or models, along the proof: the input is a standard integer or it is in the non-
standard part, in our example. As we know, this model-theoretic information is
not formalizable in PA (by the Overspill Lemma: no predicate which holds for
infinitely many values, may be valid only on the standard initial fragment of
a model). This is why, in general, a prototype proof does not need to yield a
formal proof. Below, we will point this out precisely, in an example.

Intermezzo: completing incompleteness (Part I and II)

Inter-Part I: On the incompletability of PA

Hilbert’s concern, in proposing his famous wrong conjectures was twofold. First,
in view of the semantic delirium of geometry, since the fall of the 2300 year
old Euclidean empire, one had to retrieve certainty in logico-formal reasoning
only, with no reference to meaning in space, time or whatever, as recalled above.
Second, in his great mathematical rigor, he was aware of the general mess of the
extraordinary mathematics of the XIX century: an extraordinary but turbulent
growth, where proofs (of valid theorems) were often grounded on hand-waving
(Cauchy’s work provides good examples for this . . . ) and theorems were not



always true. Thus, Hilbert proposed to give a frame where one could decide “what
is a proof”. As a matter of fact, in hilbertian systems one can give a decidable
notion of proof: this is a key aspect of Hilbert’s notion of formal systems. Then,
as recalled above, he further conjectured that any proposition had to be decided,
beginning with the describable propositions of the language of PA, of course.

As we all know too well, Gödel, by the I Incompleteness Theorem, proved
that

If PA is (ω-)consistent, then it is incompletable
That is, no consistent formal extension of PA is complete, or that no consistent
extension, with a decidable notion of proof, allows to decide all aritmetic propo-
sitions. Moreover, given such an extension, the formalized statement asserting
its own consistency is one of the undecidable propositions (II Incompleteness
Theorem).

It is easy though to give an example of non formal system, extending PA.
Consider Arithmetic with

(ω − rule)
A[n]

for all n ∈ N
∀xA[x]

This system is complete, but it has a non decidable notion of proofs (yet,
proofs are well-founded trees).

Note that, the ω-rule derives ∀xA[x] from the assumption of the infinitely
many instances of A[n]. This is different from any use of prototype proofs, where
∀xA[x], over N , is obtained from a schematic (prototype) proof of A[n], w.r.t. a
generic (replaceable) n ∈ N .

Inter-Part II: Formal Proofs of Consistency

The firm formalists often insistingly remark that, after all, any unprovable state-
ment can be proved in a “suitable” formal frame. Now, Gödel’s theorem implies
that the order of quantifiers cannot be reversed: for any formalized statement,
there exists an extension of PA which proves it . . . (and not conversely.) As
stated, this is trivially true, since, given a formal statement in PA, there exists
for sure an extension of PA which proves it: add that very statement as a new
axiom . . . . Yet, even in the case of the (trivial) extension (by the very state-
ment, but by more interesting formal principles as well), there is a non minor
problem: one has to prove the consistency of the intended extension! Often, in
philosophical discussions, this fact is forgotten.

Consider, say, the formalized statement of the consistency of PA, ConsPA ≡
¬TheorPA(0 = 1) (i.e. “0 = 1” is not a theorem), as a typical unprovable
proposition, given by Gödel’s second theorem (yet the following argument applies
a fortiori to the many formally unprovable propositions, that imply ConsPA,
such as those analysed below). One can surely formally derive ¬TheorPA(0 = 1)
from a suitable, and consistent, formal frame: ZF, for example (Zermelo-Fraenkel
formalized Theory of Sets). Even the axiom of infinity in ZF can be formally



stated in a finitistic fashion; so, a Turing Machine, or our firm formalist, can
mechanically derive ¬TheorPA(0 = 1) from the encoded version, in PA, of the
axioms of ZF. Call the conjunction of these (encoded) axioms AxZF and observe
that:

PA ` (AxZF → ¬TheorPA(0 = 1)) (1)

since, by the various equivalence theorems and by Gödel’s representation lemma,
any Turing computable function can be fully represented in PA.

Can one then say that the consistency of PA has been formally proved, by
finitistic-formal tools, as many claim? Well, PA is consistent if it generates no
contradictions, that is if . . .ConsPA ≡ ¬TheorPA(0 = 1) holds. Does (1) prove
this fact?

No, it only proves what is written, i.e. the formal implication (AxZF →
¬TheorPA(0 = 1)). This statement implies the consistency of PA, as validity
of ¬TheorPA(0 = 1), provided that ZF is . . . consistent (otherwise, from AxZF ,
one could derive everything, including false statements). Now, the consistency
of ZF can be shown in either of the following ways:
A - AxZF formally generates no contradiction
B - ZF, i.e. AxZF , has a model.

A and B are well known to be equivalent, but the formalist who rejects to
give meaning to formulae, in particular to the axiom of infinity, may insist about
proving A formally. Easy, give a formal Set Theory with a stronger formal axiom
of infinity . . . . and so on so forth towards a never ending regressing chain (in
this approach the model construction is hidden or just implicit).

Consider then B. If one explicitly constructs or assumes to have a model of
ZF, including of the axiom of infinity, then (1) does prove the consistency of PA.
This is so, because this construction/assumption implies that AxZF generates
no false theorems, and because, if AxZF has a model, then also ConsPA ≡
¬TheorPA(0 = 1) holds (and PA is consistent), by (1).

In summary, a purely formal derivation of ConsPA, from whatever formal
axiom system, does not show the consistency of PA, unless one involves the
meaning of the required axiom of infinity, for example by giving a model of ZF
(by the way, ZF axiom of infinity essentially says: “PA has a model”).

I am here saying a triviality that everybody should be aware of. Yet, too often,
in (automated) theorem proving in particular, many people claim that they can
prove formally the consistency of PA, or whatever formally unprovable property.
Yes, of course, one can derive the implication in (1) or, more generally, given
any formalized statement, one can propose some strong enough formal axioms,
which mechanically imply it. But, this implication proves the statement, in a
mathematical sense, if one assumes the consistency of ZF or of the intended
stronger theory. In other words, just “writing the axioms” and computing is not
sufficient: one also has to assume/prove that the derivation is sound, i.e. that
axioms and rules are consistent (meaningful). This is one of the general reasons
for the need of interaction man/machine in theorem proving and it shows up
when one has to bootstrap the machine with a suitable formal frame (which



may depend on the result one aims at), but also along the proof, as it will be
argued below.

Finally, recall that Gödel’s first incompleteness theorem is “just” an undecid-
ability theorem and it says nothing about the truth of the undecidable sentence,
call it G. Yet, the second theorem derives G from (formalized) consistency,
ConsPA(≡ ¬TheorPA(0 = 1)), and this within PA. Observe then that those
who refer to the “truth” of the undecidable sentence G as to an ontological mir-
acle, actually, if asked, derive it, by handwaving, from its unprovability. And,
thus, they just mimic the (short, but subtle) formal proof of G in the second
theorem, as derived from ConsPA. As a matter of fact, one has to assume con-
sistency in order to prove the undecidability (thus the unprovability) of G (first
theorem), yet formalized consistency implies G within PA (second theorem).
Most commentators miss this fantastic “calembour” in the interplay between
the two theorems and the double role of consistency.

There is no miracle here, as too many claim, since there is no other access
to the “truth of a proposition”, in Mathematics, but by proof, including of G.
(In short, ask the platonist: why is the undecidable sentence true? he/she would
prove it by handwaving, that is, if he/she is good enough and makes the assump-
tions explicit, roughly as follows:
“The consistency of PA implies the unprovability of G. But PA proves the
equivalence of G and ¬TheorPA(code(G)) (usual handwaving: . . . and, hence,
G “means” or says that G is unprovable - use exclamation mark here!). Thus
(further handwaving), by the truth of ConsPA, the consistency of PA, one has
the truth of G.”)

This, or any similar argument, is just a bad imitation of one implication in
the proof of the second incompleteness theorem. Yet, a “proof.

The concrete incompleteness results below do not allow to cheat about their
“truth” nor to speculate on insights over God’s shoulders or Quantum Mechanics
in the brain, since they require a (non-obvious) proof of the truth, in the standard
model, of the unprovable sentence in PA. The point is to see where exactly, along
the proof, the formal unprovability shows up. This is our aim below.

2 Concrete incompleteness I: Normalisation.

In 1958, Gödel gave a proof of the first combinatorial statement, unprovable in
PA: normalisation for a typed extension of lambda-calculus, system T. Lambda-
calculus and its effective extensions may be (easily) encoded in PA and, thus, the
encoded Π0

2 statement, “for each term, there is a normal form” (in system T),
may be shown to hold, even though it is not formally provable, since it implies
the consistency of PA (proving consistency of PA was Gödel’s aim, in 1958).
Gödel’s proof was extended and improved by J.-Y. Girard, by the theorem we
discuss here.

Some claim that this theorem cannot be called an independent “concrete”
or combinatorial statement of PA, as it is “too much” related to consistency.
However, lambda-calculus has also a mathematical-combinatorial interest per



se, not just for proving consistency of PA. Thus, we do not see the reasons for
depriving the Thoery of Types of the first achievement in this sense: a provably
true, but formally unprovable mathematical statement of PA. Paris-Harrington
theorem, a remarkable result of 1977, is usually given this honour; however,
Ramsey theorem, which underlies this finitary variation, is not less related to
consistency, via Set Theory.

But how normalisation can ever be proved, if it is unreachable within PA?
Easy (oh, no, very difficult), by a prototype proof, besides induction.

2.1 The unprovability

I will briefly analyse now the “internal reasons” for the formal (PA) unprovability
of normalisation. By this I mean an informal insight into the parts of the proof
where non-encodable arguments are used. Clearly, the unprovability is rigorously
shown by the formal implication: from normalisation derive consistency. Yet, one
may try to spell out explicitly the places where the incompleteness phenomena
shows up, along the proof of normalisation.

This exercise is analogue, by duality, and may serve as a guideline, to the
everyday task in interactive theorem proving (proof-assistants, proof-checking).
As a matter of fact, in order to feed a computer with parts of a proof (e.g. a
very difficult combinatorial lemma, lots of very long computations . . . ) one must
be able to isolate the fully formalizable parts in the intended logical frame, and
have the computer develop or check them. That is, one must be able to point out
or distinguish the non-computable from the computable, the essentially higher
order from the first order, the use of axioms of infinity and their models from
arguments in PA and so on so forth.

Of course, every theorem may allow many different proofs. In our case, this
means that the non-encodable passages may be different, as their very nature
may depend on the kind of assumptions and proof adopted. I will then focus on
Girard’s argument by “candidates of reducibility”. This approach to normalisa-
tion applies both to Gödel’s system T and to Girard’s System F (see [Girard90]).
Indeed, I will mostly refer to the presentation in [Girard90] for the discussion.

Girard’s proof uses a very heavy induction load. That is, in order to prove that
every term has a normal form, by induction, it adds to an inductive assumption
on the type of a term (see below), two extra assumptions. Why is this done (and
needed)?

The point is that in no way induction can be straigthfowardly applied to
terms (e.g. by an induction on the complexity or lenght of terms or whatever).
This is due to several features of typed calculi. First, the arrow (in the implicative
types) is “contravariant”: in any formula such as “∀x(ρ → σ)”, the properties
expressed by ρ are “negated”, and this increases the complexity of the type as
formula and of the terms living in it. Second, in second order types (i.e. in the
types of System F, where universal quantification is over type variables), the type
variables may be instantiated by any type, including the one under consideration;
this strong impredicative feature forbids any (inductive) stratification of types
and terms living in them. In particular, terms may contain types and depend



on them: this is one further reason which does not allow induction on “pure”
terms. Yet, and surprisingly enough, the dependence of terms on types is very
uniform and this is crucial to the proof (see [Girard90]; in a sense, the specific
value of a variable type in a term may be disregarded - or all its values affect
the computation in the same way: this fact requires some technicalities and it is
fully spelled out by the Genericity Theorem in [Longo93]).

Then, the induction on types (not on terms) goes on by using a set of terms
in the given types (the “candidates of reducibility”). The terms in such sets are
supposed to be normalisable (first clause of the induction), but also to satisfy
two further properties, not obviously related to normalisability (see [Girard90],
p. 43, 116, 117); a “fine tuning” of these properties in extensions is a common
and relevant practice, both in Logic and in Computing (see [Coquand88] for a
classic; a non-obvious extension to “subtyping” may be found in [Castagna95]).
The further key observation is that the properties in the induction load are not
written at the theoretical level (System F or whatever second order system, see
2.2), but belong to the metalanguage. Then, along the proof, one collects the
metalinguistic sets of candidates of reducibility into a type and performs some
computations, within system F (in a sense, one “brings down” the metatheoretic
notion to a theoretic one).

Finally, the very handling of second order collections may be understood, in
set-theoretic terms, as the use of a proper Second Order Impredicative Compre-
hension Axiom. This axiom requires an essential blend of syntax and semantics
(this is why the competent formalists reject it), in view of the semantic conven-
tion on variables (capital variables, say, must range on (sub-)sets of any model,
small ones on elements of these sets). Thus, the proof, as given, uses a blend
of meta-theory, theory and semantics and, by this, it lies outside PA or of any
coding of System F into PA (and much beyond it, see below).

Remark: Unprovability and Hilbert’s “organisation of the mathemat-
ical discourse”. The blend of meta-theory, theory and semantics is very com-
mon in mathematics and in every day language: the dream of an unique, defini-
tive formal universe, where all of mathematics could be formalised, relies exactly
on this three level distinction and on the conjecture that a well isolated theoret-
ical level could completely describe mathematics. Now, Hilbert(-Tarski) organ-
isation of the mathematical discourse into meta-theory, theory and semantics
has been one of the remarkable ideas of the century, in Logic, but it does not
describe an absolute objectivity. In [Longo01], it is compared to Euclid’s organ-
isation of space, by rigid figures and their homotheties, as for relevance. Clearly,
the later is an extraordinary approach to physical space, a non-arbitrary, well
motivated proposal, but a rather artificial one, as there is no such a thing as a
rigid body and physical space is not closed under homotheties (according to Rel-
ativity Theory and current microphysics, since only the group of automorphisms
of Euclidean geometry contains the homotheties).

Similarly, Hilbert’s approach is so artificial that it has been instrumental
to the invention of fantastic artefacts, Turing Machines and, then, our digital



computers. These machines work just at one level, the formal-theoretical one.
The incompleteness theorems proved for us that this organisation of the proof is
not an absolute: first, Gödel Representation Lemma showed that the metatheory
of PA could be fully encoded into PA itself and, thus, that it is “part of it”; later,
the above proof of normalisation essentially used a blend of the various levels, as
just pointed out, and blurred this artificial difference. Again, it was extremely
useful to invent such a way to analyse the proof (in a sense, I have been using it
above), but it is just a technical tool and a temporary one: it lives nowhere, as,
for us, humans, there is no such a thing as a “metalanguage” (“I may play chess
according to certain rules. But I may also invent a game where I play with the
rules themselves. The pieces of the game are then the rules of chess and the rules
of the game are, say, the rules of logic. In this case, I have yet another game, not
a metagame” [Wittgenstein68] p.319).

However, there may be a difference in method (even within the same “cage
of language”, as Wittgenstein would put it): proofs should be analysed also by
non-mathematical arguments, e.g. by non-mathematized insights into the general
structure and dynamics of thought, not only by logico-mathematical proofs.
Mathematical Logic, yet the main tool for the foundational analysis, is still part
of mathematics, by its method and its proofs, thus it cannot completely found
it. It is somewhat surprising that many leading colleagues, who carefully avoid
some consistent and expressive mathematical circularities (or vicious/virtuous
circles, impredicativity or non well-foundeness, say), accept this conceptual and
philosophical, severe circularity and only develop a metamathematical analysis
of foundation. Now, no proof can found the notion of proof. Or, as suggested
by Wittgenstein . . . “Hilbert’s metamathematics will turn out to be a disguised
Mathematics” (quoted in [Waismann31], see also [Heinzmann90], [Floyd98] for
more on Wittgenstein and incompleteness).

2.2 Berardi-Altenkirch normalisation of System F, in LEGO

As already mentioned, given any formally unprovable statement, one can surely
invent a formal frame to prove it. As a matter of fact, this frame may even
reconstruct the very path of the given proof. The unprovability will be then
described by the “proof-theoretic strength” of the formalisation and the validity
of the statement will rely on the consistency of the proposed formal theory.

This kind of analysis is one of the major contributions given by Mathemati-
cal Logic to the foundation of Mathematics. One of its main applications is the
invention of systems to handle automatically as much mathematics as possible.
In our case, the analysis amounts largely in displaying the exact “formal order”
of the different constructions, understood above in terms of language, metalan-
guage, meta-metalanguage etc. It differs by this from the set-theoretic analysis,
mentioned in 3.1 below.

S. Berardi started an analysis of Girard proof by higher order Arithmetic
([Berardi91]). T. Altenkirch completed it and fully encoded it into Lego, a very
interesting and effective type-theoretic proof-assistant (see [Altenkirch92]).



Let us first clarify what is meant by “higher order logical system”. In the
case of Arithmetic, sometimes people refer, say, to Second Order Arithmetic, as
THE categorical theory of numbers. That is, to the non-formal theory where the
interplay between induction and a full second order comprehension axiom for
sets, allows to say formally: “any non-empty subset of N has a least element”.
This is not a formal system, in the sense we attributed to Hilbert, since the
notion of proof is not recursive: as a matter of fact, the system is categorical
(and thus complete) and, by this, the set of “theorems” (which coincides with
the valid propositions over N) cannot be recursively enumerable.

One may instead define a formal system handling higher order variables (PA2

formalises set variables, PA3 variables of sets of sets), and leave induction re-
stricted at each level (number theoretic induction, induction over formulae con-
taining set variables . . . all treated differently, see below). In these systems, the
notion of proof is decidable, or deductions are effective (even fully mechanisable
by Lego!), and, of course, Gödel’s theorems apply to them: thus, they are in-
complete. Now, PA3 allows a universal quantification over (the sort of) sets of
sets of integers, i.e. a universal quantification over P (P (N)) (the powerset of the
powerset of N). By this, as we shall see, it provides the right (and minimal) for-
mal frame for the specific theorem we are currently interested in, normalisation
for System F (and a fortiori for Gödel’s T).

Note finally that many prefer to call PA2, PA3 . . . , first order multisorted
systems (and “apparent” higher order ones, as extended first order systems with
just different labels for variables). This is a matter of taste, as “proper” higher
order systems are non-formal and yield non-effective deductions: the point is to
be clear as for what one is talking about and to have clearly in mind that the
core idea of Hilbert’s formal systems relies on the decidability of the notion of
proof. This is so in PA2, PA3 . . . , while it is lost in “proper” (categorical or
complete) higher order systems.

As already mentioned, Girard’s proof uses an inductive definitions over “can-
didates of reducibility”, as subsets of types (in the sense that types are “sets of
terms” and they have the kind of the sets of integers). This induction may be
described as a recursive definition of a function over sets, or a “third order in-
duction”. Now, first order induction works on integers, second order induction
takes the minimum fixed point of monotone operators over sets of integers. The
non-obvious concept of third order induction amounts to say that one has to
take the minimum fixed point of monotone operators over sets: clearly, such an
operator, a function, is a (single-valued) set of (pairs of) sets, similarly as a
function over numbers is a (single-valued) set of (pairs of) integers. It is then a
“third order” operator and it requires PA3 to be formalized. Note that no less
can be used, as normalisation for System F implies consistency of PA2, not just
PA (= PA1).

Let’s see more closely what happens along the proof, by hinting to the in-
sightful formalization by Berardi. As mentioned in 2.1, the key point is that the
proof does not go by induction on terms (as first order entities), but by higher



order induction. That is, the proof uses a combined induction on types (second
order induction) and on operators on types (third order induction). In partic-
ular, the recursive definition of candidates of reducibility uses a map on types,
[.]ρ, from a candidate assignments ρ to candidate [σ]ρ, for each type σ. This map
is a (single-valued) set of (pairs of) sets. Or, more precisely, one considers the
graph of the operator:

(σ, ρ)| → [σ]ρ
and this has the type of sets of sets of integers. The key step in the formalization
of Girard’s proof is based on taking the minimum fixed point for this operator. Its
construction (existence) implies the convergence of the normalization algorithm
on System F.

Call now ∀x∃yNorm(x, y) the (first order) formal statement of PA1 that
“for any (coded) term of F, there exists a (code for) its normal form” (more
precisely, in Norm(x, y), y is the code for the redution sequence ending with a
normal form.) Then Norm(x, y) is a decidable predicate in x and y. Thus we
have just pointed out that

PA3 ` ∀x∃yNorm(x, y) (2)

Thus, under the assumption that PA3 is consistent (more precisely: that it is
1-consistent), the proposition holds in the standard model (where number-codes
of terms refer to actual terms), or

N |= ∀x∃yNorm(x, y). (3)

Now, fix n ∈ N and consider ∃yNorm(n, y). This is a Σ0
1 predicate and any

valid Σ0
1 predicate over N is provable in PA1 (easy: scan the integers till you

find one satisfying the predicate). Then

given n ∈ N, generic,PA1 ` ∃yNorm(n, y) (4)

As already observed, no induction on n (as code of the term to be normalised)
could be used in the proof: induction is entirely transferred at the level of types
and functions on types. Of course, the reader must appreciate the difference
between (2) and (4), a subtle but crucial difference: the PA1 unprovability of
∀x∃yNorm(x, y) says that there is no way to prove it by first order induction
on x. Thus, the proof in (4) is essentially a prototype proof, with generic input
n, a standard integer or a true code for a term. And a detour must be taken, via
PA3 and its higher order forms of induction, over sets of types.

Observe also that (4) proves only that there is a computable function that,
taken an integer n as code of a term, gives (the code) of its normal form, y. Yet,
as stated, (4) does not prove that this “normalising function” is total (and this
is where lies part of the logical complexity of the problem). An inspection of the
proof of ∀x∃yNorm(x, y) within PA3, a proof needed in order to assert its truth,
shows that this function is indeed total2. Finally, PA2 may suffice to “isolate”
2 As already mentioned, induction, in contrast to prototype proofs, proves totality of

Π0
2 predicates “for free”. Consider the following theorem: (D) ∀x∃y(2x < y). Of



the standard integers (PA2 contains a predicate for them, exactly, i.e. it defines
the type of integers), but this is not sufficient to formalise (4), as the proof that
the normalising function is total entirely relies on the third order structure of
the normalisation proof.

3 Concrete incompleteness II: Kruskal-Friedman
theorem.

Everybody knows what is a tree. Trees in Mathematics grow downwards. They
are partial orders with a root on top (the largest element), and, for each node
a in a tree T , {x/x > a} is totally ordered. A tree-embedding h, form T to
T ’ (notation: T < T ′), is an injective map, which preserves upper bounds (i.e.
h(sup{a,b}) = sup’{h(a),h(b)}).

Kruskal, in 1960, proved the following theorem (KT): For any infinite se-
quence of finite trees {Tn/n < ω}, there exist j and k such that j < k < ω and
Tj < Tk.

A non-obvious result. In 1981, Friedman proposed a finitary version of this
fact, i.e. a variant that may be stated in PA. Here is a form of it:
For any n, there exists an m such that for any finite sequence T1, T2, ..., Tm,
where Ti has at most n(i+1) nodes, there exist j and k such that j < k < m and
Tj < Tk.
(FFF or Friedman’s Finite Form, see [Harrington85], [Gallier91]).

This Π0
2 statement of PA has a purely combinatorial nature, since in no

apparent way it is related to consistency issues. Moreover, both KT and FFF
have several interesting consequences in finitary combinatorics (e.g. in Term
Rewriting Systems).

Let’s try to sketch the “reasons for unprovability”, as we did in the previous
case. However, now, two radically different proofs of KT (and FFF) are available,
each worth analysing, although briefly. Once more, the logical reasons for un-
provability are grounded on Gödel’s second theorem, since, surprisingly enough
(and this is the remarkable insight of Friedman), FFF implies the consistency
of PA (and much more). We will hint to the specific passages of the proofs
where unprovability shows up. FFF easily follows from KT, by an application of
Koenig’s lemma (“any infinite finitely branching tree has a infinite path”). This
lemma is conservative over PA, thus the problems are hidden along the proof of
KT.

course, this has both a prototype proof (“For a generic n, take m = 2n+1”) and an
inductive one, in PA (“for 0 take 1; assume that, given x, you have y, then, for (x+1),
set y’ = y + 2”). Difference: the second proof inductively proves also that the map
from x to y in (D) is total. The first one, instead, requires a further insight: one has
to prove that “.” and “+” are total (not too hard, in this case; very complex, as for
the totality of the normalising function, since this is shown in PA3).



3.1 The set-theoretic analysis

The usual, set-theoretic proof of KT goes by a strong non-effective argument. It
is non-effective for several reasons.

First, one argues “ad absurdum”, i.e. one shows that a certain set of possibly
infinite sequences of trees is empty, by deriving an absurd if it were not so. More
precisely, one assumes that the set of “bad sequences” (or sequences without
ordered pairs of trees, as required in the statement of KT) is not empty and
defines a minimal bad sequence from this assumption; then one shows that that
minimal sequence cannot exist, as a “smaller” one can be easily defined from it.

Note that this minimal sequence is obtained by using a quantification on a
set that is . . . going to be proved to be empty, a rather non-effective procedure.
Moreover, the empty-to-be set is defined by a Σ1

1 predicate, well outside PA (a
proper, impredicative second order quantification over sets, see the discussion
on system F, 2.1).

For the non-intuitionist who accepts a definition of a mathematical object (a
sequence in this case) ad absurdum, as well as an impredicatively defined set,
the proof poses no problem. It is abstract, but very convincing (and relatively
easy). The key non-arithmetizable steps are in the Σ1

1 -definition of a set and in
the definition of a sequence by taking, iteratively, the least element of this set.
Yet, the readers (and the graduate students to whom I lecture) have no problem
in applying our shared mental experience of the “number line” to accept this
formally non-constructive proof: from the assumption that the intended set is
non-empty, one understands (“sees”) that it has a least element, without caring
of its formal (Σ1

1 -)definition. Or, if the set is assumed to have an element, then
the way the rest of the set “goes to infinity” doesn’t really matter, in order to
understand that it must have a least element: the element supposed to exist (by
the non-emptiness of the set) must be somewhere, in the finite, and the least
one will be among the finitely many which precede it, even if there is no way to
present it explicitly. Finally, the sequence defined ad absurdum, in this highly
non-constructive way, will never be used: it will be absurd for it to exist. So its
actual “construction” is irrelevant.

Of course, this is far away from PA, but it is convincing to anyone accepting
the “geometric judgement” mentioned in the introduction: a non-empty subset
of the number line has a least element (see the conclusion as well).

3.2 The constructive version

An intuitionistically acceptable proof of KT has been recently given in [Rathjen93].
This proof of KT is still not arithmetizable, of course, but it is “constructive”,
at least in the broad sense of infinitary inductive definitions, as widely used
in the intuitionist community (see the seminal work by Martin-Löf; a classical
introduction is in [Aczel78]).

The idea is to construct an effective “reverse embedding” of the partial order
of finite trees (partially ordered by the tree-inclusion above) into a suitable ordi-
nal representation system. This requires an insightful study of the combinatorial
properties of tree-embeddings.



In short, let FinBadT be the set of finite bad sequences of trees (see 3.1).
Once given a system of ordinals (ORS,<), Rathjen and Weiermann construct
a function f : FinBadT → ORS such that, if s and t are in FinBadT , and t
extends s strictly, then f(t) < f(s) (in ORS). Clearly then, if there exists an
infinite bad sequence, and thus an infinite ascending sequence in FinBadT , then
ORS would contain an infinite descending sequence.

The function f is actually primitive recursive and everything up till this point
can be done in Intuitionist Arithmetic, HA. KT then follows from the proof
that (ORS,<) is well-founded and, in particular, that every primitive recursive
sequence p(0) > p(1) > p(2) > ... must terminate after finitely many steps. This
proof is done in an intuitionistically acceptable formal frame, called ID1, which
extends induction along constructible ordinals and well beyond PA.

This is the non-formalisable part, in PA. As a matter of fact, PA cannot
prove the Π0

2 statement that (ORS,<) is (primitive recursively) well-founded,
since this well-ordering is sufficient to prove the consistency of PA (it actually
implies induction well beyond ε0, the ordinal of consistency for PA).

As in the previous case, the Π0
2 statement of FFF cannot be proved by first

order or ω-induction, i.e. within PA. In the approach by inductive definitions
though, the difficulty is taken care by “pulling induction along the ordinals”,
well beyond ω, or even ε0.

Conclusion

The proof-theoretic investigation of Mathematics has been one of the major
achievements of XX century Science: it gave us mathematical rigor and modern
computing. The latter, its major fall-out, is changing our live. Yet, we need
to go beyond its techniques and philosophy. First because, in view also of its
successful paradigms, Mathematics has now reached a remarkable level of rigor
and we are no longer scared of the novel geometric intelligibility of physical
space, which originated Frege’s “royal way out” from the “delirium” in Geometry
(see [Tappenden95] for more on Frege’s view). Second, because we may take
advantage, also in computing, by an enlargement of our foundational paradigms,
beyond the traditional linguistic-finitistic certitudes. In a sense, we should try
to bring together the two “foundational ways” that split at the end of XIX
century, as I tried to summarize in the introduction. In short, the foundation of
Mathematics lies in:

- Logic
- Formalisms
- Regularities of phenomenal space.
We all know what the first two points mean and their relevance. By the

third, I mean the reference to a few regularities of phenomenal space, such as
connectivity (Riemann) or symmetry (Weyl), but “ordering” as well. By the
subsequent and constructed notion of well-ordering, it was meant here the (very
strong) geometric judgement: “consider a generic non-empty subset of the in-
teger number line, observe that it has a least element” (see [Dehaene98] for a



neuropsychologist’s experimental analysis of our mental number line, as a cog-
nitive experience).

As a matter of fact, in Mathematics, we transform these regularities of space
- that we happen to “see” - (as well as our cognitive approach to them by
mental re-constructions), into explicit conceptual invariants (as “hypothesis”,
in Riemann’s terminology). This process grounds mathematics, as a conceptual
construction, in our “phenomenal lives” (as Weyl would put it): concepts and
structures are the result of a cognitive/knowledge process. Then they are further
extended, by language and logic: from connectivity we go to homotopy theory or
to the topological analysis of dimensions, say. Symmetries lead us to duality and
adjunctions in Categories. The ordering of numbers is extended into transfinite
ordinals.

Of course, these notions may be formalized, each in some “ad hoc” way, as
there is no Newtonian or ZF absolute universe. But evidence and foundation
are not completely captured by the formalizations, since “The primary evidence
should not be interchanged with the evidence of the ’axioms’; as the axioms are
mostly the result already of an original formation of meaning and they already
have this formation itself always behind them”, [Husserl33]. Moreover, incom-
pleteness tells us that the reference to this underlying and constitutive (not
independent) meaning cannot be avoided in foundation, as the consistency issue
is crucial in all formal derivations (see the Intermezzo, part II).

In this perspective, we need to ground mathematics also on a few “geo-
metric judgements” which are not less solid than the logic ones: “symmetry”
for example is at least as fundamental as “modus ponens”, or it steps heav-
ily into mathematical constructions (and in proofs, as pointed out by Girard
- see [Girard01] for recent advances of his program in Logic and foundations).
As already mentioned, physicists argue since long “by symmetry”. More gen-
erally, modern Physics extended its analysis from the newtonian “causal laws”
(the analogue to the logico-formal and absolute “laws of thought”, since Boole
and Frege) to an understanding of phenomenal world by our active geometric
structuring of it: from the conservation laws as symmetries (Noether’s theorem),
to the geodetics of Relativity Theory (see [Weyl27] for an early mathemati-
cal and philosophical insight into this, [BaillyLongo06] for recent reflections).
The normative nature of geometric structures is currently providing a further
understanding even of recent advances in microphysics ([Connes94]). Our foun-
dational analyses and their applications should also be enriched by this broad-
ening of paradigm in scientific explanation: from laws to geometric intelligibility
(grounded on accessibility of space, see [Longo02]). But in Logic as well, we have
to move from viewing formal properties and logical laws as a linguistic descrip-
tion of an independent reality, to their appreciation as a result of a praxis: they
are the constituted invariants of our practice of reasoning and language, as an
open ended “game” between us and a world to be organised also by language.

In Number Theory, well-ordering, as a structuring of phenomenal space and
time by integer numbers, is a founding “geometric judgement”: its certainty is
the consequence of a common conceptual construction, the number line, we all



experience in our (mathematized) mental space (see above and the Introduc-
tion). When “formalized”, as proper second order impredicative statement (in-
duction plus second order full comprehension), it is highly ineffective. Instead,
it is perfectly “robust” (and “effective” - as a mental construction) if seen as
a “geometric judgement”, related to the constructed order structure of integer
numbers. Of course, considering - “seing” - a generic non-empty subset is crucial,
instead of formally taking all non-empty subsets (see also 3.1 and below). And,
as a judgement, it provides a reliable geometric argument for consistency of PA:
all other proofs use consistency of stronger theories, large ordinals or axioms
of infinity. Clearly, it is not an alternative to the fine analysis of consistency
provided by Proof-Theory (normalisation, relative consistency results ...) but is
complements it, by grounding Mathematics on broader mental experiences.

It should be clear, though, that the mathematical constructions, such as
the “number line”, are “shared” cognitive performances as they are done in
language and intersubjectivity, along history. They are “progressive conceptual-
izations”, as suggested by Enriques ([Enriques01], [Faracovi82]), which originate
from regularities of space, time and reasoning, and in no way the grounding
of mathematics also on geometric judgements should let us forget the key role
of language for our communicating human community. Only by language we
can conceive and express never ending, discrete iteration, which we later place
back into mental space (the number line). By action and language we organize
(we “order”) space and time. In general, intersubjective exchange, by language,
is a core component of the constructed invariance and conceptual stability of
Mathematics: that is, invariance is also the result of a conscious appreciation
of “what we all share” (Poincaré), including a constructed mental image. Thus,
in spite of this approach’s debt to Brouwer’s constructivism (but this debt has
been filtered by the remarkable teaching by Dana Scott, J.-Y. Girard and Per
Martin-Löf in Logic), we radically depart here from Brouwer’s “languageless”
mathematics, [vanDalen91]. As well as from the Platonism/formalism debate,
the “new scholastic” of the XX century, as Enriques called it ([Enriques36], but
Poincaré and Hermann Weyl should be quoted as well).

The reference to these leading geometers’ critical (anti-formalist and anti-
ontological) attitude w.r.to the main-stream foundational debate may be the
occasion for a concluding remark concerning the use of “generic” elements in
proofs (and in judgements). This is of course an essential notion in defining
prototype proofs (and geometric judgements).

In Mathematical Logic, since Frege and Hilbert, by the prevailing algebraic
approach and by the focus on Arithmetic, generic elements are dealt with as
variables, formally handled by “for all introduction/elimination rules” and in-
duction. Typically, in algebra, one proves (x + y)2 − 2xy = x2 + y2, say, by
formally manipulating two variables; then, the full generality of the result is ob-
tained by the “for all introduction” rule. In this frame, “generic” means “variable
ranging on all elements of the intended domain”: in the proof of a universally
quantified statement, just type and formally manipulate your variables and you
are done. A crucial point, of course, is that “for all” is interpreted by . . . “for all”,



along the proof. This proof-theoretic treatement of “for all” (as well as the naive
set-theoretic interpretation3) is confirmed by the use of arithmetic induction: in
order to prove a property for all numbers, prove it for 0, than extend the proof
to all numbers by moving from x to x + 1.

However, when one has to prove a property of structures or objects, that do
not form a well-ordered set, all right triangles, say, or all Riemann’s manifolds,
or all algebraically closed fields, or even all real numbers . . . in no way the proof
is done “for all”. One considers a generic right triangle, or Riemann’s manifold,
or non-empty subset of bad-sequences (see 3.1) . . . , gives the proof and, at the
end, one observes, by scanning again the argument: note that I only used the very
definition of the intended structure (or mathematical object), no more no less,
and this shows that my proof has the right level of generality. The drawing on
the sand of a greek beach of a right triangle, the geometric proof by Pythagoras,
the observation that the proof depends only on the right angle and not on the
length or ratio of the sides, is the real birth of Mathematics. Note that, in order
to give the geometric proof, the sides (their ratio) have to be given, as a specific
right triangle (ratio of sides) has to been drawn. In no way all right triangles,
with their different (ratio of) sides, are scanned, as, say, in inductive proofs; on
the contrary, a (provably) generic one is used. The methodological difference is
crucial and the key role given to Formal Arithmetic in foundation and in Proof
Theory has been hiding it. Moreover, this contributed to the new scholastic in
the philosophy of Mathematics: on one side, it confirmed the formalist lack of
appreciation of the construed genericity of individual Mathematical objects and
structures (formal variables are the “generic” signs); on the other it contributed
to ontological commitments (the reference to existing sets of all right triangles,
Riemann manifolds, real numbers . . . instead of the analysis of their conceptual
construction).

There is one more reason for going in this further direction, which stresses
also the role of “geometric judgements” and generic structures (and should ac-
company the proof-theoretic analysis, when technically insightful). Mathematics
is not only grounded on proofs, the main concern of late XIX and XX century
Mathematical Logic, but it also goes by construction of concepts and structures.
Indeed, new concepts and structures are required even along proofs, as shown by
the permanent need of “new axioms” (or, also, when just trying to find the right
induction load). The analysis of these constructions should not be left to the
magic or the metaphysics of some ontological “intuition”, but it should become
part of a scientific investigation. This analysis I call “the cognitive component” of
the foundation of mathematics and it is an ongoing project (see the research pro-
gram “Géométrie et Cognition”, this author’s web page, or [Longo02], [Longo05],
[BaillyLongo06]).

3 cf. the much more structured and informative intepretation of first and sec-
ond order variables and quantification in categories, [Lawvere76], [Lambek86],
[AspertiLongo91].



Acknowledgements

I am greatly indebted to Stefano Berardi and Micheal Rathjen for several very
stimulating and helpful discussions and e-mail messages. An anonimous referee
and a disclosed one, Gilles Dowek, contributed to the revised version by their
relevant and numerous comments. Of course, any mistake and the strong philo-
sophical commitment remain of my own responsibility. This work has been par-
tially supported by the “Action Cognitique” (MENRST), as part of the “Atelier
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[BaillyLongo06] Bailly F., Longo G., Mathématiques et sciences de la nature. La singu-
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