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Abstract

This paper focuses on how terms of second order λ-calculus, which may take
types as inputs, depend on types. These terms are generally understood to have
an “essentially” constant meaning, in all models, on input types. We show how
the proof theory of second order λ-calculus suggests a clear syntactic description
of this phenomenon. Namely, under a reasonable condition, we show that identity
of two polymorphic functions on a single type implies identity of the functions
(equivalently, every type is a generic input).

1 Introduction

The use of types as explicit parameters, or variable types, is at the core of polymorphic
(functional) languages and was introduced, in Logic, by Girard [Gir71] and, in Com-
puter Science, by Reynolds [Rey74]. The idea is that one may define formal functions
that “explicitly depend” on input types. In λ-calculus notation, where capital X,Y, ...
stand for type variables, one is allowed to consider terms such as λX.M which may be
fed a type as input and give a term as output (in the logical jargon, λX.M is a second
order term in impredicative Type Theory).

Since early remarks of Strachey [Str67], a distinction was introduced on how these
explicitly polymorphic functions had to behave. Indeed, in computing, programs may
depend on types: overloaded functions, for example, may call different code according
to the input type (or to the type of the input): + uses different code according to
whether the addition is performed on (the type of) reals or integers, say. This sort
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of dependency of terms on types, known as “ad hoc” polymorphism, is an expressive
feature of some programming languages, in particular when handled at run-time, and
may suggest interesting and general formal systems (see [CGL92], say).

Following Strachey (and Reynolds) then, “proper” polymorphism, as opposed to the
“ad hoc” variety, was understood as a property of second order terms to define functions
that have a “uniform” dependency on input types, or whose output terms do not
“essentially” depend on input types. Note, though, that the output terms of, say,
λX.M applied to types σ and τ , i.e., (λX.M)σ and (λX.M)τ , need not live in the
same type. The point then is to understand how core systems, such as Girard-Reynolds
system F [Gir71, Rey74] (also known as second order λ-calculus), satisfy this uniformity
property or essential independence from input types and compare terms possibly living
in different types; more generally, to understand the functional behavior of formal
functions such as λX.M .

A semantic criterion for parametricity was proposed by Reynolds [Rey83, MR91] as
an invariance property under relations between type values. In short, if a relation is
given on type parameters σ and τ , then (the interpretation of) λX.M , applied to (the
meaning of) σ and τ , should send related elements of σ and τ to related elements in
the types of the outputs.

Another meaning of the proper polymorphism of system F was given by Bainbridge
et al. [BFSS90]. Consider λx :X.N . Is it the case that λx :X.N depends “naturally”
on X, in the sense of natural transformations of Category Theory? Indeed, natural
transformations provide the core way to express uniformity on objects (as interpreta-
tion of types) in categories. Unfortunately, natural transformations act on functors
and, in general categories, variable types are not functors. The counterexample is
straightforward: the map from X to X → X (the arrow type) should be at once a
covariant and contravariant functor. A partial solution, in the context of the typed
λ-calculus, may be given by considering categories where maps are only retractions
(as in [Sco72, SP82, Gir86]) or isomorphisms (as in [DL89]). This is fine for specific
purposes, as in those papers, but does not describe the situation in the full generality of
a model theoretic approach. On the other hand, this issue of contra/covariant functors
was partly at the origin of relevant generalizations of the notion of functor in mathemat-
ics, for example [EK66]; see also [Mac71]. In this line of work, Bainbridge et al. propose
to interpret terms as “dinatural” transformations, yet another elegant categorical no-
tion derived from tensor algebra and algebraic topology. The rub is that, in general,
dinatural transformations do not compose, while terms do; however, the interpretation
works fine (i.e., it is compositional) on relevant models (see [BFSS90, FGSS88, GSS]).
On essentially similar lines, Freyd suggested the novel notion of “structor” in order to
understand, categorically, the notion of uniformity inherent in second order λ-terms.
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These attempts suggested brand new constructions and relevant mathematics, but seem
still insufficient to fill the essential gap between the so-called parametricity or uniformity
of second order λ-calculus and the core uniformity with respect to objects (and functors)
as expressed by natural transformations in Category Theory. This is probably one of
the few mismatches (together with subtyping versus subobjects) out of many deep
connections between types and objects, terms and morphisms, as summarized, say,
in [AL91] and [LS86].

We propose in this work a simple “syntactic” understanding of the so-called para-
metricity property, or “uniform dependency” on input types, of polymorphic calculi.
First, we present an extension of system F, suggested by a simple result of Girard.
In [Gir71], given a type σ and a term Jσ such that, for any type τ , Jστ reduces to 1
if σ = τ , and reduces to 0 if σ 6= τ , then F+Jσ does not normalize. Since system F
normalizes, Jσ is not definable in F. The point here is that the polymorphic term Jσ
gives essentially different output terms living in the same type, according to the (values
of the) input types. Then, the starting point for our understanding of parametricity is
that a polymorphic term that gives outputs in the same type for all input types, must
be constant. This is expressed by the following axiom:

(Axiom C) Mτ = Mτ ′ for Γ `M : ∀X.σ and X /∈ FV (σ)

That is, if the outputs of a polymorphic term M , applied to any type, all live in the
same type σ, then these outputs are simply equal. Axiom C is not provable in F,
but it is compatible with F, i.e., F may be consistently extended with it. Indeed, a
generalization of Axiom C appears in the system F<: [CMMS91] which extends system
F with subtyping; see rule Eq appl2. Moreover, in section 10, we point out that both
the PER models in realizability topoi and Girard’s models over dI-domains and stable
maps satisfy Axiom C. A categorical characterization of models realizing Axiom C will
also be outlined. In our view, this obvious remark, the compatibility of Axiom C with
system F, is one thing to be noted in order to understand parametricity. From ongoing
work [ACC92], it also turns out that Axiom C is realized by all models that satisfy
Reynolds’s parametricity condition [MR91].

Consider now Fc, the extension of system F with Axiom C. What we propose for a
syntactic understanding of parametricity is the following theorem:

(Genericity Theorem) Assume M and N live in the same type ∀X.σ
If Mτ =Fc Nτ for some type τ , then M =Fc N

The reader should notice where intended parentheses and existential quantification are
located, and also, that there is no restriction on σ. The Genericity Theorem says that,
in Fc, if two second order terms coincide on one type, they coincide everywhere. Or,
equivalently, that each single type acts as a “generic” input, as a variable.

As second order terms are functions from types to terms, the following intuitive geo-
metric description of our understanding of parametricity may further help the reader:
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This illustrates that if two polymorphic functions coincide on an input type, then they
are, in fact, the same function. In a sense, there are “very few” polymorphic functions.

Of course, more things must be settled, due to the fact that the Genericity Theorem
is stated in Fc, not in F. However, Axiom C is a very natural request, directly derived
from the old and simple result Jστ in [Gir71]. Its relevance is also confirmed by the use
made of it in [CMMS91]. We will discuss the model theoretic problems raised by the
Genericity Theorem in section 10. The next sections recall system F, introduce system
Fc, and prove the Genericity Theorem.

2 System F

The language of system F consists of types and terms. A type is either a type variable, a
function type, or a polymorphic type, while a term is either a variable, an abstraction,
an application, a type abstraction, or a type application. Types and terms have the
following syntax:

Types σ ::= X | σ → τ | ∀X.σ
Terms M ::= x | λx :σ.M | MN | λX.M | Mτ

We will use σ, τ , ρ, µ, ν for types and M , N for terms, while for variables, we will
use X, Y , Z for type variables and x, y, z for term variables. Following the usual
conventions for minimizing parentheses, applications associate to the left,→ associates
to the right, and the scope of ∀ and λ extends as far to the right as possible. For any
type or term P , the set of its free (type and term) variables is defined as usual, and
written FV (P ). Capture-avoiding substitution of a free (type or term) variable is also
defined as usual, and written [τ/X]P or [M/x]P .

Assignment of types to terms takes place relative to a set of variable declarations, where
each declaration assigns a unique type to a term variable. In general, we will use Γ to
denote a set of declarations, and we write Γ, x : σ to extend Γ with a new declaration
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x : σ, where x must not occur in Γ. A type assignment is a meta-expression of the
form Γ ` M : σ, which asserts that term M has, or lives in, type σ, relative to the
declarations in Γ. The following rules define valid type assignments.

Type Assignment Rules

(declaration) Γ, x :σ ` x : σ

(→-intro)
Γ, x :σ `M : τ

Γ ` λx :σ.M : σ → τ
(→-elim)

Γ `M : σ → τ Γ ` N : σ

Γ `MN : τ

∗(∀-intro) Γ `M : σ

Γ ` λX.M : ∀X.σ
(∀-elim)

Γ `M : ∀X.σ

Γ `Mτ : [τ/X]σ
∗ for X not free in the type of
any free term variable in M

Note the restriction on the ∀-intro rule: without it, it would be possible to prove
inconsistencies such as x :Y ` x : Z. This restriction will show up frequently later.

Equal terms are defined by the following schemes and rules:

Equational Schemes and Rules

(β1) (λx :σ.M)N = [N/x]M (β2) (λX.M)τ = [τ/X]M

(η1) λx :σ.Mx = M for x /∈ FV (M) (η2) λX.MX = M for X /∈ FV (M)

(ξ1)
M = N

λx :σ.M = λx :σ.N
(ξ2)

M = N

λX.M = λX.N

(app1)
M1 = M2 N1 = N2

M1N1 = M2N2
(app2)

M = N

Mτ = Nτ

(refl) M = M (sym)
M1 = M2

M2 = M1
(trans)

M1 = M2 M2 = M3

M1 = M3

We will use the symbol ≡ for syntactic identity. For types, σ = τ is the same as σ ≡ τ
while, for terms, M ≡ N implies M = N but not vice-versa.

Reduction of terms is defined as usual by the closure of the following rules:

(β1) (λx :σ.M)N −→β1 [N/x]M (β2) (λX.M)τ −→β2 [τ/X]M
(η1) λx :σ.Mx −→η1 M for x /∈ FV (M) (η2) λX.MX −→η2 M for X /∈ FV (M)

We will write −→F for the union of these reductions.

The following important properties hold for system F.
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Unique Typing
A well-typed term lives in a unique type: if Γ `M : σ and Γ `M : τ then σ = τ .

Strong Normalization
There are no infinite reduction sequences from well-typed terms.

Church-Rosser
If M −→F M1 and M −→F M2 then there exists an M0 such that M1 −→F M0

and M2 −→F M0.

Equational Church-Rosser
If M1 = M2 then there exists an M0 such that M1 −→F M0 and M2 −→F M0.

3 System Fc

System Fc is formed by adding the following equational scheme to system F:

(Axiom C) Mτ = Mτ ′ for Γ `M : ∀X.σ and X /∈ FV (σ)

If the outputs of polymorphic function M live in a type σ that does not depend on M ’s
input type, then the outputs are equal, regardless of the input type. Or, equivalently,
M is constant.

Axiom C authorizes more equations than in system F. We will write M =F N for F
equations, and M =Fc N for Fc equations. Clearly, Axiom C is not provable in system
F. Take x : ∀X.σ with X /∈ FV (σ) and apply Axiom C to x. This gives

xτ =Fc xρ

These two terms would be equated in system F only if τ = ρ.

Since system Fc adds no new terms, types, typing rules, or reductions, it enjoys the same
non-equational properties as system F, such as unique typing of terms, strong normal-
ization, and the Church-Rosser property. However, a number of equational properties
fail for Fc, in particular, the equational Church-Rosser property: for example, even
though xτ =Fc xρ above, there is no common term to which both xτ and xρ reduce.

In the proof of the Genericity Theorem, it will generally be more convenient to use a
term with a “type substitution structure” such as [τ/X]M instead of a polymorphic
application Mτ . Thus, we may use the following formulation of Axiom C:

(Axiom C∗) [τ/X]M = [τ ′/X]M for Γ `M : σ
and X /∈ FV (Γ) ∪ FV (σ)
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It is simple to prove that Axiom C and Axiom C∗ are equivalent. We give the proof
to stress the extra side-condition X /∈ FV (Γ) on Axiom C∗ and its relation to the
side-condition on ∀-introduction. These conditions will appear frequently in the later
proofs. We will write M =c N and M =c∗ N if M and N are equal by only
applications of Axiom C and Axiom C∗ respectively.

Remark: Axiom C∗ is equivalent to Axiom C.

Case: Axiom C implies Axiom C∗.
Assume that Γ `M : σ and X /∈ FV (Γ) ∪ FV (σ).
Since X /∈ FV (Γ), then X is not free in the type of any free term variable in M .
So, by ∀-intro, Γ ` λX.M : ∀X.σ. Also, X 6∈ FV (σ).
Thus, by Axiom C and β2, [τ/X]M =β2 (λX.M)τ =c (λX.M)τ ′ =β2 [τ ′/X]M .

Case: Axiom C∗ implies Axiom C.
Assume that Γ `M : ∀X.σ and X /∈ FV (σ).
Let Z be a fresh type variable. Then, Γ `MZ : σ, and Z not free in any of Γ,M, σ.
Thus, by Axiom C∗, Mτ ≡ [τ/Z](MZ) =c∗ [τ ′/Z](MZ) ≡ Mτ ′.

4 Roadmap to the Proof of Genericity

In this section, we outline the route to the proof of the Genericity Theorem:

Assume M and N live in the same type ∀X.σ
If Mτ =Fc Nτ for some type τ , then M =Fc N

The hard part consists of proving the following Main Lemma, which is a substitution
formulation of the Theorem:

Assume M and N live in the same type σ
If [τ/X]M =Fc [τ/X]N for some type τ , then M =Fc N

The first remark to be made about the proof is that it is not an induction. The point
is that corresponding subterms of Fc-equal terms do not need to live in the same type.
The following example illustrates this.

Example: Assume x : ∀Y.Y and z : ∀Y1.∀Y2.Y1 → Y2.
Let X and Z be fresh type variables.
Then, apply Axiom C∗ to zZX(xZ) : X to obtain

zτX(xτ) =Fc zρX(xρ)

Note, though, that subterms zτX and zρX live in different types.
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However, this example also provides a hint to the proof of the Genericity Theorem.
Observe that the Fc-equality zτX(xτ) =Fc zρX(xρ) is obtained via the intermediate
term zZX(xZ) to which Axiom C∗ is applied. Furthermore, zτX(xτ) and zρX(xρ)
are both instances of this term, using type substitutions [τ/Z] and [ρ/Z] respectively.
Approximately then, the hint is this: given two Fc-equal terms, construct a common
term that can be instantiated to the two terms by type substitutions, and to which
Axiom C∗ can be applied.

The proof thus begins in section 5 by developing the notion of a generalizer for second
order terms. This is a novel idea for the polymorphic λ-calculus, although it is, of
course, related to generalizers and anti-unifiers of first-order calculi. Given two second
order terms that are identified by type substitutions, we construct a common term
that can be instantiated, by type substitutions, to the original terms. Similarly, we can
construct a common type that can be instantiated, by type substitutions, to two given
types. Furthermore, if the two terms live in two different types, then the generalizer
of the terms lives in the generalizer of the types. Note that this notion of generalizer
uses type substitutions, not term substitutions (as is usual for first-order terms).

The proof proceeds next with a property of C∗-equality that we call Quasi-Genericity:
if a term has a type substitution structure, i.e., is of the form [τ/X]M , and Axiom C∗

is applied to it, then that exact type substitution structure is preserved, i.e., the result
is of the form [τ/X]N , and, moreover, M =c∗ N . This is shown in section 6, where we
also give a counter-example to show that F-equality does not satisfy this property.

One of the consequences of Quasi-Genericity of C∗-equality is that if the result of
applying Axiom C∗ to [τ/X]M is already known to be of the form [τ/X]N , then
M =c∗ N . Observe that this is a weak form of Genericity, in that it uses C∗-equality
instead of Fc-equality in the premise of the Genericity Theorem. Another weak form,
with F-equality in the premise, can also be proven. Thus, in section 7, we have the
following two Weak Genericity Theorems:

Assume M and N live in the same type σ
If [τ/X]M =F [τ/X]N for some type τ , then M =Fc N

Assume M and N live in the same type σ
If [τ/X]M =c∗ [τ/X]N for some type τ , then M =Fc N

Putting these two together to obtain Fc-equality in the premise depends on how C∗-
equality interacts with F-equality. Unfortunately, F and C∗-equalities cannot be arbi-
trarily reordered. In section 8, we show that C∗-equality and forward β1β2η1 reduction
(but not η2 reduction) do indeed commute. In section 9, we draw all the pieces to-
gether to prove the main result. This involves examining the chain of Fc-equalities
between [τ/X]M =Fc [τ/X]N . Using the Church-Rosser property, commutativity of
C∗-equality with β1β2η1 reduction, and Quasi-Genericity of C∗-equality, we push the
[τ/X] substitution structure from [τ/X]M through the chain so that each node in the
chain has the form [τ/X]Mi for some Mi with M =Fc Mi. Finally, we use Weak
Genericity of F and C∗-equality to show that the final node [τ/X]N in the chain ends
up with M =Fc N . This gives the result.
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5 Type and Term Generalizers

In this section, we give a notion of “generalizer” and construct some critical ones for
types and terms. In short, a generalizer of two types or terms may be instantiated to
those types or terms, under suitable conditions.

For example, given two terms M1 and M2, if one has [τ/X]M1 ≡ [ρ/Y ]M2, then an
abstract notion of a generalizer, with respect to a fresh type variable Z, will be a term
M0 such that, for suitable types µ1, µ2, one has

[µ1/Z]M0 ≡ M1

[µ2/Z]M0 ≡ M2

That is, if two terms are unified as above, then we will construct a common “term
schema” which is instantiated, by type substitutions, to both of them. We use gener-
alizers in later sections, where we show that the typing of M0 permits Axiom C∗ to be
applied, thus allowing us to deduce that M1 =Fc M2.

The generalizers, though, that we construct here require more details, starting with an
analysis of mutual occurrences of τ in ρ or ρ in τ .

Definition: ink

If there are k ≥ 0 occurrences of type τ in type ρ, we will write τ ink ρ.

Definition: Context
Let τ, ρ, ρ′ be types and let X be a type variable. We say that ρ′ is an X-context for
τ in ρ if [τ/X] ρ′ = ρ.

If τ ink ρ with k ≥ 0, then, given fresh X, there are 2k different X-contexts for τ
in ρ. We will assume given an enumeration of these contexts, which we will write as
ρX1 , . . . , ρXh where h = 2k. By convention, we take ρX1 to be ρ. For example, if τ = ρ,
then there are two X-contexts for τ in ρ, i.e., ρX1 = ρ and ρX2 = X.

Substitution Convention
Let P1, P2 be either two terms, or two types, or two sets of variable declarations.
If [τ/X]P1 ≡ [ρ/Y ]P2 for some types τ and ρ, then we will assume that X and Y are
not free in τ and ρ.

Definition: Generalizer
Let P1, P2 be either two terms, or two types, or two sets of variable declarations, such
that [τ/X]P1 ≡ [ρ/Y ]P2 for some types τ and ρ.

• Case: τ ink ρ for k > 0.
Let h = 2k. Given fresh type variables Z0, . . . , Zh, we say that P0 is a Z0, . . . , Zh-
generalizer of P1 and P2 iff X and Y are not free in P0 and

[ X/Z0, ρX1 /Z1, . . . , ρXh /Zh ] P0 ≡ P1

[ τ/Z0, Y /Z1, . . . , Y /Zh ] P0 ≡ P2

where ρX1 , . . . , ρXh are the X-contexts for τ in ρ.

9



• Case: ρ ink τ for k ≥ 0 and the previous case does not apply.
Let h = 2k. Given fresh type variables Z0, . . . , Zh, we say that P0 is a Z0, . . . , Zh-
generalizer of P1 and P2 iff X and Y are not free in P0 and

[ ρ/Z0, X/Z1, . . . , X/Zh ] P0 ≡ P1

[ Y /Z0, τY1 /Z1, . . . , τYh /Zh ] P0 ≡ P2

where τY1 , . . . , τYh are the Y -contexts for ρ in τ .

Remark that, if τ = ρ, then the first case of the definition applies, by τ in1 ρ, giving

[ X/Z0, ρ/Z1, X/Z2 ] P0 ≡ P1

[ τ/Z0, Y /Z1, Y /Z2 ] P0 ≡ P2

If τ and ρ are unrelated (i.e., they do not occur in each other), then the second case
applies, by ρ in0 τ :

[ ρ/Z0, X/Z1 ] P0 ≡ P1

[ Y /Z0, τ/Z1 ] P0 ≡ P2

As written, the cases are exclusive, for example, one cannot have both τ in0 ρ and
ρ in0 τ , nor both ρ in0 τ and τ ink ρ, which would otherwise be possible.

Lemma 5.1 (Type Generalization)
Let σ1, σ2 be two types such that [τ/X]σ1 = [ρ/Y ]σ2 for some types τ and ρ. Assume
that k is given either by τ ink ρ for k > 0, or ρ ink τ for k ≥ 0 and the previous case
does not apply. Let h = 2k. Given fresh type variables Z0, . . . , Zh, there exists a type
σ0 that is a Z0, . . . , Zh-generalizer of σ1 and σ2.

Proof: Assume first that τ ink ρ for k > 0, and let σ = [τ/X]σ1 = [ρ/Y ]σ2.
τ -marking: Mark in σ those occurrences of τ which derive from σ1 by a [τ/X]
substitution.
σ-marking: Mark in σ those occurrences of ρ which derive from σ2 by a [ρ/Y ]
substitution.
Observe that some of the marked τs may appear in a marked ρ.
Construct then σ0 from σ by the following procedure:

1) Replace by Z0 all marked τs that do not occur in a marked ρ.
2) Consider now a marked ρ, possibly containing marked τs.

Let ρXi be the corresponding X-context in ρ for the marked τs. (If there are no
marked τs, this will be ρX1 ≡ ρ). Replace the marked ρ by Zi.

In case ρ ink τ for k ≥ 0 and the previous case does not apply, perform the τ
and σ-markings as above and observe that some of the marked ρs may appear in a
marked τ . Then, apply the dual procedure, where the roles of ρ and τ in steps 1)
and 2) are interchanged (and τYi , the Y -contexts for ρ in τ , are used instead of ρXi ,
the X-contexts for τ in ρ).

By construction, σ0 satisfies the definition of a generalizer.

In the following lemma, we show that, once fresh variables Z0, . . . , Zh are fixed, then the
generalizer of two types is unique. This lemma makes explicit use of the substitution
convention, i.e., that X,Y 6∈ FV (τ) ∪ FV (ρ), without which it would fail.
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Lemma 5.2 (Uniqueness of Type Generalizer)
Let σ1, σ2 be two types such that [τ/X]σ1 = [ρ/Y ]σ2 for some types τ and ρ. Assume
that k is given either by τ ink ρ for k > 0, or ρ ink τ for k ≥ 0 and the previous
case does not apply. Let h = 2k. Given fresh type variables Z0, . . . , Zh, the Z0, . . . , Zh-
generalizer of σ1 and σ2 is unique.

Proof: Assume first that τ ink ρ for k > 0.
Let σ0 and σ′

0 be two Z0, . . . , Zh-generalizers of σ1, σ2. Then, by definition,

[X/Z0, ρ
X
1 /Z1, . . . , ρ

X
h /Zh ] σ0 = σ1 = [X/Z0, ρ

X
1 /Z1, . . . , ρ

X
h /Zh ] σ

′
0 (1)

[ τ/Z0, Y /Z1, . . . , Y /Zh ] σ0 = σ2 = [ τ/Z0, Y /Z1, . . . , Y /Zh ] σ
′
0 (2)

with X and Y not free in σ0 or σ′
0. We will show that σ0 = σ′

0 by induction on σ0.
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Subcase: Assume that σ0 ≡ Z0. Then, (1) and (2) become
X = σ1 = [X/Z0, ρ

X
1 /Z1, . . . , ρ

X
h /Zh ] σ

′
0

τ = σ2 = [ τ/Z0, Y /Z1, . . . , Y /Zh ] σ
′
0

We now consider the possible choices for σ′
0. Clearly, σ′

0 cannot be X since X 6∈
FV (σ′

0). Nor can σ′
0 be τ since then, (1) becomes X = σ1 = τ but, by the sub-

stitution convention, X 6∈ FV (τ). Further, σ′
0 cannot be Zi for some i = 1 . . . h,

because then (2) becomes τ = σ2 = Y but, by the substitution convention again,
Y 6∈ FV (τ). The only choice is σ′

0 ≡ Z0 = σ0.

Subcase: Assume that σ0 ≡ Zi for some i = 1 . . . h. Then, (1) and (2) become
ρXi = σ1 = [X/Z0, ρ

X
1 /Z1, . . . , ρ

X
h /Zh ] σ

′
0

Y = σ2 = [ τ/Z0, Y /Z1, . . . , Y /Zh ] σ
′
0

First, σ′
0 cannot be Y since Y 6∈ FV (σ′

0). Furthermore, σ′
0 cannot be ρXi since,

for i = 1, (2) becomes Y = σ2 = ρX1 = ρ but, by the substitution convention,
Y 6∈ FV (ρ), and, for i = 2 . . . h, X ∈ FV (ρXi ) but X 6∈ FV (σ′

0). Also, σ′
0 cannot be

Z0 since then, (2) becomes Y = σ2 = τ but, by the substitution convention again,
Y 6∈ FV (τ). Similarly, σ′

0 cannot be Zj for some j = 1 . . . h and j 6= i since then,
(1) becomes ρXi = σ1 = ρXj but ρXi 6= ρXj for i 6= j. The only choice is σ′

0 ≡ Zi = σ0.

Subcase: Assume that σ0 ≡ Z 6= Zi for i = 0 . . . h. Then, (1) and (2) become
Z = σ1 = [X/Z0, ρ

X
1 /Z1, . . . , ρ

X
h /Zh ] σ

′
0

Z = σ2 = [ τ/Z0, Y /Z1, . . . , Y /Zh ] σ
′
0

Since X and Y are not free in σ0, then Z 6= X and Z 6= Y and, moreover, σ′
0 cannot

be Zi for any i = 0 . . . h. The only choice is σ′
0 ≡ Z = σ0.

Subcase: Assume that σ0 ≡ σ → µ. Then, (1) and (2) become
[X/Z0, ρ

X
1 /Z1, . . . , ρ

X
h /Zh ] (σ → µ) = σ1 = [X/Z0, ρ

X
1 /Z1, . . . , ρ

X
h /Zh ] σ

′
0

[ τ/Z0, Y /Z1, . . . , Y /Zh ] (σ → µ) = σ2 = [ τ/Z0, Y /Z1, . . . , Y /Zh ] σ
′
0

Remark that σ′
0 cannot be Zi for any i = 0 . . . h since, then, a → type would be

on the left of (1) and (2) but a type variable would be on the right (X in (1)
and Y in (2)). So, σ′

0 must be of the form σ′ → µ′, with σ, σ′ and µ, µ′ satisfy-
ing equations similar to (1) and (2). By induction, σ = σ′ and µ = µ′. Hence,
σ′
0 ≡ σ′ → µ′ = σ → µ = σ0.

Subcase: Assume that σ0 ≡ ∀Z.σ. Then, (1) and (2) become
[X/Z0, ρ

X
1 /Z1, . . . , ρ

X
h /Zh ] (∀Z.σ′) = σ1 = [X/Z0, ρ

X
1 /Z1, . . . , ρ

X
h /Zh ] σ

′
0

[ τ/Z0, Y /Z1, . . . , Y /Zh ] (∀Z.σ′) = σ2 = [ τ/Z0, Y /Z1, . . . , Y /Zh ] σ
′
0

As with the previous case, σ′
0 cannot be Zi for any i = 0 . . . h. So, σ′

0 must be of
the form ∀Z.σ′. By induction, σ = σ′. Hence, σ′

0 ≡ ∀Z.σ′ = ∀Z.σ = σ0.

Treat dually ρ ink τ for k ≥ 0 and not the previous case.

Fact 5.3
Let σ1, σ2, µ1, µ2 be types such that [τ/X]σ1 = [ρ/Y ]σ2 and [τ/X]µ1 = [ρ/Y ]µ2. As-
sume that k is given either by τ ink ρ for k > 0, or ρ ink τ for k ≥ 0 and the previous
case does not apply. Let h = 2k. Given fresh type variables Z0, . . . , Zh, let σ0 and µ0

be the Z0, . . . , Zh-generalizers of σ1, σ2 and µ1, µ2, respectively. Then, [µ0/Z]σ0 is the
Z0, . . . , Zh-generalizer of [µ1/Z]σ1 and [µ2/Z]σ2.
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Lemma 5.4 (Generalization of Declarations)
Let Γ1,Γ2 be two sets of declarations such that [τ/X]Γ1 = [ρ/Y ]Γ2. Assume that k is
given either by τ ink ρ for k > 0, or ρ ink τ for k ≥ 0 and the previous case does
not apply. Let h = 2k. Given fresh type variables Z0, . . . , Zh, there exists a set of
declarations Γ0 that is a unique Z0, . . . , Zh-generalizer of Γ1 and Γ2.

Proof: Since [τ/X]Γ1 = [ρ/Y ]Γ2, then Γ1 and Γ2 must contain declarations of the
same term variables. Thus, Γ1 ≡ x1 :σ

1
1, . . . , xn :σ

1
n and Γ2 ≡ x1 :σ

2
1, . . . , xn :σ

2
n

with [τ/X]σ1
i = [ρ/Y ]σ2

i for i = 1 . . . n.
For i = 1 . . . n, construct the unique Z0, . . . , Zh-generalizer σ

0
i of σ1

i and σ2
i .

Then, Γ0 ≡ x1 :σ
0
1, . . . , xn :σ

0
n is the unique Z0, . . . , Zh-generalizer of Γ1 and Γ2.

The following theorem is the main result of this section. It constructs a well-typed
generalizer of two terms living in two different types. Uniqueness of type generalizers
turns out to be essential in the proof (see the →-elim case). The point to note here is
not just that we can construct a generalizer for M1 and M2 but that we can construct
one that is well-typed and that lives in the type generalizer of the types of M1 and M2.

Theorem 5.5 (Term Generalization)
Let Γ1 ` M1 : σ1 and Γ2 ` M2 : σ2 be such that [τ/X]Γ1 = [ρ/Y ]Γ2 and [τ/X]M1 ≡
[ρ/Y ]M2 for some types τ and ρ. Assume that k is given either by τ ink ρ for k > 0,
or ρ ink τ for k ≥ 0 and the previous case does not apply. Let h = 2k. Given fresh
type variables Z0, . . . , Zh, there exist a set of declarations Γ0, a term M0, and a type
σ0 that are unique Z0, . . . , Zh-generalizers of Γ1,Γ2; M1,M2; and σ1, σ2, respectively,
such that Γ0 `M0 : σ0.

Proof: We will construct Γ0,M0, σ0 by induction on the derivation of Γ1 `M1 : σ1. (In
the proof, we will write simply “generalizer” instead of “Z0, . . . , Zh-generalizer”).

Case: Assume that Γ1 `M1 : σ1 by a variable declaration in Γ1.
Then, M1 ≡ x and x :σ1 ∈ Γ1 for some term variable x.
¿From the assumption [τ/X]M1 ≡ [ρ/Y ]M2, we obtain M2 ≡ x.
Furthermore, because Γ2 `M2 : σ2, then x :σ2 ∈ Γ2.
And, since [τ/X]Γ1 = [ρ/Y ]Γ2 with x :σ1 ∈ Γ1 and x :σ2 ∈ Γ2,
then [τ/X]σ1 = [ρ/Y ]σ2.
Take σ0 to be the unique generalizer of σ1, σ2 by Type Generalization (Lemma 5.1),
and Γ0 to be the unique generalizer of Γ1,Γ2 by Lemma 5.4.
Observe that, by construction, x : σ0 ∈ Γ0, from which, by the declaration rule,
Γ0 ` x : σ0. Since x is clearly the only generalizer of M1,M2, take M0 ≡ x.
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Case: Assume that Γ1 `M1 : σ1 is derived by →-intro.
Then, M1 ≡ λx :µ1.M

′
1 and σ1 ≡ µ1 → ρ1 with Γ1, x :µ1 `M ′

1 : ρ1.
¿From [τ/X]M1 ≡ [ρ/Y ]M2, we obtain M2 ≡ λx :µ2.M

′
2

with [τ/X]µ1 = [ρ/Y ]µ2 and [τ/X]M ′
1 ≡ [ρ/Y ]M ′

2.
Furthermore, because Γ2 `M2 : σ2, then σ2 ≡ µ2 → ρ2 and Γ2, x :µ2 `M ′

2 : ρ2.
Consider now Γ1, x :µ1 `M ′

1 : ρ1 and Γ2, x :µ2 `M ′
2 : ρ2.

By induction, there exist unique generalizers: Γ′
0 of (Γ1, x :µ1), (Γ2, x :µ2);

M ′
0 of M ′

1,M
′
2; and ρ0 of ρ1, ρ2, such that Γ′

0 `M ′
0 : ρ0.

But, since generalizers of types and sets of declarations are unique, then Γ′
0 must be

Γ0, x :µ0 where Γ0 and µ0 are unique generalizers of Γ1,Γ2 and µ1, µ2, respectively.
So, in fact, Γ0, x :µ0 `M ′

0 : ρ0, from which, by →-intro, Γ0 ` λx :µ0.M
′
0 : µ0 → ρ0.

Clearly, λx :µ0.M
′
0 and µ0 → ρ0 are generalizers of M1,M2 and σ1, σ2.

Moreover, µ0 → ρ0 is unique by the uniqueness of type generalizers,
and λx :µ0.M

′
0 is unique because any other generalizer of M1,M2 would be of the

form λx : µ′
0.M

′′
0 giving further generalizers, µ′

0 and M ′′
0 , of µ1, µ2 and M ′

1,M
′
2,

which is impossible. Hence, take M0 ≡ λx :µ0.M
′
0 and σ0 ≡ µ0 → ρ0.

Case: Assume that Γ1 `M1 : σ1 is derived by →-elim.
Then, M1 ≡M ′

1N
′
1 with Γ1 `M ′

1 : ρ1 → σ1 and Γ1 ` N ′
1 : ρ1.

¿From [τ/X]M1 ≡ [ρ/Y ]M2, we obtain M2 ≡M ′
2N

′
2

with [τ/X]M ′
1 ≡ [ρ/Y ]M ′

2 and [τ/X]N ′
1 ≡ [ρ/Y ]N ′

2.
Furthermore, because Γ2 `M2 : σ2, then Γ2 `M ′

2 : ρ2 → σ2 and Γ2 ` N ′
2 : ρ2.

Consider now Γ1 ` N ′
1 : ρ1 and Γ2 ` N ′

2 : ρ2.
By induction, there exist unique generalizers: Γ0 of Γ1,Γ2; N ′

0 of N ′
1, N

′
2; and

ρ0 of ρ1, ρ2, such that Γ0 ` N ′
0 : ρ0.

Consider also Γ1 `M ′
1 : ρ1 → σ1 and Γ2 `M ′

2 : ρ2 → σ2.
By induction, there exist unique generalizers: M ′

0 of M ′
1,M

′
2 and ρ′ of

ρ1 → σ1, ρ2 → σ2, such that Γ0 `M ′
0 : ρ

′.
But by the uniqueness of type generalizers, ρ′ must be ρ0 → σ0, where ρ0 and σ0
are unique generalizers of ρ1, ρ2 and σ1, σ2, respectively.
Thus, we have Γ0 `M ′

0 : ρ0 → σ0 and Γ0 ` N ′
0 : ρ0.

So, by →-elim, Γ0 ` M ′
0N

′
0 : σ0. Since M ′

0N
′
0 is clearly a generalizer of M1,M2,

with uniqueness proven as in the previous case, take M0 ≡M ′
0N

′
0.

Case: Assume that Γ1 `M1 : σ1 is derived by ∀-intro.
Then, M1 ≡ λZ.M ′

1 and σ1 ≡ ∀Z.µ1 with Γ1 `M ′
1 : µ1

and Z not free in the type of any free term variable in M ′
1.

¿From [τ/X]M1 ≡ [ρ/Y ]M2, we obtain M2 ≡ λZ.M ′
2 with [τ/X]M ′

1 ≡ [ρ/Y ]M ′
2.

Furthermore, because Γ2 `M2 : σ2, then σ2 ≡ ∀Z.µ2 and Γ2 `M ′
2 : µ2

with Z not free in the type of any free term variable in M ′
2.

Consider now Γ1 `M ′
1 : µ1 and Γ2 `M ′

2 : µ2.
By induction, there exist unique generalizers: Γ0 of Γ1,Γ2; M ′

0 of M ′
1,M

′
2; and

µ0 of µ1, µ2, such that Γ0 `M ′
0 : µ0.

Observe now that Z is not free in the type of any free term variable in M ′
0, since,

by definition of generalizer, M ′
0 contains exactly the free term variables of M ′

1,M
′
2.

Thus, we can apply ∀-intro to Γ0 `M ′
0 : µ0 to obtain Γ0 ` λZ.M ′

0 : ∀Z.µ0.
Clearly, λZ.M ′

0 and ∀Z.µ0 are generalizers of M1,M2 and σ1, σ2, respectively.
Their uniqueness follows as before. Hence, take M0 ≡ λZ.M ′

0 and σ0 ≡ ∀Z.µ0.
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Case: Assume that Γ1 `M1 : σ1 is derived by ∀-elim.
Then, M1 ≡M ′

1µ1 and σ1 ≡ [µ1/Z]ρ1 with Γ1 `M ′
1 : ∀Z.ρ1.

¿From [τ/X]M1 ≡ [ρ/Y ]M2, we obtain M2 ≡M ′
2µ2

with [τ/X]M ′
1 ≡ [ρ/Y ]M ′

2 and [τ/X]µ1 = [ρ/Y ]µ2.
Furthermore, since Γ2 `M2 : σ2, then Γ2 `M ′

2 : ∀Z.ρ2 and σ2 ≡ [µ2/Z]ρ2.
Consider now Γ1 `M ′

1 : ∀Z.ρ1 and Γ2 `M ′
2 : ∀Z.ρ2.

By induction, there exist unique generalizers: Γ0 of Γ1,Γ2; M ′
0 of M ′

1,M
′
2; and

ρ′ of ∀Z.ρ1,∀Z.ρ2, such that Γ0 `M ′
0 : ρ

′.
Since type generalizers are unique, ρ′ must be ∀Z.ρ0, where ρ0 is the generalizer of
ρ1, ρ2. Thus, we have Γ0 `M ′

0 : ∀Z.ρ0, from which, by ∀-elim, Γ0 `M ′
0µ0 : [µ0/Z]ρ0,

where µ0 is the unique generalizer of µ1, µ2 by Type Generalization (Lemma 5.1).
Clearly, M ′

0µ0 is a generalizer of M1,M2, with uniqueness proven as before.
Furthermore, by Fact 5.3, [µ0/Z]ρ0 is the unique generalizer of σ1 ≡ [µ1/Z]ρ1, σ2 ≡
[µ2/Z]ρ2. Hence, take M0 ≡M ′

0µ0 and σ0 ≡ [µ0/Z]ρ0.

6 Quasi-Genericity of C∗-equality

This section shows that applications of Axiom C∗ preserve the type substitution struc-
ture of terms. That is, if Axiom C∗ is applied to a term of the form [τ/X]M , then the
result is also of the form [τ/X]N , and furthermore, M =c∗ N . We call this property
Quasi-Genericity of C∗-equality (since it resembles genericity). The proof of this uses
generalizers.

We will write M
1
=c∗ N if M and N are made equal by one application of Axiom C∗

only, and M =c∗ N if Axiom C∗ is applied zero or more times. Clearly, if M
1
=c∗ N ,

then the single application of Axiom C∗ may have been made either to a proper subterm
of M , or to the entire term M . Note, however, that an application of Axiom C∗ to a
term cannot always be split into applications to subterms, as the example of section 4
shows.

Theorem 6.1 (Quasi-Genericity of C∗-equality)
If [τ/X]M =c∗ N ′ then there exists a term N such that N ′ ≡ [τ/X]N and M =c∗ N .

Proof: We will construct N by induction on the number of applications of Axiom C∗

in [τ/X]M =c∗ N ′.
If there are 0 applications, i.e., [τ/X]M ≡ N ′, then, clearly, take N ≡M .

We prove only the case [τ/X]M
1
=c∗ N ′ as the inductive case holds by transitivity.

With no loss of generality, by variable renaming, we can assume that X 6∈ FV (N ′).

15



Assume then that [τ/X]M
1
=c∗ N ′.

Then, as previously remarked, Axiom C∗ is applied either to a proper subterm of
[τ/X]M , or to [τ/X]M itself.
If Axiom C∗ is applied to a proper subterm, the proof proceeds by straightforward
induction on the structure of M .
We display here the case when Axiom C∗ is applied to [τ/X]M itself (this includes
the base case of the previous induction on M).
Then, by definition of Axiom C∗, there exists a term M ′, types ρ, ρ′, and a type
variable Y , such that

[τ/X]M ≡ [ρ/Y ]M ′ 1
=c∗ [ρ′/Y ]M ′ ≡ N ′ (3)

where, for Γ `M : σ, we have Γ `M ′ : σ′, and Y not free in Γ nor σ′.
Since Axiom C∗ is actually applied, then Y ∈ FV (M ′) and, thus, X 6∈ FV (ρ′);
otherwise X would be free in N ′, contradicting the assumption.
We now apply Term Generalization to [τ/X]M ≡ [ρ/Y ]M ′.

Case: Assume that τ ink ρ for k > 0.
Choose fresh type variables Z0, . . . , Zh where h = 2k.
Then, by Term Generalization (Theorem 5.5), there exist unique Z0, . . . , Zh-generalizers:
Γ0 of Γ,Γ; M0 of M,M ′; and σ0 of σ, σ′, such that Γ0 `M0 : σ0.
Observe now that, by definition of generalizer, we have
that Γ = [τ/Z0, Y/Z1, . . . , Y/Zh] Γ0 and σ′ = [τ/Z0, Y/Z1, . . . , Y/Zh]σ0.
But, we also have that Y is not free in Γ or σ′.
So Z1, . . . , Zh cannot be free in Γ0 or σ0. Hence, since Γ0 ` M0 : σ0, we can apply
Axiom C∗ to M0 for the variables Z1, . . . , Zh.
Thus, if we take

N ≡ [X/Z0, ρ′/Z1, . . . , ρ′/Zh]M0

we get the desired result, as
M ≡ [X/Z0, ρX1 /Z1, . . . , ρXh /Zh]M0 M0 is the generalizer of M,M ′

=c∗ [X/Z0, ρ′/Z1, . . . , ρ′/Zh]M0 by Axiom C∗ for Z1, . . . , Zh

≡ N
and
[τ/X]N ≡ [τ/Z0, ρ′/Z1, . . . , ρ′/Zh]M0 since X 6∈ FV (ρ′)

≡ [ρ′/Y ] [τ/Z0, Y/Z1, . . . , Y/Zh]M0 by rearranging substitutions
≡ [ρ′/Y ]M ′ M0 is the generalizer of M,M ′

≡ N ′ by (3)
Case: Assume that ρ ink τ for k ≥ 0 and the previous case does not apply.

Choose fresh type variables Z0, . . . , Zh where h = 2k.
Then, by Term Generalization (Theorem 5.5), there exist unique Z0, . . . , Zh-generalizers:
Γ0 of Γ,Γ; M0 of M,M ′; and σ0 of σ, σ′, such that Γ0 `M0 : σ0.
Observe now that, by definition of generalizer, we have
that Γ = [Y/Z0, τ/Z1, τY2 /Z2, . . . , τYh /Zh] Γ0

and σ′ = [Y/Z0, τ/Z1, τY2 /Z2, . . . , τYh /Zh]σ0.
But, we also have that Y is not free in Γ or σ′.
So Z0, Z2, . . . , Zh cannot be free in Γ0 or σ0.
Hence, since Γ0 ` M0 : σ0, we can apply Axiom C∗ to M0 for the variables
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Z0, Z2, . . . , Zh. Thus, if we let τ ′i ≡ [ρ′/Y ]τYi , and we take

N ≡ [ρ′/Z0, X/Z1, τ ′2/Z2, . . . , τ ′h/Zh]M0

we get the desired result, as
M ≡ [ρ/Z0, X/Z1, X/Z2, . . . , X/Zh]M0 M0 is the generalizer of M,M ′

=c∗ [ρ′/Z0, X/Z1, τ ′2/Z2, . . . , τ ′h/Zh]M0 by Axiom C∗ for Z0, Z2, . . . , Zh

≡ N
and
[τ/X]N ≡ [ρ′/Z0, τ/Z1, τ ′2/Z2, . . . , τ ′h/Zh]M0 since X 6∈ FV (ρ′)

≡ [ρ′/Y ] [Y/Z0, τ/Z1, τY2 /Z2, . . . , τYh /Zh]M0

by rearranging substitutions
≡ [ρ′/Y ]M ′ M0 is the generalizer of M,M ′

≡ N ′ by (3)

Note that the property of preserving type substitution structure does not hold for F-
equality. Backward β2 reduction causes problems as witnessed by the following counter-
example. Assume x has type ∀Y.Y , and take M ≡ xX with τ ≡ σ1 → σ2 and
N ′ ≡ (λZ.x(Z → σ2))σ1. Then,

[τ/X]M ≡ x(σ1 → σ2) β2←− (λZ.x(Z → σ2))σ1 ≡ N ′

Now, since τ ≡ σ1 → σ2 does not occur in N ′, then any N such that [τ/X]N ≡ N ′

cannot contain X free. Thus, N ≡ [τ/X]N ≡ N ′, and N has type τ . But M has type
X. Hence, M = N is impossible since they live in different types.

However, all forward reductions preserve type substitution structure, as does backward
η2 reduction. Proofs of thes are straightforward.

Fact 6.2
If [τ/X]M −→F N ′ then there exists a term N such that N ′ ≡ [τ/X]N and
M −→F N .

Fact 6.3
If [τ/X]M η2←− N ′ then there exists a term N such that N ′ ≡ [τ/X]N and
M η2←− N .

7 Weak Genericity

In this section, we prove two weaker forms of the Genericity Theorem, which will be
used in the final result. The weakness or asymmetry arises because =F and =c∗ are
used respectively in the premise instead of =Fc. Generalizers are a key tool in the proof
with =F . We first need the following lemma about simultaneous substitutions.
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Lemma 7.1
Given type σ, if [τ1/X1, . . . , τn/Xn]σ = [ρ1/X1, . . . , ρn/Xn]σ and τi 6= ρi for some
1 ≤ i ≤ n, then Xi is not free in σ.

Proof: by induction on the structure of σ. Note that the substitution convention is
used to assume that X1, . . . , Xn are not free in τ1, . . . , τn, ρ1, . . . ρn.

Theorem 7.2 (Weak Genericity of F-equality)
Let Γ `M1,M2 : σ. If [τ/X]M1 =F [τ/X]M2 for some type τ , then M1 =Fc M2.

Proof: Let M ′
1 and M ′

2 be the normal forms of M1 and M2.
Then, Γ `M ′

1,M
′
2 : σ, since normalization preserves typing.

Furthermore, since reduction is type-substitutive1, and since type substitution pre-
serves normal forms, then, from [τ/X]M1 =F [τ/X]M2, we obtain [τ/X]M ′

1 ≡
[τ/X]M ′

2.
We now apply Term Generalization to

[τ/X]M ′
1 ≡ [τ/X]M ′

2 (4)

We are in the case τ = ρ so case 1) of the definition of generalizer applies, i.e. h = 1.
Thus, choose fresh type variables Z0, Z1, Z2.
Then, by Term Generalization (Theorem 5.5), there exist unique Z0, Z1, Z2-generalizers:
Γ0 of Γ,Γ; M ′

0 of M ′
1,M

′
2; and σ0 of σ, σ, such that Γ0 `M ′

0 : σ0.
By definition of generalizer, we have

[X/Z0, τ/Z1, X/Z2] Γ0 = Γ = [τ/Z0, X/Z1, X/Z2] Γ0

[X/Z0, τ/Z1, X/Z2]σ0 = σ = [τ/Z0, X/Z1, X/Z2]σ0

Now, by the substitution convention applied to (4), X 6∈ FV (τ).
So, in particular, τ 6= X. We can thus apply lemma 7.1 to the above two equations
to obtain that Z0 and Z1 are not free in Γ0 and σ0.
Hence, we can apply Axiom C∗ to M ′

0 for Z0, Z1 in the following:
M1 =F M ′

1 M ′
1 is the normal form of M1

≡ [X/Z0, τ/Z1, X/Z2]M
′
0 M ′

0 is the generalizer of M ′
1,M

′
2

=Fc [τ/Z0, X/Z1, X/Z2]M
′
0 by Axiom C∗ for Z0, Z1

≡ M ′
2 M ′

0 is the generalizer of M ′
1,M

′
2

=F M2 M ′
2 is the normal form of M2

1If M reduces to M ′ then [τ/X]M reduces to [τ/X]M ′ (cf. [Bar84, page 55]).
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Theorem 7.3 (Weak Genericity of C∗-equality)
Let Γ `M1,M2 : σ. If [τ/X]M1 =c∗ [τ/X]M2 for some type τ , then M1 =Fc M2.

Proof: Apply Quasi-Genericity of C∗-equality (Theorem 6.1) to [τ/X]M1 =c∗ [τ/X]M2.
Thus, there exists a term N such that M1 =Fc N and [τ/X]N ≡ [τ/X]M2.
Observe that, since M1 =Fc N , then N must live in σ, the type of M1 and M2.
Apply now Weak Genericity of F-equality (Theorem 7.2) to [τ/X]N ≡ [τ/X]M2.
Then, N =Fc M2. Hence, M1 =Fc N =Fc M2.

We will not use the two corollaries below but they clarify where we are in the overall
proof, namely at weak forms of the Genericity Theorem.

Corollary 7.4
Let Γ `M,N : ∀X.σ. If Mτ =F Nτ for some type τ , then M =Fc N .

Corollary 7.5
Let Γ `M,N : ∀X.σ. If Mτ =c∗ Nτ for some type τ , then M =Fc N .

8 Commutativity of C∗-equality with Reduction

This section describes the commutativity of C∗-equality with reduction. It turns out
that C∗-equality commutes with β1, β2, and η1 reductions but not with η2 reduction.
To see this last point, take M of type ∀Z.σ with Z 6∈ FV (σ), and X fresh. Then,

λX.MX =c λX.Mτ

?η2

M

but λX.Mτ does not η2-reduce to M .

We need the following lemma about the substitutivity of C∗-equality.

Lemma 8.1 (Substitutivity of C∗-equality)
If M1 =c∗ M2 and N1 =c∗ N2 then [N1/x]M1 =c∗ [N2/x]M2 and [τ/X]M1 =c∗

[τ/X]M2.

Proof: An easy induction on the structure of M1.

We now prove that C∗-equality commutes with β1β2η1 reduction, first for the one-
step case, then for the multi-step case. Note that, in the one-step case, a multi-step
C∗-equality completes the commuting diagram.
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Lemma 8.2 (One-Step Commutativity)

If M
1
=c∗ N

?β1β2η1

1

M ′

then there exists a term N ′ such that M
1
=c∗ N

?β1β2η1

1

M ′ =c∗ N ′
?β1β2η1

1

Proof: By case analysis of M
1−→β1β2η1 M ′ and M

1
=c∗ N .

Since β1β2η1 is substitutive, we can assume that the reduction is applied directly to
M , ignoring the cases where it is applied to a subterm or superterm of M .

Case: (λx :µ.M1)M2
1−→β1 [M2/x]M1.

Subcase: Assume that Axiom C∗ is applied to M1.

Then, M1
1
=c∗ N1 and (λx :µ.M1)M2

1
=c∗ (λx :µ.N1)M2.

Clearly, (λx :µ.N1)M2
1−→β1 [M2/x]N1.

And, by lemma 8.1, [M2/x]M1 =c∗ [M2/x]N1.
Therefore, take N ′ ≡ [M2/x]N1.

Subcase: Assume that Axiom C∗ is applied to M2.

Then, M2
1
=c∗ N2 and (λx :µ.M1)M2

1
=c∗ (λx :µ.M1)N2.

Clearly, (λx :µ.M1)N2
1−→β1 [N2/x]M1.

And, by lemma 8.1, [M2/x]M1 =c∗ [N2/x]M1.
Therefore, take N ′ ≡ [N2/x]M1.

Subcase: Assume that Axiom C∗ is applied to λx :µ.M1.
Then, by definition of Axiom C∗, there exist ν,N1, ρ, ρ

′, Y such that

λx :µ.M1 ≡ [ρ/Y ] (λx :ν.N1)
1
=c∗ [ρ′/Y ] (λx :ν.N1)

with µ = [ρ/Y ]ν and M1 ≡ [ρ/Y ]N1,
and Γ ` λx :ν.N1 : ν → σ, and Y not free in Γ or ν → σ.
Clearly, Y is also not free in ν. Hence, µ = [ρ/Y ]ν = ν.
Moreover, Y is not free in σ, the type of N1.
Axiom C∗ is therefore applied to M1 ≡ [ρ/Y ]N1 and that subcase applies.

Subcase: Assume that Axiom C∗ is applied to (λx :µ.M1)M2.
Then, by definition of Axiom C∗, there exist ν,N1, N2, ρ, ρ

′, Y such that

(λx :µ.M1)M2 ≡ [ρ/Y ] ((λx :ν.N1)N2)
1
=c∗ [ρ′/Y ] ((λx :ν.N1)N2)

with µ = [ρ/Y ]ν, M1 ≡ [ρ/Y ]N1, M2 ≡ [ρ/Y ]N2,
and Γ ` (λx :ν.N1)N2 : σ, and Y not free in Γ or σ.
Since Γ ` (λx :ν.N1)N2 : σ, then Γ ` [N2/x]N1 : σ.
Axiom C∗ can thus be applied to [N2/x]N1.
Hence, take N ′ ≡ [ρ′/Y ][N2/x]N1, for then
[M2/x]M1 ≡ [ρ/Y ][N2/x]N1 since M1 ≡ [ρ/Y ]N1 and M2 ≡ [ρ/Y ]N2

=c∗ [ρ′/Y ][N2/x]N1 by Axiom C∗

and [ρ′/Y ] ((λx :ν.N1)N2)
1−→β1 [ρ′/Y ][N2/x]N1, since β1 is substitutive.
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Case: (λX.M1)µ
1−→β2 [µ/X]M1.

Subcase: Assume that Axiom C∗ is applied to M1.

Then, M1
1
=c∗ N1 and (λX.M1)µ

1
=c∗ (λX.N1)µ.

Clearly, (λX.N1)µ
1−→β2 [µ/X]N1.

And, by lemma 8.1, [µ/X]M1 =c∗ [µ/X]N1.
Therefore, take N ′ ≡ [µ/X]N1.

Subcase: Assume that Axiom C∗ is applied to λX.M1.
Then, by definition of Axiom C∗, there exist N1, ρ, ρ

′, Y such that

λX.M1 ≡ [ρ/Y ] (λX.N1)
1
=c∗ [ρ′/Y ] (λX.N1)

with M1 ≡ [ρ/Y ]N1, and Γ ` λX.N1 : ∀X.σ, and Y not free in Γ or ∀X.σ.
Clearly, Y is not free in σ, the type of N1.
Axiom C∗ is therefore applied to M1 ≡ [ρ/Y ]N1 and that subcase applies.

Subcase: Assume that Axiom C∗ is applied to (λX.M1)µ.
Then, by definition of Axiom C∗, there exist N1, ν, ρ, ρ

′, Y such that

(λX.M1)µ ≡ [ρ/Y ] ((λX.N1)ν)
1
=c∗ [ρ′/Y ] ((λX.N1)ν)

with M1 ≡ [ρ/Y ]N1 and µ = [ρ/Y ]ν,
and Γ ` (λX.N1)ν : σ, and Y not free in Γ or σ.
Since Γ ` (λX.N1)ν : σ, then Γ ` [ν/X]N1 : σ.
Axiom C∗ can thus be applied to [ν/X]N1.
Hence, take N ′ ≡ [ρ′/Y ][ν/X]N1, for then
[µ/X]M1 ≡ [ρ/Y ][ν/X]N1 since µ ≡ [ρ/Y ]ν and M1 ≡ [ρ/Y ]N1

=c∗ [ρ′/Y ][ν/X]N1 by Axiom C∗

and [ρ′/Y ] ((λX.N1)ν)
1−→β2 [ρ′/Y ][ν/X]N1, since β2 is substitutive.

Case: λx :µ.M1x
1−→η1 M1 with x not free in M1.

Subcase: Assume that Axiom C∗ is applied to M1.

Then, M1
1
=c∗ N1 and λx :µ.M1x

1
=c∗ λx :µ.N1x.

Now, since x is not free in M1 and since Axiom C∗ does not affect term

variables, then x is also not free in N1. Thus, λx :µ.N1x
1−→η1 N1.

Therefore, take N ′ ≡ N1.

Subcase: Assume that Axiom C∗ is applied to M1x.
Then, by definition of Axiom C∗, there exist N1, ρ, ρ

′, Y such that

M1x ≡ [ρ/Y ] (N1x)
1
=c∗ [ρ′/Y ] (N1x)

with M1 = [ρ/Y ]N1, and Γ, x :µ ` N1x : σ, and Y not free in Γ, x :µ or σ.
Clearly, Y is also not free in µ→ σ, the type of N1.
Axiom C∗ is therefore applied to M1 ≡ [ρ/Y ]N1 and that subcase applies.

Subcase: Assume that Axiom C∗ is applied to λx :µ.M1x.
Then, by definition of Axiom C∗, there exist ν,N1, ρ, ρ

′, Y such that

λx :µ.M1x ≡ [ρ/Y ] (λx :ν.N1x)
1
=c∗ [ρ′/Y ] (λx :ν.N1x) with µ = [ρ/Y ]ν

M1 = [ρ/Y ]N1, Γ ` λx :ν.N1x : ν → σ, and Y not free in Γ or ν → σ.
Y is therefore not free in ν, so, µ = [ρ/Y ]ν = ν.
Also, Y is not free in σ, the type of N1x.
Axiom C∗ is thus applied to M1x ≡ [ρ/Y ](N1x) and that subcase applies.

Theorem 8.3 (Commutativity)
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If M =c∗ N

?β1β2η1

M ′

then there exists a term N ′ such that M =c∗ N

?β1β2η1

M ′ =c∗ N ′
?β1β2η1

Proof: By decomposing the multi-step C∗-equalities and β1β2η1-reductions into sin-
gle steps, and using One-Step Commutativity (Lemma 8.2) to complete the following
diagram:

M
1
=c∗ N1

1
=c∗ . . .

1
=c∗ N

?β1β2η1

1

?β1β2η1

1

?β1β2η1

1

M ′
1

1
=c∗ N11

1
=c∗. . .

1
=c∗ N1i . . .

?β1β2η1

1

?β1β2η1

1 ...

M ′
2

1
=c∗ . . .

1
=c∗ N2j . . . . . .

...
...

?β1β2η1

1

?β1β2η1

1

M ′ =c∗ . . . . . . . . . =c∗N
′

9 The Genericity Theorem

Finally, in this section, we prove the Main Lemma that leads to the Genericity Theorem.
We first need the following lemma:

Lemma 9.1 (η2-postponement)
If M −→F M ′ then there exists a term M ′′ such that M −→β1β2η1 M ′′ −→η2 M ′.

Proof: Easy; see [BS93].
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Lemma 9.2 (Main)
Let Γ `M,N : σ. If [τ/X]M =Fc [τ/X]N for some type τ , then M =Fc N .

Proof: Observe first that the chain of Fc-equalities from [τ/X]M to [τ/X]N can be
written:

[τ/X]M =F M ′′
1 =c∗ M ′′

2 =F M ′′
3 =c∗ . . . =F M ′′

n−1 =c∗ M ′′
n =F [τ/X]N

that is, as alternations of F-equalities and C∗-equalities with the initial and final
equalities being F-equalities. These initial or final F-equalities may be just trivial
syntactic identities if, in fact, a C∗-equality starts or ends the chain.

Case: The chain consists entirely of F-equalities, i.e., [τ/X]M =F [τ/X]N . Then, by
Weak Genericity of F-equality (Theorem 7.2), we have the result M =Fc N .

Case: The chain consists entirely of C∗-equalities, i.e., [τ/X]M =c∗ [τ/X]N . Then, by
Weak Genericity of C∗-equality (Theorem 7.3), M =Fc N .

Case: There is at least one (non-trivial) C∗-equality and one (non-trivial) F-equality.
We proceed with a series of transformations on the chain, starting with the first
three links:

[τ/X]M =F M ′′
1 =c∗ M ′′

2 =F M ′′
3

First, as a consequence of the equational Church-Rosser property for F, transform
the F-equalities into reductions. Then, apply η2-postponement (Lemma 9.1) to the
reduction sequence from M ′′

1 . Thus, there exist terms M ′
1,M

′
3, N

′
1 such that:

[τ/X]M

@
@
@
@
@
@
@@R

F

M ′′
1 =c∗ M ′′

2

�
�
�	

β1β2η1

M ′
1

�
�
�	

η2

N ′
1

@
@
@R

F

M ′′
3

�
�
�	

F

M ′
3

Then, by Commutativity of C∗-equality with β1β2η1 reduction (Theorem 8.3), there
exists M ′

2 such that

[τ/X]M

@
@
@
@
@
@
@@R

F

M ′′
1 =c∗ M ′′

2

�
�
�	

β1β2η1

M ′
1 =c∗ M ′

2

�
�
�	

η2

N ′
1

�
�
�	

β1β2η1
@
@
@R

F

M ′′
3

�
�
�	

F

M ′
3
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The Church-Rosser property can then be used to complete the diamond between
M ′

2 and M ′
3:

[τ/X]M

@
@
@
@
@
@
@@R

F

M ′′
1 =c∗ M ′′

2

�
�
�	

β1β2η1

M ′
1 =c∗ M ′

2

�
�
�	

η2

N ′
1

�
�
�	

β1β2η1

@
@
@R

F

@
@
@R

F

M ′′
3

�
�
�	

F

M ′
3

�
�
�	

F

N ′
3

In this way, the original path of Fc-equalities from [τ/X]M to M ′′
3 can be replaced

by;

[τ/X]M

@
@
@R

F

M ′
1 =c∗ M ′

2

�
�
�	

η2

N ′
1

@
@
@R

F

M ′′
3

�
�
�	

F

N ′
3

Now repeat this transformation down the rest of the chain by sets of three consecu-
tive links of the form • =F • =c∗ • =F • continuing with M ′

2 =F M ′′
3 =c∗ M ′′

4 =F

M ′′
5 . Note that the first link of each set coincides with the last link of the previously

modified set. At the end, the transformed chain will look like:

[τ/X]M

@
@
@R

F

M ′
1 =c∗ M ′

2

�
�
�	

η2

N ′
1

@
@
@R

F

. . . M ′
n−1 =c∗ M ′

n

�
�
�	

η2
@
@
@R

F

N ′

[τ/X]N

�
�
�	

F

where each left-pointing arrow, except for the final one, consists of forward η2 re-
ductions. The final left-pointing arrow, and all the right-pointing ones, consist of
forward β1β2η1η2 reductions.

Consider now the start of the transformed chain:

[τ/X]M

@
@
@R

F

M ′
1 =c∗ M ′

2

�
�
�	

η2

N ′
1

— By Fact 6.2, there exists N1 such that N ′
1 ≡ [τ/X]N1 and M −→F N1.

— By Fact 6.3, there exists M1 such that M ′
1 ≡ [τ/X]M1 and N1 η2←− M1.

— By Quasi-Genericity of C∗-equality (Theorem 6.1), there exists M2 such that
M ′

2 ≡ [τ/X]M2 and M1 =c∗ M2.

Thus, we have, for the first three links of the transformed chain,

24



[τ/X]M

@
@
@R

F

[τ/X]M1 ≡M ′
1 =c∗ M ′

2 ≡ [τ/X]M2

�
�
�	

η2

N ′
1 ≡ [τ/X]N1

with M −→F N1 η2←−M1 =c∗ M2, i.e., M =Fc M2.

Iterate then this process along the transformed chain from M ′
2 ≡ [τ/X]M2, and thus

“push” the type substitution [τ/X] along the chain. Finally, we end up with a term
Mn such that M =Fc Mn and [τ/X]Mn ≡M ′

n.

Apply now Weak Genericity of F-equality (Theorem 7.2) to [τ/X]Mn ≡ M ′
n =F

[τ/X]N . This gives Mn =Fc N . Since M =Fc Mn, then M =Fc N as required.

Theorem 9.3 (Genericity)
Let Γ `M,N : ∀X.σ. If Mτ =Fc Nτ for some type τ , then M =Fc N .

Proof: Choose a fresh type variable Z.
Then, Γ `MZ, NZ : [Z/X]σ and [τ/Z](MZ) ≡ Mτ =Fc Nτ ≡ [τ/Z](NZ).
Hence, by the Main Lemma (Lemma 9.2), MZ =Fc NZ.
Observe that Z fresh implies Z not free in the type of any free term variable in MZ
or NZ. So, by ∀-intro, λZ.MZ and λZ.NZ are well-typed terms.
Hence, by ξ2, λZ.MZ =Fc λZ.NZ, and, by η2, M =Fc N .

10 Models

In this section we outline the validity of Axiom C in some relevant models. Details
and further references about the model theory of system F may be found in [AL91]
or [Hyl]. The reader may also see [LM91] for an introductory presentation of PER
models and [GLT89] or [CGW88] for models based on coherent spaces or dI-domains.
These constructions provide the main concrete paradigms for the general semantics of
impredicative Type Theory and, by this, they allow a more explicit understanding of
the semantic problems we will mention at the very end.

In short, in PER models, types are interpreted as partial equivalence relations on an
arbitrary (partial) combinatory algebra (D, .), i.e., on a model of (partial) Combinatory
Logic. That is, a type is a quotient of a subset of D modulo an equivalence relation.
The terms of system F are interpreted as equivalence classes in these quotient sets.
Given d ∈ D, call {d}A the equivalence class of d in the p.e.r. A. Now, (D, .) yields
a model of the type free λ-calculus (D, ., [[−]]), see [Bar84]. Set then er(M) for the
term of system F with all types erased (e.g., er(λx : τ.Mρ) = λx.er(M)) and consider
[[er(M)]]ξ, i.e., the interpretation in D, under term environment ξ, of the type-free term
er(M). A result in [Mit86] (see also [CL91]) shows that the meaning of an arbitrary
term M of system F in the PER model, is given by the equivalence class of the meaning
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of its erasure, in the p.e.r. which interprets its type. More formally, if environment ξ′

is obtained from ξ by forgetting type information,

[[Γ `M : σ]]ξ = {[[er(M)]]ξ′}[[σ]]

It is then clear that PER models realize Axiom C: if Mτ and Mτ ′ live in the same
type σ, then their meanings are identical as er(Mτ) = er(Mτ ′). Note that in these
few lines, we have omitted to mention the interpretation of type variables which may
occur in types; indeed, and more generally, types are maps from (the objects of) PER
to (the objects of) PER.

As for dI-based models, we only recall here that these may be constructed over the
category of coherent spaces and stable maps, as in [Gir86], or over proper dI-domains
as in [CGW88], which we follow. Types then are dI-domains or, more precisely, in view
of possibly free type variables, they are maps over dI-domains. Indeed, they may be
understood as functors if one considers the subcategory DIL of dI-domains and just
rigid embeddings as maps, as in [CGW88].2 (The impossibility of viewing types as
functors, in general, was discussed in the introduction, in view of the the (contra-)
and (co-)variance of the → functor.) In short, let F : DIL → DIL be a functor. Then
ΠF , the product functor meant to interpret impredicative second order types, is simply
the collection of “uniform families” (tX), where X ranges over dI-domains, such that
tX ∈ F (X) and tX = F (f)RtY for any dI-domain Y and any morphism f from X
to Y . Assume now that ∀X.σ is such that X is not free in σ. This means that σ is
interpreted by a constant functor F , with respect to X. Then F (f)R = F (f) = id
always. In particular, take Y as the universal domain, i.e., any other may be rigidly
embedded in it. Then, for any uniform family (tX) and any X, one has tX = tY in
F (X). This is exactly the validity of Axiom C in these models.

There are several ways to describe the general (categorical) semantics of system F. In
order to give a general meaning to Axiom C, we follow the presentation by internal
categories given in [AL91]. First, though, the näıve, set-theoretic approach may guide
our intuition. Let Tp be the collection of semantic types. A variable type is then a
function F : Tp→ Tp. As usual, a product indexed over Tp is given by the set

ΠF = {f : Tp→ ∪F | ∀X ∈ Tp f(X) ∈ F (X)}

Then Axiom C corresponds to

if f ∈ ΠF and ∃A ∀B F (B) = A, then ∃a ∈ A ∀B f(B) = a

Or, also, ΠF and A are set-theoretically isomorphic, when F is constantly equal to
A. We know though that classical Set Theory does not yield models of impredicative
Type Theory. However, models may be found as categories which are internal not
to the category of sets and functions, but to more “constructive” ones, which enjoy
the fundamental adjunction (AD) below. Following [AL91], let c = (c0, c1) be an
internal category to a Cartesian Closed Category E with all finite limits. Let cc0 be

2A rigid embedding is a projection with injection j and surjection jR, which is the identity below
the image of j.
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the category of internal functors. Then (E, c) yields a model of system F if there exists
the (internal) product functor Π : cc0 → c as the right adjoint of the (internal) diagonal
functor K : c→ cc0 , i.e., the functor that to each A associates the functor KA, which
is constant A. In other words

(AD) cc0 [K , ] ∼= c[ ,Π ]

We claim that, among these models, exactly those which realize the following natural
isomorphism

(Const) cc0 [K ,K ] ∼= c[ , ]

are models of Axiom C. Indeed, by (AD), (Const) implies, naturally in A,B,

c[B,Π(KA)] ∼= cc0 [KB,KA] ∼= c[B,A]

This is equivalent, in these models, to the isomorphism Π(KA) ∼= A, i.e., to the intuitive
set-theoretic meaning of Axiom C. A final remark: both the term model of system F,
of course, and the “retraction” models (see [AL91]) do not realize Axiom C.

The hard part now comes with the semantics of the Genericity Theorem. Indeed,

(GEN) ∃τ Mτ = Nτ ⇒ M = N

is not an equation, but an implication between equations. Thus a modelM of Fc does
not need to realize it, in either of the two senses

(1) M |= ∃τ Mτ = Nτ ⇒ M |= M = N
or
(2) M |= (∃τ Mτ = Nτ ⇒ M = N)

For example, over PER models or dI-domains, consider 0,K : ∀X.X → (X → X).
Take then a type τ which has at most one element, for example, ∀X.X or ∀X.∀Y.X →
(Y → X). Then in both classes of models Kτ = 0τ , but, of course, K 6= 0. We
have not yet found models of the “genericity” implication (GEN) in either form, in
spite of the many models of Fc and the provability of the implication. Note that their
semantic understanding is relevant, not only for “model-theoretic” reasons, but also for
the extensions of system F which are relevant in practice. That is, actual polymorphic
functional languages are based on extending core calculi by, possibly, more equation
schemes. Since (GEN) is not preserved in equational varieties, the investigation of
which equational theories realize it is a further theoretical challenge posed by the
Genericity Theorem.
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