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0. Introduction

This paper mainly deals with the models for type free A-calculus defined by
Plotkin [18], Engeler {12] and Scott [22]. (See also [9] for a similar construction.)

Plotkin-Scott-Algebras (PSE-Algebras, in view of Engeler’s approach) are built
up in a very natural set theoretic way and provide a generalization of early ideas
in Scott [20, 21]. Namely, the notion of application (interpreting formal applica-
tion of A-terms) generalizes the classical Myhill-Shepherdson-Rogers definition
of application in Pw, introduced to define Enumeration Operators (see [19, p.
143]). Abstraction is defined accordingly.

An interesting fact is that these definitions do not depend on codings of pairs
and of finite sets, while the classical ones do. This doesn’t affect the Recursion
Theory one should be able to work out on PSE-Algebras (cf. [6, 16 §2, 21]), but
does affect the model theory of A-calculus (see [3] and Section 5). Moreover, for
various reasons which should become clear in the next sections, these structures
are very ‘handy’: it is easy to grasp the intuition on which the definitions rely and
to modify them for the purpose of the model theory of X-czlculus we aim at.

Section 1.1 introduces A-terms and CL-terms (terms of N-calculus, A8, and of
Combinatory Logic, CL) of various orders, corresponding to levels of functional-
ity or number of A-abstractions. Section 1.2 discusses the consequences in
Combinatory Algebras of an early remark of Wadsworth (and Scott) on how to
interpret the ‘loss of information’ which is implicit in performing combinatory
reductions, as in any effective process.

Section 2 introduces PSE-Algebras and deals with the local analysis (according
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to the terminology in [2]) of Engeler’s models. That is, a syntactical characteriza-
tion is given of the true equalities in the free PSE-Algebras (D,, -) generated
from a set of atoms A, with the ‘canonical’ interpretation of A-abstraction.
Actually the partial order on these structures (i.e. set theoretic inclusion) matches
perfectly well the very natural syntactical partial order over N-terms, given by
inclusion of Boehm trees (the proofs are in Appendix B). This provides an
algebraic characterication of A-terms possessing normal form.

Section 3 gives a semantical characterization of A-terms of any finite (and
infinite) order, i.e., for n € w, characterizes the class of terms such as Ax, - - * x,.N
according to n. In particular (closed) terms of order O are interpreted by the
bottom element L of the lattice-theoretic model considered and terms of order
infinity by the top element. This is done in (D,, -), with a different interpretation
of A-abstraction.

Section 4 contains the main model-theoretic applications of this paper.
Theorem 4.1 proves that, if « is an infinite cardinal, there exists a model of CL of
cardinal «, where it is possible to give several interpretations of A-abstraction,
which yield different sets of true equations (i.e. a model of CL which yield models
of AB with different theories; this is a strengthening of Los—Vaught theorem for
A-calculus). Theorem 4.6 gives a counter-part of Theorem 4.1: for any infinite
cardinal a, there exists a non-extensional model of CL, which yields a unique
model of AB. These models will be called lambda-categorical. The proof is based
on a Structureal Lemma for PSE-Algebras (Lemma 4.3).

Theorem 4.10 deals with a purely algebraic consequence of the previous results.
As already mentioned, PSE-Algebras generalize application as defined for enum-
eration reducibility in (Pw, -). In fact, {(D,, -) and {Pw, -) can be isomorphically
embedded one into the other; but, using the previous local analysis, it is shown
that for no A they are isomorphic (w.r.t. *’).

An Intermezzo and Section 5 discuss extensionality and ‘non well-founded’
models.

In particular, by Theorem 1.12, the fixed point operator of A-calculus, which
gives the recursive definitions in the theory, is interpreted by Tarski’s fixed point
map in the models studied in Sections 2 and 3 (see Remark 3.9 for the generality
of these models). This is not so in the case of structures which are not ‘well
founded’, in the sense of Scott [22].

The notation is mainly from [2] and [17] unless explicitly defined (or
elsewhere referred). Some acquaintance with Barendregt’s book {2] is required.

Open problems are stated in several places and in the Conclusion.

Basic results:

Section 1: For (partly) known syntactic notions of order and tree of terms (BT
and T), conditions are given on a Combinatory Algebra D, such that, for terms
M, N,

M has proper order 0 > DEM= 1.
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If D yields a A-model,
T(MycT(N) > DEM=<N.

Section 2: Let (D4, -, ) be the canonical A-expansion of the free PSE-Algebra
{Dy, -), over an arbitrary set A of generators, then

BT(M)c BT(N) & D.EMcN.

Then normal forms are semantically characterized.

Section 3: There is a non standard A-expansion of (D,, ), say (D4, -, A™). If B

is the largest element of D,,

DiEM=1 & M is (closed) of order 0,

DLEM=B & M has order infinity.
More generally, the order of A-terms is semantically characterized. The theory of
D, is given by the above-mentioned trees T.

Section 4: PSE-Algebras with no atoms (i.e. any element is a set of pairs) are
lambda-categorical. (Some Atomless PSE-Algebras are given, as quotient sets.)
The canonical A-expansion of (D,, ) is the least A-expansion. By this, for
any infinite cardinal there are (sub-) PSE-Algebras with several A-expansions
(and different equational theories, BT and T for example) as well as lambda-
categorical ones. {Pw, -)= (D,, -) (iso-embedded) and, for A countable, (D,, -)=>
{Pw, *). But for no A they are isomorphic.

Section 5: There exist quotient PSE-Algebras where Y;# Y. Though, for a
suitable equivalence relation, (Pw, +) is isomorphic to a quotient atomless PSE-
Algebra, (D%, -). Then D4FY = Y1 (and (Pw, -) is lambda-categorical).

1. Approximation and application

1.1. Syntax

Combinatory Logic (CL) is the system whose terms are defined using just
variables, two constants K and S and the formation rule

(MN) is a term, if M and N are terms.
MNP stands for (MN)P). K and S satisfy
KMN =M, SPQOR = PR(QR).

The ‘=’ predicate satisfies the usual rules for equality (see e.g. [2, Section 7;
11].

A-calculus (AB) is defined using just variables and the binding operator A. The
basic axiom schema is

(B) (Ax.M)N =[N/x]M,

for N free for x in M, as usual.
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‘=" behaves similarly as in CL, including substitutivity (see e.g. [1, 2]).
Define now for terms in CL:

M x.x=SKK; A\*x.M = KM, if x is not free in M,
AEx.PQ = S(\*x.P)(A*x.Q), otherwise.

Strong Combinatory Logic (CLB) is the extension of CL by the rule

M=N

&) A x.M=A*x.N

CLp can be equivalently defined, as an equational theory, using the five Curry’s
axioms Ag (see [2, Section 7.3.6]).

CLgB and AB are necely related at a syntactical level. In particular one can go
from A-terms to CL-terms (and vice-versa) preserving provable equalities (see
[2, Sections 7.1.4-7.3.1]). Barendregt’s translations ( ),:CL—AB and
( )ar: AB — CL, invertible up to provable equalities, are a tidy way for doing this.

The notion of order for a term informally corresponds to its ‘functionality’: a
term of order 0, so to say, does not ‘begin’ with a Ax - - - (see Definition 1.2(i)) or,
when applied to another term, does not ‘act’ on it. Formally, for terms in CL:

Definition 1.1. (i) A CL-term M is of order 0 (M Q) ift
—3ANelK S, KU, SU,SVU: U, V CL-terms} CLBFM = N.

(i) A CL-term is of proper order 0 (M cPOQ,) iff Me O, and (3N CL-terms
CLBFM=xN) (cf. [11, p. 145]; N, Q, . .. are finite vectors (sets) of terms, possibly
empty).

Example. x < O,; SII(SII) € PO,, for I =SKK.

Working in AB, it is easy to define terms of order n, for any ne€w, as well as
terms of order infinity.

Definition 1.2. Let M be a A-term. Then
(i) MO, iff n is the largest such that ANABFM =Ax; - - - x,.N.
(i) MeQ., ift YnM¢O,

Example. YK <O, where Y is a ‘fixed point operator’.

Proposition 1.3. (i} Let M be a CL-term. Then
(i.0) McO,& M, €0Oy;
(i.1) MePO,&M, €O, and AN ABFM, = xN.
(ii) Let M be a A-term. Then

McO, ©& Ynadm>nINABFM=Ax; - x,,.N.
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Proof. Easy. O

Clearly terms of order 0 are exactly the terms with no functionality: A-terms in
PO, are defined as in Definition 1.1(ii), using Definition 1.2(i) for O,.
M is solvable iff An Ay AN ABFM = Ax,  * - x,,.yN (cf. [2]).

Lemma 1.4. M is unsolvable iff
(1) MeOQ,, or
(2) An=03INePO, \BFM=Ax; - x,.N.

Proof. <. By definition of head normal form [2, p. 41].

. We prove (M¢ O.>(2)), when M is unsolvable.

Let M¢£ Q... Assume that n=0 is the largest such that ABFM = Ax; - - - x,.N.
Then ABJN=xP, for M is unsolvable. Moreover NeQ, by maximality of n.
Hence NePO, 0O

1.2. Semantics

Definition 1.5. Let ‘-’ be a binary operation (application) on a set D. Then (D, -)
is a Combinatory Algebra iff D contains elements K and § (K# 8) satisfying:

K- d() : dl = do,
S - do N dl . d2: do - dz(dl : dz) for all do, dls dzeD.

Thus in a Combinatory Algebra (D, -) one can interpret S and K of CL, by some §
and K. For each choice of § and K in D, one obtains an expansion (D, -, 8, K)F
CL, where CL contains S and K in the signature.

Definition 1.6. (D, -, ¥,) is a Combinatory Model iff setting (D" — D)=
{f{:D"—>D:3deDVécD"f(e)=d.e, - e,}, the representable functions, one
has:

(0) (D, -) is a Combinatory Algebra.

(1) ¥, :(D— D)— D and Y¥,(f).e =f(e).

(2) For fe(D""'— D), AXe D".(¥,(A\ye D.f(%, y))) € (D" — D), where Axe
D.(- - +) is the function dF(- - )[d/x].

Combinatory Models correspond to Environmental Models, as defined in [13]
or in [17]. Meyer’s Combinatory Model Theorem proves the equivalence of this
notion with his purely algebraic definition of Combinatory Model (see the
following ‘Discussion’).

Let T be an algebraic expression over D (see [2, p. 89]; i.e. 7 is built up with
variables, constants from D and -’). Then Ax € D.7 is the function dF-1[d/x]. By
combinatory completeness, i.e. by Definition 1.6(0), Ax € D.7 € (D — D) possibly
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with parameters. We write Ax.7 for ¥,(Ax € D.7). So, for fe (D — D), Ax.f(x) is
the element of D which canonically represents the function f. Thus Definition
1.6(1) reads (Ax.f(x)) - e = f(e), which better recalls the schema (8) of A-calculus
(cf. [2, ch. 5)). By a small abuse of language, we will also write Ad.f(d) for Ax.f(x)
and consider A as a map from (D — D) into D, writing (D, -, A) for (D, -, ¥,).

Given (D, +), there may be several choices of \; each one provides a specific
A-expansion of (D, -). Each Combinatory Model (D, -, \) naturally yields an
expanded Combinatory Algebra: set K=Ax.(Ay(x)), 8 =Axyz.xz(yz) (we omit ‘-’
in d - e). Following [17], we call these expanded Combinatory Models A -Models.

In view of Meyer’s Lambda Model theorem, we shall ignore the distinction
between these interchangeable notions of model of AB and use the phrase
A-model throughout the rest of this paper (cf. also [2] or [13]).

We write DE- - - for (D, -,A) (D, -,8,K)E- - -, if there is no ambiguity.

In Section 4 the notion of lambda-categorical model will be introduced, that is
of Combinatory Algebra with a unique A-expansion. Some interesting models are
lambda-categorical, some not. As a matter of fact, in a A-model (D, -, A), the key
step in interpreting A-terms is given by:

[Ax.Mlo = Ax.f(x)(=A(f)), where f(d)=[M]o?

and f is in (D — D) by Definition 1.6(2) and by combinatory completeness (see
[13] or [17] for details).

Discussion. (A) Apparently, Combinatory Algebras and A-models differ only
because of a choice function N over the set of representable functions, see
Definiton 1.5 and 1.6. Namely, given (D, -)CL and f e (D — D), let A choose an
element, Ax.f(x), from the extensionality class of f, say E; ={d: Vef(e)=d - e}<
D. Using K and 8, can’t we always have also Definition 1.6(2) satisfied? The point
is that, if so, the choice map dFAx.dx can be ‘represented’ in D. In fact by
Definition 1.6(2) one has that Axy.xy =AAxeD.(AAye D.xy)))e D and, for
d € E;, (Axy.xy)d = Ay.dy = Ay.f(y) = A(f). Using notation from [17], let’s set ¢ for
Axy.xy; then & applied to deE; chooses the representative of f in E i.e.
ed = A(f) and, as it can be easily checked, one has

Vede=d'e & ed=¢d'. 1)

This is how one can have difficulties, trying to define a choice map \: in [4], for
example, a Combinatory Algebra D is given (actually a A-algebra, i.e. a model of
strong Combinatory Logic, see [2]), where ‘=" is a 35 complete predicate. It is
then easy to understand why that Combinatory Algebra cannot be turned into a
A-model: because (1) would give a contradiction in the recursion theoretic
hierarcy.

(B) Meyer [17] proves also the converse of the point above. Namely, if a

Combinatory Algebra contains an & satisfying (1) above and

foralld,ee D, ede=de, 2
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then (D, -, &) naturally yields a A-model. Shortly, set A(f)=ed for fe(D — D)
and deE;. then (2) gives Definition 1.6(1). As for Definition 1.6(2), if fe
(D"*'— D) and f(d, e)=dced, say, then by combinatory completeness dred =
d;[fe, for some d;. Thus AMAee D.f(d, e)= e(d}J). By combinatory completeness
again, s(d,’:[i) = e’d}&, for some &'. Hence )\EieD".e(d}E)e(D" — D). (Cf. Also
[23] for a first-order approach.)

Definition 1.7. Two (expanded) Combinatory Algebra (D, -, (S;, K;)) and
(D, x, (S,, K5)) are Equationally equivalent iff D,EM=N& D,EM= N, for all
CL-terms M, N.

As well known (B) or CL reductions entail a ‘loss of information’. In
(Ax.M)N — [N/x]M, one knows ‘where one goes, but not where one comes from’.

How can this be reflected in the semantics? Given a poset (D, =), let first say
that f: D — D is w-continuous iff, for any w-chain {d, },.., if L1 d, exists, then
fldd,)=Uf(d,).

Using ideas from Wadsworth’s analysis of Scott’s model D..,, Wadsworth [27]
(see also [2, 5]) define:

Definition 1.8. A Combinatory Algebra (D, -) has approximable application iff
(i) (D,-, <) is a poset, with least element L, such that “:D?—>D is w-
continuous.
(ii) There exists a map Seg: Dxw — D such that, for d, =Seg(d, n), Vd, ec D
one has

(1) d=Ud,
(2) dOZJ-’
3) Le=1,

(4) dn+le = (den)n’
(5) (dn)m = dmin{n,m}'

A way of understanding Definition 1.8 may be the following:

~d, is d up to ‘level n of information’;

—applying no information, L1, to something, one gets no information;

—if the operator has level n+1 of information, then it uses at most level n of
information from the argument and provides at most a value with level n of
information.

This has an immediate consequence for the semantics of the class of terms in

CL where one can always perform reductions at the leftermost outermost level,

i.e. for CL-terms in PO,

Theorem 1.9. Let (D, -) be a Combinatory Algebra with approximable application.
Then

MePO,>DEM= 1.
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Proof. For the purpose of this proof, let’s introduce a labeled CL, CL,. The
formation rules of CL-terms are extended by

MeCL,>M"e(CL, forall new;

the reduction rules are extended by

(Klab) (1) K"*'M — (KM)",

) (KM)™'N—M",
(Slab) (1) S"*'P— (SP)",

(2) (SP*"'Q— (SPQ)",

(3) (SPQ)""'R — (PR"(QR™))",
(Min) (M™)™ — Mrminim),

M e CL is completely labeled iff each occurrence of S and K in M is labeled.
Interpret CLy-terms in D, by adding [M"], = (IM],),,, for all environment o.

Claim 1. Let Mc PO, and M' a complete labeling of M. Then CLo+FM' — N°Q
for some N, O in CL,.

In fact by definition of PO,-terms, K and S (labeled) rules are always
applicable at the ‘head’ of M(M") and its contracts (in particular (Klab)(2) and
(Slab)(3), up to label 0).

Claim 2. If CL,FM — N, then DEM<N.

Use Definition 1.8(ii) and monotonicity of ‘- .
Let MePO,. Then

DEM=|_J{M": I complete labeling} by Definition 1.8(i)—(Gi)(1)
<L {N°Q: VIM!' - N°Q} by Claims 1 and 2

=1 by Definition 1.8(ii}(2) and (3).
a

So much for Combinatory Algebras; Theorem 1.9 in full generality will be
applied in Theorems 3.6 and 4.10.

In the next sections we will use two notions of ‘tree of a A-term’. For the notion
of Bohm-tree of a A-term M, BT(M), we refer to [1] (or [2]). The partial order
‘<’ on Bohm trees is the usual syntactic one: informally, put the always undefined
element ‘1’ at the bottom and then proceed inductively on the structure of the
tree. Recall that BT(M) = 1 iff M is unsolvable.

Definition 1.10. (Informal) Let X ={Ax; - x,.L: n=0U{TIU{Ax, - X,.y:
n=0}. Then the Tree of M, T(M), is a 3-labelled tree defined as follows.
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TM)=T if MeO,,
T(M)=Ax; - -x,.1 if M is unsolvable of order n (see 1.4),
T(M)=Ax; " x,.y

/ N\

T(My) - - - T(M,)
if M is solvable and has principal head normal form Ax, - - - x,.yM, - - - M,,.

A Tree may be infinite: just mimic [2, p. 212] to give a formal definition. T(M)
is obtained from BT(M) ‘displaying’ the order of the unsolvable leaves. This can
be done with the help of a 39 oracle, writing his answers on leaves.

Definition 1.11. The set of Trees is partially ordered by

T(M)= T(N) iff T(N) is obtained from T(M) by replacing L in
some leaves of T(M) by Trees of A-terms or by
replacing some Ax; - x, 1 by T.

Example.
Ax.y AX.y
(1L in Az.1 is replaced by
<
/ \ / \ T(Av.xz) and Axy.L by T.)
Az.L Axy.L sz.Ix T
z

Levy [15] gives a partial order on terms, =<, based on a notion of reduction
and on the associated set of approximants. It is easy to prove that M <; N iff
T(M)<= T(N).

Given a A-model (D, -, A), embed (D — D) with the pointwise partial order.

Theorem 1.12. Let (D, -, \) be a A-model with approximable application. Assume
also that A: (D — D)~ D is monotone. Then

T(IM)=c T(N) > DEM=N.

Proof. See Appendix A. [

An easy consequence of Theorem 1.12 is that, in a A-model D as in Theorem
1.12, all fixed point operators Y of AB coincide in D and they represent Tarski’s
fixed point map Yr(f) =LIf"(1). (See Appendix A for a proof: in Section 3 this is
applied to a class of models.)
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Definition 1.13. A A-model (D, -, A) has A-approximable application iff (D, -) has
approximable application and Ax.1 = L.

Proposition 1.14. Let (D,-,N) be a A-model with A-approximable application.
Then

BT(M)cBT(N) = DEM<N.

Proof. Forcing Ax.L =1, T(M) collapses to BT(M): see Appendix A for
details [

2. Plotkin—Scott-Algebras and the local structure of Engeler’s models

Definition 2.1. Let B be a non empy set such that

(o) BcsBAbeB & (B;b)eB
where 8 (as well as B,,...,v,...) range over finite sets. Define then

(i) “:PBXxPB—>PBbyd-e={b:3dBce(B;b)ed}

(ii) (PB,-) is a Plotkin—Scott-Algebra (PSE-Algebra, in view of Engeler’s
approach).

Note that, by < in (o), PB is closed under application ‘-’. In Definition 2.4 a set
B satisfying (o) is given (see also later).

Let D, E be topological spaces. Then C(D, E) 1s the set of continuous functions
from D to E.

Lemma 2.2, Let B be as in Definition 2.1. Then
(1) {PB, <) is a complete algebraic lattice. The Scott topology on PB is given by
the basis

{dePB: B=d} for B (finite) in PB.
(2) fe C(PB", PB) iff f is continuous in each argument iff
f(dy=U {f(B): Bed}.
(3) (PB" — PB)= C(PB", PB).
Proof. (1) and (2) Routine.

(3) = holds by the continuity of ‘. As for 2, note that {(By; (Ba; ... (B.;
b)--):bef(B,...,B.)} represents fe C(PB", PB). [

Theorem 2.3. Let (PB,:) be a PSE-Algebra. Define \:C(PB, PB)— PB by
AMH =Ax.f(x)={(B; b): b f(B)}. Then (PB, -, \) is a A-model.

Proof. Observe that \ is continuous, when C(PB, PB) is given the Scott topology.
Then the result easily follows by the lemma. [
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Of course, using Definition 1.6(2),
Axl T xn-f(xls s xn):{(Bl’(HZ’ te (Bna b) T ) bef(Bla cees Bn)}

Is there more than one way to turn a PSE-Algebra into a A-model? This question
will be answered in Sections 3 and 4. The equations PSE-Algebras may solve are
discussed in Remark 3.9.

Definition 2.4. Let A# (). Define
B0:A7 Bn+1:BnU{(B;b):BanAbEBn},
B=UB, D,=PB.

(Recall that 8 ranges over finite sets. No element of A is denoted by (- - -; - - -).)

Thus (D4, -) is the free PSE-Algebra generated from a set A of atoms. In this

section (Theorem 2.8, proof in Appendix B) we syntactically characterize the set
of true equations of A-terms in the A-expansion {(D,,-,\), where N is as in
Theorem 2.3 and A is just a non empty set. (D,, -, A\) has been defined in [12]
(see also [18, 22]). A similar construction over a set of type symbols can be found
in [9]. In Remark 5.8 it will be shown that also Scott’s Pw model is (isomorphic
to) a PSE-Algebra. But, by Theorem 4.8, for no A (Pw, )=(D,, ).
The intuition on which the construction of PSE-Algebras and the definition of
is based should be clear: (8; b) is an ‘elementary instruction’ giving output b
any time the input contains 8. Thus V¥ d € D, Ad =, since we assume A not to
contain pairs such as (B8; b).

Note also that, by definition, in the case of D,,

L

25.VbeB3B,,...,8,FacAb=(B,; - (Bi;a) ).

This makes D, ‘well founded’ in the following sense: there is no infinite
descending chain w.r.t. (the transitive closure of) the binary relation < on B,
where b<(B;c)obeBvb=cv(ce B\AAb<c).

The point is now to turn (D4, ,A) into a A-model with A-approximable
application.

Definition 2.6. (i) (Simultaneous definition of |-| on B and on the finite parts of
B, with range in w.)

[bl—{l ifbec A,
IBl+lc| if b=(B;c),

|Bl =max{|c|: ce B} + 1.
(ii) Let d € D4. Define d, ={bed: |b|<n}. Clearly |B|, |b|<|(B; b)|.

Lemma 2.7. (D4, -,A) has A-approximable application.



164 G. Longo

Proof. (Part 1: approximable application) We only check Definition 1.8(ii)(4), the
rest is trivial.

d,,e={b:3ABce(B;b)cdn|B|+|blsn+1}
c{b:3Bce, (B;b)edn|bj<n}=(de,),,

since VB Vb |B),|b|=1 and |B|=<n implies (Bce=>Bce,).
(Part 2: A-approximable application) Ax.@={(B;b): bec@}=0. I

Thus Proposition 1.14 applies and BT(M)<cBT(N)=> D, EM < N.

To prove the reverse implication one can use the classical Bohm-out technique
a la Hyland. A revised version of it is in [5].! The point is to substitute Bohm’s
operator C, =AXg - ** X,.1.X,1.1%X0 " * * X, by a C, whose properties depend on the
structure of D, and such that Lemma 3.3 of [5] applies. The construction of such
a C, required 26 technical lemmas, in the case of Plotkin’s Tw. For D, it turns
out to be much simpler and it is shown in Appendix B.

Proposition 2.8. Let A+ (. Then
BT(M)=BT(N) & (D,,,A\)FMcN.

Proof. By the proceeding remarks and Appendix B. O

Putting together Theorem 1.9 and Lemma 2.7 one has that M is unsolvable iff
(D4, , NYEM =@, thus {D,, -, \) is sensible in Barendregt’s sense [2, p. 100].

We conclude with a simple characterization of A-terms possessing normal form.

Let (DAY ={M]: Me A°} be the interior of DA.(DA)°, as the set of objects
interpreting closed A-terms, can be algebraically characterized by taking 8§=
Axyz.xz(yz)e D, and K=Axy.xe D, and closing with respect to ‘-’

Corollary 2.9. Let Mc A°. Then M has a normal form < {de(D4)°: DpFd < M}
is finite and [M] is maximal in (D,)°.

Proof. M has a normal forms iff BT(M) is finite and contains no 2’s. O

This fact is also true in the model Tew; but the authors of [5] were too distracted
by the hardware of Tw, to point this out.

3. A semantical characterization of A-terms of order n, for any nc @ U{x}

In this section we define a different A-expansion of the applicative structure
{D,, -y defined in Definition 2.4. Namely, for each fe(Ds— D,),

! Correction for [5, p. 316, def. 3.4(ii), line 2]: set y, = C,a; instead of o, =C,y, 0<si<n.
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A (D4 — D,)— D4 will choose a representative in the extensionality class of f,
say EC; ={d: Ve f(e) = de}, different from A(f).

Definition 3.1. Let A# 0, (D,, -) as in Definition 2.4 and A as in Theorem 2.3.
Define A": (D, — D4) — D, by

AN =A"xf(x):=Ax.f(x) UA.

Note that for all A#@, the D,’s are objects of a Cartesian Closed Category
(CPQO’s), with continuous maps as morphism. As already pointed out (D, —
D,)=C(D,, D,): it is then easy to show that also A and A" are continuous maps.
Moreover C(D%, D.)=C(D,, C(D ', D,)). Thus

Ax X f gy e X)) = AT (AT X f(xy, L, X))

is well defined for all fe C(D%, D4). Lemmas 3.3, 3.4 and Corollary 3.5 show
that DX =(D,, -, A%) is a A-model, for A# @ and D,, -, A and A" defined as in
Definition 3.1.

Definition 3.2. Define A,,,=A"x; - x,.0.

Lemma 3.3. (i) A, =9,

() A=A XA =AX - X AURX - X, . AU UA,

(i) A S Apry

(iv) Vde D, (Ap)d = A,

W) A%xp o fe, s XD =R X fx, LX) UA,, forall fe
C(D,r«l\, DA)’ -

VD) ATy X flxy, o %) d = A X X f(ds o d X)), for all fe
C(D%, D) and d=1{d,, ..., d,}, with p<n.

Proof. (i) Obvious; (ii) easy induction; (iii) by (ii).
(iv) by Ad=9, for all de D4, and continuity of ‘-’ (recall that Ax.A=
{(B:b): b A}).

(v) induction, again; (vi) by (iv) and (v). O
Lemma 3.4. Y fc (D4 — D,), A"x.f(x) is the largest element in EC,.

Proof. Let dc EC;. Clearly dNA <A™ x.f(x). Let (B;b)ed. Then bedp, ie.
bef(B) and we are done. [

Corollary 3.5. D, =(D4,-,A") is a A-model. Moreover it is the unique A-
expansion of (Da, *) satisfying Y de Dad <= A" x.dx.

Proof. The first part is by Lemma 3.3; note that if ABFM = Ax, - - x,.N, then
VoML =Ad, - - - d. [NT"o[d/x]JUA,,, by Lemma 3.3(v). (1)
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(Use 2.3 and what follows it.)
Assume now that (D,, -, A’} is a A-expansion such that Vdd < A'x.dx. Recall
that

Vde(dUA)e=de. (2
Then, for all fe (D, — D,),
AVF(MIUA S A x.Ay.f(y)UA)x by assumption
= A'x.(Ny.f(y))x by (2)
=Xx.f(x) by Theorem 2.3.
By Lemma 3.4, we are done. (O
Clearly (D, -) possess at least Card(2*) A-expansions. This A-model provides a
semantical characterization of the A-terms in PO,, O., and O,, for all n.
Theorem 3.6. Let M be a A-term. Then
MePO, & DiEM=9.
Proof. . This follows from Theorem 1.9. Notice that Theorem 1.9 depends
only on the applicative structure of (D,, ), i.e. on (D4, ) as a Combinatory
Algebra, not on the A-expansions which may turn it into a A-model.
<&. Assume M¢PQ,.
Case A\B+FM = xQ, for some Q, ..., Q,: Then, since DAFM =S Vo M) =

@, DA¥FM =0, by taking o(x) =Ax; " " - x,.A.
Case A\BFM = Ax.N, for some N: Then

Vo ML =A"d[NT od=Ad[N]'clUA+¢. O
Of course, Theorem 3.6.< depends on the A-expansion (cf. Proposition 2.8).

Theorem 3.7. Let M be a A-term. Then

(i) MO, & (DEM2 A, % m=n),

(i) MeO, ©DLEM=B.
Proof. (i). =. Assume ABFM = Ax; * - - x,,.N, with N O,. Then (1), in corollary
3.5, immediately gives (<1:)

As for % , assume m > n.

Case NePO,. By Theorem 3.6 and (1), Vo [M[; = A, (recall that Ax.0=9),
while A, < A,,, for m>n.
Case NExi(-j, for some O and i <n. Take b=(By; (0 ;- (Bn;a) ) for
ith
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some 8 in D, and a€ A. Clearly be A,,\ A,; thus beAd, - - - d,.d, (O a[d/X)).
Then by the definition of A, one has a e 0[Ol BIZ] = 9.

Case N=yQ, for some Q and y#x, i<n. Take o(y)=0, then [Ml;=A, <
A,,, for m>n, by (1) in Corollary 3.5. A contradiction.

So far for (1). >.

&. Assume M¢O,.

Case M €O, with p# n: Then by =, we are done.

Case M€ QO,: Then, since A, A, &--"SA, & -,

Vp Vo [M], 2 A, by Proposition 1.3(ii) and (1). (3)

This contradicts 5:3, again.

(ii)

Claim. B = U A(n)'

Clearly | A, =B. Conversely, if beB=|J B, (see Definition 2.1), b=
(B1; - - (B,; a)) for some ﬁ in D4, a€ A (by 2.5). By Lemma 3.3(ii) and Theorem
2.3, Apin2Ax; - X A={(B1; - (Bpsa)):a€ A, B in Dy}

Thus,

Be U Ay (4)

Now, assume M € Q,, then
Vo [M]: =B, by (3) and (4).
Conversely, D, EM = B implies
VnM¢O,, by (i) and (4). O

In view of (4), let’s write A= B.

Corollary 3.8. Let M be a A-term. Then
M is unsolvable @A ne w U{} DAEM = A,
Proof. —>. By Lemma 1.4 we have two cases.

Case M€ O,.: Then D.FEM = A_,,, by Theorem 3.7(ii).
Case \BFM=Ax, - - - x,.N, for some new and NePQO,. Then

Vo ML, =AXx0UA,,= A, by (1) and Theorem 3.6.
&. Assume ABFM=Ax, - X%,.yQ, - Q,, for some mew, y and Q (ie.
assume that M is solvable). Assume also that DM = A,,.
By Theorem 3.7(i),
D;:FM: A(n) $ n=m.

Thus ns=m.
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Case y# x;,, Vi<=m: Take o(y) =Ax; - - - x,.A. Then
IME=A"x,---x,.A
# Ay, by Definition 3.2 and Lemma 3.3(iv).

A contradiction.

Case y = x;, for some i <m: Take B={(®; - - - (@; a) - - -)} of length p, for some
acA, and b*=(By; - (B - (Bmia)- ), for some f. Then b*¢ Ay, by
Lemma 3.3(ii) and n < m. Nonetheless

Vobee{(By; - (Busb) - )/beB [O] ol BIx]} <M

since Bid, - -+ d,={a}. A contradiction, again. [}

By Theorem 3.7, the witness n of the RHS of Corollary 3.8 is unique and it is
the order of the unsolvable term M.

Note that D}, provides a semantical characterization of unsolvable terms, with
their functionality. Moreover the functionality of solvable terms is also charac-
terized, by Theorem 3.7(i), though it never occurs that a solvable and an
unsolvable term are equated. Finally, by the montonicity of A", Theorem 1.12
applies; thus

TIM)cT(N) > DAFMcN.

The author believes that this model is ‘very sensible’ although such a definition
wouldn’t fit Barendregt’s (cf. [2, p. 100]).
With some patience, one should also be able to work out the following fact:

T(M)=T(N) & D EM=N.

Actually, we claim that the technique used in Appendix B gives also the
following: let A have at least two elements and age A, define A'x.f(x)=
Ax.f(x)U(A\{ao)), then

TINYST(M) & (D4, -,ADEMSZN.

Remark 3.9. How do the models defined in Sections 2 and 3 relate to the
set-theoretic construction in Scott [22]?
Given A#Q, set A*=J, A", where A°={( )}, A"={f:f:{0,...,n—1}—
AY={a,,...,a,): ay,...,a,€A}and ) is the empty tuple (Scott [22, p. 229)).
‘Zermelo’s least solution’ of the equation C = C* (cf. Scott [22, p. 234]), would
be
B,=N{C:peCnlay,...,a,cC>{ay,...,a,)eC)},

that is, B is the least set containing ) and closed under formation of finite tuples.
The A-model is given by X.Y={b:3An 3a,,...,Ja,cY (b, a,,...,a,ye X}, for
X, YS B, and Ax.f(x)={ YU{b, ai,...,an): bef(a,, ..., a.})} for fcontinu-
ous over the parts of B, (see Scott [22, pp. 229-234)).

Define B as in Definition 2.4, starting with A ={@}, and ': B, — B by ( ) =0,
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(b,a,,...,a,) =(B,b"), where B8 < B contains exactly (and without repetitions)
al,...,a,. This is well defined, as a map, since {a, b, ¢) is not given as {a, (b, c})
(it is not a Kuratowski tuple, say). In particular (b)Y = (@; b'), (b, { )) = ({@}; b") and
(a,{b,c)y ={(b,c)}; a") #({b', c'}; a) =(a, b, c).

Let B% be B, modulo the following relation: x~z iff x'=z'. Thus two
n+1-tuples are equivalent iff the last n elements are the same up to a permuta-
tion (inductively over the ‘depth’ of tuples). Note that working modulo ‘~’ does
not affect the model, i.e. does not affect application and abstraction as defined
above. Clearly B% and B are isomorphic. Thus Scott’s model construction (i.e. the
‘full’ A defined on p. 233), modulo ‘~’, is isomorphic to (D,, -, A"), where
A ={0}.

More generally, given a set A of ‘atoms’, i.e. non-tuples, consider Scott’s
equation C=A UC* (Scott [22, p. 244]). Then

Bs=N{C:AcCaAPeCnlay,...,a,eC > {ay,...,a,)eC)}

is the least solution of C= A U C*. Up to the equivalence ‘ ~’ above, over tuples,
Bg is the same as the set B defined in Definition 2.4, starting with A,= A U{@}.
This generalization turns out to be essential for the purposes of Theorem 4.1.

Intermezzo (on extensionality). When dealing with applicative structures, by
‘extensional applicative structure’, we mean a pair (D, -) such that

(E) VYVdecD(NceDdc=ec>d=e).

Dana Scott in discussions with Roger Hindley, Henk Barendregt and the author
pointed out that the right notion of extensionality for structures, which yield
A-models, is the satisfaction of rule (&), see Section 1, in the sense described in,
say, [13], [17] or [2]. As a matter of fact, the correct meaning of the word is that a
function is uniquely determined by its argument-value correspondence. This is
exactly what (£) takes care of.

However, one may be interested in applicative structures which may not yield
A-models. Still they may satisfy (E) above. That is, they may contain just one
representative for each representable function. Some interesting domains satisfy-
ing (E), which do not need to be A-models, are characterized in [10].

In view of the general discussion on applicative structures carried out in Section
1, we keep the slightly improper use of (E) for extensionality and consider (¢) as a
weak extensionality property, following [1] and [2]. Note that A-models are
exactly Combinatory Algebras satisfying (£). In case of A-models, (E) corresponds
to the axiom schema (n) or rule (¢). The following discussion is divided into two
parts. Both are concerned with a technique for constructing extensional A-models
due to Scott. Remark (i), in Part I, answers a question raised by Scott, while (ii)
states a conjecture and an argument which makes it plausible. Part II presents a
construction which will be used in Sections 4 and 5.

Part I: None of the models studied so far is extensional; namely, in general,
EC; contains more than one element. Throwing away some elements, can we turn
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{D,, ) into an extensional A-model? There doesn’t seem to be an elementary
direct way for such a construction, starting from a A-expansion of (D,, ) (see
Definition 4.4 for an indirect argument).

Scott [21] (see also [22]) presents an elegant technique to construct an exten-
sional substructure of the A-model Pw. This technique applies to ‘almost’ (see
later) any A-model satisfying (n )Ax.x < Axy.xy, which is a c.p.o.

Scott’s argument is the following: Let

Iy:=I=Axx L...=Axy.I (x(I,y)).

Set d,,,,=[I.]€ Pw and d..= J d,)- Then Ew ={d..e: e € Pw}< Pw is an exten-
sional A-model (see [22]).

Remark. (i) Scott [22, p. 251] points out that d.. is the least solution of
d = do,U (Axy.d(x(dy))),

and remarks that d. doesn’t seem to be the interpretation of any closed A-term.
And in fact it is not. By induction, one has

VaABEL =Axy - Xu Xl 1 X)L 2%2) = =+ Xy (1)

Now d. #@; thus, if [M]=d., M is solvable, say ABFM=Ax, " xp.xj(j. Then
one can derive a contradiction from Vnd, =[[M] and (1), by applying them to the
right C in Pw, depending on j.

(i) Let (B, <,) be the set of Béhm-like trees partially ordered by (possibly
infinite) m-expansions (see [2, p. 230]). It is then easy to show (use cofinality of
chains) that LI BT(I,) is the ‘Nakajima-tree’ of Ax.x (see [2, p. 51]). Conjecture:
Ew is equationally equivalent to Scott’s inverse limit D... (Added in proof: Karst
Koymans recently proved this conjecture.)

Part II: Scott’s (n~) property seems to be a fairly natural property for a
A-model (D, -, A’) which is a poset. It says that A’ chooses the largest element in
EC,, for each fe(D— D). That is exactly what A" does in the case of D3,
Nonetheless the technique of Part I doesn’t apply to Dj (thus to no other
A-expansion of (D,, -)). In fact, by Theorem 3.7(i) and (4) in proof of theorem
3.7, one has d,= B. Therefore

{d.e:ec D t={B},

since V e € D, Be = B, i.e. the extensional substructure collapses to a singleton.
How to force (7) into Engeler’s construction and still obtain an interesting d..?
Given A" # A", Vdd < A'x.dx is false because of those d’s containing elements
of A, which do not act as ‘instructions’ (see Corollary 3.5). Thus, what one can do,
with a € A, is to force a = ({a}; a) (or, also, a = (#; a), see Remark 5.8), i.e. force
a to act. That is, set a =({a}; a) and consider B=B/=,D, =(PB,-).! (It is easy
to define hereditarely = on B, see the Remark below.)

! By a different argument, Scott derives the same observation (see remark on p. 251 of [22]).
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D, is no longer well founded and there is no way of turing (D,, ") into a
Combinatory Algebra with approximable application: this is an immediate conse-
quence of Theorems 1.9 and 5.6 (see later) which gives a semantical characteriza-
tion of closed A-terms of order 0, different from Theorem 3.6; namely,

MeO, & D,EM=A, for M closed.

Notice that, in D,, YVbeB@®;b)¢d..=J dn,, by (1) in the remark. Thus
d.. = 0; since one also has d..B = B, then Scott’s technique applies and the exten-
sional substructure is not trivial.

In this model, Tarski’s fixed point operator is not A-definable (see Section 5).

Remark. Clearly not any equivalence relation ~ on B turns PB into a non trivial
applicative structure. (Hints: Take a map of B into B, whose range contains
B\ A. Define hereditarely on the pairs (8; b) in B the least equivalence relation
~ such that, for c€ B, ¢~ f(c). Then (PB, -) is a (non trivial) PSE-Algebra. (This
generalizes the technique used above, where f, and f, are such that f,(a)=
({a}; a) and fy(a) = (@; a).) We claim that, given B and ~ on B, if (PB, -) is a well
defined PSE-Algebra, then ~ may be defined as above. (See the Conclusion for a
further discussion.)

4. Expansions in any cardinal. Lambda-categorical models. D, and Pw

The theory AB is not complete, in the sense that there exist (closed) terms M, N
such that AB¥M =N and AB+{M =N} is consistent. Moreover A does not
possess finite models. Then, by X.0s—Vaught theorem, A possesses, in any infinite
cardinal, non ‘elementarely equivalent models’ (see [17] for a first-order charac-
terization of A-model).

The local analysis of (D4, -, A) and of (D4, -, A") gives a stronger fact: in the
case of A, we can obtain, in any cardinal, non equationally equivalent A-models
over the same applicative structure (see Theorem 4.1). Theorem 4.6 proves a
counterpart of Theorem 4.1.

We first state an obvious generalization of Theorem 3.6. Namely, instead of
using the specific A-expansion D of (D,, -), given by A" as defined in Definition
3.1, we could use any A-expansion D’ =(D,, -, A"), defined by a choice map A’
over the representable functions, such that A'(f)=A{(f)Ud’, where d’'c A and
d' # 9. Any such a D, trivially gives the same characterization of A-terms in PO,
as in Theorem 3.6,

Theorem 4.1. For any infinite-cardinal «, there exists a Combinatory Algebra
(D, *) such that

1) card(D)=q,

(2) (D, -) has A-expansions which yield non equationally equivalent \-models.
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Two arguments for Theorem 4.1 follow. The first was suggested by the referee
and directly uses Lowenheim-Skolem theorem, Proposition 2.8 and Theorem 3.6.
The original proof (proof II) to some extent works out the details of proof I
and more closely investigates the structure of definable submodels and their
relation to models. As a consequence, say, it suggested Remark 4.2.

Let A be a. Define B = A and (D,, -) as in Definition 2.4. By the construction,
card(B) =« and card(D,) =2

Proof I. Following Meyer [17] or Scott [23], formalize A-calculus (and its
models), in a first-order way. In particular an expanded combinatory algebra
(D, -, 8,K), i.e. a model of CL with a given interpretation of § and K, is a
A-model iff, for £ =S(KI) (where I =SKK), Meyer’s axioms (1) and (2) in the
Discussion of p. 7 are satisfied (cf. also Remark 5.8, where axiom (3) is a stability
condition, i.e. ee =¢ iff €= Axy.xy).

Consider now the first-order theory of (D,, -). Let K=Axy.x, K"=A"xy - x and
similarly for 8§ and S*. By Theorem 2.3 and Corollary 3.5, both the correspond-
ing € and &* satisfy Meyer’s axioms and give different A-expansions of (D,, *)
(actually N and A™).

By Lowenheim-Skolem theorem, there exists a substructure (D, -) of (D, *)
such that:

(i) K,S,K",S"eDc D,,

(ii) card(D)= a,

(iii) (Da,, -) is an elementary extension of (D, -).

Thus, by Proposition 2.8, (D, -,K, S)FM = N iff BT(M) =BT(N). Choose now a
term in POy, say SII(SII). Then by Theorem 3.6, (D, -, K*, S*)F M = SII(SII) iff
M ePQ,. Hence the theories of these expansions of (D, -) differ.

Proof II. (1) Let L be a ‘rich enough’ first-order language L for Set Theory with
two sorts of variables, one of which ranges only over finite subsets of B (in other
words, formalize what we have been doing so far, using 8,v,... and b, c,...).
Since A € B contains atoms, and, for the purposes of the proof, we need them as
‘non tuples’, express (B; b) in such a way that no element of A is denoted by
(- eye ).

Let DS={d:d<B and d is definable over B}< D,, i.e. the elements of D§
are defined by formulas of L using constants from B. By definition, DS is closed
under ‘. Clearly K={(B; (v; b)): be B} and S={(B; (v; (8, b))): be 88(y8)} are in
DS. Thus (DS, -) is a Combinatory Algebra and card (D$)=a.

(2) Let (DS — DS) be the set of representable functions over DS (see Defini-
tion 1.6). For fe(DS— DY) define fe C(D4s, D) by f(d)=U {f(B): B<d B
finite}. Since any finite 8 < B is in DS and D, is a complete algebraic lattice, f is
well defined and is the unique continuous extension of f with respect to Scott’s
topology over D,.
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Let A be as in Theorem 2.3 and let d’ be a definable (possibly empty) subset of
A. Define a A-model (D,, *, A') (i.e. a A-expansion of (D,, -)) by A'(f) =Nf)Ud’".
Set then AL(f)=A(f), for fe(DS— DS). We need to show that Alx.f(x)=
A(f)e DS, in order to prove that (DS, -, A/) is a A-model; the rest is trivial.

Let d; € DY be a representative for f. Then d; represents also f: by continuity of
> one has f(d)=gca di8 = dyd, for all de Dy4.

Then AL(f)=A'(f)=({(B,b): bedBlUd)e D5 and (DY, ", Ay) is clearly a A-
model.

Set now K =Ax(Ay.(Kxy)) and 8 =A'x.(A'y.(A'z.(Sxyz))): then K=
KU{(B; b): be d'}Ud’, similarly for §'. Thus K’ and § are in D§ and interpret
the A-terms K =Axy.x and S=Axyz.xz(yz) in (DS, -, A{). By definition of AS,
they also interpret K and S in (DS, -, A&). Then, if M is a closed term, one has
M1, =[MIE, where [ - ‘[ is the interpretation in DY: just write M using only S
and K’s. Thus (DS, -, AOEM=N iff (D4, -, A\YeEM=N, for closed M, N.
Theorems 2.8 and 3.6 (see above) give the result. [

Remark 4.2. Scott’s approach to the construction of models of A-calculus has
been a topological one (cf. Scott [20]). By giving the Scott topology to some
lattices, the set of continuous functions could be isomorphically embedded into
the lattices themselves. The definable models DS above, with the induced
topology, do not have this property. As a matter of fact, let DS be as in Theorem
4.1 (proof II). If card(DS) = a, then the continuous functions on DS are more
than «. To prove this, assume that the language L has a constant symbol for B.
Then consider in DY the sublattice G,, whose least and largest element are () and
B and containing the singletons of elements of B as incomparable elements (with
respect to <). Give to G4 the induced topology. Clearly, for A is «, there are 2
continuous maps of G, into itself, i.e. card(C(G,, GA)) =2 Since G, is trivially
a continuous lattice, G, is an injective space (cf. Scott [20]). Thus any fe
C(Ga4, G,) can be extended to f*¥e C(DS, G4) < C(DS, DY).

This is why the model has been defined using just the representable functions,
which are much less than the continuous ones, but still enough.

Question. Is there a topology on D such that the representable functions are
exactly the continuous ones?
(We claim that there is no such a topology.)

Theorem 4.1 proves that, for any infinite cardinal, there exists a subalgebra of a
PSE-Algebra (a sub-PSE-Algebra, say) with several A-expansions, yielding differ-
ent theories.

Of course, if the cardinal is 2% for some infinite «, one could take a full
PSE-Algebra.

A PSE-Algebra may or may not contain (elements with) atoms; D,, as
defined in Definition 2.4, does contain atoms. They have been used in the proof
of Theorem 4.1.
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By an abuse of language, we say that a PSE-Algebra is atomless if all its
elements are atomless, i.e. do not contain atoms. For example, I§, defined at the
end of the Intermezzo, is such that D, (=PB) is atomless, by the identification
a =({a}; a) (see also Remark 5.8).

Given B as in Definition 2.1, let’s say that d € PB is saturated iff

((B:b)ednBcy = (y;b)ed).

The following lemma gives some general information on the embeddings of
C(PB, PB) into PB, i.e. on A-expansions. Claim 1, say, proves that, in order to
satisfy Definition 1.6(1)—(2), they must be continuous. Thus, in a PSE-Algebra,
Definition 1.6(1)-(2), are equivalent to Definition 1.6(1) and the continuity of the
embedding.

Lemma 4.3 (Main Structural Lemma). Let (PB, -) be a PSE-Algebra. Assume that
(PB, -, A") is a A-model. Then X'(f) is saturated, for all f e C(PB, PB).

Proof. Recall first that (PB — PB), the set of representable functions (c¢f. Defini-
tion 1.6), coincide with C(PB, PB): in fact any continuous f is represented at least
by A(f) ={(B; b): b e f(B)}, the canonical representative of f. By the assumption, A’
satisfies Definition 1.6(1)-(2). Using Definition 1.6(2), set &' = A'xy.xy (cf. the
Discussion following Definition 1.6). As in that Discussion, one then has: &'d =
Mx.dx = A'(f) iff de EC; (i.e. iff d represents f).

Claim 1. )\’ is continuous (and hence monotone).

Since N(f) € EC;, then A'(f) = &'A(f). Use then the continuity of X and of *-’.

For the sake of simplicity, set now ¢(d)=Axe PB.dx; that is ¢:PB—
C(PB, PB) gives the function represented by d. By definition, A'(¢(d)) = A'x.dx
and ¢ (A (f)) =£. Since ‘-’ is monotone, then ¢ also is monotone.

Claim 2. o ={(B8; b))} a = A'(¢()) (=A"x.ax).

For
(A x.ax)B = aB ={b}
> IB' BB b)erx.ax
> be(AMx.ax)B =ap’.
> B'=pB, otherwise af’'=0
= (B:b)elxax (=N (d(a))).
Let now fe C(PB, PB) and (8; b)e A'(f). From 8 <y we have to deduce that

(v; b)e A'(f). Set then a,={(B;b)}, a;={(y; b)} and e={(5; b): B = 8}. Clearly
dlay) = d’(e).
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Then one has
a; S A (¢p(e)) by Claim 2
< A'(¢p(e)) by a,<e and monotonicity of ¢ and A
=M (¢(ap)) by dlag)=dle)
SN (f) by ay = A'(f), that is by ¢(a)) = () =f.
Thus (y; b)eA'(f). O

’

Definition 4.4. A Combinatory Algebra is lambda-categorical if it has a unique
A-expansion (that is the applicative structure uniquely determines the A-model).

Theorem 4.5. (i) Let (PB, -) be a PSE-Algebra and f € C(PB, PB). Then EC,, the
extensionality class of f, contains a unique atomless and saturated element.
(i) Any atomless PSE-Algebra is lambda-categorical.

Proof. (i) Let d € EC; be saturated. Take e EC; and (B; b)ee. Then beef =
dB, that is 3 8’ < B (B'; b) e d. By saturation, (3; b)e d.
(ity By Lemma 4.3 and (i). O

Recall that D, is atomless. By the Remark at the end of the Intermezzo, it is
easy to define more atomless PSE-Algebras. By Theorem 4.5, in order to obtain
several A-expansions in a PSE-Algebras, one needs atoms, namely objects with
no ‘functional behaviour’. But, still, they do some work: their use may affect the
theory. As a matter of fact, the sub-PSE-Algebras given in Theorem 4.1 have as
many A-expansions as their cardinality. Of course, if the cardinal is large enough,
most of them will yield the same theory (i.e. will be equationally equivalent), for
there are only 2 extensions of pure A-calculus. The canonical map, X, is the
smallest one giving a A -expansion (whereas A" is the largest, ¢f. Lemma 3.4); it is
the unique map, satisfying Definition 1.6, whose range contains only atomless
elements.

Any extensional Combinatory Algebra is trivially lambda-categorical.

Theorem 4.6. For any infinite cardinal «, there exists a non extensional sub-PSE-
Algebra (D, -), with card(D)= «, which is lambda-categorical.

Proof. Let A be «. Take B and D, (=PB) as in the Intermezzo. (D,, ) is a
Combinatory Algebra of cardinal 2® By Theorem 4.5(ii), it has a unique A-
expansion: the canonical one, \.

Clearly (D,,-) is not extensional: just observe, say, that {(8;b)} and
{(B; b), (v; b)}, for B < v, represent the same function.

Then argue as in Theorem 4.1 (Proof I) to define a lambda-categorical sub-
PSE-Algebra of cardinal . [
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A lambda-categorical Combinatory Algebra yields a unique theory, as A-
model. But it may have several K’s and S’s, giving different theories, as expanded
Combinatory Algebras (i.e. as models of CL, cf. Definition 1.5).

For example, define A~ over D, as in Definition B.5 (Appendix B) for D,,
using A instead of A°. By Lemma 4.3 and Definition 4.4, A~ doesn’t give a
A-expansion  of (DA, ) (even mnot of (D4, XD). Set K =A"xyx
(={({b}; 8;b): beB}) and S~ =A"xyz.xz(yz) (=---exercise --). By Lemma
B.6(1), (D, -, K=, ST)ECL.

Question. Are (D,,-,K.S) and (D,,-, K™, S") equationally equivalent?

The theories of the A-models in Theorem 4.6 will be discussed in Section 5.

Another application of the previous results (namely Theorem 1.9 and Lemma
2.7) relates D, and Pw. In particular the isomorphisms between (D, -) and
(Pw, -) as applicative structures.

> over Pw is defined as for Enumeration Reducibility (see [19, p. 146; 2, p.
469]). That is, for codings of the finite sets {E,}.., and of pairs (,), CG =
{m:3E, =G (n,m)e C}. By (D, x)=>(D’, -) we mean that D can be isomorphi-
cally embedded into D', w.r.t. ‘x’ and *-’.

Proposition 4.7. Let A+ (. Then one has
(i) (Pw, -)=>(Da, )
(it) If A is countable, then (D,, -)=>(Pw, *).

Proof. (Notation: (,) and {E,},., finite sets, are as in [19]; in particular E, =,
E, ={0}. Set also #E, =n).
Notice first that
(0) Vhew\{0} Ak Aln, - - A n=(ny;- - (N, 0) - - )Am #0.
(i) Define (simultaneously), for some a € A,
[(J:w— Da,
h :{En}new - {B B cB ﬁnite}a
first:[w] — B
by
[0]={a, ; a), (®;(®; a)), .. .},
first([0]) = a;
Let n=(n,,(n,,...(n, 0) ), n,#0: then set
[n]={(Br,; B~ (B b)--): be[O]}
where, for E, ={m,, ..., m,},

Bi:= h(E,) ={first(m,]), ..., first((m, )} (with h(®)=0)



Set-theoretical models of A-calculus 177

and, for p=(py, (ps, ... (p, 0)#0,
first(pD) = (B5,; By - - - By a) - ).
Finally define f: Pw — D, by
f(O)=U{lnlneCh

Claim. (1) (B,;b)e[(n,p)l<>m=nAbe[p].
(2) E,cCcPw< B,=f(O).

Part (1) easily follows by the definitions (note that it holds also for (n, p) =0, i.c.
n=0Ap=0). As for (2), notice that B/, = f(E,). Clearly f is injective.
Compute now

FIO(G)={b: AB = flG)(B; b) e f(C)}
=1{b: An(B,, = f(G)ATp(B;; b)el(n, p)In(n, p)e C)} by (1)
={b:3JE,cG3Ipbe[plrlnp)eC} by (2), (1)
=U{lpl: 3 E. =G (n, p)e Ct=f(CG).
(i1) Define, for A ={ay, a;, ay, ...}

map:B — w (notation: b = map(b))

g:{B: B < Bffinite)} - w
by

a,=(1L,n), B—-b=(g(B)b)
where, for B8 =1{b,,..., b,},

g(B)=#{b,, ..., b}
Define
f':Ds—Pow by f(d)=1{b:bed}

Claim. (1) map is injective; g is injective,
(2) Yde D, 0¢f'(d);
(3) ' is injective.

As for (1) + (2), define | |: B— o as in Definition 2.6. The proof easily follows
by (combined) induction on |b| (and |B}). As for (3), it is an obvious consequence
of (1). Then compute

f(d)f'(e)={q:FE, =f'(e) (n,q)ef'(d)}
={b:IB E, s =f'(e) (g(B),b) e f'(d)}
by (2), since E; ={0} (so it is not the case that (n,q)=a for ac A),
=db:IBce(B;b)ed}, by (1)
=f'(de). O
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The embeddings in the proof of Proposition 4.7 do not preserve S and K. In
[12] it is shown that for any applicative structure (A, x), one has

(A, x) = (Da, ).
Corollary 4.8. Let A#@. Then for any countable (E, x), one has
(E,x) = (Da, ).

Proof. Just use (E, x)=>(Dg, Y>> {(Pw, ) (D4, ). O
In particular (E, x) may be a countable extensional Combinatory Algebra.

Discussion 4.9. Pw is not (as) well founded (as D, ; see Definition 2.6). Namely,
there is no way to mimic the definition of | | given for D, (see 2.5 and Definition
2.6) on Pe. If, in view of (0} in Proposition 4.7, one sets |n|=k for n# 0, then | |
cannot be extended to 0 in a way to have always |n|, |m|<|(n, m)|. In fact
0=(0,0)=(0, (0,0)) - - - (and this is the only ‘bad guy’, but any coding must have
at least one - - ). Thus under the standard coding (but this can be generalized):

V CePw {0}C={0}.

This is what we have been taking care of in Proposition 4.7(i). Clearly non
well-founded codings in even a stronger sense would make the result false (see [3]
for strongly non well-founded codings). Note that the proof of Proposition 4.7
does not depend on properties of the ‘standard’ codings, other than their almost
well foundedness (this discussion continues in Remark 5.8, where a change in the
definition of the set D,, say D% gives (Pow, -)={(D%, ).

Theorem 2.8 and Hyland’s result [2, 19.1.9] show that (Pw, -} and (D,, -) can
be turned into equationally equivalent A-models. Proposition 4.7 tells us about
isomorphic embeddings. Nonetheless in no case (Pw, -} and (D,, *) can be made
isomorphic.

Theorem 4.10. VA (Pw, -Y#(D,, *).
Proof. We first need a few remarks.

Pw Claims. (1) VCePw 0C=0 and {0}C ={0};

(2) VE,#9%3CE,C={0};

(3) V Ce Pw (C infinite>Vh 3k >h A Gy, ..., G, CG+Q).

(1) is obvious. As for (2), take the largest k such that m#0A
(my, (M3, ... (M, 0)- - )€ E, Then EE,, ---E, ={0}. (3) is trivial.

D, Claims. (4) Vde D, (Jede=d=>d=@vd infinite);
(5) Vde D, (3edeinfinite=> d infinite);
(6) ¥V Be D,, finite, IV k>hV d,, ..., d,Bd=9.



Set-theoretical models of A-calculus 179

To prove (4), assume that d# is finite and take the largest n such that
(B1; - (B.;a)---)=bed for some B, a. Then Ve b¢ de. (5) and (6) are proved
similarly.

Assume now that f: Pw— D, is an isomorphism, for some A# (. Let K, S, |
interpret K, S, I in Pw. Clearly (D,, -, f(K), f(8)) is a Combinatory Algebra,
namely it is a particular expansion of (D,, -), with interpretation, say, [ I,:CL —
D,. (D4, ") has approximable application (see Definition 2.6, part 1), and this
depends only on the properties of (D,, ) as applicative structure. Thus Theorem
1.9 applies and

@=[SII(SIDf by 1.9
= f(SIH(SH)) by def. of [ I and f
= fSL(SID])
=f@® by PwkSII(SI) =@ [2,ch. 19.1].

By assumption f is injective, thus, by (1) and (4), f{0}) is infinite. Finally, observe
that

VYV C#0 f(C) is infinite.

In fact: it C is finite, then use (2), the fact that f({0}) is infinite and (5). If C is
infinite, then use (3) and (6). This concludes the proof. []

5. Non-well-founded models

The notation is as at the end of the Intermezzo, where D4 =(D,, ) was
defined. In particular recall that, in D,, a=({a}; a).A is as in Theorem 2.3.

The motivation for defining D, are given in the Intermezzo. Its properties will
be proved by applying Theorem 1.9 to an elementary substructure.

Lemma 5.1. In D, one has:
(i) Ad=ANd.
(i) acdrace=>acde for ac A.
(iii) d < Ax.dx
(iv) (Da, -, N) is a A-model.

Proof. By the definitions. [

Given a € A, let ¢, be the constant symbol for {a} and A(c,) the set of A-terms
built up using also c¢,, where [c,]={a}.

Lemma 5.2. Let o :var — D, be constantly equal to A € D,. Then
VacA VMecA(c,) ac[M]o.
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Proof. (By induction.) If M=c, or M=x, we are done. If M=PQ, use 5.1(i)
and the induction. If M =Ax.N, then [M]o ={(8; b): b c[NJo¥}. Notice now that
Nlc/x]e Alc,); then ae[Nloi*=[N[c/xTlo, by the induction hypothesis, so
a=({a},a)e[M]o. O

Lemma 5.3. Let o be as in Lemma 5.2. Then one has for any M e A:
1) A <c[M]o;
(1)) A=[Mlo>Mec0,;
(iii) Me A°> D FASM.

Proof. (i) If Mec A, then VaMe A(c,).
(ii) If ABEM =Ax.N, for some N, then (y;b)e[M]oay<B=>(B;b)c[M]o.
Thus A = B would be saturated, while ({a}; a)c A and, say, ({a, (@, a)}; a) ¢ A.
(i) By (). O

Definition 5.4. S, ={d: Acd}< Da.

By Lemma 5.1(ii), S, is closed w.r.t. *’. Moreover, by Lemma 5.3(iii), (D4)° =
{IM]: Me A%} S, ; thus K,SeS, and (S,, -) is a Combinatory Algebra. Con-
sider S, embedded with the induced topology, where D, is given the Scott’s
topology.

Lemma 5.5. (S,, ) has approximable application.

Proof. Set L = A, then S, is a poset satisfying Definition 1.8(i). Define then ( ),
as follows.

If be B = B/=, then b, as equivalence class in B, contains a shortest element (in
B), say sh(b): this element is obtained by ‘collapsing’ all ({a}; a) to a. Let’
| |: B— w be as in 2.5. Define, for d € Sa, d, ={bed:|sh(b)l<sn+1}.

Then (1), (2), (3), (5) of Definition 1.8 trivially hold. As for (4):

d,,e={b:3AB<e(B;b)edn|sh(B;b)l<n+2}
={b:3ABc<e(B;b)cdA(sh(B)|+|sh(b)|<n+2)}
c{b:ABce, (B;b)cdAlsh(b)ssn+1}=(de,),.

by the definitions of | | and ( ),. O

Theorem 5.6. Let M e A°. Then D,EM=A & MeO,.

Proof. Consider (S,, -, K,S), K,ScS,cD,; then, for Me A°, Sy\kd=M iff
D,Fd =M, ie. the interpretations of Me A° in S, and D, coincide. By Lemma
5.5, 1.9 and 5.3(ii) give the result. [
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Consider now Tarski’s fixed point operator Y1(f) =LIf"(L1). As for any con-
tinuous map from C(D,, D,) into D, we may say that Yy is A-definable in case
Yroo is so, for & (d) = Ax € D4.dx. That is the A-definability of Y, amounts to
say that Yproge C(D,4, Dy) is represented by the interpretation of some closed
A-term.

Proposition 5.7. (i) Tarski’s fixed point operator Yy over D, is not A-definable.
(i) {(S4, ) can be turned into a A-model. Moreover, in S, Yt is A-defined by the
interpretation of Curry’s paradoxical combinator Y.

Proof. (i) Just note that Yr(Ax € D4, x) = Yrod(Ax.x) = @ and use Lemma 5.3(iii)
(or Theorem 5.6).

(ii) We first show that any continuous function over S, is representable. For-
fe C(Sa, Sa) define f:D, — D4 by f(d)=f(dUA). Clearly fe C(D,, D,) and
f} Sa=f Moreover Ax.f(x)e Sa, since aef(a})=f(A), for all acA. Thus
FeC(Sa, Sa) iff fe(Sa—>Sa). Set now N(f)=Ax.f(x), for fe(S.—S4).
Then

VdeSy,N(f)d={b:3B=dbef(B)=fBUA)}
= U f(BUA)=f(d)

B=d
by the definition of the induced topology over S,. The rest is easy.
Finally, A’ is monotone; then Theorem 1.12 applies, for (S,4, -, A’y is a A-model
with approximable application by Lemma 5.5. Thus

TIM)c T(N) > S,EMcN. 0)
By the Remark after 1.12 (and Appendix A), we are done. [J

Remark 5.8. Pw is (isomorphic to) an atomless PSE-Algebra.

Just take A ={a} and set a =(§; a). Then, for B’ = B/= and D', = PB’, (Pw, -)=
(DY, ). The isomorphism follows by the proof of (Pe, )=>(D,, ) given in
Proposition 4.7 (or by an easy set-theoretic argument).

By [17], any Combinatory Algebra containing an & such that

(1) ede=de,

(2) Ye(de =d'e> ed =¢ed"),

(3) ee =¢,
can be turned into a A-model, by setting A(f)=ed, for de EC; (Note that
& = Axy.xy.) Conversely, from (D, -, A\) = AB one may define £ = Axy.xy. (Note that
A(f) = &d, for d € EC;.) (This has already been discussed before Definition 1.7.)

Thus {D, -) is lambda-categorical iff such an & € D is unique. By this, isomorph-
isms of applicative structures preserve lambda-categoricity. Now (D%, -) is
lambda-categorical, by Definition 4.4, since it is an atomless PSE-Algebra. Thus
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also (P, -) is lambda-categorical. Of course, this gives another proof of Theorem
4.10. (For a direct proof of lambda-categoricity of {(Pw, -}, see [9].)
Finally, notice that (0) above does not depend on the cardinality of A.
In view of the proof of Theorem 5.6, we claim that the lambda-categorical
models, given in Theorem 4.6, have all the same theory, independently of the
cardinal (i.e. they are all equationally equivalent),

6. Conclusion

The basic view point in this paper has been the analysis of theories of
PSE-Algebras. But, more than this, we have been looking at applications of this
study. Thus A-expansions have been studied and related to the local analysis of
models or used for the semantical characterization of interesting classes of terms.
Moreover the results in Sections 2 and 3 were applied in the lambda-categoricity
and cardinality theorems of Section 4.

Similarly, Section 5 gave some results on the connections between non well-
foundeness, substructures and true equalities. This was done using quotient
PSE-Algebras.

In our views two kinds of questions are naturally raised by this work.

(1) Given a PSE-Algebra how can one characterize quotient sets which are
again PSE-Algebras? That is, generalize the technique used in Sections 4 and 5
(some hints are given in the Remark at end of the Intermezzo). More: are there
general results relating equivalence relations on PSE-Algebras and the theories of
their quotient sets? In Section 5 a non well-founded quotient PSE-Algebra gives
Y # Yr; another turns out to be isomorphic t0 Pw, thus Y = Y1 holds in it.

Several results on quotient sets for similar structures (namely, filter domains)
are given in [10]. Still, filter A-models are built over more ‘structured’ bases
(theories of type assignment). Thus, this kind of results are more general (and,
perhaps, more difficult) in the set theoretic framweork of PSE-Algebras.

(2) PSE-Algebras solve some equations (cf. Remark 3.9). Can one carry on a
general category theoretic study of the theories of solutions of domain equations
(in the sense of Scott)?

It is not clear at all whether category theoretic notions may characterize
theories. Take for example Scott’s basic equation D = D — D. The inverse limit
solution, D.,, to this equation, in the category of cpo’s, seems to yield different
theories according to the projections one uses (the ‘canonical’ ones or Park’s, see
[2, ch. 18]). As a matter of fact, the Approximation Theorem holds only when the
canonical projections are used.

Moreover an equation may have lambda-categorical solutions and/or non
lambda-categorical ones, which in turn may yield different theories.
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Appendix A: Proofs of Theorem 1.12 and Proposition 1.14

As for Theorem 1.12, one can use a variant for trees of the Approximation
Theorem 2 la Scott—Wadsworth-Hyland (see [2, 19.1.8]).

Since, in the models we work at, we do not require that Ax.L = L, consider the
extension ABL2, of AB obtained by adding the constant £ to the formation rules of
the A-terms, and the axioms QM — M, only.

Extend the definition of Tree to terms of ABQ, by T(Ax,:- - x,.0M)=
Ax, - x,.L, for 0sn, M possibly empty.

Note that ABQ22,F M = N=> T(M) = T(N). Define then the set of Tree Approxi-
mate normal forms by

TA(M)={P: T(P)= T(M) and P is in fQ;-n.f.}.

The basic Lemmas A.1 and A.2 go through as for the Approximation Theorem
for Bohm-trees. Namely, define first a labelled A£2;-calculus (AB2Y). That is
extend the formation rules of A-terms by allowing labels in @ over terms. Take as
axioms the axioms in [2, 14.1.4], except Ax.Q2 — Q. ([1, 7.18-7.19], except for
Ax.2F — Q, best fits our approach.) By the same argument as in [1,7.23], one
has:

Lemma A.1. Each completely labelled term has a normal form.

If M is labelled, set T(M) = T(|M]), where |M| is obtained from M leaving out
all the labels.
Given a A-model with approximable application interpret labelled terms by

(el = L, IM"], = (M],)..

Lemma A.2. Let M, Q be labelled terms, in ABQY. Assume that (D, -, \) has
approximable application. Then, for M — Q, one has:

(i) DEM=Q.

(i) T(Q)s T(M).

(The proof is as in [2, 19.1.6], just notice that dy= 1 of Definition 1.8 implies
the validity of (Ax.M)’N = (/x]M)" in D.)

Definition A.3. Let (D, -, A) be a A-model with approximable application. Then A

is L-monotone iff for any algebraic expression r over D and n € w, one has
AMAd,---d,eD.L)<sA(Ad,---d,eD.r)

(or, equivalently, DEAx, - - - %, 2<Ax, - x,.M, for all M in ABQ?, and n € w).

Lemma A.4. Let {D, -, \) be as in Definition A.3. Assume that N is monotone or
that D has A-approximable application. Then \ is L -monotone.
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Proof. By an easy induction or trivial. [J

Lemma A.5. Let (D, -, \) be a A-model with approximable application and 1 -
montone N. Then

NeTAM) = DENcM.

Proof. By assumption T(N) is finite and the 2’s in N and the L’s in T(N) are in
a one—one correspondence. Thus M is obtained from N (up to B{2,-equality) by
replacing some 2’s in N by other terms or some Ax;--:x,{) by some
Axy - - x,.Q, for m=n (see Proposition 1.3(ii)).

1 -monotonicity of A and the monotonicity of ‘-’ give the result. [

Approximation Theorem A.6 (for Trees). Let (D, -, \) be as in Lemma A.S. Then
DEM=LI{N: Ne TA(M)}.

Proof.

DEM={M": I complete labelling} by Definition 1.8
={Q:|Qle TA(M)} by Lemmas A.1 and A.2(i)
<{N: Ne TA(M)} by DEQ<|Q]
=M by Lemma A.5. [

Theorem 1.12 now follows from Lemma A.4 and Theorem A.6, by the same
argument as in [2, 19.1.9, 19.1.11] applied to truncated Trees.

Moreover, let Y be a fixed point operator in AB, then TA(Y)={Ay.y"Q:neN},
by Theorem A.6. Therefore, for (D, -, ) as in Lemma A.5, one has

DEY =LAy y" QL

Thus, if Yy is Tarski’s fixed point operator over (D, -), [Y],d =L d" L = Y(d)
and AMYq) =Ad. Y (d)=Ad[Y],d =[Y], since Y is not in O, (i.e. begins with
Ay -+ -). Note that, if D is as in Lemma A.5, then

McO, > Dt=M:L;I)\x1 ce e X, L
As for the proof of Proposition 1.14, let AB(Q2 be the extension of AB{2, obtained by
adding
Ax.02— Q.
For BT(M) = ‘Bohm tree of M’, let
A(M)={N:BT(N)cBT(M) and N is in S2-n.f.}.
Given a Af2-term N, let N* be obtained from N, performing also Ax.{2 — (2, if
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any such reduction is possible. Then one has
NeTAM) & N*cAM). (1)

Assume now that (D, -, A) is a A-model with A-approximable application. Then, if
N is in BQ;-nf.,

DEN*=N by N*¢ TA(N), Lemma A.5 and Ax.L = 1. (2)
Finally
DEM=LI{Q: Qe TA(M)} by Lemma A.4 and Theorem A.6

=L{Q*: Qe TA(M)} by (2)
“LI{N:Ne A(M)} by (1).

This is the Approximation Theorem for BOhm trees: Proposition 1.14 then
follows as in [2, 19.1.11].

Appendix B: D, M < N=> BT(M) < BT(N)

This appendix completes the proof of Lemma 2.7, thus the notation is as in
Section 2.

Lemma B.1. (i) Let fe(Ds — D,). Then Ax.f(x) is saturated (ie. (B;b)c
Af(xX)ABEvy=>(v; b) e Ax.f(x)).

Let A=B\A. Then

(i) (dNA)e =de,

(iii) d=c ASd e Ax.dx.

Proof. (i) By monotonicity of f. (i) By definition. (iii)=>. (B;b)ed=>bedB>
(B; d) e Ax.dx.
< Ax.dx does not contain element of A.

Note that (ii) and (iii) hold just because one can distinguish between elements
of A and elements of A. Fix now age A # 0.

Definition B.2. Let fe (D, — D,). Define
A% F(x) = Ax.f(x)U{ae).

(Notation. For fe C(D%, D), set
A% X f(xy, o %) = A A - X f(X, L, X0))s
by the continuity of U and A, this is a good definition.)
Remark B.3. By definition
AXy s X f(xy, oo %) ={Bys - (Bus ) - )i bef(Br, ..., B}
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while A°x, - - - x,.f(x,,...,x,) contains also a, and all elements of the type
(B1; ay), - - - (B1;* - (Ba-1; ap) for arbitrary B’s.

Lemma B.4. Let fc C(D}, D). Then

(1) 0<is=n=>A% - X f(xy, ..., X Ddy - -+ dy
=/\0xi+1 tet xnf(dl, ceny di7 Xit1s - - - ,xn)
(2) 0sp<nzace A% % flxy, ..., xNd;y - -

Proof. Easy. [

Notation. Given P< D%, B4, . .., B, are minimal such (mins) P(B,, ..., B,) iff

(i) P(By, ..., B,) holds, and
(11) lf ’Ylgﬁlv-'-"Ynan and ‘?#B
then 1 P(yy, ..., Yn)

Definition B.5. Let fe C(D', D,). Define

Axy X, X)) ={beA’xy - X0 f(xy, .1, X0
3c3Bb=(B1;- - (Ba;c) -~ -)=> B mins ce f(B)}

Lemma B.6. Let fe C(D,, D). Then

(1) A%y X flxg, - X))y dy = fldys o d)

Q) If Yd,...,d,13d.f(dy,...,dy 1, d)F9D, then O=sp<n>
A"x1 - X f(x1s . . -, X))y - - - d, contains a, and it is not saturated (cf. Lemma
B.1)).

Proof. (1) By definition and Lemma B.4(1).
(2) Let’s write F:=A"x; - %,.f(x,...,x,). Then

ageFid, - d,={c:AB<=d By; - (Bpsc)--)eF.},

since p<n and by Lemma B.4(2) and the definition of F,. As for ‘non satura-
tion’, notice first that

fley,...,e.)=F,e - e, by(1)
={b:AB<é B, (Busb) - )eF}
and hence, by the assumption on f,
Vp<nVe,...,e,3B,Se;,...,3B,Se
3Bpi1s---> 3B D (Bys -~ - (Bas b)) e Fy.

Recall now that by definition of F;, these B, ..., B, are ‘minimal such’, thus, in
particular, ¥V vy 2 Bpi1 (v; (Bps2s - = - (Bas b) - - )¢ Fudy - - dp. T
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Definition B.7. Let C,=A"xy* ** X,01.X,41%0 " * * Xp.
Let A(D,) the set of A-terms built up using also constants (symbols) from D,.

Proposition B.8. (I) D EC,x " -* Xp41=Xpe1X0 " Xp.
(i) Letoy,...,onand 7, ..., 7, betermsin A(D,). If n# t and m, q <p, then

DAV:Axl A xn.C;O'I O, E/\xl L xt.C;Tl e Tq'

Proof. (i) by Lemma B.6(1).

(i) Clearly f(d,, ..., dy+1) =dp1dy- -+ d, satisfies the conditions on f in
Lemma B.6(2).

Assume Dy FAx) - x,.Cooy - - 0 SAX - X Cpmy -0 - T,

Case n<t. Apply both LHS and RHS to x,, ..., x,. Then

DAI:C;UI"'UmgAxnﬁ»I" 'xt-C;'Tl T T

This is impossible since the LHS contains a, by Lemma B.6(2), while the RHS

doesn’t.
Case t<<n. Apply both LHS and RHS to x,,..., x,. Then

DiEA - %,.Choy - 0, €ECITL " T,

This is impossible since the RHS is not saturated by Lemma B.6(2), while the
LHS is saturated by Lemma B.1(1). [

Proposition B.8 is the C-lemma, Lemma 3.3 of [5]. Thus the rest of the proof of
Proposition 2.8 is exactly as in that paper.

Acknowledgements

I am greatly indebted to Albert R. Meyer for providing the motivation for this
work, for his comments and the many very stimulating discussions we had (even
on Sunday, very early in the morning). Some results answer questions raised by
Dana Scott.

I discussed with Furio Honsell the revised versions of this paper. He made
many remarks and suggested or helped to find a solution to nearly all the
problems the referee and I raised. And the referee pointed out several interesting
problems.

Also Henk Barendregt, Kim Bruce, Roger Hindley gave critical comments and
suggestions.

References

[1] H.P. Barendregt, The type-free lambda-calculus. In: J. Barwise, ed., Handbook of Mathematical
Logic (North-Holland, Amsterdam, 1977), pp. 1092-1132.



188 G. Longo

[2] H.P. Barendregt, The Lambda Calculus, Its Syntax and Semantics (North-Holland, Amsterdam,
1981).

[3] J. Baeten and B. Boerboom, 2 can be anything it shouldn’t be, Indag. Math. 41 (1979) 111-120.

[4] H. Barendregt and K. Koymans, Comparing some classes of lambda-calculus models, in: R.
Hindley and J. Seldin, eds., To H.B. Curry, Essays in Combinatory Logic, Lambda-calculus and
Formalism (Academic Press, London, 1980) pp. 287-302.

(5] H.P. Barendregt and G. Longo, Equality of lambda-terms in the model Tw, in: R. Hindley and J.
Seldin, eds., To H.B. Curry, Essays in Combinatory Logic, Lambda-calculus and Formalism
(Academic Press, London, 1980) pp. 303-339.

[6] H. Barendregt and G. Longo, Recursion theoretic operators and morphisms on numbered sets,
Tech. Mon. LCS/MIT, February 1981, Fund. Math. 119 (1982), to appear.

[7] H. Barendregt, M. Coppo and M. Dezani, A filter lambda-model and the completeness of type
assignment, J. Symbolic Logic, to appear.

[8] K. Bruce and G. Longo, A note on Combinatory Algebras and their expansions, to appear.

[9] M. Coppo, M. Dezani and B. Venneri, Principal type schemes and lambda-calculus semantics, in:
R. Hindley and J. Seldin, eds., To H.B. Curry: Essays in Combinatory Logic, Lambda-calculus
and Formalism (Academic Press, London, 1980) pp. 535-560.

[10] M. Coppo, M. Dezani, F. Honsell and G. Longo, Extended type structures and filter lambda-
models, in: G. Lolli, G. Longo and A. Marcja, eds., Logic Colloquim ‘82 (North-Holland,
Amsterdam, 1983, to appear).

[11] H.B. Curry and R. Feys, Combinatory Logic (North-Holland, Amsterdam, 1958).

[12] E. Engeler, Algebras and combinators, Algebra Universalis (1981) 389-392.

[13] R. Hindley and G. Longo, Lambda calculus models and extensionality, Z. Math. Logik Grundlag.
Math., 26 (1980) 289-310.

{14] R. Hindley and J. Seldin, eds., To H.B. Curry: Essays in Combinatory Logic, Lambda-calculus
and Formalism (Academic Press, London, 1980).

[15] J. Levy, An algebraic interpretation of A-calculus and a labelled A-calculus, in: A. Béhm, ed.,
A-calculus and Computer Science, LNCS 37 (Springer-Verlag, Berlin, 1975) pp. 147-165.

[16] G. Longo, Hereditary partial effective functionals in any finite type, Preliminary Note, Forsh.
Inst. Math., (E.T.H., Ziirich 1982).

[17] A. Meyer, What is a model of lambda-calculus? (expanded version), Techn. Mon. LCS-MIT,
June 1981, Information and Control, to appear.

[18] G. Plotkin, A set-theoretical definition of application, School of Al, memo MIP-R-95, Edin-
burgh (1972).

[19] H. Rogers, Theory of Recursive Functions and Effective Computability (McGraw Hill, New
York, 1967).

{20] D.S. Scott, Continuous Lattices, in: E. Lawvere, ed., Toposes, Algebraic Geometry and Logic,
LNM 274 (Springer-Verlag, Berlin, 1972) pp. 97-136.

{211 D.S. Scott, Data types as lattices, SIAM J. Comput. 5(3) (1976) 522-587.

[22] D.S. Scott, Lambda-calculus: some models, some philosophy, in: J. Barwise, ed., the Kleene
Symposium (North-Holland, Amsterdam, 1980) pp. 223-266.

[23] D.S. Scott, Relating theoreies of lambda-calculus, in: R. Hindley and J. Seldin, ed., To H.B.
Curry, Essays in Combinatory Logic, Lambda-calculus and Formalism (Academic Press, London,
1980) pp. 403-450.

[24] C.P. Wadsworth. The relation between computational and denotational properties for Scott’s
D..-models of the A-calculus, SIAM J. Comput., 5(3) (1976) 488-521.



