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REFLECTIONS ON FORMALISM AND REDUCTIONISM IN LOGIC
AND 

COMPUTER SCIENCE

Giuseppe Longo

Many logicians have now turned into applied mathematicians, whose role

in Computer Science is increasingly acknowledged even in industrial

environments.  This fact is gradually changing our understanding of

Mathematical Logic as well as its  perspectives.  In this note, I will try to

sketch some philosophical consequences of this cultural and "sociological"

change, largely influenced by Computer Science, by a critique of the role of

formalism and reductionism in Logic and Computing.

In mathematics, we are mostly used to a dry and schematic style of

presentation: numbered definitions and theorems scan the argument.  This

may add effectiveness and clarity, though nuances may be lost: the little

space allowed here requires to stress effectiveness.

Themes - Three main aspects relating Computer Science and the logical

foundation of mathematics will be mentioned below, namely 

1. the growth of a pragmatic attitude in Logic

2. revitalization and limits of formalism and constructivism

3. the role of space and images.

1. Pragmatism in Logic

1.1 Tool vs. foundation.  In Computer Science, Mathematical Logic is no

longer viewed as a foundation, but as a tool.  There is little interest in setting

on firm grounds Cobol or Fortran, say, similarly as Logic aimed at founding

Number Theory or Analysis by, possibly complete, axiomatic systems.  The

actual work is the invention of new programming languages and styles, or

algorithms and architectures, by using tools borrowed from Mathematical

Logic.  This also may originate in attempts to base on clear grounds known

constructs, but the ultimate result is usually a novel proposal for computing.

Functional and Logic Programming are typical examples for this. 

This "engineer's approach" in applied Logic is helping to change the

philosophical perspective in pure Logic, as well.  

1.2 An analogy: the completeness of mechanical systems.  The interests in
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the foundation of mathematics, in this century, have been a complex blend

of technical insights and philosophical views.  We must acknowledge first

that philosophical a priori, in Logic, may have had a stimulating role, in

some cases.  Yet ideologies and the blindness of many attitudes have been a

major limitation for knowledge, an unusual phenomenon in scientific

research.  They have been the source of 

- wrong conjectures (completeness, decidability, provability of

consistency)

- false proofs, by topmost mathematicians (just to mention the main

cases: an inductive proof of the consistency of Arithmetic, by Hilbert, refuted

by Poincar� in 1904-05; a second attempt, based on a distinction of various

levels of induction, debated by Hermann Weyl in the twenties).

The wrong directions taken by the prevailing formalist school may be

understood as a continuation of a long lasting attitude in science and

philosophy.  On the shoulders of last centuries' giants, Newton and Laplace,

typically, the positivist perspective believed in perfect and complete

descriptions of the world by classical mechanics, namely by sufficiently

expressive systems of partial differential equations.  Similarly, in Logic,

adequate axiomatic systems were supposed to describe completely Analysis

or the whole of mathematics.  Two levels of descriptions, both exhaustive, or

complete in the sense of Logic: one of the world by mathematical equations,

the other of mathematics by (finitely many) axioms.  

Still, this posivistic vision, in Logic, was not compelled by the times.

Hermann Weyl conjectured the incompleteness of number theory and the

independence of the axiom of choice in "Das Kontinuum", in 1918.  Poincar�

rejected purely logical or linguistic descriptions as the only source for

mathematics and stressed the role of geometric insight.  As I will try to hint

below, Poincar�'s distinction between analytic work and the intuition of

space as well as his approach to the foundation of mathematical knowledge

may be today at the base of a renewed foundational work, similarly as his

work on the three body problem is at the origin of contemporary mechanics

(Lighthill[1986]).

1.3  Foundation of mathematical knowledge.  Another mathematician

should be quoted among those who did not except the reductionist and

formalist attitudes, in the first part of this century: Federico Enriquez.  Also

in Enriquez's philosophical writings, the interest in the interconnections of

knowledge and in its historical dynamics suggested more open philosophical

perspectives.  It may be fair to say that Poincar�, Weyl and Enriquez were

interested in the foundation of mathematical knowledge more than in the
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technical foundation of mathematics.

The difference should be clear: by the first I mean the epistemology of

mathematics and the understanding of it "as integral part of the human

endeavor toward knowledge" (to put it in Weyl's words).  Not a separated

transcendence, isolated in a vacuum, but an abstraction emerging from our

concrete experience of the real world of relations, symmetries, space and

time (Poincar�[1902, 1905], Enriquez [1909], Weyl[1918, 1952]).

 In contrast to this broad attitude, the purely technical, internal

foundation, as pursued by formalistic and reductive programs in their

various forms, somewhat reminds of a drawing of a book on a table and of

the belief that the table really supports the book, while they are designed by

us by the same technique and the same tools.  This cognitive circularity is at

the source of the negative results in Logic.

1.4 The unity of formal systems.  The first step towards a more open attitude

comes with the need for a variety of systems and the understanding of their

interconnections.  The laic attitude inspired by applications and the

suggestions coming from geometric intuitions are at the origin of recent

inventions of new systems of Logic, where unity is given not by a global,

metaphysical, system, but by the possibility of moving from a system to

another, by changes in the basic rules and by translations or connecting

results.  Indeed, Girard's focus on the structural rules in Girard[1987] and his

seminal work in Girard[1992] are largely indebted to a pragmatic attitude that

views Logic as part of (applied) mathematics, with no special "meta-status."

In this perspective, geometric structures and applications suggest formal

systems, guide toward relevant changes, propose comparisons, in the

common mathematical style where connections and bridges preclude

ideological closures within one specific frame.  In this sense, its unity is a

deep mathematical fact, as much as Klein's unified understanding of

Geometry.

2. Formalism and Constructivism in Computer Science (and their limits).

2.1 Linguistic notations. The volume in Combinatory Logic by Curry and

Feys contains many pages on the renaming of bound variables and related

matters (in set-theoretic terms,  {x | P(x) }  is the same as  {y | P(y) }).  I believe

that the foundational relevance of these pages, if any, may be summarized in

about three lines.  The formalist treatment is a typical example of purely

symbolic manipulation, where meaning and structures are lost (see Curry's
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book on a formalist foundation of mathematics for an extremist's view in

that direction).  This opinion is shared by all working mathematicians who

simply ignored the discussion and explain the problem to students in twenty

seconds, on the blackboard.  Still, it happened that variable binding is a

crucial issue in computer programming.  Thus, the discussion in Curry et al.

has been largely and duly developed in functional programming and it is at

the core of detailed treatments in implementations. 

This example is just a small, but typical one, of the revitalization of

formalism and constructivism due to Computer Science.  It happens that

computers proceed as our founding fathers of Logic described the parody of

mathematics: linguistic definitions and formal deductions, with no meaning

as a guidance.  Meaningless, but effective constructions of programs, more

than unifying insights and concepts.  Mathematical invariants are lost, but

denotations are very precise.  This requires technically difficult insights into

pure calculi of symbols and, sometimes, brand new mathematics.  However,

the branching of methods and results, due to translations and meaning,

which are at the core of knowledge, may be lost within extremely hard, but

closed, games of symbols.  This is part of everyday's experience on the

hacker's side even in theory of computing.

2.2 Denotational semantics.  Fortunately, though, even programming has

been affected by meaning.  In the last twenty and odd years, various

approaches to the semantics of programming languages embedded

programming into the broader universe of mathematics.  Here is the main

merit of the Scott-Strachey approach, as well as of the algebraic or other

proposals, most of which are unifiable in the elegant frame of Category

Theory (this is partly summarized in Asperti&Longo[1991]).  In some cases,

the meaning of formal systems for computing, over geometric or algebraic

structures, suggested variants or extensions of existing languages.  More

often, obscure syntactic constructs, evident at most to the authors, have been

clarified and, possibly, modified.  As a matter of fact, in the last decade,

computer manuals have slowly begun to be readable, as they are moving

towards a more mathematical style, that is towards rigor, generality and

meaning at once.  We are not there yet, as most hackers think in terms of

pure symbol pushing and are supported in this attitude by the formalist

tradition in Logic.  Many still do not appreciate from mathematics that the

understanding and, thus, the design of a strictly constructive, but

complicated system may also derive from highly non constructive, but

conceptually simple, intellectual experiences.  
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2.3 Resources and memory.  Brouwer, the founding father of intuitionism,

explicitly considers human memory as "perfect and unlimited," for the

purposes of his foundational proposal (Troelstra[1990]).  This is implicitly at

the base of the formalist approach as well.  Indeed, computer memories are

perfect and, by a faithful abstraction, unlimited.  This has nothing to do with

human memory, and mathematics is done by humans.  One component of

mathematical abstraction, as emerging from our "endeavour towards

knowledge," may precisely derive from the need to organize language and

space in least forms, for the purposes of memory saving.  A "principle of

minima" may partly guide our high level organization of concepts,

Sambin[1990].  Moreover, imperfection of storage is an essential part of

approximate recognition, of analogy building.  

For the aim of founding mathematical knowledge, we need exactly to

understand the emergence of abstraction, the formation of conceptual

bridges, of methodological contaminations between different areas of

mathematical thinking.  There may be a need for psychology and

neurophysiology in this approach.  Good: the three mathematicians quoted

in 1.3 have been often accused of "psychologism", of "wavering between

different approaches", in their foundational remarks.  The proposed "one-

way" alternatives lead to the deadlock where formalism and reductionism

brought us in understanding mathematics (and the world).  Moreover, so

much happened in this century in other areas of knowledge, that we should

start to take them into account.

2.4 Top down vs. bottom-up.  There is no doubt that formalism and

reductionism have been at the base of Computer Science as it is today and of

its amazing progress.  In particular, top-down deductions and constructive

procedures set the basis for the Turing and Von Neuman machines as well

as for all currently designed languages, algorithms and architectures.  Yet,

there is a growing need to go beyond top-down descriptions of the world,

even in Computer Science.  The recent failures of strong Artificial

Intelligence are the analogue of incompleteness and independence results in

Logic: most phenomena in perception and reasoning escape the stepwise-

deductive approach.  Partly as a consequence of these failures, there is an

increasing interest in bottom-up approaches. Relevant mathematics is being

developed in the study of the way images, for example, organize space by

singularities, or how the continuum becomes discrete and reassembles itself,

in vision or general perception, in a way which leads from quantitative

perception to qualitative understanding, Petitot[1992]. 

7



3. Space and Images

3.1 Denotations and Geometry.  In the practice of mathematics, formal

notations and meaning are hardly distinguished.  Indeed, one may even

have symbolic representations where, besides the geometric meaning, there

exists a further connection to Geometry, at the notational level.  Relevant

examples of this are given by Feyman's and Penrose's calculi or by Girard's

proof nets.  

In Feyman's calculus, planar combinations of geometric figures allows

computations representing subatomic phenomena.  Penrose's extends

familiar tensorial calculi over many dimensional vector spaces in a very

powerful way: bidimensional connections between indexes explicitly use

properties of the plane to develop computations.  A more recent example

may be found in Girard's Linear Logic.  In this system, formal deductions are

developed by drawing planar links between formulae in a proof tree.  Proofs

(and cuts) are carried on by an explicit use of the geometric representation, by

modifying the links.  As the proof-theoretic calculus is essentially complex,

according to recent complexity results, the use of the geometric

representations comes in as an essential tool for the formal computation.  

In a sense, all these calculi derive from (physical) space or Geometry and,

after an algebraic or syntactic description, end up in geometric

representations, possibly unrelated to the original one.  As a matter of fact,

even Linear Logic originated in Geometry, as it was suggested by the

distributive or linear maps over coherent spaces (Girard[1987]), and ends up

into a Geometry of proofs.

3.2 Geometric insight.  I would like to mention here the possible relations of

the novel mathematical approaches to vision mentioned in 2.4, and similar

ones in other forms of perception, to the wise blend of linguistic, or analytic,

and geometric experiences required by the practice and the foundation of

mathematics.  

It should be clear that, in mathematics, synthetic explanations may

provide an understanding and a foundation as relevant as stepwise

reductionist descriptions.  The drawing on a blackboard may give as much

certainty as the search for least axioms for predicative Analysis.  The point

now is to understand what is behind the drawing, which intellectual

experiences give to it so much expressiveness and certainty.  The point is to

turn this practice of human communication, by vision and geometric

insight, into a fully or better understood part of knowledge.  This is where
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our endeavor towards general knowledge cannot be separated from the

foundation of mathematics.  Mathematics is just a topmost human

experience in language and space perception, unique as for generality and

objectivity, but part of our relation to the world.

 A few examples may be borrowed from neurophysiology (see

Ninio[1991], Maffei[1992]).  It seems that only human beings perform

interpolations (vertices of a triangle or of a square seen as complete figures,

sets of stars as a constellation... ).  Apparently this is done by minimal lines

which complete incomplete images. We seem to interpolate by splines,

when needed.  More: there are neurons which recognise (send an impulse)

only in presence of certain angles, or others which react only to horizontal or

vertical lines.  This is recomposed in intellectual constructions which are at

the base of our everyday vision and of the so called optic illusions (which are

just attempted reconstructions of images).  And, why not, at the base of our

geometric generalizations.  

But how? How can we make this "composition of basic mental images"

as part of a new foundation of mathematical knowledge, in the same way as

formal, linguistic axioms, have been describing part of the analytic

developments in mathematics?  

I can only mention the problem, for the time being, and stress what is

really missing, the possible source of incompleteness: the lack of Geometry

and images in foundational studies.  A modern rediscovery of these aspects

may be at the core of an understanding of image recognition which goes

together with an appreciation of geometric abstraction in mathematics.

In a sense we should enrich the insufficient attempts to deduce all of

mathematics by linguistic axioms, by adding, at least, the knowledge we have

today of space perception and of the process of image formation.  This may

help to focus the way in which mathematics emerges, surely by compositions

of elementary components (the lines and triangles I mentioned before), but

also by "synthesis" and reorganization of space, as mentioned in 2.4.  In this,

a renewed Artificial Intelligence, far away from the prevailing formalist one,

may be a novel contribution of Computer Science to the foundation of

mathematical knowledge, and conversely.  The difficult point is to be able to

move, in foundational studies and everyday's work, from local, quantitative

and analytic approaches to global, qualitative and geometric perspectives and

still preserve the crucial (informal) rigor of mathematics.

3.3 The continuum and minima: more about reductionism.  In "Das

Kontinuum" Weyl[1918], Hermann Weyl raises the issue of the continuum

of Analysis vs. the continuum of time.   The understanding of the latter is
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based on the simultaneous perception of past, present and future.  In this

irreducible phenomenological intuition of time it is not possible to isolate

the temporal point, in contrast to the analytic description where this can be

done by reduction to linguistic abstractions, that is to symbols and (derivable)

properties.  Weyl, a mathematician working also in relativity theory,

expresses his unsatisfaction and raises a major point for mathematical

knowledge: the convenient analytic unity of space and time does not

correspond to our fundamental experience (see also Petitot[1992]).  This

problem has not been sufficiently studied since then, as we were mostly

concerned by formalist reductions and the search for complete and (self-

)consistent Set Theories, as a basis for Analysis.  These formal theories have

not been able to tell us anything even about the cardinality of an arbitrary set

of reals (independence of the Continuum Hypothesis), let alone the

profound mismatch between time and the analytic description of space, as

given by the real line.

This need of ours to "fill up the gaps", possibly by continuity, may

probably go together with the principles of minima, mentioned in 2.3 and 3.2

as a possible description of some aspects of abstraction (memory

optimization and the formation of images, respectively).  These principles

are usually very complex in mathematics and, when referring to them, we

depart from reductionism.  Yet another relevant mathematical experience

then, to be added to the continuum of time, which seems to escape

reductionism.  Reductions are surely a relevant part of scientific

explanations, however they are far from proposing complete methodologies

or providing the only possible foundation of knowledge. 

In conclusion, we need to focus on alternative approaches to formalism

and reductionism both in applied as well as in theoretical approaches to

cognition.  In 2.4 and 3.2, the role is mentioned of current inverse paradigms

with respect to the prevailing top-down, deductive formalizations: bottom-

up descriptions, for example, which may give a complementary account of

perception and conceptual abstraction.  What really matters now is to extend,

not to keep reducing our tools.  Our rational paradigms must be made to

comprehend the mathematical, indeed human, intuition of space and time.

In other words, we need to lower the amount of magic and mystery in these

forms of intuition, and bring them into the light of an expanded rationality.
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SOME ASPECTS OF IMPREDICATIVITY
Notes on Weyl's Philosophy of Mathematics and on todays Type Theory

Part I  (*)

Giuseppe Longo

"The problems of mathematics are not isolated problems in a vacuum;

there pulses in them the life of ideas which realize themselves in

concreto through out human endeavors in our historical existence,

but forming an indissoluble whole transcend any particular science"

Hermann Weyl, 1944.

1. Logic in Mathematics and in Computer Science

  1.1 Why Weyl's philosophy of Mathematics?

2. Objectivity and independence of formalism

3. Predicative and non-predicative definitions

3.1  More circularities

4  The rock and the sand

4.1  Impredicative Type Theory and its semantics

5. Symbolic constructions and the reasonableness of history 

(*) First part of a lecture delivered at the Logic Colloquium 87, European Meeting of the

ASL, and written while teaching in the Computer Science Dept. of Carnegie Mellon

University, during the academic year 1987/88.  The generous hospitality and the

exceptional facilities of C.M.U. were of a major help for this work.

(The second, more technical, part of this lecture has been largely supersed by Longo&Moggi

( Mathematical  Structures  in  Computer  Sciences , 1 (2), 1991), under ftp as

omegaSetModel.ps.gz)
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1. Logic in Mathematics and in Computer Science.

There is a distinction which we feel a need to stress when talking (or writing) for an

audience of Mathematicians working in Logic.  It concerns the different perspectives in

which Logic is viewed in Computer Science and in Mathematics.  In the aims of the

founders and in most of the current research areas of Logic within Mathematics,

Mathematical Logic was and is meant to provide a "foundation" and a "justification" for all

or parts of mathematics as an established discipline.  Since Frege and, even more, since

Hilbert, Proof Theory has tried to base mathematical reasoning on clear grounds, Model

Theory displayed the ambiguities of denotation and meaning and the two disciplines together

enriched our understanding of mathematics as well as justified many of its constructions.

Sometimes (not often though) results of independent mathematical interest have been

obtained, as in the application of Model Theory to Algebra; moreover, some areas, such as

Model Theory and Recursion Theory, have become independent branches of mathematics

whose growth goes beyond their original foundational perspective.  However, these have

never been the main aims of Logic in Mathematics.  The actual scientific relevance of Logic,

as a mathematical discipline, has been its success in founding deductive reasoning, in

understanding, say, the fewest rational tools required to obtain results in a specific area, in

clarifying notions such as consistency, categoricity or relative conservativity for

mathematical theories.

This is not so in Computer Science, where Mathematical Logic is mostly used as a

tool, not as a foundation.   Or, at most, it has had a mixed role: foundational and

"practical".  Let us try to explain this.  There is no doubt that some existing aspects of

Computer Science have been set on clearer grounds by approaches indebted to Logic.  The

paradigmatic example is the birth of denotational semantics of programming languages.  The

Scott-Strachey approach has first of all given a foundation to programming constructs

already in use at the time.  However, the subsequent success of the topic, broadly

construed, is mostly due to use that computer scientists have made of the denotational

approach in the design new languages and software.  There are plenty of examples - - from

Edinburgh ML to work in compiler design to the current research in polymorphism in

functional languages.  Various forms of modularity, for example, are nowadays suggested

by work in Type Theories and their mathematical meaning.  In these cases, results in Logic,

in particular in lambda-calculus and its semantics, were not used as a foundation, in the

usual sense of Logic, but as guidelines for new ideas and applications.  The same happened

with Logic Programming, where rather old results in Logic (Herbrand's theorem

essentially) were brought to the limelight as core programming styles.  Thus Mathematical

Logic in Computer Science is mostly viewed as one of the possible mathematical tools,

perhaps the main one, for applied work.  Its foundational role, which also must be

considered, is restricted to conceptual clarification or "local foundation", in the sense

suggested by Feferman for some aspects of Logic in Mathematics, instead of the global

foundation pursued by the founding fathers of Logic.  Of course, the two aspects, "tool"
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and "local foundation", can't always be distinguished, as a relevant use of a logical

framework often provides some sort of foundation for the intended application.

It is clear that this difference in perspective deeply affects the philosophical attitude

of researchers in Logic according to whether they consider themselves as pure

mathematicians, possibly working at foundational problems, or applied mathematicians

interested in Computer Science.  The later perspective is ours.

In the sequel we will be discussing "explanations" of certain impredicative theories,

while we will not try to "justify" them.  This is in accordance with the attitude just

mentioned.  By explanation we essentially mean "explanation by translation", in the sense

that new or obscure mathematical constructions are better understood as they are translated

into structures which are "already known" or are defined by essentially different techniques.

This will not lay foundations for nor justify those constructs, where by justification we

mean the reduction to "safer" grounds or an ultimate foundation based on "unshakable

certainties", in Brouwer's words [1923,p.492].  The same aim as Brouwer's was shared by

the founders of proof theory.

However, we believe that there is no sharp boundary between explanation and

foundation, in a modern sense.  The coherence among different explanations, say, or the

texture of relations among different insights and intuitions does provide a possible, but

never ultimate, foundation.

1.1 Why Weyl's philosophy of Mathematics?

As applied mathematicians, we could avoid the issue of foundations and just discuss, as we

claimed, explanations which provide understanding of specific problems or suggest tools

for specific answers to questions raised by the practice of computing.  However, in this

context, we would like to justify not the mathematics we  will be dealing with, as, we

believe, there is no ultimate justification, but the methodological attitude which is leading

our work.  Our attempt will be developped in this part of the paper, mostly following

Hermann Weyl's philosophical perspective in Mathematics.  At the same time, with

reference to the aim of this talk, we will review Poincar�'s and Weyl's understanding to the

informal notion of "impredicative definition".  The technical part, Part II, is indeed dedicated

to the semantics of impredicative Type Theory and may be read independently of Part I (the

reader should go to Longo[89] or Asperti&Longo[91] for part II or its recent

developments).

The reader may wonder why we should refer to Weyl in the philosophical part of a lecture

on impredicative systems, since Weyl's main technical contribution to Logic is the proposal

for a predicative foundation of Analysis (see ¤.4).  The point is that, following Poincare',

Weyl gave a precise notion of predicative (and thus impredicative) definition, see ¤.4.

Moreover, and this is more relevant here, his proposal, as we will argue, is just one aspect
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of Weyl's foundational perspective.  His very broad scientific experience led him to explore

and appreciate, over the years, several approaches to the foundation of Mathematics,

sometimes borrowing ideas from different viewpoints.  The actual unity of Weyl's thought

may be found in his overall philosophy of mathematics and of scientific knowledge, a matter

he treated in several writings from 1910 to 1952, the time of his retirement from the Institute

for Advanced Studies, in Princeton.  In our view, Weyl's perspective, by embedding

mathematics into the real world of Physics and into the "human endeavors of our historical

existence", suggests, among other things, the open minded attitude and the attention to

applications, which are so relevant in an applied discipline such as Logic in Computer

Science. 

2. Objectivity and independence of formalism

The idea of an "ultimate foundation" is, of course, a key aspect of Mathematical

Logic since its early days.  For Frege or, even more, Hilbert this meant the description of

techniques of thinking as a safe calculus of signs, with no semantic ambiguities.  With

reference to Geometry, the paradigm of axiomatizable mathematics for centuries, "it must be

possible to replace in all geometric statements the words point, line, plane by table, chair,

mug", in Hilbert's words, as quoted in Weyl[1985, edited,p.14].  The certainty could then

be reached by proving, for the calculus, results of consistency, categoricity, decidability or

conservative extension (relative to some core consistent theory).  The independence of

meaning goes together, for Hilbert, with the independence from contextual worlds of any

kind: "...mathematics is a presuppositionless science.  To found it I do not need God, as

does Kronecker, or the assumption of a special faculty of our understanding attuned to the

principle of mathematical induction, as does Poincar�, or the primal intuition of Brouwer, or

finally, as do Russell and Whitehead, axioms of infinity, reducibility, or completeness,

which in fact are actual, contentual assumptions that cannot be compensated for by the

consistency proofs" (Hilbert[1927,p.479]).  A similar deep sense of the formal autonomy of

mathematics may be found in the many lectures that Hilbert delivered in the twenties, in a

sometimes harsh polemic against Brouwer.  In particular, in disagreement with Brouwer 's

view on existence proofs, Hilbert claims, in several places, that the interest of a proof of

existence resides exactly in the elimination of individual constructions and in that different

constructions are subsumed under a general idea, independent of specific structures.

Hilbert's strong stand towards the independence of mathematics is absolutely fascinating

and clearly summarizes the basic perspective of modern mathematics and its sense of

generality.  By this, Hilbert "... succeeded in saving classical mathematics by a radical

reinterpretation of its meaning without reducing its inventory, namely by ..... transforming

it in principle from a system of intuitive results into a game with formulas that proceeds

according to fixed rules" (Weyl[1927,p.483]).  Indeed, Weyl acknowledges "... the
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immense significance and the scope of this step of Hilbert's, which evidently was made

necessary by the pressure of the circumstances" (Weyl[1927,p.483]).  Hilbert's "bold

enterprise can claim one merit:  it has disclosed to us the highly complicated and ticklish

structure of Mathematics, its maze of back connections, which result in circles of which it

cannot be gathered, at first glance whether they might not lead to blatant contradictions...

but what bearing does it have on cognition, since its formulas admittedly have no material

meaning by virtue of which they could express intuitive truth ?" Weyl[1949,p.61].  

Thus Weyl suggests that one should derive our understanding of mathematics also

from entirely different perspectives.  

3. Predicative and non-predicative.

Weyl's own partial commitment to intuitionism, at Hilbert's annoyance, spans the

twenties ("I now give up my own attempt and join Brouwer ", Weyl [quoted in van

Heijenoort, p.481]).  The roots of this change of perspective in a disciple of Hilbert, may be

found in the main foundational writing of Weyl's, i.e. in Das Kontinuum, 1918.   As a

working mathematician, Weyl cares about the actual expressive power of mathematical

tools.  He is very unsatisfied though with the "...crude and superficial amalgamation of

formalism and empiricism... still so successful among mathematicians" (Weyl[1918,

preface]).  He is as well aware of the shaky sands (see later) on which the structure of

classical mathematics is built, not long before revealed by the paradoxes.

Weyl's way to get by the foundational problem, together with Poincar�'s thought,

is the beginning of the contemporary definitionist approach to Mathematics.

Poincar� blames circularities for all troubles in Mathematics, in particular when the

object to be defined is used in the property which defines it.   In these cases "... by

enlarging the collection of sets considered in the definition, one changes the set being

defined".... "From this we draw a distinction between two types of classifications...: the

predicative classification which cannot be disordered by the introduction of new elements;

the non-predicative classifications in which the introduction of new elements necessitates

constant modification" (Poincar� [1913,p.47]).

Weyl takes up Poincar� 's viewpoint and gives a more precise notion of

predicativity.  First he points out that impredicative definitions do not need to be

paradoxical, but rather they are implicitly circular and hence improper (Weyl[1918],

Feferman[1986]).  Then he stresses that impredicativity is a second order notion as it

typically applies in the definition of sets which are impredicatively given when "quantified

variables may range on a set which includes the definiendum", Weyl[1918,I.6].  That is a

set  b  is defined in an impredicative way if given by

(1) b = { x |  "yÎA.P(x,y) }  

where  b  may be an element of  A.

The discussion of impredicative definitions in the second order case is motivated by
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Poincar� and Weyl's interest in the foundation of Analysis and, hence, in second order

Arithmetic (see also  Kreisel[1960], Feferman[1968 through 1987]).  Thus the need to talk

of sets of numbers, provided that this is done in the safe stepwise manner of a predicative,

definitionist approach: "... objects which cannot be defined in a finite number of

words....are mere nothingness" (Poincar� [1913,p.60]).

On these grounds Weyl sets the basis for the modern work in predicative analysis,

which has been widely developed by Feferman, Kreisel and other authors in Proof Theory.

The crucial impredicative notion in Analysis is that of least upper bound (or greatest lower

bound).  Both are given by intersection or union (i.e. by universal or existential

quantification) with the characteristic in (1), since the real number being defined, as a

Dedekind cut, may be an element of the set over which one takes the intersection or union

that defines it.  That is, for the greatest lower bound,   

g.l.b.(A) = Ç{ r |  rÎA } ,

where  g.l.b.(A)  may be in  A .

In Das Kontinuum, Weyl proposes to consider the totality of the natural numbers

and induction on them as sufficiently known and safe concepts; then he uses explicit and

predicative definitions of subsets and functions, within the frame of Classical Logic, as well

as definable sequences of reals, instead of sets, in order to avoid impredicativity.  Weyl's

hinted project has been widely developped in Feferman[1987].  

3.1  More circularities

At this stage, are we really free of the dangerous vortex of circularities? Observe

that even the collection  w  of natural numbers, if defined by comprehension, is given

impredicatively, following Frege and Dedekind :

xÎw   Û   "Y ("y (yÎY  Þ  y+1ÎY)  Þ ( 0ÎY  Þ  xÎY ))
Thus also inductive definitions turns out to be impredicatively given, classically.  A set

defined inductively by a formula  A , say, is the intersection of all the sets which satisfy  A .

As a matter of fact, Kreisel[1960,p.388] suggests that there is no convincing purely

classical argument "...which gives a predicative character to the principle of inductive

definitions".  

Poincar� and Weyl get by this problem by considering  w  and induction as the

irreducible working tools for Mathematics.  This approach is very close to the intuitionistic

perspective, where the stepwise generation of the sequence of numbers is the core

mathematical intuition (except that definitionists consider  w  as a totality).

Observe that  w  and induction are treated in a second order fashion, as the

quantifications above are over sets.  In other words, they rely on full second order

comprehension for sets, which is usually given impredicatively.  It is time, though, to

discuss whether the circularity at the core of impredicative definitions really appears only at

higher order.  
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Consider for example, a set  S  of natural numbers, and define  m  as the least

number in  S.  Of course  m  is in  S  and, hence, if one understands this definition

classically, the totality   S , which is used in the definition of  m , contains  m  itself.  To put

it otherwise,  S  is not known as long as we do not get  m  too.  The definitionist approach

or some mild constructivism save us from this:  S  is known if defined in a (finitistic)

language or one may compute  m  by inspection of the sequence of numbers.  Or, also, as

some definitionists would say,  m  is impredicatively given only if the only way to define it

is via  S .

However, the first order circularities are not always so simple to solve.  Consider

"...the standard ("intended") interpretation of intuitionistic implication.  This interpretation,

when applied to iterated implications, has the same degree of impredicativity as full

comprehension itself in the sense that being a proof of such an implication is defined by a

formula containing quantifiers over all proofs of (arbitrary) logical complexity"

Troelstra[1973,p.8] (a viewpoint confirmed in a personal communication).

Kreisel[1968,p.154-5] shares the same views "....Heyting's ... implication certainly does

not refer to any list of possible antecedents.  It simply assumes that we know what a proof

is".  All proofs, not just the proofs of the antecedent.  Indeed, a proof of  A®B  in

Heyting's sense, is defined as a computation which outputs a proof of  B  for any proof of

A , as input.   But the proofs of  A  or  B  are not better known than the proofs of  A®B ,

as they may refer to, or contain as a subproof, proofs of  A®B.  For example, one may

have obtained  b  in  B  from  c  in  A®B  and  a  in  A , i.e.  b = c(a) .  

This shows a circularity in the heart of a rather safe approach to foundation.  Even

though Weyl, because of his attention to Analysis, was explicitly referring only to second

order impredicativity, the same circularity that he and Poincar� describe arises here (see the

quotation from Poincar�[1913] above).

Another impredicative first order definition will be crucial later, when discussing

the semantics of Girard's system  F  .  Consider the following extension of Curry's

Combinatory Logic, where terms are defined as always (variables, constants K, S, d and

application)

Definition. Combinatory Logic with a delta rule (C.L.d) is given by

"x,y  Kxy = x

"x,y,z  Sxyz = xz(yz)

"x   dxx = x .

We claim that it is sound to say that the definition of  d  is impredicative here.  Indeed, the  d

axiom is equivalent to

M = N   Þ   dMN = M   ,  for arbitrary terms  M, N .
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Thus  d, by definition, internalizes "=", or checks equality in the system described by  K, S,

and  d.  But  d  itself contributes to define "=", or the definition of  d  refers to "=", which

we are in the process of defining.  This violates Poincare's restriction above.  

An inspection of Klop's proof in Barendregt[1984] may give a feeling of where

impredicativity comes in: an infinite Bðhm-tree is reduced to different trees, with no

common reduct,  by  d , once that the entire tree is known to  d .  

(Note that, in contrast to Church's delta, one does not ask for  M  and  N  to be in

normal form.  As a matter of fact, C.L.d  is provably not Church Rosser, by a result in

Klop[1980].  It is consistent, though, by a trivial model, where impredicativity is lost: just

interpret  d  by  K .  One may wonder if there is any general theorem to be proved here

about impredicatively given reduction systems and the Church Rosser property.)

A further understanding of the impredicative nature of C.L.d is proposed in Part II

of the original version of this note, Longo[89] (see also Asperti&Longo[91;ch.12] for an

update).  By using what may be roughly considered an extension of it, an interpretation of

impredicative second order Type Theory is given.

4 The rock and the sand.

"With this essay, we do not intend to erect, in the spirit of formalism, a beautiful,

but fake, wooden frame around the solid rock upon which rests the building of Analysis,

for the purpose of then fooling the reader -- and ultimately ourselves -- that we have thus

laid the true foundation.  Here we claim instead that an essential part of this structure is built

on sand.  I believe I can replace this shifting ground with a trustworthy foundation; this will

not support everything that we now hold secure; I will sacrifice the rest as I see no other

solution." (Weyl[1918,preface]).

With this motivation Weyl proposes his definitionist approach to Analysis.  This is

based on a further critique of Hilbert's program.  If we could "...decide the truth or falsity

of every geometric assertion (either specific or general) by methodically applying a

deductive technique (in a finite number of steps), then mathematics would be trivialized, at

least in principle" (Weyl[1918; I.3]).  Weyl's awareness of the limitations of formalism is

so strong (and his mathematical intuition so deep) that, at the reader's surprise, a few lines

below, he conjectures that there may be number theoretic assertions independent of the

axioms of Arithmetic (in 1918!).  (Indeed, he suggests, as an example, the assertion that,

for reals  r  and  s ,  r < s  iff  there exists a rational  q  such that  r < q < s .  There may be

cases where ".. neither the existence nor the non-existence of such a rational is a

consequence of the axioms of Arithmetic".  Can we say anything more specific about this,

now that we also know of mathematical independence results such as Paris-Harrington's ?).

Two sections later, Weyl conjectures that "...there is no reason to believe that any infinite

set must contain a countable set".  This is equivalent to hinting the independence of the

axiom of choice.  
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This insight of Weyl's into mathematical structures seems scarcely influenced,

either positively or negatively, by the predicativist approach he is proposing.  It is more

related to an "objective" understanding of mathematical definitions, in the sense below, and

to his practical work.  

" In our conception, the passage from the property to the set... simply means to

impose an objective point of view instead of one which is purely logical; that is we consider

as prevailing the coincidence of objects (in extenso, as logicians say) - ascertainable only

by means of knowledge of them - instead of logical equivalence" (Weyl[1918,I.4]).  Thus,

even though we are far from a platonist attitude, the conceptual independence of

mathematical structures from specific formal denotation is the reason for the autonomy of

mathematics from Logic. 

And now comes the aspect that makes Weyl such an open scientific personality.

Just as for Poincar�, Weyl's proposal for a predicative foundation of Analysis does not rule

his positive work in Mathematics.  This emerges from both authors' work (see

Goldfarb[1986] or Browder[1985] for Poincar�; much less has been said about Weyl and

we can only refer to our experience in a one year long seminar on Weyl, in Pisa, in 1986/7,

where mathematicians and physicists from various areas, Procesi, Catanese, Barendregt,

Tonietti, Rosa-Clot and others surveyed his main contributions. The reader may consult

Chandarasekharan[1986].  It is unfortunate, though, that the latter volume ignores Weyl's

contribution to Logic).  

However, Weyl's overall philosophical perspective in the foundation of

mathematics related to his main technical contributions, if one looks beyond his specific,

though relevant, proposal for a predicativist Analysis.  Following Hilbert, Weyl stresses the

role of "creative definitions" and "ideal" elements: limits points or "imaginary elements in

geometry... ideals numbers in number theory... are among the most fruitful examples of

this method of ideal elements" (Weyl[1949,p.9]) "... [which is] the most typical aspect of

mathematical thinking" (Weyl[1918,I.4]).  For example, "... affine geometry...

presupposes the fully formed concept of real number -- into which the entire analysis of

continuity is thrown" (Weyl[1949,p.69]).  On the other hand, Weyl aims at a blend of "...

theoretical constructions .. bound only by... consistency; whose organ is creative

imagination [of ideal objects]" and "... knowledge or insight... which furnishes truth, its

organ is "seeing" in the widest sense... Intuitive truth, though not the ultimate criterion, will

certainly not be irrelevant here" (Weyl[1949,p.61]).  But the intuitive insight of the working

mathematician cannot be limited to Brouwer's intuition: "...mathematics with Brouwer gains

its highest intuitive clarity.... However, in advancing to higher and more general theories

the inapplicability of the simple laws of classical logic results in an almost unbearable

awkwardness" (Weyl[1949,p.54].

An example may explain what kind of intuition Weyl is referring to.  In

Weyl[1918], the other major theme is the discussion of the geometric and the physical
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continuum.  As a disciple of Husserl, Weyl adheres to a phenomenological understanding of

time "as the form of pure consciousness" (Weyl[1949,p.36]) .  The phenomenological

perception of the passing moment of physical time is irreducible, in Weyl's thought, to the

analytic description of the real numbers in Mathematics, since the ongoing intuition of past,

present and future, as a continuum, is extraneous to logical principles and to any

formalization by sets and points.  "... the continuum of our intuition and the conceptual

framework of mathematics are so much distinct worlds, that we must reject any attempt to

have them coincide.  However, the abstract schemes of mathematics are needed to make

possible an exact science of the domains of objects where the notion of continuum

intervenes" (Weyl[1918,II.6]). 

In other words, not all of what is interesting or that we can "grasp" of the real

world is mathematically describable.  Weyl is aware of this, raises the issue, stresses the

uncertainties and... keeps working, with a variety of tools.  "... large parts of modern

mathematical research are based on a dexterous blending of axiomatic and constructive

procedures.  One should be content to note their mutual interlocking.."  and resist adopting

"...one of these views as the genuine primordial way of mathematical thinking to which the

other merely plays a subservient role" (Weyl[1985,edited,p.38]).  

The working mathematician has to be able to use axiomatic or constructive methods

as well as the intuition, in the sense above, with its real and historical roots.  For example,

in Weyl's opinion, there are (at least) two different notions of function, both relevant, for

different purposes.  The functions which express the dependence on time, a continuum; the

functions which originate from arithmetical operations (Weyl[1918,I.8]). 

This openness of Weyl's, who was sometimes "accused" of eclecticism, is surely

due to the variety of his contributions (in Geometry, Algebra, mathematical Physics... see

Chand.[1986]).  Thus, his permanent reference to the physical world and to the "human

endeavors in our historical existence" provides the background and ultimate motivation of

Mathematics, as we will argue in ¤.5.  Moreover, because of his broad interests, Weyl was

used to borrowing, or inventing, the most suitable tools for each specific purpose of

knowledge.  However, Weyl was not an applied mathematician.  He was more an

"inspired" mathematician (as suggested by Tonietti[1981]), as he mostly aimed at pure

knowledge, at mathematical elegance and at a unified understanding while his ideas are

constantly drawn from applications and lead by references to the real world: the

phenomenological time of Physics, the patterns of symmetries in nature, in art... all brought

together by the "reasonableness of history"  (¤.5).  An attitude similar to Weyl's, we claim,

may also help in our work, as logicians, in Computer Science.  

4.1  Impredicative Type Theory and its semantics.

Let's try to illustrate, by an example, what we mean by a "similar attitude".  The

example refers to the topic of the technical sections in Part II of the full version of this

paper, Longo[89] (one may consult Asperti&Longo[91] for an updated presentation).
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However, the sketchy presentation here only uses a few concepts from type theory, which

are recalled in place.  If these seem too unfamiliar to the reader, he/she may directly go to the

next section.

Second order lambda calculus, and its impredicative theory of types, originated in

Proof Theory and intuitionistic Logic by the work of Girard[1972] (and Troelstra[1973]).

The calculus was brought to the limelight when computer scientists, like Reynolds, Liskov

or Burstall, Lampson or Cardelli and others suggested or made use, in actual language

design, of expressive forms of modularity which are tidily represented in Impredicative

Type Theory (ITT).  Indeed, the programming languages they proposed support

"polymorphism" in ways more or less directly inspired by ITT: roughly, programs may be

applied to types and, by this, output a new program which is an (automatically) instantiated

version of the original program, by the input type.  These programs have type  "tÎTp.A ,

where  Tp  represents the collection of types.  Here comes the circularity of impredicative

definitions, since  "tÎTp.A  is a type, i.e. is in  Tp,  and its defination uses a quatification

over  Tp  itself (see ¤.3). The most recent language, Quest in Cardelli[1988], is an explicit

extension of Girard's system F.

Of course this raised and still raises lots of questions.  One clear point is that at

Digital, say, (but not only there) there are people interested in implementing a languages,

such as Quest and its derivatives, with the "obscure", but powerful features of impredicative

definitions.  It is almost a "concrete reality", as it runs on hardware.  As logicians, we may

help at its understanding and, perhaps, at its growth.  Even consistency issues are still open,

as Quest properly extends  F  by many facilities of functional programming.  In particular, it

allows recursive definitions and has notions of records, subtypes, "powertypes" and

inheritance whose definition requires extra rules and axioms.  A relative "consistency result"

is by all means relevant, even if one had to use highly non-constructive tools: on the average

they are much more reliable than the actual correcteness of programs, in whatever language!

(A model for the core of Quest is given in Cardelli&Longo[91]).  More generally in

Computer Science, the "mathematical semantics", i.e. the translation into mathematical

structures designed by essentially different tools, adds understanding, since complicated,

though effective, constructions may be better displayed to our minds by possibly non-

constructive, but intellectually simple methods.  The interpretation enriches our overall

knowledge by establishing connections, unifying and relating notions, allowing the use of

methods from one area to another and, most of all, suggests extensions and changes of the

syntax one is given to interpret.  This is exactly what happened with several functional

languages, whose design grew with their denotational understanding (e.g. Edinburgh ML).

In the case in discussion, the models in Part II, which are based on early work of

Girard and Troelstra, happen to interpret extensions of systems  F  in other directions,

namely interpret Coquand and Huet Calculus of Constructions (see Ehrhard[1988]).  This

may suggest extensions obtained by putting together the various features.  Of course,
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further expressiveness would pose more semantic challenges and would bring us as close as

conceivable to "the Tarpean rock" of the paradoxes.  But these semantic challenges may

provide informative connections with other areas or even suggest brand new Mathematics.  

This is the most recent story of the semantic investigation of Type Theory: since

Moggi's suggestion for a categorical understanding of Girard-Troelstra models, by hinting

the "small completeness" of a category of "sets", several papers and discussions raised

issues in Topos Theory and shed more light on topos theoretic models of Intuitionistic Set-

Theory (IZF; see Pitts[1987], Hyland[1987] and Asperti&Longo[91] for detailed work and

further references).  

At this point, one may wonder how constructive are the tools used in this kind of

work.  As the reader may see in the above references, the definition of the models requires

the use of powerset operation and second order impredicative comprehension.  On the other

hand, Hyland's Effective Topos, Eff, which provides the categorical frame, is a model of

IZF and uses a key intuitionistic fact; namely, the computability of all functions, as the so

called "Church Thesis" (a precise statement in the system) is valid in the topos.  However, it

realizes principles that go beyond Intuitionism, namely, "Markov Principle" and the

"Uniformity Principle" (see the Discussion at the end of this note).  

In short, several aspects of Mathematical Logic get together by the challenge

coming from practical issues, since the current questions raised in the semantics of Type

Theory originate in functional programming (also Moggi's hint was given as an answer to a

computer language question).  Moreover, tools from a variety of perspectives are needed to

understand them better, with no philosophical preclusion.

Of course, an entirely different activity may also be relevant.  For example, some

may try to find "safer" tools, definitionist, say, or strictly constructive tools, for the same

purposes, and carry on a reductionist analysis of the languages.  This may turn out to be as

relevant as the work done in the thirties in computability, since we may all gain a further

insight and new languages with different programming facilities may be suggested.  Indeed,

programming is difficult, thus the more viewpoints we have the better we may suggest how

to program, as each approach may answer different questions and solve different problems.

However a point should be clear, in view of the introductory distinction we made on the use

of Logic in mathematics and in Computer Science.  In the foundation of mathematics a

strong philosophical commitment may motivate the researcher's work, may give it

intellectual unity and, hence, contribute to the foundational aim.  This is clear from the

history of Logic, where even the personal fights (Poincar�, Hilbert, Brouwer were not

always friendly at each other) stimulated the discussion.  But, when using Mathematical

Logic as a tool, as in most work in Computer Science, an "a priori" philosophical

commitment doesn't need to be a stimulus, and it may just result in an intellectual and

practical limitation.  What we need are explanations, by informative translations or

interpretations, say, and unified frameworks, which may suggest new ideas, not ultimate
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foundations.

5. Symbolic constructions and the reasonableness of history 

" To fulfill the demand of objectivity we construct an image of the world in

symbols" (Weyl[1949,p.77]).  For example, " symmetry, as wide or as narrow as you may

define its meaning, is one idea by which man through the ages has tried to comprehend and

create order, beauty and perfection", it is also a key structural property in the natural world.

We will then "... generalize this concept gradually... through the process of mathematical

abstraction along the road that will finally lead us to a mathematical idea of great generality"

(Weyl[1952,p.5-6]).  

Along this road, the demand for objectivity causes a permanent tension between

intuitive descriptions (of symmetry, of time...) and the need to eliminate aesthetic

appreciations and subjective understanding of the physical world.  However, complete

"ego-extinction" is an impossible task, as Weyl knows from his experience in the

mathematics of relativity.

We believe that in his last book, Symmetry, 1952, one finds the core of Weyl's

perspective.  His view emphasizes the dramatic growth of mathematics as "... a proud tree

which... raises its... branches into the thin air, but which at the same time sucks its strength

through thousands of roots from the earth of intuitions and real representations" (quoted in

Weyl[1985,editor's note]).  These roots provide the robust foundation of Mathematics, by

branching into two main directions: the reference to the physical world and our intellectual

history. 

Symmetry is based on examples from art, chemistry, crystallography, and

physics which gradually lead to the difficult mathematics of the classification of finite

groups.  Weyl, for example, takes the reader from the symmetry of ornaments in art, to the

symmetries of crystals, describing Leonardo's naåve work on the groups of orthogonal

transformations, based on observation.  He points out that Leonardo had a complete list of

the orthogonally inequivalent finite groups of orthogonal transformations.  Then he shows

how the complexities and surprises of the classification of finite groups are derivable by

non-trivial tools from analytic geometry and a blend of metric and lattice structures.  This

abstraction though is reached by a continuous interaction between the formalism introduced

and its actual meaning.  

There is probably an implicit reference, in this work, to Galileo, an author widely

studied by Weyl's master of philosophy, Husserl.  The approach is dual, though, with

respect to Galileo's.  It is not the book of nature which is written by God in the language of

mathematics and that we just read, as Galileo thought, but mathematics is written by us in

our interaction with nature.  Symmetry is a unified reading of the real world and human

art, from which mathematical concepts emerge.  When reading Symmetry one has the

feeling that mathematics is created by or, simply, is the common aspect of a variety of
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concrete (spacial) as well as linguistic experiences.  It is designed by these in the same

way as the space of relativity is created by the presence of objects.

The approach, though, is far from flatly empirical, as we understand it: our

creative imagination interacts with the real world and tends to the design of an autonomous

world of concepts.  This world is autonomous from reality in that it has a further

justification: the history of our language, a key tool for abstraction, and our history as

human beings.  This is why, in his critique of Hilbert, Weyl may say: " what compels us to

take as a basis precisely the particular axiom system developed by Hilbert?  Consistency is

indeed a necessary but not a sufficient condition for this.  For the time being we probably

cannot answer this question except by asserting our belief in the reasonableness of history

which brought these structures forth in a living process of intellectual development --

although, to be sure, the bearers of this development, dazzled as they were by what they

took for self-evidence, did not realize how arbitrary and bold their construction was."

(Weyl[1927,p.484]).  We conclude by observing that this very viewpoint, which Weyl

consistently assumed through out his life (and which we share), is expressed even more

clearly twenty years later, in Weyl[1949,p.62]:  "But perhaps this question can be answered

by pointing toward the essentially historical nature of that life of the mind of which my own

existence is an integral but not autonomous part.  It is light and darkness, contingency and

necessity, bondage and freedom, and it cannot be expected that a symbolic construction of

the world in some final form can ever be detached from it."

Discussion  (This discussion refers to Part II of Longo[89], which is missing here.

However, the general lines may be clear to the reader, just by knowing that Per is the set of

partial equivalence relations over  w,  the natural numbers, or the quotients over subsets of

w,  and that PER is the associated category with computable maps as morphisms; see
Asperti&Longo[91] for details).

By the Girard-Troelstra interpretation, we have taken back the impredicativity of

Type Theory to the more familiar impredicative definition of a set as intersection: the set

defined may be a member of the set over which we take the intersection (indeed,

ÇRÎPerF(R) Î Per ).  This is the circularity which was discussed in part I when

considering inductive definitions, greatest lower bounds of reals etc...  It relies on taking a

powerset of a (countably) infinite set.

As for the rest, it should be clear the the role of Eff and intuitionistic logic, here, is

more than essential, as explained in depth, among others, in Pitts[1987].  As a matter of

fact, Eff is a model of IZF (informally, in the same sense as the topos Set is a model of

classical ZF).  The crucial fact is that in Eff there are very few morphisms, as they are all

computable, or realized by elements of  w  via Kleene's application.  This corresponds to the

validity in Eff of "Church Thesis", i.e. that "internally" any function from numbers to
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numbers is computable.

However, Eff realizes several principles which do not strictly belong to

intuitionistic Logic.  For example, the Uniformity Principle (UP) and Markov Principle

(MP).  Let  F  be a formula of IZF.  Then

(UP)     "RÎPer  $aÎw   F(a,R)    Þ     $aÎw   "RÎPer  F(a,R)

(MP)   "RÎPer  ("aÎw (a R a) Ú ~(a R a)) Ù ~~$aÎw (a R a)   Þ    $aÎw  (a

R a).

As a matter of fact, both the constructive virtues of Eff and its less constructive ones are

fully used.  The computability of its morphisms, i.e. "Church Thesis", appears all the time

and makes  [PaÎAG(a)]PER,  the internal indexed product in the model, much "smaller"

than  PaÎAG(a) , the classical set-theoretic product.  The crucial isomorphisms of

ÇRÎPerF(R)  and  [PRÎPerF(R)]PER  (see Longo&Moggi[1991] for details) uses

(UP), which intuitionists do not generally view as a constructive principle.  Observe,

though, that (UP) is equivalent to the contraposit of Kðnig's lemma -- ...in a brown finitely

branching infinite tree, if for any branch there exists a node where the branch switches to

green, then there exists  a level such that any branch is green... -- .  Thus, it is classicaly

equivalent to Kðnig's lemma, a rather convincing (and accepted) proof method.  Eff gives

meaning to (UP), under certain circumstances, also in a constructive framework.

As for Markov Principle, (MP), which russian constructivists like, it shows up at

another point.  The understanding of the recursive definitions of data types has been a

relevant success of denotational semantics.  Since the early work of Scott, they became

much more familiar to computer scientists and more widely used in programming.  The idea

is that a recursive definition of a type of data yields an equation which needs to be solved

over some structure, in the same way one gives meaning to  "x2+8 = x"  by finding a

solution for it over, say, the structure of the the complex numbers.  

In Eff one may find solutions to all relevant domain equations as follows.

Consider a constructive version of Scott domains (essentially, the computable substructures

of the effectively given domains in Scott[1982]).  When taking continuous and computable

maps as morphisms, they form a Cartesian Closed Category, which can be fully and

faithfully embedded in Eff (when Eff is constructed out of Kleene's  w ).  In this way the

limit constructions, needed to solve the equations, can be carried on within Eff.  The

embedding, though, requires, in an essential way, Markov's Principle (see

Rosolini[1986,th] or Longo[1988]).

The relevance of the "effective" set-theoretic environment, provided by Eff, is

becoming clear in applications.  In Cardelli&Longo[1991], for example, na�ve, but

complete, set-theoretic interpretation may be given to several programming language

constructs: being a subtype is interpreted by "being a subset", a record by the obvious list of

indexed sets etc...  The constructive nature of the model and its internal Logic do the rest

and let these notions be inherited at higher types and higher order very smoothly.  
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In a sense, Eff and its Logic provide a formalized example of the "dexterous

blending of axiomatic and constructive procedures" Weyl was referring to as the practice of

Mathematics.  We are more than "content to note their mutual interlocking", also because we

have, in this case, a clear understanding of what is being used and when and we are far

from the "superficial mixture of formalism and sensism", which Weyl was blaming among

mathematicians and which would be of little help in the applications of Logic to Computer

Science.
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APPENDIX:  from the JOURNAL OF SYMBOLIC LOGIC, 53,3, 1993.

REVIEW OF:

Solomon Feferman: " Weyl vindicated: Das Kontinuum 70 years later "

The review of this interesting paper is divided into two parts, as the paper

itself is split into a philosopical or historical part and a technical one.  I

will first hint the technical aspects, which are very relevant for

predicativity and set on firm grounds an established area of investigation,

and later discuss the informal preliminaries (and the title of the paper!).

These present a rather partial view of Weyl's contribution to the

foundation of Mathematics, a view which I do not share, because of both

the historical and the foundational perspective proposed by the author.

The core of the approach presented beginning with section 4, is the notion

of "definability". In the "definitionist" approach, which is essentially the

Feferman's view, given (possibly) for granted the totality of the collection

of the natural numbers, the other mathematical notions must be defined

in some sort of "stratified" way. Stratification may mean entirely typed

definitions following Russell, or, more weakly, "predicative" definitions,

in the sense made clear by Poincare' and Weyl.  In short, << ... we draw a

distinction between two types of classifications...: the predicative

classification which cannot be disordered by the introduction of new

elements; the non-predicative classifications in which the introduction of

new elements necessitates constant modification>> (Poincar� [1913, p.47]).

As the author is interested, in the end, in the foundation of Analysis,

impredicativity is understood as a second order notion as it typically

applies in the definition of sets. And a set is impredicatively given when

<<...quantified variables may range on a set which includes the

definiendum...>>, Weyl[1918, I.6].  That is, a set  b  is defined in an

impredicative way if it is given by

(1)    b = { x  |  for all  y  in  A, P(x,y) }  

where  b  itself may be an element of  A.

As a matter of fact, the author refers to Weyl's ideas in his 1910 paper and

in the 1918 book with a remarkable philological attention. The core of the

technical part reconstructs with great care Weyl's hint towards a

predicative Analysis. Indeed, Weyl's book is extremely incomplete and
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vague in this proposal, while rich of mathematically deep observations.

The author takes up Weyl's largely informal remarks step by step and

turns them into a clear and complete approach to predicative

mathematics.  In particular, section 5 carefully describes iteration and

induction, and clarifies the connections between the various different

forms of Weyl's "principle of iteration", by a careful formalization of

Weyl's informal hints.  Section 6 faithfully rewrites in modern formalism

Weyl's axiom system: the structure and role of explicit definitions and

comprehension axioms is clearly presented and this contributes, in an

essential way, to the understanding of a few very obscure pages of Weyl's

book.   Section 7 compares Weyl's approach, as formalized in the previous

section, to extant approaches to predicative Analysis. This sections, in

particular, refers to the author's (and others', such as Kreisel's) work in

predicative systems, since the early 60-ties (see references).  Weyl's

approach turns out to be "equivalent" to sufficiently large fractions of

(formally) rather expressive systems. By this, one may say that Weyl's aim

of setting on clear grounds large part of Analysis is achieved. Indeed, by

the extension to "flexible types" in section 8, the author updates even

further the previous approach to the current debate on higher order type

systems. An interesting result of "conservative extension" of the system

w.r.t. to PA is also stated. In section 9, a few arguments are hinted towards

the actual expressiveness of the predicative systems proposed, for the

purposes of applicable Analysis, to Physics, tipically. Recent and

unpublished work by the author and Simpson reinforces the thesis just

sketched in this section, by a technically deep insight into various area of

"predicative" mathematics. However, it is known that Lebesgue

measures, least upper and largest lower bounds escape predicativity.

Indeed, "the continuum" goes beyond it.

Let's now go back to a "critique" of the historical and epistemological

perspective presented by the author in the first part.  For this purpose, I

will also borrow a few ideas from the first part of Longo[1989].  First of all,

in my view, the main relevance of Weyl's "The Continuum" is not due

to the informal hints towards predicative Analysis, but to the critique of

the formalist approach to Analysis and to a deep and original discussion

on the relation between our intuition of the physical continuum and its

mathematical formalizations.  In my opinion, instead, the paper "Weyl

vindicated: ..." (and its title), suggests a rather partial view of this broad,

deep, wonderful thinker and mathematician.  Of course, the author's

work towards the clarification of Weyl's specific proposal is an interesting
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and a relevant contribution to predicative Analysis, as I tried to say.  The

danger is that the reader may classify and reduce by this Weyl's

contribution to the foundation of mathematics as one of the many

(attempted) "reductionist" formalizations.  As a matter of fact, Weyl's

very broad scientific experience led him to explore and appreciate, over

the years, several approaches to the foundation of Mathematics,

sometimes wavering between different viewpoints.  The actual unity of

Weyl's epistemological view may be found in his overall philosophy of

Mathematics and of scientific knowledge, a matter he treated in several

writings from 1910 to 1952, the time of his retirement from the Institute

for Advanced Studies, in Princeton.  As an important aspect of this view,

one should stress a crucial critique to Hilbert's approach: Weyl keeps

stressing, in several writings, that what really matters in

(meta)mathematics is the relevance of axiom systems, in their broad

connections to the structures under investigation and the physical reality;

consistency is a necessary, but far less relevant condition.  A further

critique of Hilbert's program is clearly expressed in Weyl's book.  If we

could <<...decide the truth or falsity of every geometric assertion (either

specific or general) by methodically applying a deductive technique (in a

finite number of steps), then Mathematics would be trivialized, at least in

principle...>> (Weyl[1918; I.3]).  Weyl's awareness of the limitations of

formalism is so strong (and his mathematical intuition so deep) that, at

the reader's surprise, a few lines below, he conjectures that there may be

number theoretic assertions independent of the axioms of Arithmetic (in

1918!).  (Indeed, he suggests, as an example, the assertion that, for reals  r

and  s ,  r < s  iff  there exists a rational  q  such that  r < q < s .  There may

be cases where <<... neither the existence nor the non-existence of such a

rational is a consequence of the axioms of Arithmetic>>.  Can we say

anything more specific about this, now that we also know of

mathematical independence results such as Paris-Harrington's ? This

would really vindicate Weyl, whose views on this matter greatly annoyed

his former professor and major academic authority, David Hilbert).  Two

sections later, Weyl conjectures that <<...there is no reason to believe that

any infinite set must contain a countable set>>.  This is a very early hint

in the right direction for the independence of the axiom of choice (!).  

This insight of Weyl's into mathematical structures seems scarcely

influenced, either positively or negatively, by the predicativist approach

he is proposing.  It is more related to an "objective" understanding of

mathematical definitions and to his practical work.  What "objective" or
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"independent from specific formalizations" means here is a delicate issue,

for which one may consult Weyl[1918] (or Longo[1989;1991]).

Indeed, what really interests Weyl is the understanding of

mathematics as part of our human endeavour towards knowledge, in

particular of the physical world.  Weyl stresses the inadequacies of the

mathematical formalization with respect to a crucial aspect of our physical

experience (see chapter II, ¤.6): our intuition of the continuity of space and

time (Weyl greatly contributed to the mathematics of Einstein's

relativity).  In his view, the phenomenal experience of time, as past,

present and future, is unrelated to the mathematical treatment of the real

numbers. Time cannot be decomposed in points. Present lasts

continuously, it is <<something ever new which endures and changes in

consciousness>>.  In our perception of time,  <<an individual point is

non-independent... it exists only as a point of transition.. it cannot be

exhibited in any way ... only an a p p r o x i m a t e , never an exact

determination of it is possible>> (again, chapter II, ¤.6). Even the use of

limit points or ideal constructions, the essence of mathematics according

to Weyl, do not help us sufficiently in grasping the <<irreducible>>

perception of the continuum (references are made for this to Husserl and

Bergson).  

The depth and philosophical difficulties of Weyl's chapter II do not

allow us to go any further into this here. I believe though that there is a

strong need to revisit these aspects of Weyl's reflexion.  In particular

today, in view of the increasing interests in "theories of knowledge" as

part of broadly construed attempts to reconsider our understanding and

(possibly mathematical) description of the world. 

References for the Appendix

Feferman, S. [1964] "Systems of predicative Analysis" JSL 29, 1-30.

Feferman, S. [1968] "Autonomous Transfinite Progressions and the Extent of Predicative
Mathematics."  In  Logic, Methodology and Philosophy of Science III (Rootsellar, ed.),
121-135.

Feferman, S. [1975] "A language and axioms for explicit mathematics", in Lecture Notes in
Mathematics 450, Springer-Verlag, pp. 87-139.

Kreisel, G. [1960] "La PredicativitÝ"  In Bull. Soc. math. France 88, 1960, p. 371 a 391.

Kreisel, G. [1968] "Functions, Ordinals, Species."  In Logic, Methodology and Philosophy of
Science III (Rootsellar, ed.), pp. 145-159.

Longo G. [1989] "Some aspects of impredicativity" Invited Lecture, Logic Colloquium 87
(European Summer Meeting of the A.S.L.) Granada, Spain, July 1987; Studies in Logic

34



(Ebbinghaus et al. eds), North-Holland (pp. 241-274).

Longo, G. [1991] "Notes on the foundation of Mathematics and of Computer Science" Invited
lecture, International Conference on the current trends in the Philosophy of Science
Viareggio, Gennaio 1990; CLUB, Bologna 1991.

Poincar�, H. [1913] Derni�res PensÝes, (english edition, Dover Publ., Inc., New York, 1963).

Tonietti T. [1981] "Inspired Mathematics or Applied Mathematics ? (Epistemological and
historical notes on Catastrophe Controversy)" Fundamenta Scientiae vol.2, n.3/4, pp. 321-
343.
 
Weyl, H. [1918] Das Kontinuum, (italian edition, care of B. Veit,  Bibliopolis, Napoli,
1977).

Weyl, H. [1927] "Comments on Hilbert's second lecture on the foundations of mathematics."
in  van Heijenoort, From Frege to Goedel, Harvard U.P., 1987.

Weyl, H. [1934] Mind and Nature, Univ. of Pennsylvania publ..

Weyl, H. [1949] Philosophy of Mathematics and Natural Science,  Princeton University
Press, Princeton, New Jersey.

Weyl, H. [1952] Symmetry, Princeton University Press, Princeton, New Jersey.

Weyl, H. [1985] "Axiomatic Versus Constructive Procedures in Mathematics." (Edited by T.
Tonietti) The Mathematical Intelligence Vol. 7, No. 4, Springer-Verlag New York.

Giuseppe Longo

LIENS (CNRS) and DMI

Ecole Normale Sup�rieure

Paris

35


