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0. Introduction 

This paper mainly deals with the models for type free h-calculus defined by 

Plotkin [IS], Engeler [12] and Scott [22]. (See also [9] for a similar construction.) 

Plotkin-Scott-Algebras (PSE-Algebras, in view of Engeler’s approach) are built 

up in a very natural set theoretic way and provide a generalization of early ideas 

in Scott [20,21]. Namely, the notion of application (interpreting formal applica- 

tion of h-terms) generalizes the classical Myhill-Shepherdson-Rogers definition 

of application in PO, introduced to define Enumeration Operators (see [19, p. 

1433). Abstraction is defined accordingly. 

An interesting fact is that these definitions do not depend on codings of pairs 

and of finite sets, while the classical ones do. This doesn’t affect the Recursion 

Theory one should be able to work out on PSE-Algebras (cf. [6, 16 02, 21]), but 

does affect the model theory of A-calculus (see [3] and Section 5). Moreover, for 

various reasons which should become clear in the next sections, these structures 

are very ‘handy’: it is easy to grasp the intuition on which the definitions rely and 

to modify them for the purpose of the model theory of X-ca!culus we aim at. 

Section 1.1 introduces X-terms and CL-terms (terms of X-calculus, X/3, and of 

Combinatory Logic, CL) of various orders, corresponding to levels of functional- 

ity or number of X-abstractions. Section 1.2 discusses the consequences in 

Combinatory Algebras of an early remark of Wadsworth (and Scott) on how to 

interpret the ‘loss of information’ which is implicit in performing combinatory 

reductions, as in any effective process. 

Section 2 introduces PSE-Algebras and deals with the local analysis (according 
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to the terminology in [2]) of Engeler’s models. That is, a syntactical characteriza- 
tion is given of the true equalities in the free PSE-Algebras (DA, *) generated 
from a set of atoms A, with the ‘canonical’ interpretation of k-abstraction. 
Actually the partial order on these structures (i.e. set theoretic inclusion) matches 
perfectly well the very natural syntactical partial order over h-terms, given by 
inclusion of Boehm trees (the proofs are in Appendix B). This provides an 
algebraic characterication of k-terms possessing normal form. 

Section 3 gives a semantical characterization of A-terms of any finite (and 
infinite) order, i.e., for n E w, characterizes the class of terms such as Ax, . . * x,.N 

according to n. In particular (closed) terms of order 0 are interpreted by the 
bottom element I of the lattice-theoretic model considered and terms of order 
infinity by the top element. This is done in (DA, *), with a different interpretation 
of A -abstraction. 

Section 4 contains the main model-theoretic applications of this paper. 
Theorem 4.1 proves that, if (Y is an infinite cardinal, there exists a model of CL of 
cardinal 01, where it is possible to give several interpretations of h-abstraction, 
which yield different sets of true equations (i.e. a model of CL which yield models 
of A@ with different theories; this is a strengthening of Los-Vaught theorem for 
A-calculus). Theorem 4.6 gives a counter-part of Theorem 4.1: for any infinite 
cardinal (Y, there exists a non-extensional model of CL, which yields a unique 
model of A& These models will be called lambda-categorical. The proof is based 
on a Structureal Lemma for PSE-Algebras (Lemma 4.3). 

Theorem 4.10 deals with a purely algebraic consequence of the previous results. 
As already mentioned, PSE-Algebras generalize application as defined for enum- 
eration reducibility in (I%, e). In fact, (DA, .) and (Pw, a) can be isomorphically 
embedded one into the other; but, using the previous local analysis, it is shown 
that for no A they are isomorphic (w.r.t. ‘.‘). 

An Intermezzo and Section 5 discuss extensionality and ‘non well-founded’ 
models. 

In particular, by Theorem 1.12, the fixed point operator of A-calculus, which 
gives the recursive definitions in the theory, is interpreted by Tarski’s fixed point 
map in the models studied in Sections 2 and 3 (see Remark 3.9 for the generality 
of these models). This is not so in the case of structures which are not ‘well 
founded’, in the sense of Scott [22]. 

The notation is mainly from [2] and [17] unless explicitly defined (or 
elsewhere referred). Some acquaintance with Barendregt’s book [2] is required. 

Open problems are stated in several places and in the Conclusion. 

Basic results : 

Section 1: For (partly) known syntactic notions of order and tree of terms (BT 
and ‘I), conditions are given on a Combinatory Algebra 0, such that, for terms 

M, N 

M has proper order 0 =$ D!=M= 1. 
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If D yields a A-model, 

T(M)ET(N) =$ Di=M<N. 

Section 2: Let (DA, -, A) be the canonical A-expansion of the free PSE-Algebra 
(Da, .), over an arbitrary set A of generators, then 

BT(A4) c BT(N) e DA EME N. 

Then normal forms are semantically characterized. 
Section 3: There is a non standard A-expansion of (DA, a), say (DA, ., A+). If B 

is the largest element of DA, 

Dit=M = I e M is (closed) of order 0, 

DLl=M = B e M has order infinity. 

More generally, the order of A-terms is semantically characterized. The theory of 
DA is given by the above-mentioned trees T. 

Section 4: PSE-Algebras with no atoms (i.e. any element is a set of pairs) are 
lambda-categorical. (Some Atomless PSE-Algebras are given, as quotient sets.) 
The canonical A-expansion of (DA, -> is the least A-expansion. By this, for 
any infinite cardinal there are (sub-) PSE-Algebras with several A-expansions 
(and different equational theories, ST and T for example) as well as lambda- 
categorical ones. (Pm, *) =$ (DA, *> (iso-embedded) and, for A countable, (DA, *) 3 

(Pw, -). But for no A they are isomorphic. 
Section 5: There exist quotient PSE-Algebras where Yr # Y. Though, for a 

suitable equivalence relation, (Pw, -) is isomorphic to a quotient atomless PSE- 
Algebra, (01, *). Then Dii= Y = YT (and (PO, *) is lambda-categorical). 

1. Approximation and application 

1.1. Syntax 

Combinatory Logic (CL) is the system whose terms are defined using just 
variables, two constants K and S and the formation rule 

(Iwv) is a term, if M and N are terms. 

kfNP stands for ((MN)P). K and S satisfy 

KMN = M, SPQR = PR(QR). 

The ‘=’ predicate satisfies the usual rules for equality (see e.g. [2, Section 7; 
111. 

A-calculus (A@) is defined using just variables and the binding operator A. The 
basic axiom schema is 

(P) (Ax.lM)N = [N/x]M, 

for N free for x in M, as usual. 
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‘=’ behaves similarly as in CL, including substitutivity (see e.g. [l, 21). 
Define now for terms in CL: 

A*x.x -SKK; X*x.M=KM, if x is not free in M; 

A*x.PQ = S(A*x.P)(A*x.Q), otherwise. 

Strong Combinatory Logic (CLP) is the extension of CL by the rule 

(5) 
M=N 

A”x.M = A”x.N 

CL/3 can be equivalently defined, as an equational theory, using the five Curry’s 
axioms A, (see [2, Section 7.3.61). 

CL/3 and AP are necely related at a syntactical level. In particular one can go 
from A-terms to CL-terms (and vice-versa) preserving provable equalities (see 
[2, Sections 7.1.4-7.3.11). Barendregt’s translations ( )h : CL -+ Ap and 
( )c- : A/3 + CL, invertible up to provable equalities, are a tidy way for doing this. 

The notion of order for a term informally corresponds to its ‘functionality’: a 
term of order 0, so to say, does not ‘begin’ with a Ax . . . (see Definition 1.2(i)) or, 
when applied to another term, does not ‘act’ on it. Formally, for terms in CL: 

Definition 1.1. (i) A CL-term M is of order 0 (ME 0,) iff 

13 NE {K, S, KU, SU, SVU: U, V CL-terms} CL/3 I-M = N. 

(ii) A CL-term is of proper order 0 (ME PO,) iff ME O0 and (l# CL-terms 
CL/3tM=xi+) (cf. [ll,p. 1451; G, 0,. . . are finite vectors (sets) of terms, possibly 

empty). 

Example. x E 0,; SII(SI1) E PO”, for I = SKK. 

Working in A/3, it is easy to define terms of order n, for any n E w, as well as 
terms of order infinity. 

Definition 1.2. Let M be a A-term. Then 
(i) ME 0, iff n is the largest such that 3NA/3 t M = Ax, . . . x,.N. 

(ii) ME 0, iff Vn M$O, 

Example. YKc O,, where Y is a ‘fixed point operator’. 

Proposition 1.3. (i) Let M be a CL-term. Then 
(i.0) ME OOe M,, E Oo; 

(i.1) MEPO~~~M~EO~~ and ~3fiAptM,=x~. 
(ii) Let M be a A-term Then 

MEO, e Vn3m>n3NA~~M=Ax1~~~x,.N. 
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Proof. Easy. q 

Clearly terms of order 0 are exactly the terms with no functionality: A-terms in 

PO, are defined as in Definition l.l(ii), using Definition 1.2(i) for 0,. 

M is solvable iff 3n 3y 33 A6 I-M = Ax, . * . x,.yfi (cf. [2]). 

Lemma 1.4. M is unsolvable ifl 

(1) MEO,, or 
(2) 3n>03N~PO, ApI-M=AxI.-.x,.N. 

Proof. (=. By definition of head normal form [2, p. 411. 

3. We prove (M$ O,+ (2)), when M is unsolvable. 

Let M$O,. Assume that n 20 is the largest such that hp k M = Ax, . * * x,,.N. 

Then A/3 FN = xp, for M is unsolvable. Moreover NE O0 by maximality of n. 

Hence NE PO,. Cl 

1.2. Semantics 

Definition 1.5. Let ‘-’ be a binary operation (application) on a set D. Then (D, .) 

is a Combinatory Algebra iff D contains elements K and S (Kf S) satisfying: 

K . d, . d, = do, 

S . d, . d, . d2 = d, . d,(d, . d2) for all d,, dI, d, E D. 

Thus in a Combinatory Algebra (0, .) one can interpret S and K of CL, by some S 

and K. For each choice of S and K in D, one obtains an expansion (D, 0, S, K)b 

CL, where CL contains S and K in the signature. 

Definition 1.6. (D, *, !P*> is a Combinatory Model iff setting (D” -+ D) = 
Cf:D”+D:3d~DVe’~D”f(e)=d.e,... e,,}, the representable functions, one 

has: 

(0) (D, 0) is a Combinatory Algebra. 

(1) !& : (D + D) -+ D and q*(f).e = f(e). 

(2) For fE(D”+’ * D), A? E D”.(TA(Ay E D.f(?, y))) E (D” -+ D), where Ax E 

D.(* . .) is the function dk(- . *)[d/x]. 

Combinatory Models correspond to Environmental Models, as defined in [13] 

or in [17]. Meyer’s Combinatory Model Theorem proves the equivalence of this 

notion with his purely algebraic definition of Combinatory Model (see the 

following ‘Discussion’). 

Let T be an algebraic expression over D (see [2, p. 891; i.e. T is built up with 

variables, constants from D and ‘a’). Then Ax E 0.7 is the function d t-T[~/x]. By 

combinatory completeness, i.e. by Definition 1.6(O), Ax E 0.7 E (D --, D) possibly 
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then (0, a, E) naturally yields a A-model. Shortly, set Xcf) = Ed for f~ (D + D) 

and dEE+. then (2) gives Definition 1.6(l). As for Definition 1.6(2), if f~ 

(D “+l+ D) and f(d, e) = dfe& say, then by combinatory completeness a@ = 

d$e, for some dj. Thus X(he E D.f(d, e)) = e(d@). By combinatory completeness 

again, e(djd) = e’dj& for some E’. Hence ALE D”. e(d$) E (D” -+ D). (Cf. Also 

[23] for a first-order approach.) 

Definition 1.7. Two (expanded) Combinatory Algebra (D,, a, (S,, K,)) and 

(D2, x, (S,, IQ) are Equationally equivalent iff D, I= M = Ne D2 l=M = N, for all 

CL-terms M, N. 

As well known (0) or CL reductions entail a ‘loss of information’. In 

(hx.M)N + [N/x]M, one knows ‘where one goes, but not where one comes from’. 

How can this be reflected in the semantics? Given a poset (0, s), let first say 

that f: D + D is w-continuous iff, for any w-chain {d,},,,, if U d,, exists, then 

N-J4J =Uf(&). 
Using ideas from Wadsworth’s analysis of Scott’s model Dm, Wadsworth [27] 

(see also [2,5]) define: 

Definition 1.8. A Combinatory Algebra (0, .> has approximable application iff 

(i) (0, 1, s> is a poset, with least element I, such that ‘*’ : 0’ -+ D is o- 

continuous. 

(ii) There exists a map Seg: Dxw -+ D such that, for d,, = Seg(d, n), Vd, e E D 

one has 

(1) d=U& 

(2) do = 1, 
(3) _Le= I, 

(4) &+Ie s (de,),, 

(5) (4z)m = dmin(n,m). 

A way of understanding Definition 1.8 may be the following: 

- d, is d up to ‘level n of information’; 
- applying no information, I, to something, one gets no information; 

-if the operator has level n + 1 of information, then it uses at most level n of 

information from the argument and provides at most a value with level n of 

information. 

This has an immediate consequence for the semantics of the class of terms in 

CL where one can always perform reductions at the leftermost outermost level, 

i.e. for CL-terms in POO. 

Theorem 1.9. Let (0, *) be a Combinatory Algebra with approximable application. 
Then 

MEPO,,+DFM= 1. 
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Proof. For the purpose of this proof, let’s introduce a labeled CL, CL. The 
formation rules of CL-terms are extended by 

MECL*M”ECL, for all neo; 

the reduction rules are extended by 

(Klab) (1) K”+‘M + (KM)“, 
(2) (KM)“+‘N + M”, 

(Slab) (1) S”+iP -+ (SP)“, 
(2) (SW+‘0 + (SPQ)“, 
(3) (SPcqntlR + (PR”(QR”))n, 

(Min) (M”)” ~ pn(n.m). 

ME CL,, is completely labeled iff each occurrence of S and K in M is labeled. 
Interpret &-terms in 0, by adding [M”II, = ([ML),, for all environment cr. 

Claim 1. Let ME PO,, and M’ a complete labeling of M. Then CL,1 M’ + pd 

for some N, d in CL+ 

In fact by definition of PO,-terms, K and S (labeled) rules are always 
applicable at the ‘head’ of M(M’) and its contracts (in particular (Klab)(2) and 
(Slab)(3), up to label 0). 

Claim 2. If CL,kM+N, then Dl=MsN. 

Use Definition 1.8(ii) and monotonicity of ‘e’. 
Let MEPO,. Then 

D k M = t._J {M': I complete labeling} by 

&t{pd: VIM’--+ N”d} by 

=I by 

Definition 1.8(i)-(ii)(l) 

Claims 1 and 2 

Definition 1.8(G)(2) and (3). 
0 

So much for Combinatory Algebras; Theorem 
applied in Theorems 3.6 and 4.10. 

1.9 in full generality will be 

In the next sections we will use two notions of ‘tree of a A-term’. For the notion 
of Biihm-tree of a A-term M, BT(M), we refer to [l] (or [2]). The partial order 
‘E’ on Bijhm trees is the usual syntactic one: informally, put the always undefined 
element ‘I’ at the bottom and then proceed inductively on the structure of the 
tree. Recall that BT(M) = _L iff M is unsolvable. 

Deiinition 1.10. (Informal) Let 2 ={hx, . * * x,.1: n~O}U{T}U{Xx, * * . x,,.y: 
n 20). Then the Tree of M, T(M), is a Z-labelled tree defined as follows. 
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T(M) = T if MEO,, 

T(M) = AxI . . . x,.1 if M is unsolvable of order n (see 1.4), 

T(M) = Ax, . . * x,,.y 

/\ 
T(M,) . . . Wf,) 

if M is solvable and has principal head normal form Ax, . . . x,,.yM, * - . M,. 

A Tree may be infinite: just mimic [2, p. 2121 to give a formal definition. T(M) 
is obtained from BT(M) ‘displaying’ the order of the unsolvable leaves. This can 
be done with the help of a 2,” oracle, writing his answers on leaves. 

Deli&ion 1.11. The set of Trees is partially ordered by 

T(M) E T(N) iff T(N) is obtained from T(M) by replacing -L in 
some leaves of T(M) by Trees of A-terms or by 
replacing some AxI . . * x,,.l by T. 

Example. 

A.X.y 

/\ 
E 

Az.J_ Axy.1 

Ax.y 

/\ (I in Az._L is replaced by 
/ 

Azv.x ; 
T(Av.xz) and Axy.l. by T.) 

I 

Levy [15] gives a partial order on terms, cL, based on a notion of reduction 
and on the associated set of approximants. It is easy to prove that M sL N iff 
T(M) c T(N). 

Given a A-model (D, *, A), embed (D + D) with the pointwise partial order. 

Theorem 1.12. Let (D, *, X) be a A-model with approximable application. Assume 
also that X : (D + D) -+ D is monotone. Then 

T(M)sT(N) j D!=MsN. 

Proof. See Appendix A. q 

An easy consequence of Theorem 1.12 is that, in a A-model D as in Theorem 
1.12, all fixed point operators Y of A/3 coincide in D and they represent Tarski’s 
fixed point map YTcf) = uf”(l). (See Appendix A for a proof: in Section 3 this is 
applied to a class of models.) 
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Definition 1.13. A h-model (D, ., h) has h-approximable application iff (0, a) has 
approximable application and Ax.1 = 1. 

Proposition 1.14. Let (D, .,A) be a h-model with h-approximable application. 
Then 

BT(M) E BT(N) 3 D != M G N. 

Proof. Forcing hx.l= I, T(M) collapses to BT(M): see Appendix A for 
details 0 

2. Plotkin-Scott-Algebras and the local structure of Engeler’s models 

Definition 2.1. Let B be a non empy set such that 
(0) @zBr\bEB e (P;b)EB 

where @ (as well as or,. . . , y, . . .> range over finite sets. Define then 
(i) ‘s’: PBxPB-+PB by d*e={b:3@ce(P;b)Ed}, 

(ii) (PB, .) is a Plotkin-Scott-Algebra (PSE-Algebra, in view of Engeler’s 
approach). 

Note that, by + in (o), PB is closed under application ‘a’. In Definition 2.4 a set 
B satisfying (0) is given (see also later). 

Let D, E be topological spaces. Then C(D, E) is the set of continuous functions 
from D to E. 

Lemma 2.2. Let B be as in Definition 2.1. Then 

(1) (PB, E) is a complete algebraic lattice. The Scott topology on PB is given by 
the basis 

{d E PB: 6 z d} for /3 (finite) in PB. 

(2) f~ C(PB”, PB) iff f is continuous in each argument if 

f(d) = u cf($): 6 E d1. 

(3) (PB” + PB) = C(PB”, PB). 

Proof. (1) and (2) Routine. 
(3) E holds by the continuity of ‘m’. As for 2, note that {(&; (&; . . . (P,; 

b)...):bEf(&..., &,)} represents fE C(PB”, PB). q 

Tbeorem 2.3. Let (PB, a) be a PSE-Algebra. Define A: C(PB, PB) + PB by 
Xcf) = Xx.f(x) = {(p; b): b E f(P)}. Then (PB, ., A) is a A-model. 

Proof. Observe that A is continuous, when C(PB, PB) is given the Scott topology. 
Then the result easily follows by the lemma. 0 
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Of course, using Definition 1.6(2), 

xx, . . . x,.f(x,, . . . , x,1 =i(&; &; . . . 0%; b) . . .I: b ~f(Pl,. . . , Pa)). 

Is there more than one way to turn a PSE-Algebra into a A-model? This question 

will be answered in Sections 3 and 4. The equations PSE-Algebras may solve are 

discussed in Remark 3.9. 

Deli&ion 2.4. Let A # $9. Define 

&=A, B,+r =B,U{(P; b): /3sB,,r\bEB,}, 

B = u B,, DA = PB. 

(Recall that /3 ranges over finite sets, No element of A is denoted by (* . .; * . -).) 

Thus (DA, .) is the free PSE-Algebra generated from a set A of atoms. In this 

section (Theorem 2.8, proof in Appendix B) we syntactically characterize the set 

of true equations of A-terms in the A-expansion (DA, ., X), where A is as in 

Theorem 2.3 and A is just a non empty set. (DA, ., A) has been defined in [12] 

(see also [18, 221). A similar construction over a set of type symbols can be found 

in [9]. In Remark 5.8 it will be shown that also Scott’s PO model is (isomorphic 

to) a PSE-Algebra. But, by Theorem 4.8, for no A (PO, *)=(D*, *). 
The intuition on which the construction of PSE-Algebras and the definition of 

‘.’ is based should be clear: (/3; b) is an ‘elementary instruction’ giving output b 
any time the input contains p. Thus V d E DA Ad = 8, since we assume A not to 

contain pairs such as (p; b). 
Note also that, by definition, in the case of DA, 

2.5.Vb~B3/?, ,..., P,3a~Ab=(p,;...(B,;a)...). 

This makes DA ‘well founded’ in the following sense: there is no infinite 

descending chain w.r.t. (the transitive closure of) the binary relation < on B, 
where b<(p;c)ebb/3vb=cv(cEB\AAb<c). 

The point is now to turn (DA, *, A) into a h-model with h-approximable 

application. 

Deiinition 2.6. (i) (Simultaneous definition of 1.1 on B and on the finite parts of 

B, with range in 0.) 

(ii) Let d E Da. Define d, = {b E d: lb/ =s n}. Clearly IpI, lb1 < I(@; b)l. 

Lemma 2.7. (DA, ., A) has h -approximabEe application. 
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Proof. (Part 1: approximable application) We only check Definition 1.8($(4), the 
rest is trivial. 

d,+,e={b:3p~e(p;b)Edr\iPI+_lbl~n+l} 

c_{b:3 pse,, (p; b)Edr\IblSn}=(de,),, 

since VBVb(P\,\bl?l and \/3l=~n implies (Pce+PGe,). 
(Part 2: A-approximable application) Xx.8 = {(p; b): b E @} = 8. 0 

Thus Proposition 1.14 applies and BT(M) E BT(N) j DA t=M c_ N. 
To prove the reverse implication one can use the classical B(ihm-out technique 

g la Hyland. A revised version of it is in [5].’ The point is to substitute Biihm’s 
operator C, = hx, . * * ~p+~.~p+~x~. * . xp by a C; whose properties depend on the 
structure of DA and such that Lemma 3.3 of [5] applies. The construction of such 
a C, required 26 technical lemmas, in the case of Plotkin’s To. For DA it turns 
out to be much simpler and it is shown in Appendix B. 

Proposition 2.8. Let A f $3. Then 

BT(M)sBT(N) e (DA, *,X)l=McN. 

Proof. By the proceeding remarks and Appendix B. q 

Putting together Theorem 1.9 and Lemma 2.7 one has that M is unsolvable iff 

(DA> .> X)b M = 0, thus (DA, ., A) is sensible in Barendregt’s sense [2, p. 1001. 
We conclude with a simple characterization of A -terms possessing normal form. 
Let (DA)O = (IIM]: ME A “} be the interior of Da.(Da)“, as the set of objects 

interpreting closed h-terms, can be algebraically characterized by taking S= 
Xxyz.xz(yz) E DA and K=Axy.x E DA and closing with respect to ‘*‘. 

Corollary 2.9. Let ME AO. Then M has a normal form @ {d E (DA)‘: DA kd E Ml 

is finite and [[Ml is maximal in (DA)‘. 

Proof. M has a normal forms iff BT(M) is finite and contains no 0’s. 0 

This fact is also true in the model Tw; but the authors of [5] were too distracted 
by the hardware of To, to point this out. 

3. A semantical characterization of A-terms of order n, for any n E o U{m> 

In this section we define a different h-expansion of the applicative structure 
(DA, .) defined in Definition 2.4. Namely, for each f E(DA -+ DA), 

’ Correction for [5, p. 316, def. 3.4(ii), line 21: set yi = C;q instead of a, = C;y,, OSi Sn. 
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A+: (DA + DA) + DA will choose a representative in the extensionality class of f, 

say EC, = {d: Vef(e) = de}, different from Xcf). 

Definition 3.1. Let A # 8, (DA, -) as in Definition 2.4 and X as in Theorem 2.3. 

Define h+:(D,+D,)+D, by 

A+(f) = A+x.f(x) :=Xx.f(x) UA. 

Note that for all A # 8, the DA’s are objects of a Cartesian Closed Category 

(CPO’s), with continuous maps as morphism. As already pointed out (DA -+ 

DA) = C(D,, DA): it is then easy to show that also X and A+ are continuous maps. 

Moreover C(Di, DA) = C(D,, C(D;p’, DA)). Thus 

A+x, . * . X,.f(Xl, . . . ) x,) = h+Xl(h+X*. . . x,$(x,, . . . ) x,)) 

is well defined for all f~ C(Di, DA). Lemmas 3.3, 3.4 and Corollary 3.5 show 

that 02 = (DA, ., A+) is a A-model, for A # @ and DA, -, X and At defined as in 

Definition 3.1. 

Definition 3.2. Define A(,,, = A+xI . . . x,.(4. 

Lemma 3.3. (i) A(,, = 8, 

(ii) A (n+lI = A+x.A(,) =Xx, . . . x,.A uXxl . . . x,pI.A U . . . U A, 

(iii) AC,,, c A~,+I,, 

(iv) V d E DA (A~,+I, )d = A,,,, 
(v) A+xl . . . x,.f(xl,. . . ,x,)=Xx, * * . x,.f(x,, . . . , x,)UA,, for all f~ 

‘3% DA), 
(vi) h+x, . . . x,.f(x,, . . . , x,)d= A+xp+, . . . x,.f(d,, . . . , d,, . . . , x,,), for all f~ 

C(Di, DA) and d’= {d,, . . . , d,}, with p s n. 

Proof. (i) Obvious; (ii) easy induction; (iii) by (ii). 

(iv) by Ad = 8, for all d E DA, and continuity of ‘e’ (recall that Xx.A = 

((0; b): b E AH. 
(v) induction, again; (vi) by (iv) and (v). q 

Lemma 3.4. V f~ (DA + DA), A+x.f(x) is the largest element in EC,. 

Proof. Let d E ECf. Clearly d flA z A’x.f(x). Let (p; b)E d. Then b E dp, i.e. 

b E f(b) and we are done. q 

Corollary 3.5. D; = (DA, ., A+) is a A-model. Moreover it is the unique A- 

expansion of (DA, *) satisfying V d E Da d E A’x.dx. 

Proof. The first part is by Lemma 3.3; note that if A@ FM = Ax, . . * x,,.N, then 

Vcr[MD;: = AdI . . . d,.[N~+cr[d/x] U A,,,, by Lemma 3.3(v). (1) 
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(Use 2.3 and what follows it.) 
Assume now that (Or, *, A’) is a A-expansion such that Vd d E h’x.dx. Recall 

that 

Vd,e(dUA)e=de. (2) 

Then, for all f~ (DA -+ DA), 

Xy.f(y) U A E X’x.(Ay.f(y) U A)x by assumption 

= A’x.(hy.f(y))x by (2) 

= h’x.f(x) by Theorem 2.3. 

By Lemma 3.4, we are done. 0 

Clearly (DA, *) possess at least Card(2*) A-expansions. This A-model provides a 
semantical characterization of the A-terms in PO,, 0, and O,, for all n. 

Theorem 3.6. Let M be a A-term. Then 

Proof. +. This follows from Theorem 1.9. Notice that Theorem 1.9 depends 
only on the applicative structure of (DA, e), i.e. on (DA, .) as a Combinatory 
Algebra, not on the A-expansions which may turn it into a A-model. 

+. Assume M$PO”. 
Case Ap t M = xd, for some Qr, . . . ,Q,: Then, since Dil=M=@eVa[m= 

@, Dif M = 8, by taking a(x) = AxI . . * x,.A. 
Case Ap 1 M = Ax.N, for some N: Then 

Va[~=A+d.[N]+a~=Xd.l[EJll+a:UA#@ q 

Of course, Theorem 3.6.e depends on the A-expansion (cf. Proposition 2.8). 

Theorem 3.7. Let M be a A -term. Then 

(i) MEO,~(D~IMZA,,,~ msn), 

(ii) MEO,~DA’FM=B. 

Proof. (i). j. Assume A@ 1 M = Ax, * . . x,.N, with NE 0,. Then (l), in corollary 
3.5, immediately gives $ . 

As for 2 , assume m > n. 

Case NE POO. By Theorem 3.6 and (l), Va [[m = A,, (recall that Ax.@ = 8>, 
while A,, c A,,,, for m > n. 

CaseN=&,forsomeQandi<n.Takeb=(&;*..(O ;**.(&,;a)...))for 
ith 
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some @ in DA and a E A. Clearly b E A,,, \A,,; thus b EX~, * * - d,.d,([djj+a[c$x’]). 

Then by the definition of A, one has a E @([dJ&x’]) = 8. 
Case N- yd, for some d and y # xi, is n. Take u(y) = 8, then I[m = A,, c 

A,,,, for m > n, by (1) in Corollary 3.5. A contradiction. 
So far for (i). j. 
+. Assume M$O,. 

Case ME O,, with pf n: Then by +, we are done. 
Case MEO,: Then, since AO~A1c_...~A,,~..., 

Vp Va [m 2 A,, by Proposition 1.3(ii) and (1). (3) 

This contradicts g , again. 

(ii) 
Claim. I3 = U A(,,. 

Clearly lJ A(,,, E B. Conversely, if b E B = IJ B, (see Definition 2.11, b = 

(PI;. . . (p, ; a)) for some p in DA, a E A (by 2.5). By Lemma 3.3(u) and Theorem 
2.3, Acp+lj zXxl . . . q,.A = {(pi; . . . (P,; a)): a E A, 6 in DA}. 

Thus, 

B c U A,,,. (4) 

Now, assume ME O,, then 

VU [[ME = B, by (3) and (4) 

Conversely, 02 1 M = B implies 

Vn Mg O,, by (i) and (4). 0 

In view of (4), let’s write A, = B. 

Corollary 3.8. Let M be a A-term. Then 

M is unsolvable e 3 n E o U {a} 0: b M = A(,,. 

Proof. 3. By Lemma 1.4 we have two cases. 
Case ME 0,: Then DAl=M = A,,,, by Theorem 3.7(ii). 
Case A@tM=hx, . . * x,,.N, for some n E w and NE POO. Then 

Vu I[A4g = AZ.@ U A(,, = A,,, by (1) and Theorem 3.6. 

+. Assume hp t M = Ax, * * . x,,,.yQi * * . Q,, for some m E W, y and d (i.e. 
assume that M is solvable). Assume also that Di!=M = A,,,. 

By Theorem 3.7(i), 

Thus nsm. 
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Case y # xi, V i G m : Take a(y) = Ax, . . . +A. Then 

[Mn;:=h+x, . . . x,.A 

# AC,,, by Definition 3.2 and Lemma 3.3(iv). 

A contradiction. 

Case y = xi, for some i 6 m: Take /3p = ((8; . . . (8; a) . . -)} of length p, for some 

aEA, and b”=(@,;. *. (pa; =. . (&,,; a) .. .), for some @. Then b”$A(,,, by 

Lemma 3.3(ii) and n < m. Nonetheless 

VabUE{(&;.. . (Pm ; b) . . ‘l/b E pi Udlf~[fi/~l> G UMJ,’ 

since padI . . . d, = {a}. A contradiction, again. 0 

By Theorem 3.7, the witness n of the RHS of Corollary 3.8 is unique and it is 

the order of the unsolvable term M. 

Note that 02 provides a semantical characterization of unsolvable terms, with 

their functionality. Moreover the functionality of solvable terms is also charac- 

terized, by Theorem 3.7(i), though it never occurs that a solvable and an 

unsolvable term are equated. Finally, by the montonicity of A+, Theorem 1.12 

applies; thus 

The author believes that this model is ‘very sensible’ although such a definition 

wouldn’t fit Barendregt’s (cf. [2, p. 1001). 

With some patience, one should also be able to work out the following fact: 

T(M)= T(N) @ D;bM=N. 

Actually, we claim that the technique used in Appendix B gives also the 

following: let A have at least two elements and age A, define A’x.f(x) = 

Xx.f(x) U (A \{a,,)), then 

T(N) g T(M) e (DA, ., A’)IMsN. 

Remark 3.9. How do the models defined in Sections 2 and 3 relate to the 

set-theoretic construction in Scott [22]? 

Given A#@, set A*=U,A”, where A”={( )}, A”=Cf:f:{O,...,n-l}+ 

A}={(a,, . . .,a,>: a,,. . ., a,, E A} and ( ) is the empty tuple (Scott [22, p. 2291). 

‘Zermelo’s least solution’ of the equation C = C” (cf. Scott [22, p. 234]), would 

be 

BZ = n {C: P)E Cr\(a,, . . . , a, c C+(a,, . , %,)E C)}, 

that is, B, is the least set containing fl and closed under formation of finite tuples. 

The A-model is given by X.Y={b:3n3al ,..., 3a,~Y (b,al ,..., a,,)EX}, for 

X, Y GB, and hx.f(x) ={( >>U{(b, a,, . . . , a,,,): bEf({a,, . . . , a,,,})}, for fcontinu- 

ous over the parts of BZ (see Scott [22, pp. 229-2341). 

Define B as in Definition 2.4, starting with A = {fl}, and ’ : BZ + B by ( )’ = 8, 
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(b, al, . . . , a,)’ = (p, b’), where p c B contains exactly (and without repetitions) 

al,, . . . , a;. This is well defined, as a map, since (a, b, c) is not given as (a, (b, c)) 

(it is not a Kuratowski tuple, say). In particular (b)’ = ((d; b’), (b, ( >>’ = ({fl}; b’) and 

(a, (b, c))’ = ({(b, c>‘1; a’) # ({b’, c’]; a’) = (a, b, c)‘. 
Let B:, be BZ modulo the following relation: x-z iff x’= z’. Thus two 

n + 1 -tuples are equivalent iff the last y1 elements are the same up to a permuta- 

tion (inductively over the ‘depth’ of tuples). Note that working modulo ‘-’ does 

not affect the model, i.e. does not affect application and abstraction as defined 

above. Clearly B> and B are isomorphic. Thus Scott’s model construction (i.e. the 

‘full’ h defined on p. 233), modulo ‘ - ‘, is isomorphic to (DA, *, X’), where 

A = {pl>. 
More generally, given a set A of ‘atoms’, i.e. non-tuples, consider Scott’s 

equation C = A U C” (Scott [22, p. 2441). Then 

&=~{C:AGCA@ECA(~, ,..., a&C j (ai ,..., a&C)} 

is the least solution of C = A U C”. Up to the equivalence ‘ - ’ above, over tuples, 

Bs is the same as the set B defined in Definition 2.4, starting with A0 = A U(8). 
This generalization turns out to be essential for the purposes of Theorem 4.1. 

Intermezzo (on extensionality). When dealing with applicative structures, by 

‘extensional applicative structure’, we mean a pair (D, .) such that 

(E) Vd,eED(VcCEdc=ec+d=e). 

Dana Scott in discussions with Roger Hindley, Henk Barendregt and the author 

pointed out that the right notion of extensionality for structures, which yield 

h-models, is the satisfaction of rule ([), see Section 1, in the sense described in, 

say, [13], [17] or [2]. As a matter of fact, the correct meaning of the word is that a 

function is uniquely determined by its argument-value correspondence. This is 

exactly what (5) takes care of. 

However, one may be interested in applicative structures which may not yield 

h-models. Still they may satisfy (E) above. That is, they may contain just one 

representative for each representable function. Some interesting domains satisfy- 

ing (E), which do not need to be A-models, are characterized in [lo]. 

In view of the general discussion on applicative structures carried out in Section 

1, we keep the slightly improper use of (E) for extensionality and consider (6) as a 

weak extensionality property, following [l] and [2]. Note that h-models are 

exactly Combinatory Algebras satisfying (5). In case of A-models, (E) corresponds 

to the axiom schema (q) or rule (5). The following discussion is divided into two 

parts. Both are concerned with a technique for constructing extensional A-models 

due to Scott. Remark (i), in Part I, answers a question raised by Scott, while (ii) 

states a conjecture and an argument which makes it plausible. Part II presents a 

construction which will be used in Sections 4 and 5. 

Part I: None of the models studied so far is extensional; namely, in general, 

ECf contains more than one element. Throwing away some elements, can we turn 



170 G. Longo 

(DA, .) into an extensional A-model? There doesn’t seem to be an elementary 
direct way for such a construction, starting from a A-expansion of (DA, -) (see 

Definition 4.4 for an indirect argument). 
Scott [21] (see also [22]) presents an elegant technique to construct an exten- 

sional substructure of the A-model Pw. This technique applies to ‘almost’ (see 
later) any A-model satisfying (n)Ax.x cAxy.xy, which is a c.p.0. 

Scott’s argument is the following: Let 

1, : = I = Ax.x I,,,, - Axy.l,(x(l,y)). 

Set d(,, = [[IJ~Po and d,= U d(,,. Then Eo = {d-e: e E Pw} E PO is an exten- 
sional A-model (see [22]). 

Remark. (i) Scott [22, p. 2511 points out that d, is the least solution of 

d = do,, U (Axy.d(x(dy))), 

and remarks that d, doesn’t seem to be the interpretation of any closed A-term. 
And in fact it is not. By induction, one has 

VnA~FI,=Ax,,.. . x,.x”(ln-,xl)(ln_2xJ . . . x,. (1) 

Now d-f $!; thus, if [Ml = d,, M is solvable, say A/3 l-M= Ax, . . . qxjd. Then 
one can derive a contradiction from Vn d, G I[M] and (l), by applying them to the 
right c in Pw, depending on i. 

(ii) Let (B, cn ) be the set of Bohm-like trees partially ordered by (possibly 
infinite) n-expansions (see [2, p. 2301). It is then easy to show (use cofinality of 
chains) that U BT(I,,) is the ‘Nakajima-tree’ of Ax.x (see [2, p. 511). Conjecture: 
Ew is equationally equivalent to Scott’s inverse limit D,. (Added in proof: Karst 
Koymans recently proved this conjecture.) 

Part II: Scott’s (n-) property seems to be a fairly natural property for a 
A-model (D, ., A’) which is a poset. It says that A’ chooses the largest element in 
EC,, for each fg (D + D). That is exactly what At does in the case of 02. 

Nonetheless the technique of Part I doesn’t apply to DA (thus to no other 
A-expansion of (DA, -)). In fact, by Theorem 3.7(i) and (4) in proof of theorem 
3.7, one has d,= B. Therefore 

{d,e : e E DA} = {B}, 

since V e E DA Be = B, i.e. the extensional substructure collapses to a singleton. 
How to force (n-) into Engeler’s construction and still obtain an interesting d,? 

Given A’ # A’, Vd d G A’x.dx is false because of those d’s containing elements 
of A, which do not act as ‘instructions’ (see Corollary 3.5). Thus, what one can do, 
with u E A, is to force a = ({a}; a) (or, also, a = (Id; a), see Remark 5.8), i.e. force 
a to act. That is, set a = ({a}; a) and consider B = B/-, fiA = (PB, *).’ (It is easy 
to define hereditarely = on B, see the Remark below.) 

’ By a different argument, Scott derives the same observation (see remark on p. 251 of 1221). 
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fi* is no longer well founded and there is no way of turing (fi,, .) into a 

Combinatory Algebra with approximable application: this is an immediate conse- 

quence of Theorems 1.9 and 5.6 (see later) which gives a semantical characteriza- 

tion of closed A-terms of order 0, different from Theorem 3.6; namely, 

ME 0,, e fiA 1 M = A, for M closed. 

Notice that, in fi+,, V b E B(@; b) 4 d,= lJ d(,,, by (1) in the remark. Thus 

d,@ = 8; since one also has d,B = B, then Scott’s technique applies and the exten- 

sional substructure is not trivial. 

In this model, Tarski’s fixed point operator is not A-definable (see Section 5). 

Remark. Clearly not any equivalence relation - on B turns PB into a non trivial 

applicative structure. (Hints: Take a map of B into B, whose range contains 

B \A. Define hereditarely on the pairs (p; b) in B the least equivalence relation 

- such that, for c E B, c -f(c). Then (PB, .) is a (non trivial) PSE-Algebra. (This 

generalizes the technique used above, where fa and fa are such that f,(a) = 

({a}; a) and f@(a) = (8; a).) We claim that, given B and - on B, if (I%, .) is a well 

defined PSE-Algebra, then - may be defined as above. (See the Conclusion for a 

further discussion.) 

4. Expansions in any cardinal. Lambda-categorical models. DA and Pa 

The theory A/3 is not complete, in the sense that there exist (closed) terms M, N 

such that A/3fM = N and h/3 +{M = N} is consistent. Moreover AD does not 

possess finite models. Then, byXos-Vaught theorem, AD possesses, in any infinite 

cardinal, non ‘elementarely equivalent models’ (see [17] for a first-order charac- 

terization of A -model). 

The local analysis of (DA, *,X) and of (D,, ., A+) gives a stronger fact: in the 

case of Ap, we can obtain, in any cardinal, non equationally equivalent A-models 

over the same applicative structure (see Theorem 4.1). Theorem 4.6 proves a 

counterpart of Theorem 4.1. 

We first state an obvious generalization of Theorem 3.6. Namely, instead of 

using the specific A-expansion D=\ of (DA, .), given by A’ as defined in Definition 

3.1, we could use any A-expansion DX = (DA, *, A’), defined by a choice map A’ 

over the representable functions, such that A’(f) =X(f) Ud’, where d’sA and 

d’ # @. Any such a DA trivially gives the same characterization of A-terms in PO0 

as in Theorem 3.6. 

Theorem 4.1. For any infinite-cardinal LY, there exists a Combinatory Algebra 

(D, *> such that 

(1) card(D) = (Y, 

(2) (D, .) has X-expansions which yield non equationally equivalent X-models. 
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Two arguments for Theorem 4.1 follow. The first was suggested by the referee 
and directly uses Lowenheim-Skolem theorem, Proposition 2.8 and Theorem 3.6. 
The original proof (proof II) to some extent works out the details of proof I 
and more closely investigates the structure of definable submodels and their 
relation to models. As a consequence, say, it suggested Remark 4.2. 

Let A be (Y. Define B E A and (DA, -) as in Definition 2.4. By the construction, 
card(B) = (Y and card(D*) = 2”. 

Proof I. Following Meyer [17] or Scott [23], formalize h-calculus (and its 
models), in a first-order way. In particular an expanded combinatory algebra 
(D, -, S, K), i.e. a model of CL with a given interpretation of S and K, is a 
h-model iff, for E = S(KI) (where I = SKK), Meyer’s axioms (1) and (2) in the 
Discussion of p. 7 are satisfied (cf. also Remark 5.8, where axiom (3) is a stability 
condition, i.e. EE = E iff E = hxy.xy). 

Consider now the first-order theory of (DA, *). Let K = kcy.x, K’ = h+xy . x and 
similarly for S and S’. By Theorem 2.3 and Corollary 3.5, both the correspond- 
ing E and E+ satisfy Meyer’s axioms and give different h-expansions of (DA, .) 
(actually A and X’). 

By Lowenheim-Skolem theorem, there exists a substructure (D, .) of (DA, *) 

such that: 
(i) K, S, K+, S’ E D G DA, 

(ii) card(D) = (Y, 
(iii) (DA, .) is an elementary extension of (D, .). 

Thus, by Proposition 2.8, (D, ., K, S) k-M = N iff BT(M) = BT(N). Choose now a 
term in PO,, say SII(SII). Then by Theorem 3.6, (D, -, K+, S’)kM= SII(SII> iff 
MEPO~. Hence the theories of these expansions of (D, -> differ. 

Proof II. (1) Let L be a ‘rich enough’ first-order language L for Set Theory with 
two sorts of variables, one of which ranges only over finite subsets of B (in other 
words, formalize what we have been doing so far, using /3, y, . . . and b, c, . . .>. 

Since A G B contains atoms, and, for the purposes of the proof, we need them as 
‘non tuples’, express (0; b) in such a way that no element of A is denoted by 
(. . .;. . .). 

Let 02 = {d: d E B and d is definable over B}E Da, i.e. the elements of 02 

are defined by formulas of L using constants from B. By definition, 02 is closed 
under ‘-I. Clearly K = {(p; (y; b)): b E p} and S = ((0; (y ; (8, b))): b E pG(yS)} are in 
02. Thus (D”,, -) is a Combinatory Algebra and card (D@ = a. 

(2) Let (02 + 02) be the set of representable functions over 02 (see Defini- 
tion 1.6). For f~(Dz-+ 02) define f~ C(D,, DA) by f(d) = IJ cf(p): p zd fl 

finite}. Since any finite p C_ B is in 02 and DA is a complete algebraic lattice, f is 
well defined and is the unique continuous extension of f with respect to Scott’s 
topology over DA. 
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Let X be as in Theorem 2.3 and let d’ be a definable (possibly empty) subset of 

A. Define a A-model (DA, +, A’) (i.e. a A-expansion of (DA, e)) by A’(f) = Xcf) U d’. 

Set then A&(f) = A’(f), for f~ (02 -+ 02). We need to show that A&.f(x) = 

A&(f) E DZ, in order to prove that (02, ., A&) is a A-model; the rest is trivial. 

Let 4 E 02 be a representative for f. Then 4 represents also 7: by continuity of 

‘e’, one has F(d) = lJpcd 4p = 4d, for all d E DA. 
Then A;=(f) = A’(f) = ({(p, b): b E 4,P) U d’) E 02 and (02, ., A&) is clearly a A- 

model. 

Set now K’ = A’x.(A’y.(Kxy)) and s’ = A’x.(A’y.(A’z.(Sxyz))): then K’= 

KU{@; b): b E d’} U d’, similarly for s’. Thus K’ and s’ are in 02 and interpret 

the A-terms K= Axy.x and S = Axyz.xz(yz) in (02, ., A&). By definition of A&, 

they also interpret K and S in (02, ., A&). Then, if M is a closed term, one has 

[ML = [ME, where I[. . .E is th e interpretation in 02: just write M using only S 

and K’s. Thus (02, ., A&)l=M= N iff (DA, *, A’)kM= IV, for closed M, N. 
Theorems 2.8 and 3.6 (see above) give the result. Cl 

Remark 4.2. Scott’s approach to the construction of models of A-calculus has 

been a topological one (cf. Scott [20]). By giving the Scott topology to some 

lattices, the set of continuous functions could be isomorphically embedded into 

the lattices themselves. The definable models 02 above, with the induced 

topology, do not have this property. As a matter of fact, let 02 be as in Theorem 

4.1 (proof II). If card(D2) = cy, then the continuous functions on 02 are more 

than CY. To prove this, assume that the language L has a constant symbol for B. 

Then consider in D”, the sublattice GA, whose least and largest element are @ and 

B and containing the singletons of elements of B as incomparable elements (with 

respect to c). Give to GA the induced topology. Clearly, for A is (Y, there are 2” 

continuous maps of GA into itself, i.e. card(C(G,, GA)) = 2”. Since GA is trivially 

a continuous lattice, GA is an injective space (cf. Scott [20]). Thus any f~ 

C(G,, GA) can be extended to f* E C(Dz, GA) s C(Dz, 02). 
This is why the model has been defined using just the representable functions, 

which are much less than the continuous ones, but still enough. 

Question. Is there a topology on 02 such that the representable functions are 

exactly the continuous ones? 

(We claim that there is no such a topology.) 

Theorem 4.1 proves that, for any infinite cardinal, there exists a subalgebra of a 

PSE-Algebra (a sub-PSE-Algebra, say) with several A-expansions, yielding differ- 

ent theories. 

Of course, if the cardinal is 2”, for some infinite cy, one could take a full 

PSE-Algebra. 

A PSE-Algebra may or may not contain (elements with) atoms; DA, as 
defined in Definition 2.4, does contain atoms. They have been used in the proof 

of Theorem 4.1. 
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By an abuse of language, we say that a PSE-Algebra is atomless if all its 

elements are atomless, i.e. do not contain atoms. For example, & defined at the 

end of the Intermezzo, is such that fi* (=I%) is atomless, by the identification 

a = ({a}; a) (see also Remark 5.8). 

Given B as in Definition 2.1, let’s say that d E PB is saturated iff 

((P;b)EdAOcy + (Y;b)Ed). 

The following lemma gives some general information on the embeddings of 

C(PB, PE) into PB, i.e. on A-expansions. Claim 1, say, proves that, in order to 

satisfy Definition 1.6(l)-(2), they must be continuous. Thus, in a PSE-Algebra, 

Definition 1.6(l)-(2), are equivalent to Definition 1.6(l) and the continuity of the 

embedding. 

Lemma 4.3 (Main Structural Lemma). Let (PB, .) be a PSE-Algebra. Assume that 
(PB, ., A’) is a A-model. Then A’(f) is saturated, for all f~ C(PB, PB). 

Proof. Recall first that (PI3 + PB), the set of representable functions (cf. Defini- 

tion 1.6), coincide with C(PB, PI?): in fact any continuous f is represented at least 

by W) = {(P; b): b E f(P))> th e canonical representative of f. By the assumption, A’ 

satisfies Definition 1.6(l)-(2). Using Definition 1.6(2), set E’= h’xy.xy (cf. the 

Discussion following Definition 1.6). As in that Discussion, one then has: e’d = 
A’x.dx = A’(f) iff d EEC~ (i.e. iff d represents f). 

Claim 1. A’ is continuous (and hence monotone). 

Since h(f) E EC,, then A’(f) = ~‘Xcf). Use then the continuity of A and of ‘*‘. 

For the sake of simplicity, set now 4(d) = Ax E PB.dx; that is 4 :PB-+ 

C(PB, F’B) gives the function represented by d. By definition, A’(&(d)) = A’x.dx 
and &(X’(f)) = f. Since ‘e’ is monotone, then 4 also is monotone. 

Claim 2. (Y ={(p; b)}+aEA’(+(a)) (=A’x.ax). 

For 

(A’x.ax)p = c$ = {b} 

j 3p’c/3 (p’; b)EA’x.ax 

j b E (A’x.ax)fl’ = c@‘. 

j fi’ = 0, otherwise c$’ = fl 

+ (/3; b) E h’xax (=A’(+(a))). 

Let now f~ C(PB, PB) and (p; b) E A’(f). From fi E y we have to deduce that 

(y; b) E A’(f). Set then cyo = {(/3; b)}, a1 ={(y; b)} and e = {(S; b): /3 G 6). Clearly 

NC+,) = He). 



Set-theoretical models of h-calculus 175 

Then one has 

a1 5 h’(4(e)) by Claim 2 

G A’(9(e)) by cyl c e and monotonicity of 4 and A’ 

= A’(b(c~)) by I = 4(e) 

c A’(f) by (Y() c h’(f), that is by ~((Y,J E 4(A’(f)) = f. 

Thus (y; b) E h’(f). q 

Definition 4.4. A Combinatory Algebra is lambda-categorical if it has a unique 

A-expansion (that is the applicative structure uniquely determines the A-model). 

Theorem 4.5. (i) Let (PB, .) be a PSE-Algebra and f E C(PB, PB). Then EC, the 

extensionality class off, contains a unique atomless and saturated element. 

(ii) Any atomless PSE-Algebra is lambda-categorical. 

Proof. (i) Let d E EC, be saturated. Take e E EC, and (j3; b) E e. Then b E e/3 = 
dB, that is 3 p’ G p (0’; b) E d. By saturation, (/3 ; b) E d. 

(ii) By Lemma 4.3 and (i). q 

Recall that fiA is atomless. By the Remark at the end of the Intermezzo, it is 

easy to define more atomless PSE-Algebras. By Theorem 4.5, in order to obtain 

several A-expansions in a PSE-Algebras, one needs atoms, namely objects with 

no ‘functional behaviour’. But, still, they do some work: their use may affect the 

theory. As a matter of fact, the sub-PSE-Algebras given in Theorem 4.1 have as 

many A-expansions as their cardinality. Of course, if the cardinal is large enough, 

most of them will yield the same theory (i.e. will be equationally equivalent), for 

there are only 2” extensions of pure A-calculus. The canonical map, A, is the 

smallest one giving a A-expansion (whereas A’ is the largest, cf. Lemma 3.4); it is 

the unique map, satisfying Definition 1.6, whose range contains only atomless 

elements. 

Any extensional Combinatory Algebra is trivially lambda-categorical. 

Theorem 4.6. For any infinite cardinal a, there exists a non extensional sub-PSE- 
Algebra (D, .), with card(D) = CY, which is lambda-categorical. 

Proof. Let A be (Y. Take B and fi* (=PB) as in the Intermezzo. (fiA, .) is a 

Combinatory Algebra of cardinal 2”. By Theorem 4.5(ii), it has a unique A- 

expansion: the canonical one, X. 

Clearly (D,.+ .) is not extensional: just observe, say, that ((0; b)} and 

{(B; b), (Y; b)1, for P - c y, represent the same function. 

Then argue as in Theorem 4.1 (Proof I) to define a lambda-categorical sub- 

PSE-Algebra of cardinal 01. q 



176 G. Long0 

A lambda-categorical Combinatory Algebra yields a unique theory, as h- 
model. But it may have several K’s and S’s, giving different theories, as expanded 
Combinatory Algebras (i.e. as models of CL, cf. Definition 1.5). 

For example, define A- over fiA as in Definition B.5 (Appendix B) for DA, 

using X instead of hO. By Lemma 4.3 and Definition 4.4, A- doesn’t give a 
X-expansion of (fi*, .) (even not of (DA, .)(!)). Set K = Kxy.x 

(={({b}; 6; b): b E ti}) and S- = h-xyz.xz(yz) (= . . . exercise . . -). By Lemma 
B.6(1), (I&, .) K-, S)kCL. 

Question. Are (a*, -, K, S) and (DA, . , K-, S-) equationally equivalent? 

The theories of the A-models in Theorem 4.6 will be discussed in Section 5. 
Another application of the previous results (namely Theorem 1.9 and Lemma 

2.7) relates Da and Pw. In particular the isomorphisms between (DA, -) and 
(Pw, .) as applicative structures. 

‘.’ over PW is defined as for Enumeration Reducibility (see [19, p. 146; 2, p. 
4691). That is, for codings of the finite sets {E,,},,, and of pairs ( ,>, CG = 
{m: 3 E,, & G (n, in)~ C}. By (D, x)$(D’, .) we mean that D can be isomorphi- 
tally embedded into D’, w.r.t. ‘x’ and ‘.‘. 

Proposition 4.7. Let A f 8. Then one has 

(9 (Pm, .)+(D,, .) 
(ii) If A is countable, then (DA, .)+(Pq .). 

Proof. (Notation: ( , ) and {E,,},,,, finite sets, are as in [19]; in particular E0 = 0, 

E, = (0). Set also #E,, = n). 

Notice first that 
(0) VnEo\{0}3!k3!n,~~~3!n,n=(n,;~~~(n~,O)~~~)An,#O. 
(i) Define (simultaneously), for some a E A, 

[-I : o + DA, 

h : WJ,,, 4 {p: /3 c B finite}, 

first : [a] + B 

by 
WI = ia, (0; a>, (0; (0; ai>, . . .I-, 
first([O]) = a; 

Let n = (n,, (nz, . . . (n,, 0) . . e), nk # 0: then set 

[nl= {(Pi%,; (Pi12; . . . (p;,; b) . . .): b E [0]} 

where, for E,, ={m,, . . . , WI,}, 

PI:= h(E,,) ={first([m,]), . . , first([m,])} (with h(0) = 0) 
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and, for p = (p,, (~2, . . . (P,, 0) # 0, 

first([p]) = (Pb,; (/3&; . . . (PL.; a) . . .). 

Finally define f : Pw + DA by 

f(C) = u {[nl: n E Cl. 

Claim. (1) (PL;b)E[(n,p)]~~==nr\b[[p]. 

(2) E,,~CEP~++&,L~(C). 

Part (1) easily follows by the definitions (note that it holds also for (n, p) = 0, i.e. 
n = Or\p = 0). As for (2), notice that fik~f(E,,). Clearly f is injective. 

Compute now 

f(C)f(G)=@: WG~(G)(P; b)~f(c)I 

={~:~~(PI,~~(G)A~P(P~;~)E[(~,P)IA(~,P)EC)} by (1) 

={b:3E,~G3pb~[p]~(n,p)~C} by (2), (1) 

= IJ {[p]: 3 E,, c G (n, p) E C} = f(CG). 

(ii) Define, for A = {a,,, a,, u2, . . .} 

map : B -+ w (notation: b = map(b)) 

g:{p: /3 c B(finite)}+o 

by 
a, = (1, fl), P-b=(g(P)>b) 

where, for /3 = {b,, . . . , b,}, 

s(S) = #h, . . . , b,l. 
Define 

f’:DA-Pw by f’(d)={b: bEd}. 

Claim. (1) map is injective ; g is injectiue, 

(2) V d E DA O$f’(d); 
(3) f’ is injective. 

As for (1) + (2), define 1 I: B -+ w as in Definition 2.6. The proof easily follows 
by (combined) induction on (b( (and 1 PI). As for (3), it is an obvious consequence 
of (1). Then compute 

f’(d)f’(e) = (4: 3 6, c f’(e) (n, q) E f’(d)) 

= {b: 3P &W s f’(e) (s(P), b) E f’(d)1 

by (2), since El = (0) (so it is not the case that (n, 4) = a for a E A), 

={b:3pse(p;b)Ed}, by (1) 

= f’(de)_ Cl 
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The embeddings in the proof of Proposition 4.7 do not preserve S and K. In 

[12] it is shown that for any applicative structure (A, x), one has 

(Ax> 3 (DA, .>. 

Corollary 4.8. Let A# 8. Then for any countable (E, x), one has 

(E, x) 3 (DA, .>. 

Proof. Just use (E, x>+(D,, -)+(I%, -)+(DA, *>. q 

In particular (E, x) may be a countable extensional Combinatory Algebra. 

Discussion 4.9. PO is not (as) well founded (as DA; see Definition 2.6). Namely, 

there is no way to mimic the definition of 1 1 given for DA (see 2.5 and Definition 

2.6) on PO. If, in view of (0) in Proposition 4.7, one sets InI = k for nf 0, then ) 1 

cannot be extended to 0 in a way to have always In], ]m(<((n, m)]. In fact 

0 = (0,O) = (0, (0,O)). . . (and this is the only ‘bad guy’, but any coding must have 

at least one * * -). Thus under the standard coding (but this can be generalized): 

v c E P6J {O}C = {O}. 

This is what we have been taking care of in Proposition 4.7(i). Clearly non 

well-founded codings in even a stronger sense would make the result false (see [3] 

for strongly non well-founded codings). Note that the proof of Proposition 4.7 

does not depend on properties of the ‘standard’ codings, other than their almost 

well foundedness (this discussion continues in Remark 5.8, where a change in the 

definition of the set DA, say 01 gives (Pm, a) = (01, e). 

Theorem 2.8 and Hyland’s result [2, 19.1.91 show that (PO, -) and (DA, *> can 

be turned into equationally equivalent A-models. Proposition 4.7 tells us about 

isomorphic embeddings. Nonetheless in no case (Pw, -) and (DA, a) can be made 

isomorphic. 

Theorem 4.10. VA (Pw, .) $ (DA, ->. 

Proof. We first need a few remarks. 

PO Claims. (1) V C E Pw $JC = $I and {O}C = (0); 

(2) VE,#p)3&,,~={0}; 

(3) VCEP~ (C infinite+Vh 3k>h 3 G1,. . ., GkCG#f). 

(1) is obvious. As for (2), take the largest k such that mk # Or\ 

(ml, (m2,. . (mk, 0) . . *) E E,. Then E,E,,,, . - . E,,,* = (0). (3) is trivial. 

DA Claims. (4) VdGD, (Zlede=djd=p)vd infinite); 

(5) V d E DA (3e de infinite + d infinite); 

(6) V@ED*, finite, 3hVk>hVd,,...,d,pd=@. 
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To prove (4), assume that df 8 is finite and take the largest n such that 

(P1;. . . (& ; a) . . *) = b E d for some & a. Then Ve b$ de. (5) and (6) are proved 

similarly. 

Assume now that f : PO -+ Da is an isomorphism, for some A # 8. Let K, S, I 
interpret K, S, I in PO. Clearly (DA, ., f(K), f(S)> is a Combinatory Algebra, 

namely it is a particular expansion of (DA, .), with interpretation, say, 1 I& : CL -+ 

DA. (DA, -) has approximable application (see Definition 2.6, part l), and this 

depends only on the properties of (DA, -) as applicative structure. Thus Theorem 

1.9 applies and 

e, = [SI1(SII)~f by 1.9 

= f(SH(So)) by def. of I[ ]r and f 

= f wcml) 

= f(ca) by PO bSII(SII) = !J [2, ch. 19.11. 

By assumption f is injective, thus, by (1) and (4), f(O)) is infinite. Finally, observe 

that 

V C# pI f(C) is infinite. 

In fact: if C is finite, then use (2), the fact that f({O}) is infinite and (5). If C is 

infinite, then use (3) and (6). This concludes the proof. 0 

5. Non-well-founded models 

The notation is as at the end of the Intermezzo, where fiA = (Is,, .) was 

defined. In particular recall that, in fia, a = ({a}; a).x is as in Theorem 2.3. 

The motivation for defining fiA are given in the Intermezzo. Its properties will 

be proved by applying Theorem 1.9 to an elementary substructure. 

Lemma 5.1. In BA one has: 

(i) Ad = A rl d. 
(ii) aEd/\aEejaEde, for aEA. 

(iii) d E: Xx.dx 

(iv> (DA, ., A) is a A-model. 

Prmf. By the definitions. El 

Given a E A, let c, be the constant symbol for {a} and A(c,) the set of A-terms 

built up using also c,, where [c,J={a}. 

Lemma 5.2. Let (T : var -+ fiA be constantly equal to A E bA. Then 

VUEA VMEA(C,) UE@~JJU. 
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Proof. (By induction.) If M= c, or M =x, we are done. If M =PQ, use 5.l(ii) 

and the induction. If M = hx.N, then I[Mjlo = ((6; b): b E [Njaf}. Notice now that 

N[c,/x] E A(c,); then a E [N]la, {a1 = [N[c,/xfla, by the induction hypothesis, so 

a = ({a}, a) E[MIlV. q 

Lemma 5.3. Let cr be as in Lemma 5.2. Then one has for any ME A: 

(i) A ~[Mjla; 

(ii) A = [M&J j M E 0,; 

(iii) MEA”+D, kA z M. 

Proof. (i) If ME A, then Va M E A (c,). 

(ii) If AD !=M= Xx& for some N, then (y; b)E(Ima~r c @+(p; b) ~[fla. 

Thus A c g would be saturated, while ({a}; a) E A and, say, ({a, (8, a)}; a) q! A. 

(iii) By (i). 0 

Definition 5.4. S, = {d: A E d} G fi,,. 

By Lemma 5.l(ii), S, is closed w.r.t. ‘.‘. Moreover, by Lemma 5.3(iii), (fi*)O= 

([[Ml: ME A’} c S, ; thus K, SE S, and (S,, .) is a Combinatory Algebra. Con- 

sider S, embedded with the induced topology, where fi, is given the Scott’s 

topology. 

Lemma 5.5. (S,, .) has approximable application. 

Proof. Set I = A, then S, is a poset satisfying Definition 1.8(i). Define then ( ), 

as follows. 

If b E B = B/=, then b, as equivalence class in J3, contains a shortest element (in 

B), say sh(b): this element is obtained by ‘collapsing’ all ({a}; a) to a. Let’ 

( (: B -+ w be as in 2.5. Define, for d ES,, d,, = {b E d: \sh(b)( s n + l}. 

Then (l), (2), (3), (5) of Definition 1.8 trivially hold. As for (4): 

d,+re={b:3pce(P;b)Edr\Ish(P;b)\~n+2} 

= {b: 3 p G e (p; b) E d A @h(P)\ + Ish( s n + 2)) 

c{b:3 @se,, (@; b)EdAIsh(b)lGn+l}=(de,), 

by the definitions of ) ( and ( ),. 0 

Theorem 5.6. Let MEAO. Then ti*!=M=Ae MEOW. 

Proof. Consider (S,, ., K, S), K, SE S, G CA ; then, for ME A”, SA t=d = M iff 

fiA F d = M, i.e. the interpretations of ME A0 in S, and fi* coincide. By Lemma 

5.5, 1.9 and 5.3(ii) give the result. q 
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Consider now Tarski’s fixed point operator Y&) =uf”( I). As for any con- 
tinuous map from C(fi*, fi*) into DA, we may say that YT is A-definable in case 
YTo4 is so, for 4(d) = Ax E fiA.dx. That is the A-definability of YT amounts to 
say that YTo4 E C(fi*, fi*) is represented by the interpretation of some closed 
A-term. 

Proposition 5.7. (i) Tarski’s fixed point operator Yr over fi, is not A-definable. 
(ii) (S,, .) can be turned into a A-model. Moreover, in S,, YT is h-defined by the 

interpretation of Curry’s paradoxical combinator Y. 

Proof. (i) Just note that Y,(Xx E fi,+ x) = YTo4(Xx.x) = $I and use Lemma 5.3(iii) 
(or Theorem 5.6). 

(ii) We first show that any continuous function over S, is representable. For- 
f E C(S,, S,) define f: Da + fiA by f(d) = f(d U A). Clearly FG C(fiA, fiA) and 
f’r Sa =fi Moreover hx.f(x)~ S,, since a ~f({a}) = f(A), for all a E A. Thus 
fe C(S,, S,) iff fE(S, -+ S,). Set now xl(f) =Xx.f(x), for fE(S, + S,). 
Then 

by the definition of the induced topology over S,. The rest is easy. 
Finally, X’ is monotone; then Theorem 1.12 applies, for (S,, ., A’) is a A-model 

with approximable application by Lemma 5.5. Thus 

T(M) c T(N) 3 S, +M G N. (0) 

By the Remark after 1.12 (and Appendix A), we are done. Cl 

Remark 5.8. Pw is (isomorphic to) an atomless PSE-Algebra. 
Just take A = {a} and set a = (8; a). Then, for B’ = B/- and D’jz = PB’, (PO, .) = 

(III, .). The isomorphism follows by the proof of (PO, .)+@I,, *> given in 
Proposition 4.7 (or by an easy set-theoretic argument). 

By [17], any Combinatory Algebra containing an E such that 
(1) &de = de, 
(2) Ve(de = d’e+ ed = Ed’), 
(3) 81 = E, 

can be turned into a A-model, by setting Xcf) = Ed, for d E Eq. (Note that 
E = Xxy.xy.) Conversely, from (D, a, A) = A/3 one may define E = Axy.xy. (Note that 
A(f) = Ed, for d E EC,.) (This has already been discussed before Definition 1.7.) 

Thus (0, .> is lambda-categorical iff such an E E D is unique. By this, isomorph- 
isms of applicative structures preserve lambda-categoricity. Now (DOA, .) is 
lambda-categorical, by Definition 4.4, since it is an atomless PSE-Algebra. Thus 
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also (Pw, *) is lambda-categorical. Of course, this gives another proof of Theorem 
4.10. (For a direct proof of lambda-categoricity of (Pw, .), see [9].) 

Finally, notice that (0) above does not depend on the cardinality of A. 
In view of the proof of Theorem 5.6, we claim that the lambda-categorical 

models, given in Theorem 4.6, have all the same theory, independently of the 
cardinal (i.e. they are all equationally equivalent), 

6. Conclusion 

The basic view point in this paper has been the analysis of theories of 
PSE-Algebras. But, more than this, we have been looking at applications of this 
study. Thus A-expansions have been studied and related to the local analysis of 
models or used for the semantical characterization of interesting classes of terms. 
Moreover the results in Sections 2 and 3 were applied in the lambda-categoricity 
and cardinality theorems of Section 4. 

Similarly, Section 5 gave some results on the connections between non well- 
foundeness, substructures and true equalities. This was done using quotient 
PSE-Algebras. 

In our views two kinds of questions are naturally raised by this work. 
(1) Given a PSE-Algebra how can one characterize quotient sets which are 

again PSE-Algebras? That is, generalize the technique used in Sections 4 and 5 
(some hints are given in the Remark at end of the Intermezzo). More: are there 
general results relating equivalence relations on PSE-Algebras and the theories of 
their quotient sets? In Section 5 a non well-founded quotient PSE-Algebra gives 
Yf YT; another turns out to be isomorphic to PO, thus Y = Yr holds in it. 

Several results on quotient sets for similar structures (namely, filter domains) 
are given in [lo]. Still, filter A-models are built over more ‘structured’ bases 
(theories of type assignment). Thus, this kind of results are more general (and, 
perhaps, more difficult) in the set theoretic framweork of PSE-Algebras. 

(2) PSE-Algebras solve some equations (cf. Remark 3.9). Can one carry on a 
general category theoretic study of the theories of solutions of domain equations 
(in the sense of Scott)? 

It is not clear at all whether category theoretic notions may characterize 
theories. Take for example Scott’s basic equation D = D + D. The inverse limit 
solution, D,, to this equation, in the category of cpo’s, seems to yield different 
theories according to the projections one uses (the ‘canonical’ ones or Park’s, see 
[2, ch. 181). As a matter of fact, the Approximation Theorem holds only when the 
canonical projections are used. 

Moreover an equation may have lambda-categorical solutions and/or non 
lambda-categorical ones, which in turn may yield different theories. 
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Appendix A: Proofs of Theorem 1.12 and Proposition 1.14 

As for Theorem 1.12, one can use a variant for trees of the Approximation 

Theorem a la Scott-Wadsworth-Hyland (see [2, 19.1.81). 

Since, in the models we work at, we do not require that Xx.1 = I, consider the 

extension APO1 of AP obtained by adding the constant R to the formation rules of 

the A-terms, and the axioms OM-+ M, only. 

Extend the definition of Tree to terms of ApOt by T(Ax, . . . x,.C!M) = 

Ax,... x,.-l, for 0 s n, M possibly empty. 

Note that AP.I1rt-M= NJ T(M) = T(N). Define then the set of Tree Approxi- 

mate normal forms by 

TA(M) = {P: T(P) z T(M) and P is in ofi,-n.f.}. 

The basic Lemmas A.1 and A.2 go through as for the Approximation Theorem 

for Bohm-trees. Namely, define first a labelled A&-calculus (Apay). That is 

extend the formation rules of A-terms by allowing labels in o over terms. Take as 

axioms the axioms in [2, 14.1.41, except Ax.0 -+ a. ([l, 7.1%7.191, except for 

Ax.fl’ + 0, best fits our approach.) By the same argument as in [l, 7.231, one 

has: 

Lemma A.l. Each completely labelled term has a normal form. 

If M is labelled, set T(M) = T(]M]), w h ere IMI is obtained from M leaving out 

all the labels. 

Given a A-model with approximable application interpret labelled terms by 

Ufln, = 1, UM”lL, = GP4!c),. 

Lemma A.2 Let M, Q be labelled terms, in A@fly. Assume that (D, *, A) has 

approximable application. Then, for M -+ Q, one has: 

(i) DkMsQ. 

(ii) T(Q) c T(M). 

(The proof is as in [2, 19.1.61, just notice that d,,= I of Definition 1.8 implies 

the validity of (Ax.M)“N= ([O/x]M)” in D.) 

Definition A.3. Let (D, ., X) be a A-model with approximable application. Then A 

is I-monotone iff for any algebraic expression r over D and n E o, one has 

X(AdI . . .d,ED.I)sA(Ad,+..d,ED.r) 

(or, equivalently, D FAX, . . . x,,.Ll S Ax, . . . x,,.M, for all M in A/30, and n E w). 

Lemma A.4. Let (D, ., A> be as in Definition A.3. Assume that A is monotone or 

that D has A-approximable application. Then A is I-monotone. 
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Proof. By an easy induction or trivial. 0 

Lemma AS. Let (D, ., A) be a h-model with approximable application and I - 

montone X. Then 

NETA 3 DkNc_M. 

Proof. By assumption T(N) is finite and the a’s in N and the I’s in T(N) are in 

a one-one correspondence. Thus M is obtained from N (up to Pan,-equality) by 

replacing some 0’s in N by other terms or some Ax, . * * x,.0 by some 

AXI . . . x,.0, for m an (see Proposition 1.3(C)). 

I-monotonicity of A and the monotonicity of ‘.’ give the result. 0 

Approximation Theorem A.6 (for Trees). Let (0, ., X) be as in Lemma A-5. Then 

DkM=U{N: NETA(M 

Proof. 

D b M = {M': I complete labelling} by Definition 1.8 

~{Q:lQl~TA041 by Lemmas A.1 and A.2(i) 

<{N: NE TA(M)} by DbQ~JQ/ 

=SM by Lemma A.5. [7 

Theorem 1.12 now follows from Lemma A.4 and Theorem A.6, by the same 

argument as in [2, 19.1.9, 19.1.111 applied to truncated Trees. 

Moreover, let Y be a fixed point operator in A& then TA(Y) = {hy.y”fl : n EN}, 

by Theorem A.6. Therefore, for (0, a, A) as in Lemma AS, one has 

D k Y = LJ hy.y”R. 

Thus, if Yr is Tarski’s fixed point operator over (D, o), [Ykd = u d” I = Y,(d) 

and h( Yr) = Xd. Y,(d) = Ad.[ad = [YL, since Y is not in 0” (i.e. begins with 

Ay * * s). Note that, if D is as in Lemma A.5, then 

MEO, + Dt=M=UAx,...x,.I. 
n 

As for the proof of Proposition 1.14, let A/3fi be the extension of Apflr obtained by 

adding 

Ax.0 + 0. 

For BT(M) = ‘Biihm tree of M’, let 

A(M) = {N: BT(N) E BT(M) and N is in pfl-nf.}. 

Given a Afl-term N, let N” be obtained from N, performing also Ax.0 + 0, if 
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any such reduction is possible. Then one has 

NE TA(M) e N*E A(M). (1) 

Assume now that (0, ., X) is a A-model with h-approximable application. Then, if 

N is in PO,-n.f., 

D !=N* = N by N* E TA(N), Lemma A.5 and Xx.1 = 1. (2) 
Finally 

D!=M= U{Q: QE TA(M)} by Lemma A.4 and Theorem A.6 

=U{Q*: QE TA(M)} by (2) 

= U{N: NE A(M)} by (1). 

This is the Approximation Theorem for Biihm trees: Proposition 1.14 then 

follows as in [2, 19.1.111. 

Appendix B: DA I=M c iV+ BT(iIf) E BT(IV) 

This appendix completes the proof of Lemma 2.7, thus the notation is as in 

Section 2. 

Lemma B.l. (i) Let f~ (Da + DA). Then hx.f(x) is saturated (i.e. (p; b)~ 

Ax.f(x) A P G y + (Y ; b) E Xx.f(x)). 
Let A=B\A. Then 

(ii) (d nA)e = de, 
(iii) d s A(S d c Xx.dx. 

Proof. (i) By monotonicity of f. (ii) By definition. (iii)+. (p; b) E d +b E dp+ 
(p; d) E Ax.dx. 

+Xx.dx does not contain element of A. 0 

Note that (ii) and (iii) hold just because one can distinguish between elements 

of A and elements of A. Fix now a, E A # 8. 

Deli&ion B.2. Let f~ (DA + DA). Define 

hOx.f(x) = Xx.f(x) u{a,}. 

(Notation. For fc C(D>, DA), set 

h”Xl . . . &.f(Xl, . . . ) XJ = hOX,(hOX*. . . &.f(X,, . . . ) it&)); 

by the continuity of U and A, this is a good definition.) 

Remark B.3. By definition 

AXI . . . &.fh> . . . 7%) ={P,; * . * (Pn; b) . . .>: bEf(&, . . . , &,)I, 
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while AOx, . . . x,,.f(x,, . . . , x,,) contains also a, and all elements of the type 

(0,; a,,), . . . , (PI; . . . (&1; ao) for arbitrary p’s. 

Lemma B.4. Let f~ C(Di, DA). Then 

(1) O~i~n~(h”x,...X.f(x,,...,~))d,...d, 

= h"Xi+l '. *&.f(dl,...,di,++ly.. .) &) 

(2) 0 <p < n 3 QE (A”x, . . . x,,.f(x,, . . . , x,))d, - . . d,. 

Proof. Easy. 0 

Notation. Given P c D>, PI, . . , /3,, are minimaE such (mins) P(& . . . , &,) iff 

(i) PM,,. . . , fi,) holds, and 

(ii) if y1 c PI, . . . , Y,, c P, and +# 6 

then lP(y,, . . . , y,,). 

Definition B.5. Let f~ C(D>, DA). Define 

A-xl.. . %l.f(x,, . . . 3 x,) = {b E h”x, . . . &$(X1, . . . ) x,): 

3c3pb=(p,;- (Pn;c)...)~~minscEf(P)} 

Lemma B.6. Let fe C(Di, DA). Then 
(1) (Ax,. . . ~.f(x,, . . , x,))d, . . .d, = f(d,, . . . ,4,). 

(2) If V 4, . . ,&-I 34, f(4, . . . , Ll,4,) # 8, then (O<p<n3 

(A-x, . . . x,.f(x,, . . . , x,,))d, . . . d, contains a, and it is not saturated (cf. Lemma 

B.l)). 

Proof. (1) By definition and Lemma B.4(1). 

(2) Let’s write F, := A-x, . . . x,,.f(x,, . . . , x,). Then 

aOEF,d,.* .d,={c:3p~d(p~;...(p,;c)...)~F;;}, 

since p<n and by Lemma B.4(2) and the definition of F;;. As for ‘non satura- 

tion’, notice first that 

f(e,, . . . , e,) = F,el . . . e,, by (1) 

={b:3@Ei!(@,;. . . (P,; b) . . .)eF,}; 

and hence, by the assumption on f, 

Vp<nVe, ,..., e,3PIce, ,..., B&Se, 

3P,+,,...,3P,3b(P,;...(P,;b)...)EF,. 

Recall now that by definition of F,, these /3, . . . , &, are ‘minimal such’, thus, in 

particular, V y 13 @,+r (y; (/3p+2; . . . (&; b) . * -) g! F;d, . . . d,. 0 
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Definition B.7. Let C; = A-x, - * * ~p+~.xp+~x~~~ . . q,. 

Let A@,) the set of A-terms built up using also constants (symbols) from DA. 

Proposition B.8. (I) DA kC,xo. . * &+I =%+1x0 . . . -q. 

(ii) Let ul, . . _ , a,,, and TV, . . . , qbetemwinA(D,). Ifn#tandm,q<p, then 

D,#hxl . . . x,.C,a, . * . IT,,, c AxI . * * x,.C;rl. . . TV. 

Proof. (i) by Lemma B.6(1). 
(ii) Clearly f(d,, . . . , d,,,) = d,+,d, . . . d, satisfies the conditions on f in 

Lemma B.6(2). 
Assume DA l=Ax, . . . x,,.C,al . . . u,,, c Ax, . . . x~.C,T~. . . rq. 
Case n < t. Apply both LHS and RHS to x1,. . . , x. Then 

DA k C,a, . . . a,,, E Ax,,+~ . . . X&T, . . . ,rq. 

This is impossible since the LHS contains a,, by Lemma B.6(2), while the RHS 
doesn’t. 

Case t < n. Apply both LHS and RHS to x1,. . . , x,. Then 

DA ~Ax,+~ . . . x,.C;crl . . . a;, E C;T~. . * TV. 

This is impossible since the RHS is not saturated by Lemma B.6(2), while the 
LHS is saturated by Lemma B.l(i). 0 

Proposition B.8 is the C-lemma, Lemma 3.3 of [5]. Thus the rest of the proof of 
Proposition 2.8 is exactly as in that paper. 
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