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Summary :  Our relation to phenomenal space has been largely disregarded, and with good

motivations, in the prevailing foundational analysis of Mathematics.  The collapse of Euclidean

certitudes, more than a century ago, excluded ‘’geometric judgments’’ from certainty and

contributed, by this, to isolate the foundation of Mathematics from other disciplines.  After the

success of the logical approach, it is time to broaden our foundational tools and reconstruct, also in

that respect, the interactions with other sciences.  The way space (and time) organize knowledge is a

cross-disciplinary issue that will be briefly examined in Mathematical Physics, Computer Science

and Biology.  This programmatic paper focuses on an epistemological approach to foundations, at

the core of which is the analysis of the ‘’knowledge process’’, as a constitutive path from cognitive

experiences to mathematical concepts and structures.
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1. The geometric intelligibility of space

«The primary evidence should not be interchanged with the evidence of the
"axioms"; since the axioms are mostly the result already of an original
formation of meaning and they already have this formation itself always
behind them» [Husserl, The origin of Geometry, 1933].

Man has always been organizing and giving meaning to space.  This was done by action, gestures

and language; Mathematics, Geometry in particular, provided the most stable conceptual

reconstructions of phenomenal space.  I will try to find a methodological unity to its highest

moments, when geometric tools unified, and still now unify, the space of senses and physical

space or different forms of mathematical understanding of space.  To this aim, and by a rather

arbitrary choice, I will stress the unity in the questioning by Euclid, Riemann and Alain Connes2:

the issue here is not the ‘names’ of the mathematicians mentioned, nor their individual contribution,

which may interest the historian, but the focus on mathematical theories which may soundly refer to

them.

The claim is that space, in these three paradigmatic approaches, is made intelligible by

proposing different answers to similar "questions": How do we access to space? How do we

measure it? By which operators do we act on it?

1.1  Euclid

Euclidean Geometry organizes space by rigid figures and their (rigid) movements.  Its key property

is being “closed under homotheties” (its group of automorphisms contains the homotheties).  By

this, a theorem, a property of a figure, remains valid by enlarging or reducing at leisure its length,

surface, volume ... .  By this, the “local” or “medium sized” space of senses is perfectly unified

with physical space, in the very large and in the very small.  This property characterizes Euclidean

Geometry w.r. to the non-Euclidean ones.

Note now that Euclid’s postulates are “constructions”: draw a straight line from any point to

any point ... produce a circle with any center and a distance ... and so on so forth. “Theorem”

means “vision”, “scene”, in Greek: by ruler and compass further constructions are “shown” by

acting on space (first theorem, book I: construct an equilateral triangle on any straight line ... we all

know how3).  

                                                

2 1982 Field Medal, A. Connes works since the early '80’s at the geometric foundations of
Quantum Mechanics.

3 The intersection point of the circles centered on the end points («the extremities of a line are
points») is given by the intended “parmenidean” continuity of the (circular) lines, since «a point is
that which has no parts» and «two breadthless length», i.e. two lines, produce, by intersection,
“that which has no parts”.  That is, in Euclid, a point is given as the result of an intersection of two
lines (this is observed by Wittgenstein as well).  Only the formalist rewriting of Greek Geometry
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And this is all done by rule and compass only: these (ideal) “tools” make space mathematically

accessible, they organize it, they allow to measure it, to operate on it.  Nothing else is needed. 

1.2  B. Riemann

Riemann’s main aim is to account for the unexplained Newtonian “action at a distance”.  He tries to

understand gravitation (but electromagnetism and heat propagation as well) by the “structure of

space” ([Riemann, 1854]; see also [Boi, 1995], [Bottazzini&Tazzioli, 1995]).  This revolutionary

approach may be partly found also in Gauss and Lobatchevski, but it reaches with Riemann its

highest mathematical unity.

One of Riemann’s concerns is to understand under which general conditions we may soundly

measure.  This is possible when rigid bodies are preserved, as by moving a rigid "meter" one may

compare lengths.  And here comes Riemann’s general analysis of curbed spaces, which shows that

spaces (manifolds) of constant curvature guaranty the invariance of measure (the rigidity of

bodies).  Euclidean spaces are a particular case of these manifolds, indeed the critical one, i.e.

when the curvature is constantly 0.

But the other spaces can make sense as well, since they can give an account, by geodesics, of

these mysterious action at distance.  Riemann dares to think that «the concept of rigid body and of a

light ray, non longer are valid in the infinitely small»: bodies may be no longer rigid, light may go

along varying curbs ....  The point is, and this is one of his major results, that the metric structure

of a (riemannian) manifold, or its measure by a length, may bi-univocally related to the its curvature

(the metric tensor and the tensor of curvature are related, in fully general situations).  Moreover, it

may make sense to analyze a space of non-constant curvature, as «the foundation of metric relations

must be found elsewhere, in cohesive forces that act on it».  A "divination", will recall H. Weyl in

the ‘20s, in reference to Relativity Theory: forces between bodies are related to the (local-metric)

structure of space.  And this approach «should be allowed if it would lead to a simpler explanation

of the phenomena».  Since Einstein’s work, we understand the relevance of this extraordinary

insight of Riemann’s.

Thus the geometric organization of spaces may provide an understanding of physical

phenomena, beginning with the analysis of measure and distance.  For this purpose, Euclid’s ruler

and compass must be generalized, since «...  in a continuous manifold the metric relations must be

introduced on different grounds4».  Then, a linear element does not need to be represented as the

square root of a second order differential form (Pithagoras’ theorem), but more generally as  ds2 =
Σgijdxidxj.  

This is how, for Riemann, we access, measure and operate on space, while understanding

physical phenomena by Geometry.  Then space manifolds are proposed, as a "genealogy of

                                                                                                                                                       
could claim that this theorem is not soundly proved by Euclid, see [Heath, 1908] and one century
long commentaries.

4 Riemann’s quotations, in brakets, are from [Riemann, 1854].
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mathematical concepts", by making explicit some hypothesis, which ground the mathematical

construction into phenomenal space: some key ones are, according to Riemann, connectivity,

isotropy, continuity ....  H. Weyl will add symmetries as one of the fundamental properties, which

structure physical space.

  Of course, by Riemann's distinction between the “local” and the “global” structure of space

(the metric structure and the topological one, the latter related to the Cartesian dimension) a key

aspect of the unity of Euclid’s approach is lost: physical space, the space of microphysics (“the

infinitely small”) or of remote spaces, may have properties which escape the experience of senses.

In Riemann’s approach, the relation between local and global is the result of a complex and novel

mathematics: the gluing of local maps by differential methods; homotheties do not allow any longer

to transfer “medium sized” experience and knowledge to any scale.  And this is extremely modern:

from Relativity Theory and Quantum Physics, we learned that access, measure and operations, in

the very large and the very small, cannot be provided by the naive analysis of senses.

Yet, there is a unity in Euclid's and Riemann's approaches, as stressed here.  A synthesis is

also given by [Poincaré, 1913] in a sentence: «faire de la géométrie, c'est étudier les propriétés de

nos instruments, c'est a dire du corps rigide».

1.3  A. Connes

Given any topological and, thus, any metric space X, one may consider the set of continuous

functions, C(X), from X to the complex field, as a suitable algebraic structure (a commutative C*-

algebra).  C(X) is very important, as it includes the space of measures on X. 

A classic result of Gelfand allows to go the other way around.  Given a commutative C*-

algebra C, it is possible to construct a topological space X, such that C(X) = C.  The points in X

will be characterized by the maximal ideals of C and so on and so forth as for reconstructing the

geometric structure of X on the grounds of the properties of C.

In classical and relativistic physics measures happen to commute: the result of several measure

operations does not depend on their order.  This is not so in Quantum Mechanics.  The measures of

position and momentum of a particle, for example, do not commute.  And this is crucial: in

Quantum Physics these are the observables.  Measure by instruments is the only access we have to

"physical reality".  More precisely, we can construct knowledge in microphysics only by setting up

instruments for measure: there are no other observables.  This is where we have to start.  In this,

there is a complete conceptual continuity w.r. to the approaches by Euclid and Riemann.  But the

"instruments" of measure do not have the relatively simple nature of the ruler and compass, even

not in the generality of Riemann's notion of "rigid body" or of his "ds2". Measure is now given by

the complex physical and conceptual instruments of microphysics: the only grounding certainty,

which founds quantum mechanics, is given by a few observable phenomena, such as the non-

commutativity of measure (and the related essential indeterminism).

Heisenberg first replaced classical mechanics, where observable quantities commute, by a

"mechanics of matrices", where observable quantities do not necessarily commute.  His algebra of
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matrices is then obtained from a groupoid, which replaces the classical (commutative) group of

measures. Now, this latter group is the starting structure to reconstruct space, à la Gelfand: from a

commutative algebra to a topological space.  Connes' work, since many years, consists in

reinventing Geometry from a non-commutative C*-algebra: beginning with measurable spaces, to

topological, metric and differentiable ones ([Connes, 1994]).  The differences are dramatic, as the

very notion of point and of trajectory are different from the classic notions: there are no more

maximal ideals (and trajectories are closer to the "paths" derived from Feynman's notion of

integral).  The debate is very lively (and difficult), but many agree that Connes' approach is

gradually giving an account of the mysterious nature of some physical phenomena, at the level of

microphysics, including non-locality (a particle is not "located in a point", in Quantum Mechanics).

A crucial issue is the dependence of the reconstruction of space of microphysics on the order of

measure: but this is how we access to it.  Once more, Poincaré may be quoted for his insight.  Even

though it would be too much to attribute to him a "divination" concerning the possible Geometry of

Quantum Physics, yet he observed: «Des êtres qui éprouveraient nos sensations normales dans un

ordre anormal, créeraient une géométrie différente de la nôtre» [Poincaré, 1902].

1.4  Some epistemological remarks on the Geometry of Physical Space

Starting from what is accessible and grounds knowledge, the observables, Geometry proposes an

organization of physical space, which makes phenomena intelligible.  We have no other way to

constitute knowledge, but starting from observable, measurable phenomena, even when this

observability has nothing to do with our direct experience by senses.  As we learned from

Relativity and Quantum Physics, we may then need to give up the identity "space of senses =

physical space", so beautifully proposed by Euclidean spaces and their closure by homotheties.

Knowledge in very large and very small scales is constructed differently: no rigid ruler, no

compass of "human size" may organize the spaces of galaxies and of elementary particles, by

homotheties.   Their intelligibility cannot be grounded directly in our senses, on our eyes, hands,

by our movements and actions, normalized by Euclid's rigid tools, but must be mediated by

complex instruments of observation and measure.  These instruments are themselves the result of

complex "theoretical commitments", as they are set up on the basis of an existing or proposed

theory, or of strong hypothesis, beginning with the decision to measure "this and not that".

Yet, the only dramatic change, here, is related to cognition: the direct experience of senses is

no longer sufficient to understand physical space, while there is unity in the method.  It is

surprising that we still have to digest this apparent cognitive discontinuity: the "ontological"

commitment (Geometry is "space per se", beginning with Euclidean Geometry) did not allow to

appreciate that the mathematical objectivity is in the construction, not in an ontology.  There is no

such a thing as "absolute space", but there is the objective reconstruction of a space of action, by

the cognitive subject, with the contingent tools of active experience.  Objectivity is reached when

the cognizing ego is able to relativize his construction: fix one or more reference systems or ‘view

points’, and the forms of their communication/interaction;  fix the tools for measure.  Then the
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construction becomes objective.  As long as the subject believes in absolute spaces (Newton), in

"absolute laws of thought" (Frege), in "views from nowhere", there is no foundation for

knowledge, but an artificially unified frame for illusory certainties.

In contrast to this, I stress that the method, from Euclid to Riemann and Connes is uniform and

sound: access, measure and operate on space, with the appropriate and explicitly given tools, and

organize it by one of our most beautiful conceptual construction, Mathematics, Geometry in

particular.  For an historical reference to this approach, note that Poincaré's critique of logicism and

formalism proposes to supplement the foundational investigations in Mathematics «by a genetic

analysis», the analysis of a conceptual genesis or construction [Heinzmann, 1998].  His

understanding of Geometry as a genesis, beginning with the movements of rigid bodies, specifies

Riemann's approach to Mathematics as a "genealogy of concepts" as well as Helmholtz's reference

to "facts" (see  [Nabonnand, 2001]); it is not an empiricist view nor rationalism, but a

"phenomenological" understanding (cf. below and Husserl's fundamental text [Husserl,1933]).

This neo-kantian understanding of Poincaré's views has been confirmed by many (see

[Nabonnand, 2000] for references).  Mathématics is not gounded on arbitrary conventions: these

conventions are the most convenient choices («les plus comodes») for us, human beings, in this

world, with our shared biological being.  Poincaré's program, as we understand it, is a preliminary

step to ground Mathematics in our reference to the regularities of the world that we see: we draw on

the phenomenal veil on the grounds of our active, cognitive experience of it. The structures of

Mathematics  are conceptual proposals, meant to make this world intelligible («Si [la nature] offrait

trop de résistance, nous chercherions dans notre arsenal une autre forme qui seerait pour elle plus

acceptable», [Poincaré, 1898]).  The role of action, proposing, understanding are crucial.  The

resistance of nature is deeply embedded in physicality and in our biological being, in the historical

formation of sense.  In a Manifesto on web [Longo et al., 1999], a modern version of what we

would like to call "Poincaré's program" is defined as the "Cognitive Foundation" of Mathematics.

The point, of course, is to go beyond introspection, the only tool these great mathematicians had

(because also Riemann, Helmholtz, Enriques and Weyl shoud be quoted) and refer to modern

Cognitive Sciences, as a scientific analysis of our practical action  and conceptual reconstruction of

the world (see also a conference held in Rome, September 2002, based on this program, a

reference is in [Longo et al., 1999]).

Of course, the foundational program I am sketching here is an epistemological one: it is an

analysis of "how" we access to knowledge, or of the "knowledge process". In Mathematics,

spaces, objects and structures are constructed from the explicit assumption of cognitive grounds,

and this is objective.  This analysis has been programmatically disregarded by the logicist and

formalist approaches to the foundation of Mathematics, in the XX century, as they only focused on

(formal) proofs.  This was a necessary investigation, but, unfortunately, it excluded the analysis of

the constitution of concepts and structures and pretended to encode the world in formal strings of

symbols.  Now, there is no doubt that Mathematics is abstract and symbolic, but the one century

long identification of these deep notions with "formal" excluded meaning and epistemology from
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the foundational analysis.  We have to broaden the foundational project to the "constitutive path" of

mathematical abstract structures, beginning by their meaningful grounding in (and their organizing)

phenomenal space and time.

2. Codings

It is hard to appreciate how severe was the crisis of the 2300 years old Euclidean certitudes, in the

XIX century, as induced by the non-Euclidean approaches.  Frege's deep investigations started the

modern "royal way out" from the novel problem of space.  (Mathematical) Logic was explicitly

contrapposed to foundational analyses grounded on phenomenal space.  «The wildest visions of

delirium ... remain so long as they remain intuitable, subject to the axioms of Geometry» . . .

absolute certainty can only be recovered with reference to the concept of number and the logical

laws that govern it: «... the laws of arithmetic govern all that is numerable.  This is the widest

domain of all; for to it belongs no only the actual, not only the intuitable, but everything thinkable»

[Frege, 1884, p. 20 and ff.].  Geometry itself (but Frege cautiously considers only Euclidean

Geometry) can be found analytically on the notion of number, as relation between lengths [Frege,

1873, p. 9-10] (see the discussion in [Tappenden, 1995]).

In a different way, this program was fully developed by the subsequent work of Hilbert.  His

first and main foundational writing, [Hilbert, 1899], is a very relevant approach to the issue by

formal tools.  The foundational problem is reduced to the analysis of formal consistency: what only

matters, in Mathematics, Geometry in particular, is the non-contradictory status of the axioms, with

no reference to meaning, in space in particular.  By a remarkable technical work, Hilbert gives all

possible "relative consistency" proofs in Geometry: put an axiom, take another away (Euclidean,

non-Euclidean, Desarguesian, non-Desarguesian, Archimedean, non-Archimedean ...) ... embed

one system into the other.  Beyond Beltrami-Klein's work, the relative interpretations of

Lobatchevski's and Riemann's spaces in Euclid's are brought to the highest rigor and generality.

Then a final masterpiece: formally encode, by analytic tools, Euclidean Geometry into Arithmetic.

The following year, by posing, at the Paris conference, the problem of consistency of Arithmetic,

the scientific program of formal foundation is fully given: no reference to meaning and space, nor

to the way we access to knowledge of it; just prove formally that the axioms of Arithmetic do not

entail "0 = 1".  This is the foundational problem of Mathematics, including Geometry, of course,

since the latter, by encoding, is just a subsystem of Arithmetic.

The extraordinary "tour de force" of Hilbert's is much appreciated by many, including

Poincaré.  In his review of Hilbert's 1899 book, he acknowledges the technical achievement, but

he stresses as well the loss of meaning, the trivialization of our understanding of space, the

senseless reference to Mathematics as codings of axioms into «le piano raisonneur de Stanley

Jevons» from which «on verrait sortir toute la Géométrie».  Elsewhere Poincaré, will refer to this

view of Mathematics, which underlies the foundational programs of Peano, Padoa, Hilbert, as «la
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machine à saucisses de Chicago»: from pigs and axioms produce sausages and theorems (see

[Bottazzini, 1999]).

As observed in [Girard, 2001], about half of the XX century may be considered the «time of

codings».  Hilbert's foundational program, centered on Arithmetic (the theoretical locus of

codings), started the modern trend.  These fantastic times, for Mathematical Logic, produced an

amazing by-product: the coding of knowledge, viewed as deduction, in digital machines, beginning

with Turing Machines.  Turing's fundamental mathematical distinction between hardware and

software, a distinction at the hearth of his Machine, is at the origin of modern computing.  In

particular, it started a "Theory of Programming", once programs (as software) have been

mathematically differentiated from hardware.  Moreover, the "Universal Turing Machine", which

may encode any other Turing Machine and simulate it, gave us the notions of operating system and

compiler.  Poincaré could not imagine that the "sausage machine" was bound to go so far.  This is

how history goes: wrong foundational programs, based on provably wrong conjectures (formal

decidability, completeness and finitistically provable consistency of Arithmetic), may have major

fall-outs, when precise and robust.  Also Laplace "analysis of (planetary) perturbations" was meant

to give a complete account of the future (and past) of deterministic systems, governed by Newton's

laws.  Poincaré showed that it does not work (1890), but Laplace results and conjectures originated

large part of the fantastic work in Analysis in the XIX century.

However, it is time to overcome wrong projects by reconsidering what is at the core of them.

One key component of later developments of Frege-Hilbert ideas, roughly the foundational

program of Mathematical Logic, broadly construed during the XX century, is the believe on the

"transparency" of codings.  More precisely, contentual information is preserved under any

"reasonable" coding.  One takes whatever fragment of Mathematics, encodes it into the axioms of

Set Theory (or, better, Arithmetic, as numbers govern «everything thinkable»), proves the

(relative) consistency of the intended system and the game is over (of course, one may

subsequently feed by them a Turing Machine or a modern computer, under a suitable 0-1 coding.)

This reduction is rarely done in practice, but it often had amazing consequences.  Words do not

suffice to praise the enormous amount of information we obtained from Set Theory and Proof

Theory (I earned my life by applying the later, its constructive branch – Type Theory, to

computing, see [Asperti&Longo, 1991], [Longo, 2002]).  And note that XXth century Proof

Theory is the proof theory of Arithmetic, as, since [Hilbert, 1899], the key assumption (or aim) is

that any structure, any deduction can be encoded into suitable extensions of Peano Arithmetic and

then formally analysed, see footnote 5.  Of course, the positive impact of these views in founding

digital machines have been enourmous, thus their large success.  But also, (formal) Descriptive Set

Theory, just to give a further example, unified scattered results in Mathematics, displayed the key

underlying assumptions, proposed new relevant problems ....  Not less than in Computer Science,

the outcome has been immense.  The logico-formal analysis remains a necessary component of the

foundational work in Mathematics and Computing.
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Now we have to enrich this program by what is missing: sense and meaning, the reference to

space, both as a cognitive matter and the locus for physical phenomena.  In particular, we have to

analyze knowledge by methods that are "sensitive to codings": so far this may be understood by the

reference made in §.1 to the structuring of phenomenal space, as an interface between us and

physical reality, or the "veil" on which we draw Mathematics.  But more will be said below5.

Let's conclude this section, by stressing that the very Proof Theory which originated this

dominating paradigm (information and deduction do not depend on meaning nor on codings) is

now being opened to radically new proposals.  J.-Y. Girard, by Linear Logic first, and Locus

Solum more recently [Girard, 2001] started an analysis of proofs "sensitive to codings" and where

the artificial split of syntax and semantics makes no longer sense6.  In these theories, the geometric

structure of proofs is relevant to deductions: connectivity (recall Riemann) and symmetries (Weyl)

govern the proof; that is, its geometric "diplay" is crucial.  Of course, Riemann and Weyl referred

to physical spaces, while here it is a matter of proofs: it is as if these properties of space, in

Girard's systems, had "come back through the window" into Proof Theory, by structuring proofs.

Note that, for Poincaré, premises must be related to conclusion by a "mathematical architecture";

moreover, in his fight against formalism, he hinted that mathematical reasoning is non-invariant

w.r. to meaning [Poincaré, 1905, 1908] (see the discussion in [Heinzmann, 1998]).  A remarkable

insight into the incompleteness of formalisms (see also Weyl's conjecture of the incompleteness of

Arithmetic in [Weyl, 1918])7.

2.1 Geometry in computing

Turing Machines have no space and yield a Newtonian time.  As for space, theorems prove that

one, two ... n-dimensional hardware (head and tape) does not modify their expressive power: up to
                                                

5 Often historians stress that Hilbert was not a formalist.  This is absolutely true: in several papers,
even in the introduction to [Hilbert, 1899], in correspondence ... one can find Hilbert's major
concern for structures and physical meaning, in Mathematics. Hilbert was an immense
mathematician, not just the founder of modern Mathematical Logic.  However, the technical
perspective in the 1899 book, his Foundational Program, as specified from 1900 to the '20's,
became the paradigm of formalism and have committed the century to an incomplete analysis of
foundation, up to the recent revitalisation of Hilbert's Program.  Along these more recent formalist
guidelines, Euclid's and Riemann's, for sure, but probably even Connes' approach to physical
spaces can be encoded in predicative subsystems of Second Order Arithmetic, [Simpson, 1999].
An informative analysis, as for relative consistency or consistency "strength", for example.  But it
entirely misses the relevance of Mathematics for knowledge of space and cognition.  To this
further aim, if one wants to refer to the remarkable debate at the beginning of the XX century, it is
Poincaré's foundational program that must be revitalised today, not Hilbert's, as we pointed out.

6 The very broad definition of "geometric" as "sensitive to codings" was proposed by J.-Y.
Girard, in discussion, at a Workshop in Marseille, April 2001.

7 The proofs of formally unprovable statements of Arithmetic use meaning along the proof (see
[Longo,1999]); or, "geometric judgements" step in (well-ordering, as defined by formal induction
over full second order comprehension principle is non effective, while it is simple - and "effective"
- as a geometric judgement, see  [Longo, 2002].  Symmetry is another geometric judgement,
largely used in Mathematical Physics, in proofs).
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a linear time complexity encoding  (or at most polynomial time, with a small exponent), the

Cartesian dimension of the "physical" process does not affect the computation.  Of course, this is

so because these "machines" are a remarkable but purely logical construction: the reduction of the

notion of sequential deduction to elementary steps (move right or left a head, write 0 or 1 on a

tape).  Physics is not there: space had been excluded from the foundational discussions since long.

Have you ever seen a physical process, which does not depend on dimensions?  In some cases,

since Relativity, and even more so in modern string-theory for Quantum Physics, it is as if "only

dimension matters".

As for time, in Turing Machines, it is not only absolute and linear, but it is actually generated

by the clock.  Now, in Physics, time is understood as a relational matter, once one goes beyond

Newton's absolutes.  Moreover, measuring time by the lonely clock of a Turing Machine is like

having a meter in an empty Universe: there is no distance in that Universe, but just the meter. 

In summary, Turing Machines are fantastic logic machines, they are not physical machine: they

initiated us to the first steps towards a "logic of programming" and, thus, how to make machine

work logically.  Their main fall out has been a the invention of a Science of Programming,

grounded on the fundamental distinction hardware and software.  And the software, up to the

recent challenges in concurrent programming (see below), has been designed for long on the basis

of the main paradigms proposed by Turing and his contemporaries (Turing's approach gave us

"imperative programming"; Church's λ-calculus originated "functional programming"; Herbrand's

theorem, "logic programming").  The physics, beginning with the issues related to space and time,

are out of the scope of these programming styles and, by this, they are turning out to be largely

inadequate (or to require major "extensions") for the cuncurrent, asynchronous and distributed

systems mentioned below.

We briefly discussed of the geometric intelligibility of space in the previous sections, but also

physical time has been deeply analyzed during the XX century.  The relativized, but reversible time

of Relativity, the irreversible time scanned by bifurcations in Dynamical Systems (or in the Physics

of thermodynamical or critical states), the even more complex time of Quantum Physics, all these

proposed forms of time do not rely on an absolute and unique clock; they view time, to say the

least, as a result of a "relation", or as the problem of synchronization of possibly asynchronous

systems.

In the last few decades, it happened that machines, those very digital computers that where

born from the head of Turing (and Peano and Hilbert), have been distributed in space, by

engineers.  These practitioners even dared to have them "concur" in the same computation.  That is,

possibly far apart processes are no longer individually isolated in a vacuum, but run in parallel,

communicate and access at the same database.  In the 60's and early 70's only parallelism was at

stake, yet some pioneers understood the major scientific change, which is now heavily affecting

computing.

Concurrency summarizes the new problems.  The point is not the parallelism of computations,

but that they communicate and share data and programs along the computation, from different
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locations in space.  Moreover, there need not be a universal clock: processes may run with their

own independent clocks.

First dramatic change: computations are no longer compositional.  The entire Theory of

Computability, born in the '30s, relies on compositionality: Herbrand-Gödel-Kleene recursive

functions, Church's lambda-calculus (one of the author's main interests for long) and Turing

Machines, of course, (all computationally equivalent) are obtained by "composing" a few base

functions, terms or steps, respectively.  Thus, their "mathematical semantics" is compositional or

the analysis of the function computed can be done piecewise and then composed.  In contrast to

this, one cannot analyze a computation carried on by concurrent processes (or give its semantics or

tell which function is computed) by analyzing each process individually and then "compose" the

results, because processes interact along the computation.  Even more so: they may compete in

accessing the same database, which, once used by one of the processes, may change. 

In order to appreciate the relevance of the latter problem only, consider a seat-reservation

system, e.g. an airline reservation net of computers: in this distributed system, priority and

synchronization of access to an ever-changing data base is crucial (while an agent is modifying the

data base, the others should have no right to access to it: this is a typical inacessibility condition.) 

Suppose more generally that you have two processes, x and y.  In a sequential system, you may

have "x then y" or "y then x", which mutually exclude each other and exclude any other possibility.

Consider now the rectangle with side names x and y : the two sequential paths above are the

composition along the borders and they go, with time, from the bottom-left vertice, (0,0), to the

top-right one, (1,1), say.  But, if the two processes interact during the computation and/or access to

the same resource, a good representation of the possible computations is given by all (increasing)

paths (functions), in the rectangle, which go from (0,0) to (1,1).  The inaccessibility situations may

be represented now as "holes" in the interior of the rectangle: when one process goes through a

certain status or area, then the other cannot act (see the example above with seat reservations).  One

or more holes allow then to classify the paths by "homotopy classes": the same class contains paths

that may be "continually deformed" one into the other (i.e. transformed reciprocally without

crossing a hole).

And here the non-trivial mathematics of Homotopy Theory steps in.  Spatio-temporal

connectivity is the issue, which means homotopy or equivalence under some notion of deformation

in n-dimensional manifolds (as many dimensions as there are processes).  It is surprising to see

early work by Serre, in pure Geometry, and non-trivial Algebraic Geometry being applied in this

novel areas of computing (see [Goubault, 2000] for surveys and results).

But the situation differs from mainstream Geometry in a crucial point: irreversible time is

everywhere present in these analyses.  Of course, it cannot be a linear time, as already mentioned.

Time is branching, like along the bifurcations of dynamical systems.  A nice way to represent it, is

given by suitably parametrizing the paths in the example above along time: irreversibility of time

may then be given by assuming that the paths are increasing functions from (co-ordinate)  x to y

(as already hinted above, in parenthesis).  This originated the notion of directed-path (or di-path)
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and some non-trivial work which deserved the name of di-homotopy (the homotopic analysis of di-

paths).

Note now that, in concurrency, the nature of "feasible" vs. "unfeasible" changes, w.r.to

classical (sequential) computability.  Within the Turing frame, one could prove that the halting

problem is undecidable, that there exists partial computations that cannot be extended to total ones

etc.  Now, different issues are at stake: is this "computation" (a path) accessible, as an element of a

given homotopy class, in a certain n-dimensional manifold?  Impossibility results, including time

lower bounds, may then be given on the grounds of purely topological methods (various papers in

[Goubault, 2000]).

The idea of coding all of this into Turing Machines makes of course no sense: concurrent

systems do not deal with a finite string of 0 and 1 only, but have an input flow and an output flow.

They are open to interaction with the environment.  Not to mention the complex issue of relational

and branching time which started this discussion. Simulation on sequential machines requires the

construction of quotients on computation paths, but this "simulating modulo" is far from

standardized or unique, it is often "ad hoc" or missing the proper issues and challenges of

concurrency (see [Aceto et al., 2002]).  For example, what really matters in these systems is "how"

a computation evolves in space and time, more than the input-output relation: its ongoing space-

time structure is the "observable".  In short, concurrent systems perform different tasks, whose

understanding requires new questionning, a different insight (different observables).

Many open problems are posed.  I can only mention the interest of "fault tolerant systems".

Distributed systems clearly allow fault tolerance in a way inconceivable to sequential ones: (small)

continuous deformations, within an homotopy classes, may represent fault tolerance.  But precise

mathematical characterizations are still missing.  Synchronization as well may present further

challenges.  As a matter of fact, a system is "truly distributed" when time required to connect

processes is about the order of magnitude of the elementary step of computation, within a process.

Now, the latter is about one nanosecond, today.  And light is so slow as to go only 30 cm in that

time.  Thus, a concurrent system, distributed over the surface of the hearth (different acceleration

systems), may undergo relativistic problems, as for synchronization.  Relativistic delays may be

computed, but this is far from obvious.  This problem does not seem yet to be taken enough into

account, with few exceptions8-9.

                                                

8 This section (and this paper) is clearly not a survey, but it presents a viewpoint grounded on some
specific results.  Thus, there is no mention of many other approaches to concurrency, where space
steps in in a different way.  From Milner's CCS, for example, to the very recent "Spatial Logic" by
Cardelli, the issue of space - under the form of communication, event structure ... -  is not less
crucial and breaks as well the "linear coding myth".  Yet, those systems are to be viewed as very
relevant "space sensitive" variant of the more classical analysis of computing as "deductive
systems", which originated in lambda-calculus and Type Theory.  Of course, these and others
proof-theoretic approaches to Concurrency, are important tools for program specification and
correcteness (see [Bahsoun et al., 1999], for example).

9 See also [Aceto et al., 2002] for more on Concurrency.
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In conclusion, even digital computers, when finally embedded in physical space, hardly realise

the functionalist project, according to which a sequential Turing Machine, once the world is

encoded into it, may represent any physical system - including biological ones, of course.

Distribution in space of these very machines is sufficient to change, well before the answers, the

questions to be asked to the physical system, in order to understand it. 

3.  Living in space and time

In this section some remarks are made on Biology, as premises to a subject that will be just hinted:

cognition.  A key assumption is made here, about which one may well disagree: cognitive

phenomena are a matter concerning life, from cell to man. Others may well be interested in

cognition for non-material entities on Sirius, or for various sorts of computers, but these are

different topics.  The assumption here - but we may be wrong - is that brain is a material but living

machine and, as for humans, it only works in its preferred ecosystem, the skull of a man living in

History (in the broad sense of a communicating community, with a common memory).  Of course,

here and there, some cognitive performances can be isolated and transferred on machines, even on

the clocks of the XVIIth and XVIIIth, the fantastic "statues d'automates" meant to implement all

human functions.  Yet, in our view, human cognition depends on life, even though it is not

reducible to Biology, as a science, since it also depends on language and History.  That is, our

constructed, historical and ever evolving knowledge of life cannot, alone and as it is, provide a

complete explanation of phenomena, which required, so far, different methods and tools of

analysis, such as our sciences of human communication and History.   A novel synthesis is

required, and this is the actual challenge of modern Cognitive Sciences.

Let's though focus on life phenomena and on some mathematical challenges that are posed by

them.  These phenomena are first of all a spatio-temporal matter.  Beginning with the three

dimensional structure of DNA and the folding - unfolding of proteins (which are not "alive", but

are the "bricks of life"), the dynamics of forms is at core of life processes.

The relevance of the spatial organization in biological descriptions should always be present to

our minds, as it is the first step towards appreciating the complexity of structures whose

functionality is entirely lost by any sort of "linear encoding", such as the description on the tape of

a Turing Machine (see §. 2.1).  And all relevant cognitive functions, we claim, are irreducible

epiphenomena of life.

As a preliminary observation about complexity (and conceptual irreducibility) of cognitive and

biological phenomena, recall that classical Computability Theory is "compositional" and that

today's distributed and concurrent systems for computing (distributed in space) are no longer so,

see §. 2.1.  And yet, by recursion, classical computing is already very expressive.  More relevant

non-compositional systems are the dynamical ones.

Analyze, for instance, the movement of two physical bodies, just governed by Newton's law

of gravitation.  Then consider two more, independently.  Both two-bodies systems stabilize in
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orbits, as predicted by Kepler.  If you put the four bodies together, by the famous analysis of

Poincaré, a chaotic behavior, as an entirely new organization in space, emerges, and in no sound

way the new "four bodies" geometric system can be considered the "composition" of the 2+2

systems.  Thus, it is sufficient to move from the one-dimensional tape of a Turing Machine, or any

equivalent system of formal rules, and analyze distributed (concurrent) systems for computing or

least gravitational systems, that entirely novel Mathematics is required.  The functionalist myth of

the "independence from codings and structures" of the cognitive phenomena, the most complex

expression of life, breaks down when faced with the representation of least extensions to physical

space even of a few digital computers or of a few gravitational bodies.  If an artificial or natural

phenomenon needs either of the two approaches above to be represented, in no way it can be

reduced to or represented by a linear, compositional and space independent system, such as a

Turing Machine.  Of course, one can move higher and be content of encoding (or believe that it

should be possible to encode) their mathematics (not the phenomena themselves!) into ... Peano

Arithmetic, in the style of Hilbert's 1899 book.  But this is a different analysis and, yet, enough

theorems show the provable incompleteness of the formalist approach (see [Longo, 2002] for a

recent discussion and references).

However, even though there surely is "concurrency" and "dynamicity" in life, we need a

further step in conceptual complexity in order to grasp the kind of Mathematics eventually required

for its representation, if at all possible.

All the systems above are essentially "one-scaled".  A few laws at one "conceptual level"

suffice to describe them: interaction of processes by digital signals, by gravitational forces ... and

many other forms of possible "network structures", but all of one "type" or a few types,

conceptually similar.  And Mathematics is very effective for this (and, yet, we still need a good

theory for concurrent computing, for the dynamics of true turbulence - Navier-Stokes equations

describe satisfactorily flows only far from borders, where turbulence is at its high [Farge et al.,

1996] - etc.).

Now, biological phenomena are essentially "multi-scale".  Before discussing this concept,

observe that an apparently multiscale Mathematics is that of fractals.  Starting at one level of

"magnitude" one may go to finer and finer insights into phenomena, at different scales.  But the law

is just one, indefinitely iterated.  Sometimes living entities may develop in this way: there exist very

effective descriptions of vascular and respiratory systems as fractals (see [Brown, 1999],

[Nonnenmacher, 1994], [Bailly et al., 1991] for example).  Maximizing exchange surfaces and

irrigation volumes yields a mathematical law that beautifully applies.  These are peculiar situations

where life is only present by the growth factor and the analysis may be purely physical, as for the

wax in a beehive.

For the purposes of this discussion, let's view living as an alternating hierarchy of at least two

organization levels: autonomous biological individuals (cells), organized groups of them (organs),

which in turn are integrated in a superior level and unity by their physiological function (and yield a

new living unity).  In [Bailly et al., 1993], it is observed that, in physico-mathematical terms,
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fractals geometries can be typically found in organs, while the interactions of biological units may

be better associated to dynamical systems.  That is, in some cases, Mathematics, by Fractal

Theories, may give a good account of the relation between structure and function in organs, while,

as for living units, this relation is better analyzed, whenever possible, in terms of dynamics.

Note, that even within cells, the smallest living entity, one may find organs: the external

membrane and the cytoscheleton, first, but also some sort of internal membranes and "rails",

microtubules, that play a key role in organizing cells' metabolism and reproduction.  This is just the

beginning of a view of complexity where the mathematical tools commonly used are already split

into different theoretical frames, according to the "scale"; each claiming some descriptive

completeness, but just for its level of investigation. Moreover, these two (already schematic) levels

interact vertically and thus yield a novel, essentially multiscale system: when the scale changes, the

Mathematics we use for its analysis changes as well.

3.1  Multiscale phenomena and the mathematical complexity of the neural system

When one considers brain and its functions, the most complex single object we happen to know,

the situation is further enriched.

Neurons communicate: first, they exchange neurotransmitters of various chemical natures.

Their functionality depends also on the shape of the post-synaptic receptor, which are complex

proteins.  The geometric shape of the latter (external shape and internal channels), determines the

transfer of ions into the receiving neuron.  Then a very rich biochemical cascade takes place.

Proteins largely compose it and it plays a complex role, both in transmition and in

facilitating/inhibiting the subsequent activation of receptors.  Now, in proteins, as basic elements of

life, the function is in their shape: these huge molecules interact in the metabolic/information

exchange according to their three-dimensional folding.

Move then to a larger scale, that of a neuron as a whole.  We should definitely consider

neurons as six dimensional entities: three space dimensions, plus three more due to the shape of

their response profile. It is too rough an approximation to treat neurons, mathematically, only as

"thresholds elements".  Of course there are thresholds and these are crucial, but they are as essential

to communication between neurons as it may be the carrier wave in telecommunication.  The fine

geometric structure and the modulation of the activation profile of a neuron is also part of the neural

way of elaborating information.

An important example is given by the neurons of the V1 visual cortex.  Their response profile

has the peculiar form of an extended, asymmetric gaussian, along a rectangle (or of an odd

derivative of a gaussian, as one can observe some sort of "Mach bent" which accentuates

contrasts).  This rectangle gives the direction of the inspected border in the receptive field.  In a

sense, the V1 cortex gives the local orientation of a (virtual) border of an object in the visual field,

or it makes a "derivative" along a curb.  Then it "integrates" or "glues" all these local one-

dimensional maps (directions) by the complex connectivity of iso-oriented neurons (see [Petitot,
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2000], [Gilbert, 1992]).  In both activities, the shape of the activation profile seems to have a very

relevant role.

And now comes yet another scale or a further level of integration, that of neural nets, that many

study by the Geometry of dynamical systems (see, for example [Hertz et al., 1991]).  And, further

on, assemblies of nets and assemblies of assemblies....  Their complexity and the role of

synchronization in their functionality are analyzed in [Edelman, 2000] (see also [Varela, 1999]).

The claim is that conscious cognitive functions appear at this latter level.  However, all these

"boxed" structures concur to the elaboration of information, which is largely a geometric matter:

from the spatial folding of post-synaptic receptors and of proteins in the subsequent biochemical

cascades within neurons, to the shape of the response profile, to the synchronization of networks,

then assemblies, of neurons.  And the interaction goes throughout all levels, horizontally and

vertically: a psychological state may affect the functionality of some neurotransmitters, thus the

lowest level, and ... vice versa (psycho-medicines act at the synaptic level).

This is a major challenge for Mathematics, if we will ever be able to invent suitable tools to

give conceptual unity to the analysis of these multiscale systems, which seem inherent to life.  The

approaches based on isolating a single conceptual/mathematical level (the purely logical function,

the finer analysis of dynamical forms of connectivity, the shapes of proteins...) are very important

endeavors, but each is essentially incomplete, as a mathematical approach to cognitive and brain

functions.  And they are useful also in view of their fall-outs.  As extensively said above, the

logical analysis of the foundation of (mathematical) knowledge gave us fantastic digital machines,

for the logico-formal manipulation of strings of symbols, but with a very "rigid" hardware and,

originally, no space (nor "true" time).  We may expect from the Mathematics of neural nets the next

revolutionary machine, endowed with an evolving hardware, in space and time.

4. Theories Vs Models

There is a clear distinction, in Logic, between (formal) Theories and (semantic) Models.  It is

largely artificial, but it turned out to be very useful, so far.  In Physics the distinction is not so

sharp and it has a very different nature.  Mathematical Models provide "local representations" of

phenomena, by isolating one scale and a few properties in them; Theories, instead, are meant to

have a "global" nature.  Yet, of course, locality may be very large: Rutherford's atomic model is or

yields a Theory.  The point is that in both cases, Models and Theories, Mathematics is used as a

tool for representing, organizing, correlating phenomena, by laws as general as possible.  The

description's generality and breath in question (as local vs. global) is a subtle matter as

mathematical physics always aims to the highest generality: as soon as a single "fact" is observed,

the physicist tends to transform it into a general law.  Moreover, "facts", as already mentioned, are

already the result of a theoretical commitment: set up these measure instruments, correlate this to

that.  And facts may be cut off from contexts: the very contours of physical objects are established

by mathematical tools, on the interface between us and the world (the "phenomenal veil" of §.1 and
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2).  This gives them full generality.  For example, there is no such a thing as a photon or a quark:

they are the result of a theoretical construction, grounded on a few sparks, a trace on a screen, but

leading to general principles.  Their mathematical model is already a Theory.  As much as Kepler's

model of the planetary system is a Theory as well, in particular when explained in terms of

Newton's principles (gravitation).  One scale in Physics may suffice to comprehend a full universe;

thus, Models border or intersect Theories.

It is not so in Biology.  First, contours, membranes of cells, say, are already there, they are not

drawn by us, by Mathematics, as in microphysics (but also planetary orbits are a conceptual

proposal, a mathematical organization of the planets).  Of course, in Biology, interpretations must

be given, but the "ontology" is essentially different: the unity of a living entity forces itself

throughout the phenomenal veil. Second, experiences and evidences are heavily context dependent:

cutting off a living entity from its ecosystem may miss the very causal relations one is looking for.

This gives the major differences, in general, between experiences in vivo and in vitro (in a neuron,

the artificial fluid of an in vitro experience, its being cut off from three-dimensional connections etc.

give lower firing rates, higher resistance, unreliable potentials ... [Jennings&Aamodt, 2000])).

The arbitrariness of the mathematical modeling, a further abstraction from the context, is even

greater: the "intended" assumptions are out of control, as most are implicit.  Soon or late the author

will acknowledge that there are "hidden variables" not taken into account in the model; often, this is

due to interactions with other scales, out of the scope of the given model.  Thus, in contrast to

Physics, Models in Biology are always poorer than phenomena.  And all of this takes us far from

"biological theoretizing".  A Theory should propose general constitutive principles, which unify

properties and "explain" them.  Darwin's evolution is a Theory, Edelman's selective theory for the

immune system is another.  Some general principles are put into focus and have a broad

explanatory nature, which fits all scales.

All these issues ("contours", context dependence, multiscale interactions) pose major challenges

to Mathematics in Biology, as theoretical generality is its aim; in Physics, this is "more easily"

obtained by Mathematics constitutive role in drawing physical objects and by the possible or

discernible context independence of physical experiences, while both conditions essentially fail in

Biology.  Thus, the gap between the "local" nature of Models and the required "global" nature of

Theories is much greater than in Physics, and Mathematical Biology seems to provide only models,

so far.

Yet, even modeling, which is so important for iterating experiences, transferring knowledge . . .

conjecturing Theories, is so hard.  Consider "latent potentials" in Evolution.  There is, for example,

strong paleontological evidence that the double jaw of some reptiles, living 200 millions years ago,

originated the internal hear of birds and mammals ([Gould, 1982; 1989]).  How can you model

this?  Which energy is minimized, if any, or which geodetics, in which mathematical space may

simulate such a contingent evolution?  There exist dynamic models of co-evolutive systems, as they

are called, but, before discussing the problems they are faced with, let's consider another, related,

feature of life.
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In Physics, we know how to deal with states close as well as far from equilibrium; but also

critical states are well defined and treated.  By definition, the latter are "temporary": a physical

system doesn't stay long in a critical state (on the verge of a change of state).  Yet, living entities,

both biological units and species, permanently live in an "extended critical state", [Bailly, 1991].

Homeorhesis or Varela's autopoiesis are a theoretical appreciation of this fact; where homeorhesis

means a dynamical reconstruction of an ever changing equilibrium, which is autopoietic when

internally reconstructed.  In short, we live as if we were running on a tight string; and we do it

quite well.  And so do species.  There is no such a thing as "equilibrium" in phylogenesis or in

ontogenesis: a non-artificial ecosystem is never in equilibrium, it is always evolving.  Only death in

a desert of stones is biological "equilibrium".

Many physicists work at co-evolutive dynamical systems in Biology and, by deep and powerful

mathematical tools, they try to model features like the ones above.  The problem of course is that

there is no pre-designed space of phases where one could draw evolutionary geodesics: the phase

space is co-constituted at the same time as the phenomenon to be described.  They depend on each

other, while interacting with billions of other phenomena, as unpredictable as the one above (the

"latent potentials").  And this, along an extended critical state.  Are there just "hidden variables", or

missing parameters, to be discovered and inserted in the model?  There seems to be more than this.

Minor variations in the evolutive context, a mutation say, seem to create a new phase space:

attractors which should describe the dynamics, not only need to be embedded in larger spaces

(more variables), but seem to "swing" into different phase spaces.  How to handle mathematically

these changes, which may be "conceptual" changes?  We are in a situation similar to the multiscale

nature of biological phenomena, mentioned in §. 3 (and surely related to it), but with its own

mathematical difficulties.  Well before the proposal of algorithms, Mathematics and its applications

grow by proposing novel conceptual frames, as pointed out throughout recent history by [Patras,

2001], possibly grounded in new forms of "access" to phenomena (in the sense of §. 1) or to new

objects of knowledge  (Newton's revolutionary conceptual frame will be recalled below).  And, as

stressed in [Parrini, 1995], conceptual frames connot be reduced to nor analysed only in terms of

linguistic symbols10.

The terminology used above (hidden variables) recalls Einstein interpretation of the EPR

(Einstein-Podolsky-Rosen) paradox in Quantum Physics (see [Ghirardi, 1997]).  For Einstein, the

standard interpretation of non-locality and indeterminism was due to an "incompleteness" of the

theory: some hidden variables had to be taken into account to yield a more "realistic" interpretation.

Physicists (Bell, Aspect ...) were able to prove that it is not so: the theory is complete and non-

                                                
10 Infinitesimal analysis, say, is not only a matter of "new symbols" or algorithms for solving
equations.  Moreover, the failure of founding actual infinity by formal Set Theories – whose formal
consistency requires larger and larger  infinite cardinals – confirms the limits of the purely linguistic
approach; the foundation of the concept of infinity is in the genetic analysis of its "progressive
conceptualization", see [Longo, 1999].  The same should be said as for Grothendieck's Toposes
and Thom's geometric approach to scientific explanation (see [Patras, 2001] for more insightful
reflections on these revolutionary aspects of XX century mathematics).
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locality, non separability, indetermism are essential.  Or, that the difference in approach between

Classical and Relativistic Physics on one side, and Quantum Physics on the other, is "epistemic" (it

concern the roots and the tools for knowledge; some prefer to say that the difference is

"ontological".)  In this sense, also Physics is organised at different conceptual "scales", each

requiring its specific mathematical tools (microphysics, dynamical systems and General Relativity,

for example) and their unification is a major scientific challenge.  Yet, each phenomenal level may

be soundly analised in its autonomy, in contrast to the unavoidable unity of living beings, for

which the "vertical" interactions of the many levels or scales is the key issue.  Moreover, in

Physics, some new mathematics is being constructed to give an account of the split and try to

recompose it:  in §.1, we hinted to the different geometries used in Relativity and Quantum

Mechanics and how they relate (note that we just tried to propose an epistemological unification,

with no commitments to ontologies).

Biologists should try to give us a rigorous interpretation of the gap between (the use of

Mathematics in) Physics and Biology, comparable to the one Quantum physicists proposed w. r. to

more classical approaches, if this is so.  The difference, they should tell us, is ontological (or

epistemic), if any: here or there are the exact limits you encounter where treating these problems

with tools from the Physics of dynamical systems or Quantum Mechanics (similarly as the

Geometry of Relativity does not apply to microphysics).  We need radically different tools . . . .

Perhaps we could then try to invent more suitable Mathematics.  Mathematics is an open conceptual

construction and may be indefinitely enriched: fortunately, it is not God given, nor it is all already

contained in and mechanically derivable from today's Zermelo-Fraenkel Set Theory or predicative

fragments of Second Order Arithmetic.  When Newton and Leibniz unified metaphysically distinct

universes, the sub-lunar and the supra-lunar bodies and their movements, they did not use the

Mathematics of projectiles well developed by the engineers of the time, largely based on Greek

Geometry.  They invented radically new concepts and tools, not contained in Euclid's notions and

axioms, and dared to use the actual infinite to analyze finite movement (trajectories, speed,

acceleration), a true revolution.  Of course, there was a path through History, which lead to their

ideas, but the dynamics of Mathematics swung by their work into a different conceptual space,

which included infinitesimal analysis.  And, by Gauss' and Riemann's Differential Geometry, this

also changed Geometry.  We need at least a comparable change of paradigms or conceptual

enrichment of Mathematics in order to deal with biological phenomena: by their peculiar autonomy

and contextual dependence, we cannot easily draw their mathematics on the phenomenal veil by

"cutting them off" from their contexts and by giving them constructed contours.  This, I believe, is

the underlying methodological challenge for Mathematics in Biology, as Mathematics usually

organizes the physical world, sets norms for it.

5.  Conclusion: epistemological and mathematical projects
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In the spirit of this lecture, I will now hint to some possible work directions coming out from the

proposed perspective. The central theme, on one side, aims at (re-)embedding Mathematics and its

foundation in phenomenal space and time, which Mathematics contributes to constitute.  On the

other, space and time may relate the very foundation of Mathematics, which has been isolated

within the enclosed terms of its internal foundation (Hilbert's Metamathematics is a mathematical

discipline), to other forms of knowledge, such as Physics and the Sciences of Life, whose

phenomenalities are first of all a spatio-temporal matter.

5.1 Epistemology

The epistemological program has been spelled out in several places, in particular in §. 1.4.  The

analysis of the "mode of access" to phenomenal space is a first step towards a "cognitive"

foundation of Mathematics.  Once more, this is not meant to replace the logic and formal analyses:

these are "necessary but not sufficient" ([Weyl, 1927]).  As they are necessary, they come first, but

the XX century prevailing monomania of focusing only on the invariants of language and

conscious reasoning (logic and formalisms), would be now a major limitation to further

investigations, even in Computer Science (§. 2.1).  Again, there is no doubt that there are logic and

pure formalisms, in proofs, and that they even concern large part of them: it is the believe in their

mathematical, or even "cognitive", completeness, that is wrong.  Consider, say, Arithmetic or

lambda-calculus, very close systems.  A lot can be derived by purely formal tools: even

consistency for the type-free version of the latter, as the Church-Rosser theorem is a beautiful and

purely syntactic game (see [Barendregt, 1984]).  But as soon as you get to Mathematics, which is

typed, meaning and structures step in11.

Thus, we need to go further, in particular in the reconstruction of the knowledge processes that

lead us to propose concepts and structures, beyond the sole analysis of proofs.  Concepts and

structures are constituted in the interface between us and the world, on that phenomenal veil over

which we draw them in order to organize and make intelligible the world, by Mathematics.  They

originate on the regularities we "see", as living and historical being, and develop along History, in

intersubjectivity and language.  The objectivity of Mathematics is in this process.

Also the reflections proposed above, concerning the challenges for Mathematics in Biology, are

not just meant as informal/technical considerations, but they are an attempt to analyze the peculiar

interface by which life presents itself to us.  The mathematical analysis of the difficulties should

                                                

11 Normalization for typed lambda-calculi, as soon as they yield some expressivity, implies
consistency of Arithmetic of various orders (see [Girard et al., 1989]), thus it implies well-
ordering properties of numbers or ordinals (of a "geometric" nature, see [Longo, 2002]).  Yet,
there are more purely formal non-obvious theorems.  "Genericity" for second order lambda-
calculus is an example, [Longo et al., 1993].  It is a type- or proof-theoretic "implication" that has
no (semantic) model so far.  On the other end, continuous "geometric" structures (Scott Domains)
may step in the inductive load of a proof of purely combinatorial properties of recursive
functionals (see [Longo&Moggi, 1984], [Longo, 2001a]).



-  -21

stimulate a foundational investigation on the tools used and stress this constitutive role that

Mathematics has w. r. to reality: these difficulties are due to the different "autonomy", criticity and

multiscalar phenomenality of life, if compared to the physical one.  In general, each analysis of the

interface between us and phenomena, within different forms of knowledge or access to reality,

bears a foundational character.  To put in husserlian terms, Mathematics is a (key) component of

the "phenomenal constitution", at the core of any analysis of knowledge.

Our focusing on the issue of space is not meant to present a new monomania, that of Geometry,

but to enrich existing paradigms by what was programmatically excluded by the founding fathers,

and for good reasons (at their time: we are no longer troubled, today, by Riemann's Geometry and,

perhaps, even not by Connes').  Moreover, the Mathematics of space and time are "transversal"

themes to different sciences.  And the related foundational and methodological considerations

should be an essential component of interdisciplinary researches.  It is largely insufficient to

transfer well-established algorithms from one discipline to another (physicists do so too often in

relation to Biology).  We have to be "monist of matter" not of the "method": different

phenomenalities may need to be analyzed by different tools.  Yet, an explicit reflection on the

methodological differences and analogies may lead to a unification, which is never a matter of a

transfer or superposition of techniques, but of a new invention, a new synthesis (recall the example

mentioned of infinitesimal analysis; but the same could be said for the Geometry of manifolds or

the non-commutative one, major steps forwards, which also unified previous approaches).

5.2 Geometry in Information

In §. 2, we focused on "codings".  Hilbert's analytic encoding of all existing Geometries and

Gödel's representation lemma to the Incompleteness Theorem (the metatheory is encoded in the

theory, Arithmetic again) are "coding's" highest moments and marked the century.  By the first, the

foundation of Geometry was definitely considered as a subproblem of that of Arithmetic.  The

second started Computability Theory, by the invention of Recursive Functions and gödel-

numberings.  Turing added the encoding of the world into Machines, and of Machines into

themselves.  Foundation and knowledge were supposed to "pass through codings", or to be

"coding independent". Shannon developed a Theory of Information on Turing's ideas: analyze

information properties independently of its coding, as sequences of 0 and 1's or whatever.  Thus,

both Computability and Information Theory are coding insensitive (modulo minor complexity

results).  As said several times, this gave us immense and perfect digital database and network of

communication.  One can download the Encyclopedia Britannica and Mozart's concert for Flute and

Orchestra from California in a few minutes.  And the file may be copied as many times as required,

exactly in its original form.

Of course, this has nothing to do with cognitive activities.  Brain is slow.  Our memory doesn't

store the details and it is very bad at making copies; indeed, forgetting is its main feature, as a goal-

directed oblivion is at the core of our procedural memory, of our constituting of invariants

(including mathematical ones, [Longo, 2001]).  Intersubjective communication is also slow,
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unreliable ... but very effective for its purposes, which radically differ from storing, copying and

transmitting the digits of Encyclopediae or of Mozart's concerts.  We remember and communicate

meanings, forms, harmonies, emotions....  The claim, here, is that these processes depend also on

the structure of their coding in our living brains.

We gave a very broad, very weak definition of "geometric" as "sensitive to codings", in

conjunction to Girard's work (§. 2).  This applies to the Geometry of space: code, for example, a

finite dimensional Cartesian space (Rn) into the real numbers (R), by Cantor's method (the pair of

real numbers  (0.a1a2a3 ..., 0.b1b2b3 ...)  is associated to the real  0.a1b1a2b2a3b3 ...).  This is a

bijection, easy to construct, but it misses even the weakest geometric property of space, as the

notion of neighborhood is lost (the coding is everywhere discontinuous): that is, the topological

structure is sensitive to Cantor's coding.  Or, all the relevant informations concerning space

(neighborhood, metric, ...) are lost.  Technically, Cartesian dimension is a topological invariant

and, thus, nothing is left after the set-theoretic "coding".  But sensitivity to codings applies also to

Girard's Proof Theory, a theory of spatial organisation of formulae along proofs, as well as it

underlies the entire approach proposed here.

This issue is not just part of the continuum/discrete debate in the practice of Mathematics and in

its foundation: it relates to it, but it is broader.  Consider a discrete set of scattered points on a

plane: a symmetry judgment about their structure in space is as relevant and autonomous as the

inspection of the application of Modus Ponens, in a formal proof.  The sequential encoding of the

points and of all their spatial relations is unbearably complex and/or misses what matters, the

symmetry. Indeed, physicists currently use judgments of symmetry in arguments and proofs; these

suffice to deduce and convince as much as a logical rule.  Symmetries pervade Nature, Arts,

Mathematics, as beatifully synthetized in [Weyl, 1952]; recent neuro-physiological evidence

stresses the deep physiological embedding of "symmetry judgements", as recognition of symmetric

patterns ([Berthoz, 1997]).

As a long term project, it is time develop a "Geometry of Information", as an intrinsic

mathematical theory (see      http://www.di.ens.fr/users/longo      for a preliminary proposal).  What

amount of information bears a "breaking of symmetries"?  Does a change of shape yield a form of

computation?  Living neural systems can provide the starting ideas.  In a sense, this approach is

already present in the Theory of Neural Nets.  Their dynamics is a form of elaboration of

information, which is largely geometric (see [Amari&Nagaoka, 2000], which mainly refer tough to

the geometry of distributions of points, in the frame of a shannonian treatments of information).

Thom's approach as well contains seminal hints in this direction ([Thom, 1972, 1990]).  However,

attention to phenomenal life is extraneous to Thom's Philosophy of Nature: a drop of wax or a

jellyfish is mathematically the same and is molded by physical forces, when falling in water.  It

happens though that jellyfishes have morphogenes, which "do Geometry" by organizing growth,

on the grounds of geometrically encoded information.  As extensively discussed, this kind of

models of living forms, are just models - though fantastic (see the fractal approach to vascular and

respiratory systems in §. 3, but note that these are organs, not autonomous living entities).  Thus,
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as models, they do not provide a Theory for biological phenomena, as in Thom's project, but at

most one-scale models. 

We should go further and look more closely at the structures of life.  That is, on one side, we

need to take into account those unique phenomena of life, such as function, reproduction and

metabolism, which force a "contingent finalism" in every analysis.  On the other, we need to refer

to finer biological phenomena, w. r. to the Formal Neural Nets approach, beginning with the

folding of proteins and the dynamic structure of dendrites (see [Percheron, 1987] for the latter: this

structure seems to be "almost" fractal as their growth has some regularity of the sort, yet their

morphogenesis is also due to neurotrophic factors, [Edelman, 1987] - a typical case of a blend of a

physical and a goal-directed organization of living forms, whose analysis is an ongoing project).

Both these scales, neurotransmitters and synaptic structures, contribute to the elaboration of

information.  Again, though, any one-scale analysis is far from providing a Theory.

Of course, the key feature of this Geometry of Information should be "coding sensitivity".  It

should be grounded on elementary regularities of space (symmetries, typically) and organize them

in a non-compositional fashion. As suggested by Thom, the topological complexity of a structure

or of a transformation could provide a quantitative measure, in a theoretical frame, which should

mainly capture qualitative evolutions.  Invariants and invariant preserving transformations should

be analyzed on the grounds of the regularities one wants to preserve.  Homotopy classes or

mathematical grouping of "gestalts" could be given and preserved by suitable classes of continuous

or differentiable or isometric maps. 

The idea is that brain is a machine, which implements such a Geometry.  But the Mathematics

may depart from it, without any myth of providing a Theory of brain activities.  Just a change in

view point, possibly of method, w.r. to the 0 and 1 or thresholds' paradigms.

The difficulties of course are immense, also in view of the strength and depth of the

Mathematics developed since Turing and Shannon, whose technological fall-outs have been

changing our world.

5.3 Geometric Forms and Meaning

Let's conclude this programmatic paper by a dary claim on "meaning", such an indefinable notion.

In reference to life, (changes of) forms are meaningful.  Or, forms and their action/interaction in

space contribute to "meaning".  Consider a cell shaping itself or moving in space to preserve or

improve its metabolism or while reproducing.  For this cell an incoming signal or physical hit is

meaningful.  The signal's meaning is in the way it affects its goal-directed deformation or

movement.  And neurons, as cells, have a six dimensional form, in view of their response profile,

an electrostatic matter (§. 3.1).  Thus, a signal, including an electric one, is "meaningful", per se,

for a neuron, according to the way it participates to its ongoing activity or metabolism by the

"deformation" it induces. 

Then, meaning affects networks of neurons, assemblies of nets etc., by their spatio-temporal

shapes as well, and its variations.  Note though that the constitution of meaning happens in a non-



-  -24

compositional fashion, as defined in §. 3, and in no way the contextual meaning of a human

linguistic expression, say, rich of intersubjectivity and History could be reduced to synaptic spikes

nor to the geometric activity of a neural net.  Meaning for complex living entities is in the relation

between a neural activity (as "evolving form" of a network) and its context of life.  No

reconstruction of meaning is possible by reading just a neural activation or deformation: at the same

time one has to consider the "ecosystem" and, for humans, the intersubjective and historical

experience of it.  Meaning is a relational/ interactive matter, where one of the components of the

relation includes living entities and their forms.

The claim then is that all living forms and their variations are carriers of meaning, of its co-

constitution, by the interplay between the evolving form and its context.  Or, this is where meaning

originates or it is rooted.

Later comes the organization of meanings at several scales, up to the richness of our

communicating human community.  The scientific challenge, in Cognitive Sciences, consists in

being able to go up and down, from one scale to another, without necessarily assuming a

reductionist approach, but by comparing and establishing interactions of different methods, which

face different phenomenalities and different levels of meaning, from cell to History.  Novel

syntheses are a further task, never obtained, in the past, by pure transfer of techniques.

Of course, once the artificial split between formalisms for deducing, on one side, and semantics,

on the other, was proposed, we could construct fantastic formal-computing machines and their

programming languages.  But then a dramatic question popped out: where is meaning?  How

comes that strings of binary digits may carry meaning?  This is a problem, of course, for

programming languages, machines and for coding independent Information Theories: strings of 0's

and 1's or formal languages need to be decoded and interpreted (compiled).  Living beings,

instead, when elaborating or transmitting meanings, harmonies, emotions ... induce deformations

in living neural systems which carry these contents in their geometric encoding and its variations.

Thus, the cognitive challenge, if one associates meaning and information to living forms and to

their evolving geometries, is in the understanding of the non-compositional co-constituting of

sense, from elementary living entities up to our historical beings, as nested interaction of

phenomena.  The multiscale nature of this process is one of the major mathematical challenges.
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