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all models of this calculus. It is well known that these models are exactly the Cartesianclosed categories (CCC).
Once given the types which are isomorphic in every model of the lambda calculus (orequivalently, isomorphic in every CCC), there is, in principle, no reason to believe thatthere is a uniform way to witness these isomorphisms. Nevertheless it turns out thatour proof of these results is based on a simple axiomatization of type equations andthe notion of provable isomorphisms (those representable by closed terms of the lambdacalculus). Moreover any proof of the equality of two types can be used to generate anisomorphism between the types (which holds in every model).
The axioms for our theory are given below:2



De�nition 1.1. Th1�T is a theory of equality plus the following axiom schemas, whereT is a constant symbol:1 A� B = B � A2 A� (B �C) = (A� B)�C3 (A� B)! C = A! (B ! C)4 A! (B �C) = (A! B) � (A! C)5 A� T = A6 A! T = T7 T! A = AThe Main Theorem of this paper shows that two types A and B can be constructivelyproved to be isomorphic, by two programs which act one as the inverse of the other, i�Th1�T` A = B.In order to discuss the soundness of Th, and explain where it comes from, we hinthere of its categorical meaning. Note, though, that no notion nor result from CategoryTheory is used in most of the paper.Since models of the typed lambda calculus with surjective pairing are exactly theCartesian closed categories (CCC), our results translate directly into theorems on whentwo generic objects are isomorphic in all CCC's. In other words, Th1�T characterizeswhich are isomorphic just by the Cartesian closed structure of the category in whichthey are interpreted, no matter which particular CCC is chosen.Observe �rst that Th1�T is realized in every Cartesian Closed Category, when \=" isinterpreted as isomorphism. The �rst three axioms describe properties of the Cartesianproduct (associativity, commutativity, identity for � ), and the second three axioms canbe seen as the properties of the three adjunctions of a CCC that relate product, exponentand the terminal object. The last equation (T ! A = A) tells us that the arrows fromthe terminal object to A in a CCC are the points of A. Thus, the theory Th1�T is sound.A consequence of our main result is the completeness of Th1�T with respect to CCC's.That is, no other isomorphism is valid in all CCC's. (This is not obvious because thereare categorical models of Th1�T which are not CCC's: take a Cartesian Category with abifunctor \! " such that A! B = B, say).A further consequence of the work below in �-calculus will be an insight into thecomposition of derivations in Proof Theory. The typed lambda calculus with surjec-tive pairing is the language for proofs of IPC(True;^;!), the intuitionistic positivepropositional calculus. In the proof theoretic framework we then characterize equivalentformulae, where two formulae A and B are considered equivalent if, given a proof f of thesequent A `B, and a proof g of the sequent B ` A, g f yields, after cut-elimination, theidentity proof of the sequent A ` A and vice-versa. The details of both the categoricaland proof-theoretic applications are discussed in [DCL89].As an example of the use of such results in computer science we note the two papers byRittri ([Rit89], [Rit90]) in which the author discusses the problem of �nding applicablefunctions in a program library. For example, one might be interested in looking upvarious search functions. As a result it might be useful to inspect all functions which3



take an element and a table and return an index to the table. Because trivial di�erencesin argument order or Currying may lead one to ignore useful functions, it is importantto be able to �nd all those functions whose type is isomorphic to that for which one issearching.Rittri's application of the result presented here settles on the same notion of provableisomorphism. He cites the paper by Solv'ev ([Sol83]), in which the author presents thesame result as in our main theorem (Theorem 4.9), although by an entirely di�erent proofwhich is based on taking the natural numbers as objects in a CCC (with � interpreted asmultiplication and ! as exponentiation) and then showing the equational completenessof the theory of (N; 1;�; "). (Meyer and Statman, personal communication, suggesteda similar proof for the exponential fragment only; also the abstract in Martin ([Mar72])states the same fact). Solv'ev also provides a decision procedure similar to that givenhere.We note that in a forthcoming paper, the second author extends these results tothe second-order typed lambda calculus, with surjective pairings. We know no way ofextending the proof given by Solv'ev to this more complex case.The paper is organized as follows. Section 2 sets out the basic de�nitions leading upto the notion of a type normal form. Section 3 presents some rather technical lemmaswhich will be used in section 4 in order to characterize the set of provable isomorphisms.The third section also contains a discussion of the decidability of the theory and theconnections with category and proof theory. The proofs of the important (but technicallycomplex) lemmas in section 3 are put o� into an appendix at the end of the paper.2. Basic notions and factsDe�nition 2.1. The collection Tp of type expressions, over a ground set At of atomictype symbols, is inductively de�ned by:�At � Tp, where T 2 At is a �xed constant type symbol�if A;B 2 Tp, then A! B 2 Tp;�if A;B 2 Tp, then A �B 2 Tp.The intended meaning of T is the terminal object in the categorical sense; thus �Abelow will stand for the unique map in A! T (as required of a terminal object).Pure �-terms are de�ned as usual. In particular, for every type A there exists adenumerable number of variables, ranged over by lower case letters near the end of thealphabet. We use upper case letters M, N, P, . . ., as meta-variables for terms. The factthat a term M has type A will be denoted with the expression \M : A".De�nition 2.2.(i) The terms of �1����, the typed �-calculus with surjective pairing and terminal object,and their associated types, are de�ned according to the following formation rules:�every variable x : A is a term;�if x : A is a variable, and M : B is a term, then �x:A . M : A! B is a term;�if M : A! B is a term and N : A is a term, then MN : B is a term;�if M : A is a term and N : B is a term, then hM;N i: A� B is a term;4



�p1 : A �B ! A;�p2 : A �B ! B;��A : A! T.(ii) The equational theory of terms is the minimal congruence relation \=" whichsatis�es the following axiom schemas:alpha-beta-eta-csi:(�) �x:A.M = �y:A.M[x:=y], if y is free for x in M(! �) (�x:A.M)N = M[x:=N], if N is free for x in M(! �) �x:A.(Mx) = M, if x 62 FV (M )(�) if M=N then �x:A.M = �x:A.Nsurjective pairing:(��1) p1(hM;N i) = M(��2) p2(hM;N i) = N(��) hp1(M ); p2(M )i = Mterminal object:(�) If M : A! T then M = �A.Notation 2.3. Given a sequence M1, . . . ,Mn of terms, and sequence x = x1, . . . ,xn ofvariables, N[ ~M/~x] denotes the simultaneous substitution of every term Mi for the vari-able xi in the term N (for simplicity, we always assume bound variables are renamed asnecessary to avoid capture of free variables). We also use the notation N[M/~x] to expressthe simultaneous substitution of the term M for all the variables in ~x. For applicationwe follow the usual convention of associating to the left, i.e. N1 . . .Nn is to be parsedas (. . . (N1N2). . .Nn). In case a substitution is applied only to a subsequence of an ap-plication M1 . . .Mn, we will use the notation N1N2. . .fNi. . .Nk[ ~M/~x]g. . .Nn to denotethe term N1 . . .Nn with the substitution [ ~M/~x] applied only to the terms Ni . . .Nk.We write hM1; . . .Mni for h. . . hhM1;M2i;M3i; . . .i.�1��� is the calculus without terminal object and related rules, �1�� is the classicaltyped calculus, and ��� the type-free calculus. Finally, let IA = �x:A.x be the identityof type A.Remark 2.4. Notion of reduction for �1����. The notion of reduction associated withthe equational theory of �1���� obtained by just orienting the equalities in the axioms tothe right is not Church-Rosser. It is possible, though, to derive for this equality theoryanother notion of reduction that has the Church-Rosser property; in the following wewill refer to this latter one when talking about reduction, normal forms, and so on for�1���� (see [Pot81], [CDC91]).De�nition 2.5. Let A;B 2 Tp. Then A and B are provably isomorphic (A �=p B)i� there exist closed �-terms M : A! B and N : B ! A such that �1����` M N = IB5



and �1����` N M = IA. We then say that M and N are invertible terms, and that Mis an inverse of N, in �1����.Note that, as usual, the inverse of a term M (if it exists) is unique up to \=." Supposethat types A and B are provably isomorphic and consistently substitute arbitrary typesfor the common base types. Then the isomorphism still holds: just use the correspondingterms with updated types. Borrowing terminology from Statman (1983) we may say thatthe notion of provable isomorphism is typically ambiguous.Theorem 2.6. (Main Theorem (easy implication)) Th1�T` A = B ) A �=p B .Proof. We give the terms associated to each axiom and rule. As Th1�T is a theoryof equality, one has �rst to observe that the usual axioms and inference rules yield andpreserve provable isomorphisms:��x:A.x proves A = A;�if M, with inverse N, proves A = B , then N proves B = A;�if an invertible M proves A = B and an invertible N proves B = C, then the termN�M = �x:A.N (M x), that is clearly invertible, proves A = C ;�if an invertible term M proves A = B and an invertible term N proves C = D, thenthe invertible term �x:A� C.hM (p1x); N (p2x)i proves A� C = B �D;�if an invertible M proves A = B and an invertible N proves C = D, then �y:A !C.�x:B.N (y (M�1 x)), where M�1 is the inverse of M, proves A! C = B ! D andit is invertible (take �y:B ! D.�x:A.N�1 (y (M x)) ).We next check the proper axioms:1A� B = B � A is proved by �x:A� B.hp2x; p1xi;2A� (B �C) = (A �B)�C is proved by �x: A� (B �C).hhp1x; p1(p2x)i; p2(p2x)i,that is invertible;3(A� B)! C = A! (B ! C) is proved by �z:(A� B)! C.�x:A.�y:B.zhx; yi withinverse �z:A! (B ! C).�x:A�B.z (p1x) (p2x);4A! (B �C) = (A! B) � (A! C) is proved by�z:A! (B �C).h�x : A:(p1(zx)); �x : A:(p2(zx))iwith inverse �z:(A! B)� (A! C).�x:A.h(p1z)x; (p2z)xi;5A � T = A is proved by p1 with inverse �x:A.hx; �Axi (to check invertibility, noticethat �A�p1 = �A!T = p2);6A! T = T is proved by �(A!T) with inverse �x:T.�A;7T! A = A is proved by �z:T! A.z(�(T!A)z) with inverse �x:A.�y:T.x.The rest of this section, as well sections 3 and 4, are dedicated to the proof of theother implication of the Main Theorem. The �rst steps are done by reducing types toa \type normal form". The axioms of Th1�T suggest the following rewrite system R fortypes (essentially Th1�T without commutativity):De�nition 2.7. [Type rewriting R]Let \; " be the transitive and substitutive type-reduction relation generated by:1A� (B �C) ; (A �B)� C2(A� B)! C ; A! (B ! C)3A! (B �C) ; (A! B) � (A! C) 6



4A� T ; A5T� A ; A6A! T ; T7T! A ; AThe system R yields an obvious notion of normal form for types (type-n.f.), i.e.when no type reduction is applicable. Note that 4, 5 and 6 \eliminate the T's", while 2and 3 \bring the � outside". It is then easy to observe that each type-n.f. is T or hasthe structure S1 � . . . � Sn where each Si does not contain T or \� ". We write nf(S)for the normal form of S (there is exactly one, see 2.8), and say that a normal form isnon-trivial if it is not T.Proposition 2.8. Each type has a unique type normal form in R.Proof. Notice that in any R-reduction, starting with a given type S:(i) Rules 2 and 3 can be applied only �nitely many times, as they strictly decreasethe number of � 's in the scope of an arrow of S and this number is �nite and is notincreased by any other rule.(ii) Between an application of rule 2 or 3 (yielding type S') and the next one, theremaining rules can be applied only �nitely many times ( 4, 5, 7 and 6 simply throwaway some subformula reducing by one the number of products or arrows, which is�nite; rule 1 is just associativity to the left).So, after a �nite reduction path we get a type S" with no redex for rules 2 and 3,and then, again, the remaining rules can be applied only �nitely many times (at mostthe length of S" plus the times required for associating S" to the left). The resultingtype nf(S) has then no products in the scope of any arrow (otherwise 2 and 3 could beapplied), and is either T or a type with no occurrence of T (otherwise 4, 5, 7 and 6 couldbe applied). Thus nf(S) is a product of types, each of which has no occurrence of � .It is easy to observe that R is Church-Rosser too and, thus, that nf(S) is unique. (Notealso that we have actually proved that R strongly normalizes)From the implication proved above of the Main Theorem, since R ` S ; R impliesTh1�T ` S = R , it is clear that any reduction R ` S ; R is witnessed (or, proved, inthe \types-as-propositions" analogy) by an invertible term of type S ! R. Moreover,one clearly has:Corollary 2.9. Th1�T ` S = nf(S) and, thus, Th1�T ` S = R() Th1�T ` nf(S) = nf(R)In conclusion, when Th1�T ` S = R, either we have nf(S) � T � nf(R), or Th1�T `nf(S) � S1 � . . . � Sn = R1 � . . . �Rm � nf(R). A crucial lemma below will provethat, in this case, one also has n = m.The assertion in the corollary can be reformulated for invertible terms in a very con-venient way:Proposition 2.10. (Commuting diagram)Given types A and B, assume that theinvertible terms F : A ! nf(A) and G : B ! nf(B) prove the reductions to type-normal-form. Then a term M : A! B is invertible i� there exist an invertible term M': nf(A) ! nf(B), such that M = G�1�M'�F.7



Proof. (() Set M�1 � (G�1 �M 0 � F )�1 � F�1 �M 0�1 �G , then M is invertible.()) Just set M 0 � G�M�F�1. Then M 0�1 � F �M�1 �G�1 and M' is invertible.The diagram in the following Figure 1 represents the situation in the corollary.-- ?66? (B1 � . . .�Bm)(A1 � . . .�An)M' = G�M�F�1MBA GFFig. 1. Reduction to a subclass of isomorphic types.Thus we have reduced isomorphisms between arbitrary types to the same problemswith respect to type normal forms. We examine next how this may a�ect the structureof the terms which prove the isomorphisms.3. More Lemmas: From �1���� to the Classical �1��This is a technical section, where we display the statements of some crucial lemmas. Theirproofs are postponed to the appendix. Our aim is to reduce invertibility in �1���� toinvertibility in �1��.Recall �rst that, when Th1�T ` S = R, one has nf(S) � T � nf(R), or Th1�T `nf(S) � S1 � . . . � Sn = R1 � . . . �Rm � nf(R). Notice now that, in the lattercase, there cannot be any occurrence of T in either type. Indeed, a non trivial type-n.f.cannot be provably equated to T, as can be easily seen by taking a non-trivial model.Thus we restrict our attention to equations like S1 � . . . � Sn = R1 � . . . �Rm with nooccurrence of T and, hence, to invertible terms with no occurrence of the type constantT in their types. We can show that these terms do not contain any occurrence of �Aeither, for any type A, via the following lemmas.Lemma 3.1. (Form of the terms of a product type)Given a term M of �1���� innormal form such that M: A�B, then either M � hM1;M2i, for some M1, M2, or thereis a free variable x : C in M such that A� B is a type subexpression of C.Proof. By induction on the length of the structure of M (see appendix).Lemma 3.2. (There are no �A in a term in n.f. if its type does not contain T)Assume that in a term M of �1���� in normal form there is an occurrence of �A, forsome type A. Then there is some occurrence of the type constant T in the type of M orin the type of some free variable of M.Proof. By induction on the structure of M (see appendix).8



Proposition 3.3. (Isomorphisms between type-n.f.'s are given by terms in �1���)Assume that S and R are non trivial type-n.f.'s. If the closed terms M and N prove S�=pRin �1����, then their normal forms contain no occurrences of the constants �A. (Thus,M and N are actually in �1���).Proof. By the previous lemma, as the terms are closed and no T occurs in their type.So we have factored out the �rst class of constants �A, and we have restricted ourselvesto �1���. In the next step we eliminate pairing as well, in a sense.There is a problem though. Our aim is to reduce the investigation of invertible termsin �1���� to that of terms in �1���. This is done on the grounds of Proposition 2.10by examining each component of the product, where the isomorphism will be given byterms of �1��. However, in the notation of Proposition 2.10, consider the term M' :nf(A) ! nf(B). M' is invertible in (the equational theory of) �1���� and, thus, alsothe subterms yielding the isomorphism of the components (see 3.7 and 3.8 below) are, apriori, invertible in �1����, while we need to know that they are actually invertible in�1��. We get rid of the problem by the following remark.Remark 3.4. (The equational theory of) �1���� is a conservative extension of (theequational theory of) �1��. Similarly for �1��� with respect to �1��.Indeed, both �1���� and �1��� are Church-Rosser, where \the theory of reduction" for�1��� is given by orienting the equalities in the axioms from left to right (for the C-Rproperty see the references in the remark before 2.5) . Consider now M and N in �1���such that �1����` N = M and let P be the common reductum. Then �1����` N !! Pis actually a reduction �1���` N !! P, as N contains no T-redex, and no T-redex canbe created by the application of reduction rules. The same applies to �1����` M !! Pand, thus, �1���` N = M. Similarly for �1��� w.r.t �1��.Notation 3.5. Recall that by ~x, ~y, ~M ... we denote vectors of variables, terms, etc.Lemma 3.6. (Terms of �1��� whose type is arrow-only belong to �1��)Let M be a term of �1��� in normal form such that M : A, where A is a type with nooccurrence of � in it. If no free variable of M has a type with occurrences of � , thenM is actually a term in �1��.Proof. By induction on the structure of M (see appendix).Proposition 3.7. (Isolate the relevant hM1; . . . ;Mni in an isomorphism)Let S � S1 � . . . � Sm and R � R1 � . . . � Rn be type-n.f.'s where neither the Si's northe Rj's contain any occurrences of T or � . Then S �=p R i� there exist M1, . . . ,Mnand N1, . . . ,Nm such thatx1 : S1; . . . ; xm : Sm `M1, . . . ,Mn Mi[ ~N/~x] =�� yi, for 1 � i � ny1 : R1; . . . ; yn : Rn `N1, . . . ,Nm Nj [ ~M/~y] =�� xj, for 1 � i � m(where substitution of vectors of equal length is meant componentwise).Proof. (See appendix: it is not obvious).In conclusion, we have isolated some interesting terms from which every constant has9



been factored out. Next we prove that provably equal types in normal form have equallength.Lemma 3.8. (Isomorphic type-n.f.'s have equal length)Assume that R1 � . . . �Rn and S1 � . . . � Sm are type-n.f.'s and M � hM1; . . . ;Mni, N � hN1; . . . ; Nmi are terms in �1��� such thatx1 : S1; . . . ; xm : Sm `M1, . . . ,Mn Mi[ ~N/~x] =�� yi, for 1 � i � ny1 : R1; . . . ; yn : Rn `N1, . . . ,Nm Nj [ ~M/~y] =�� xj, for 1 � i � mthen n = m and there exist permutations �, � over n (and terms Pi, Qj) such thatMi = �~ui:x�i ~Pi and Nj = �~vj :x�i ~QjProof. By lemma 3.6 (recall that we may assume that each Mi and Nj is in normalform) one has that Mi and Nj are in �1��. Then,Mi = �~ui:si ~Pi and Nj = �~vj :tj ~QjNote that si is a free variable (namely some xj), since Mi[ ~N/~x] =��yi. Indeed, if si isbound then Mi is �u1 . . .si . . .uk:si ~Pi and Mi[ ~N/~x] is �u1 . . . si . . .uk:si ~Pi[ ~N=~x] so thatsi would still be a bound head variable, and there would be no way to reduce it to aterm without abstraction. Similarly tj is some yi.So there are two functions � : n! m, �: m! n such thatMi = �~ui:x�(i) ~Pi for 1 � i � n; Nj = �~vj :y�(j) ~Qj for 1 � i � mIn conclusion, for 1 � i � n we obtain:yi=�� Mi[ ~N=~x] =�� (�~ui:x�(i) ~Pi)[ ~N=~x]=�� �~ui:N�(i)f~Pi[ ~N=~x]g=�� �~ui:(�~v�(i):y�(�(i)) ~Q�(i))f~Pi[ ~N=~x]g=�� if ~v�(i) is longer than ~Pithen �~ui:~v0�(i):y�(�(i)) ~Q�(i)[(~Pi[ ~N=~x])=~ui]else �~ui:y�(�(i))f~Q�(i)[(~Pi[ ~N=~x])=~ui]gf ~P 0i[ ~N=~x]gIn either case of the last equality, each term can reduce to yi i� yi = y�(�(i)) and eachof the Q's and P's left orderly reduce to one of the bound variables, so that one can apply�, several times, at the end. The same holds for Nj [ ~M/~y] for 1 � j � m.Thus i = �(�(i)) , for 1 � i � n, and j = �(�(j)), for 1 � j � m and we can concludethat m = n, � is a permutation and � is its inverse.We are then reduced to examining componentwise the terms which prove an isomor-phism. The next point is to show that each component, indeed a term of �1�� bylemma 3.6, yields an isomorphism. 10



4. Finite Hereditary PermutationsIn order to prove that the isomorphism between two type-n.f.'s can be expressed compo-nentwise, we use a theorem in [Dez76]. The same result will also be applied to obtain,at last, the remaining part of the proof of our Main Theorem.De�nition 4.1. [Finite Hereditary Permutations (f.h.p.)] Let M be an untyped term.Then M is a �nite hereditary permutation (f.h.p.) i� either��1��` M = �x:x , or��1��` M = �z:�~x:z ~N�,where if k~xk = n then � is a permutation over n and z ~N� = (. . . (zN�(1)) . . .N�(n)),such that, for 1 � i � n, �xi:Ni is a �nite hereditary permutation.Thus �z:�x1:�x2:zx2x1 and �z:�x1:�x2:zx2�x3:�x4:x1x4x3 are f.h.p.'s. F.h.p.'s canalso be tidily described in terms of B�ohm-trees. Recall that a B�ohm-tree of a term Mis (informally) given by:BT(M) = 
 if M has no head normal formBT(M) = �x1 . . . xn:y if M =��x1 . . . xn:yM1 . . .Mp=:::nBT (M1) . . .BT (Mp)Recall also that BT(M) is �nite and 
-free i� M has a normal form. Then one may lookat f.h.p.'s as B�ohm-trees, as follows: �z~x:z= . . .n�~y1:x�(1) . . . � ~yn:x�(1)... ...and so on, up to a �nite depth (note that ~yi may be an empty string of variables).Clearly f.h.p.'s are closed terms and they possess normal form. In particular, exactly theabstracted variables at level n + 1 appear at level n + 2 , modulo some permutation ofthe order (note the special case of z at level 0). The importance of f.h.p.'s arises from thefollowing theorem. (Clearly, the notion of invertible term given in 2.5 easily translatesto the untyped �-calculus).Theorem 4.2. (Dezani [Dez76])Let M be an untyped term possessing normal form. Then M is ���-invertible i� M is af.h.p.Remark 4.3. One may easily show that the f.h.p.'s are typable terms (Hint: Just followthe inductive de�nition and give z, for instance, type A1 ! (A2 . . . ! B), where the Ai'sare the types of the N�(i).) By the usual abuse of language we may then speak of typedf.h.p.'s.Recall now that all typed terms possess a (unique) normal form (see [Bar84]). Aswe now need an interplay between typed and type-free terms, we are going to be moreexplicit about which sort of terms we are dealing with, when needed. Let M be a typed11



�-term. We write e(M) for the erasure of M, i.e. for M with all type labels on variableserased.Remark 4.4. Observe that the erasures of all axioms and rules of the typed lambdacalculus are themselves axioms and rules of the untyped lambda calculus. Then, inparticular, if M and N are terms of �1�� and �1��` M = N, one has ���` e(M) = e(N).Theorem 4.5. If M : A ! B and N : B ! A are invertible terms in �1��, then e(M)and e(N) are f.h.p.'s.Proof. e(N M) = e(N)�e(M), and hence, by the remark, ��� ` e(M)�e(N) = e(I� ) =I and ��� ` e(N)�e(M) = e(I� ) = I. Thus by Theorem 4.2, e(M) and e(N) are f.h.p.'s.The �rst application of 4.2 we need is the following.Proposition 4.6. Let M1, . . . ,Mn and N1, . . . ,Nn and permutation � satisfy all theassumptions in lemma 3.8. Then �x�(i):Mi:S�(i) ! Ri and �yi:N�(i):Ri ! S�(i) areinvertible terms.Proof. For a suitable typing of the variables it is possible to build the following termsof �1�� :M = �z:�x1 . . .xn:zM1. . .Mn; N = �z:�y1 . . .yn:zN1. . .Nn:It is an easy computation to check, by the de�nition of the Mi's and of the Ni's, thatM and N are invertible. Moreover, they are (by the construction given in the Appendix)in normal form, thus, by Dezani's theorem, (the erasures of) M and N are f.h.p.'s. Thisis enough to show that every Mi has only one occurrence of the xi's (namely x�(i));similarly for the Ni's.Thus we obtain Mi[ ~N/~x] � Mi[N�(i)/x�(i)] =�� yi, for 1 � i � n, and Ni[ ~M/~y] �Ni[M�(i)/y�(i)] =�� xi, for 1 � i � n,Hence, for each i, �x�(i):Mi:S�(i) ! Ri and �yi:N�(i):Ri ! S�(i) are invertible.As a result of all the work done so far, we can then focus on invertible terms whosetypes contain only \! ", i.e. investigate componentwise the isomorphisms of type-n.f.'s.Of course, these isomorphisms will be given just by a fragment of the theory Th1�T.De�nition 4.7. Let Swap be the subtheory of Th1�T given by just the following properaxiom (plus the usual axioms and rules for \="),(swap) A! B ! C = B ! A! C:Swap is a subtheory of Th1�T by axioms 1 and 3 of Th1�T.Proposition 4.8. Let A, B be type expressions with no occurrences of T or � . ThenA �=p B ) Swap ` A = B.Proof. Suppose A �=p B via M and N. As usual, we may assume without loss ofgenerality that M and N are in normal form. By lemma 3.6, M and N actually live in�1�� and, by theorem 4.5, e(M) and e(N) are f.h.p.'s. We prove Swap ` A = B byinduction on the depth of the B�ohm-tree of M.Depth 1:M � �z : C. z. Thus M : C ! C. Now, Swap ` C = C by reexivity.12



Depth n+1:M � �z : E. �~x:~D. z ~N� . Recall z ~N� = (. . . (zN�(1)) . . .N�(n)) where ifthe ith abstraction in �~x:~D is �xi:Di then the erasure of �xi:Di.Ni is a f.h.p. Let Fibe the type of Ni.In order to type check, we must have E = (F�(1) ! . . . ! F�(n) ! B) for some B.Thus the type of M is (F�(1) ! . . . ! F�(n) ! B)! (D�(1) ! . . . ! D�(n) ! B).Since �xi:Di.Ni is a f.h.p, �xi:Di.Ni gives (half of) a provable isomorphism from ito Fi. By induction, since the height of the B�ohm tree of (of the erasure of) each�xi:Di.Ni is less than the height of the B�ohm tree of M, one has Swap ` Di = Fifor 1 � i � n. By repeated use of the rules for \=", we getSwap ` (F�(1) ! . . . ! F�(n) ! B) = (D�(1) ! . . . ! D�(n) ! B)Hence it su�ces to showSwap ` (D�(1) ! . . . ! D�(n) ! B) = (D1 ! . . . ! Dn ! B)This is quite simple to show by repeated use of axiom (swap) above in conjunctionwith the rules for equality.Clearly, also the converse of proposition 4.8 holds, since the \(" part in 4.8 is provableby a fragment of the proof in theorem 2.6. Thus one has:Swap ` A = B() A �=p B by terms in �1��:The result we aim at is just the extension of this fact to Th1�T and �1����.Theorem 4.9. (Main Theorem) S �=p R () Th1�T ` S = RProof. In view of theorem 2.6, we only need to prove S �=p R ) Th1�T ` S = R. Byproposition 2.10, this is equivalent to proving nf(S) �=p nf(R) ) Th1�T ` nf(S) = nf(R).Now, for nf(S) � S1 � . . . � Sn and R1 � . . . �Rm � nf(R), we have shown, inlemmas 3.7, 3.8 and proposition 4.6, that nf(S) �=p nf(R) ) n = m and there ex-ist M1, . . . ,Mn, N1, . . . ,Nn and a permutation � such that �x�(i).Mi:S�(i) ! Ri and�yi.N�(i):Si ! R�(i).By 4.6, these terms are invertible too, for each i. Thus, by 4.8, Swap ` Ri = S�(i)and, hence, by the rules, Th1�T ` S = R.This concludes the proof of the main theorem. Here is an immediate consequence.Corollary 4.10. Given types A and B, it is decidable whether they are isomorphic in allmodels of �1����. (And thus whether A and B name isomorphic objects in all CCC's.)Proof. Let the type-n.f. of A be R1 � . . . � Rn and that of B be S1 � . . . � Sn whereneither the Ri's nor the Sj 's contain any occurrences of T or � . (If one of A or B isT, the other must be as well if they are to be isomorphic.) By propositions 3.7 and3.8, and theorem 4.9, A and B are isomorphic i� m = n and there is a permutation �over n such that for 1 � i � n, Ri �=p S�(i). By proposition 4.8, we know that Swap` Ri = S�(i). Note that the axioms and rules of Swap do not change the length oftype expressions. Hence if Swap ` Ri = S�(i) , Ri and S�(i) have the same length. Weprovide a decision procedure to determine if Swap ` R = S (and hence whether they13



are isomorphic in all models) by induction on the length of R (and hence S). We restrictourselves to type expressions of the same length since otherwise they are not provablyequal. If R and S are both type symbols then they are equal if and only if they are thesame symbol. Suppose we have a decision procedure for all types of length less than n,and R and S have length n. Decompose R and S into terms of the form R1 ! . . . ! Rkand S1 ! . . . ! Sm where Rk and Sm are type symbols. If Rk and Sm are di�erent ork 6= m then it is not the case that Swap ` R = S. Otherwise, for each Ri determine ifthere is a distinct Sj such that ` Rk = Sm. Each of these tests is decidable by hypothesis.If each Ri can be paired with a distinct Sj , then Swap ` S = R. Otherwise it fails. Theproof of the correctness of this decision proceed follows the same lines as the proof of the()) direction of proposition 4.8.Indeed, more can be said about the connection to Category Theory. We also hint hereof a simple application to Proof Theory, but refer to [DCL89] for more discussions onboth topics.Take the intuitionistic positive calculus, IPC, i.e. Intuitionistic Logic with only !;�(i.e. conjunction), and True, and consider the following notion of strong equivalence (see[Mar91], [LE85] and [AB91]).De�nition 4.11. Two formulas A and B of IPC are strongly equivalent i� there areproofs f of the sequent A ` B and g of the sequent B ` A such that the proofs g�f andf�g obtained by composition reduce, by cut-elimination, to the one step deductions A `A and B ` B.Notice that this notion of equivalence is much stronger than the classical notion oflogical equivalence: all tautologies of IPC are logically equivalent, for example, but onlya few are strongly equivalent.Corollary 4.12. (Connection with deductive systems)Two formulas A and B ofIPC are strongly equivalent i� Th1�T ` A = B.AppendixWe give here the proofs of the lemmas in section 3. The numbers refer to that section.Lemma 3.1(Form of the terms of a product type) Given a term M of �1���� innormal form such that M: A�B, then either M � hM1;M2i, for some M1, M2, or thereis a free variable x : C in M such that A �B is a type subexpression of C.Proof. By induction on the length of the structure of M.Basis of induction: if M is of length 1, then it can be only a free variable of type A�B.Inductive step:M � �~x:r ~P , as it is in normal form. Observe �rst that this case reducesto M � r~P , as its type is �� �, and we proceed by case analysis on r as follows:r is a variable: then r is free and has type type(P1)! (:::! (type(Pn)! A �B):::).r is hM1;M2i: then M � hM1;M2i, in order to type check.r is p1 or p2: then M � (:::(piM1)M2:::Mk) with M1:S � U in normal form withS or U � type(M2) ! (::: ! (type(Mk) ! A �B):::). By induction hypothesis14



either M1 is hN1; N2i or M1 has a free variable x : C with S � U (hence A � Btoo) a type subexpression of C. The �rst case is not possible, as pihN1; N2i is aredex, so M has a free variable x : C with A� B a type subexpression of C.r is a constant �A for some type A: this is not possible as �A has type A ! T,which would prevent M from having type A� B.Lemma 3.2(There are no �A in a term in n.f. if its type does not contain T)Assume that in a term M of �1���� in normal form there is an occurrence of �A, forsome type A. Then there is some occurrence of the type constant T in the type of M orin the type of some free variable of M.Proof. By induction on the structure of M.Basis for induction: �A has type A! T.Inductive step:M � �~x:r ~P , as M is in normal form, and we proceed by case analysison r as follows:r is a variable: then r has type type(P1) ! (:::! (type(Pn) ! C):::); by hypothe-sis, the Pi's are in normal form and in some Pj there are occurrences of a constant�A, so by induction hypothesis there are T's in type(Pj), hence in the type of r.By this, either r is a free variable or (since r occurs among the ~x) there are T's inthe type of M.r is hP;Qi: then M � �~x:hP;Qi where P and Q are in normal form. The type of Mis D1 ! :::! Dn ! (A �B), with P : A and Q : B, and �A occurs in P or Q. Byinductive hypothesis, either T occurs in A � B (hence in the type of M, too) orin the type of some free variable y of P or Q. In either case, as above, some T'soccur in the type of M or in the type of y, which is free in M.r is p1 or p2: then M � �~x:((piM1)M2:::Mk) where:� Mj is in normal form, for each j.� M1 : S � U with either S or U � type(M2)! (:::! (type(Mk)! C):::).� �A occurs in Mj for some j; consider thancase j = 1: then T occurs in S � U , by induction hypothesis. By lemma 3.1,as M cannot be a redex, M1 is not a pair and has a free variable y :C with S � U a type subexpression of C. Notice that y is also free in((piM1)M2:::Mk). Thus as in the earlier cases either y is free in M or someT's occur in the type of M (because y is one of the variables in ~x);case j > 1: then by induction hypothesis either(a)there is a T occurring in the type of Mj , and, hence, in S � U or(b)there is a free variable y of Mj with type T occurring in its type.In case (a), we can conclude the proof as in the case for j = 1 above. Incase (b), if y is free in Mj then it is also free in ((piM1)M2 . . .Mk). Wecan thus conclude the proof again as for i = 1.r is �A: then M � �~x: �AM1 or M � �~x:�A and the type of M is D1 ! :::Dn ! T,for some D1; . . . ; Dn. 15



Lemma 3.6(Terms of �1��� whose type is arrow-only belong to �1��)Let M be a term of �1��� in normal form such that M : A, where A is a type with nooccurrence of � in it. If no free variable of M has a type with occurrences of � , thenM is actually a term in �1��.Proof. By induction on the structure of M.Basis for induction: if M is of length 1, then it can be only a variable of type A, asany constant has a type with occurrences of � .Inductive step:M � �~x:r ~P , as M is in normal form, and we proceed by case analysison r as follows:r is a variable: then r has type type(P1)! (:::! (type(Pn)! C):::) and no matterif r is free or bound, by hypothesis on the type of M and its free variables, thePi's (which are in normal form) have a type with no � 's and free variables whosetype have no � 's, so by induction hypothesis they contain no constants nor pairs,hence M contains no constants or pairs either.r is hP;Qi: this is impossible, otherwise M � �~x:hP;Qi and the type of M would beS1 ! :::! Sn ! (A� B), which contains � .r is p1 or p2: this cannot be either, since:� M � �~x:pi must have a type containing � ,� M � �~x:((piM1)M2:::Mk) implies, by lemma 3.1, that either M1 is hN1; N2ior M1 has a free variable x : C with S � U a type subexpression of C. The�rst case is not possible, as pihN1; N2i is a redex while M is in normal form.Thus M1 has a free variable x : C with S �U a type subexpression of C, and,hence, either x 2 FV (M ) or S � U is a type subexpression of the type of M,since the type of M includes the types of bound variables. Impossible.Proposition 3.7(Isolate the relevant hM1; . . . ;Mni in an isomorphism)Let S � S1 � . . . � Sm and R � R1 � . . . � Rn be type-n.f.'s where neither the Si's northe Rj's contain any occurrences of T or � . Then S �=p R i� there exist M1, . . . ,Mnand N1, . . . ,Nm such thatx1 : S1; . . . ; xm : Sm `M1, . . . ,Mn Mi[ ~N/~x] =�� yi, for 1 � i � ny1 : R1; . . . ; yn : Rn `N1, . . . ,Nm Nj [ ~M/~y] =�� xj, for 1 � i � m(where substitution of vectors of equal length is meant componentwise).Proof. ()) Let M�: S ! R and N� : R ! S be closed terms (in normal form) of�1���� such that M��N� = IR and N��M� = IS . Then by standard currying, considerthe term �x1:::xm:M < x1; :::xm >: (S1 ! . . . ! (Sm ! (R1�. . .�Rn):::), and observethat the normal form M' of M < x1; :::xm > : R1 � :::�Rn, by lemma 3.1, must be ofthe form < M1; :::;Mn >, with FV(M') = fx1 : S1; :::xm : Smg (by assumption, the Si'scontain no occurrences of � ). The same applies for N.As for the other properties, letM 00 � �z:(�x1:::xm:M� < x1; :::xm >)(p1z):::(pmz)and N 00 � �z:(�y1:::yn:N� < y1; :::yn >)(p1z):::(pnz);16



where the xi's, yj 's, and z are chosen to be distinct.Then M 00 =� �z:M� < p1z; :::pmz >=� �z:M�z =� M�;and similarly N 00 =� �z:N�z =� N�:Compute thenM��N� =�� M 00�N 00 � �x:(M 00(N 00x)) for x a variable not occurring in M" or N":=�� �x:(�z:(�x1:::xm:M 0)(p1z):::(pmz))(N 00x)=�� �x: < M1[ ~pj(N 00x)=~xj]; :::;Mn[ ~pj(N 00x)= ~xj] >where the substitution is done simultaneously for all 1 � j � m;=�� �x: < M1[ ~N [ ~pix=~y]=~x]; . . . ;Mn[ ~N [ ~pix=~y]=~x] >since N 00x =�� �y1:::yn:N 0(p1x) . . . (pnx)=�� < N1[ ~pix=~y]; :::; Nm[ ~pix=~y] >where substitution is done simultaneously for all 1 � i � n;=�� �x: < M1[ ~N=~x][ ~pix=~yi]; . . . ;Mn[ ~N=~x][ ~pix=~yi] >by substitution properties, as noyi is free in M 0=�� �x: < p1x; :::; pnx >since M��N� =�� �x:x and x =��< p1x; :::; pnx > :Observe now that the equality just proved implies, componentwise, thatMk[ ~N=~x][ ~pix=~yi] =��pkx: For the purpose of the �nal argument of the proof, we refer now to ����!! as a \severalsteps reduction" in �1����. In view of the Church-Rosser property for this calculus, thelast equality is equivalent to Mk[ ~N=~x][ ~piw=~yi]����!! pkw:where w is a fresh variable (to avoid confusion between ~x and x; in other words, w is notfree in Mk nor in any Ni and cannot be free in any reduct of Mk[ ~N=~x] either.)Notice now that by hypothesis the terms ~M and ~N are in normal form and have noT or � involved in their types or in the types of their free variables (the ~Si and ~Ri),so by lemma 3.6 they are actually terms of �1��. This allows us to conclude that thesubstitution [ ~piw/~yi] creates no new redexes: the ~piw could only create new redexes forsurjective pairing reductions, i.e. when they appear in < p1w; :::; pnw >. But VecM and~N do not contain any pair, so surjective pairing reductions cannot apply.This fact has an important consequence: the reductions are actually performed in-side Mk[ ~N=~x], so if we have Mk[ ~N=~x][ ~piw=~yi]����!!Q, then Mk[ ~N=~x]����!!Q0 with Q �Q0[ ~piw=~yi]. 17
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