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Summary. Our relation to phenomenalspace has been largely disregarded,and with good
motivations,in the prevailing foundationalanalysisof Mathematics. The collapseof Euclidean
certitudes, more than a century ago, excluded "geometric judgments” from certainty and
contributed,by this, to isolate the foundationof Mathematicsfrom other disciplines. After the
success of the logical approach, itilse to broadenour foundationaltools andreconstructalsoin

that respect, the interactions with other sciences. The way space (anorgjamezeknowledgeis a
cross-disciplinaryssuethatwill be briefly examinedin MathematicalPhysics, ComputerScience
andBiology. This programmatigaperfocuseson an epistemologicabpproacho foundations,at
the core of which is the analysis of tflenowledge process”,as a constitutivepath from cognitive
experiences to mathematical concepts and structures.
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1. The geometric intelligibility of space

«The primary evidence should not be interchangiid the evidenceof the
"axioms"; since the axioms are mostly the result already of an original
formation of meaningand they alreadyhave this formation itself always
behind them [Husserl, The origin of Geometry, 1933].

Man has always been organizing and giving meatorgpace. This was doneby action, gestures
and language; Mathematics, Geometry in particular, provided the most stable conceptual
reconstruction®f phenomenabkpace. | will try to find a methodologicalunity to its highest
moments,when geometrictools unified, and still now unify, the spaceof sensesand physical
spaceor differentforms of mathematicaunderstandingf space. To this aim, and by a rather
arbitrary choice,| will stressthe unity in the questioningby Euclid, Riemannand Alain Connes§
the issue here is not the ‘names’ of the mathematicians mentioned, nerdivaiual contribution,
which may interest the historian, but the focus on mathematical theories which may sounttby refer
them.

The claim is that space,in these three paradigmaticapproachesjs made intelligible by
proposingdifferent answersto similar "questions":How do we accessto space?How do we
measure it? By which operators do we act on it?

1.1 Euclid

Euclidean Geometry organizes space by rigid figures and their (rigid) movertisrksy property
is being “closed underhomotheties’(its group of automorphismgontainsthe homotheties). By
this, a theorem, a property of a figuremainsvalid by enlargingor reducingat leisureits length,
surface,volume... . By this, the“local” or “medium sized” spaceof sensess perfectly unified
with physical space, in the very large andhe very small. This propertycharacterizeguclidean
Geometry w.r. to the non-Euclidean ones.

Note now that Euclid’s postulatesare “constructions”:draw a straightline from any point to
any point... producea circle with any centerand a distance... and so on so forth. “Theorem”
means'‘vision”, “scene”,in Greek: by ruler and compasdurther constructionsare “shown” by
acting on space (first theorem, bookdnstructan equilateral triangle on any straight linewe all
know howj).

21982 Field Medal, A. Connesworks since the early '80’s at the geometricfoundationsof
Quantum Mechanics.

* The intersectionpoint of the circles centeredon the end points («the extremitiesof a line are
points») is given by the intendédarmenidean’continuity of the (circular) lines, since«a point is
that which hasno parts»and «two breadthlesdength»,i.e. two lines, produce by intersection,
“that which has no parts”. Thatis, in Euclid, a point is given as the w@saiitintersectionof two
lines (this is observedoy Wittgensteinaswell). Only the formalist rewriting of GreekGeometry

2-



And this is all done by rule and compass otigse(ideal) “tools” makespacemathematically
accessible, they organize it, they allow to measure it, to operate on it. Nothing else is needed.

1.2 B. Riemann

Riemann’s main aim is to account for the unexplained Newtonian “action at a distatecties to
understandgravitation (but electromagnetisnand heat propagationas well) by the “structure of
space” ([Riemannl854]; seealso[Boi, 1995], [Bottazzini&Tazzioli, 1995]). This revolutionary
approachmay be partly found also in Gaussand Lobatchevski,but it reacheswith Riemannits
highest mathematical unity.

One of Riemann’s concernstis understandinderwhich generalconditionswe may soundly
measure. This is possible when rigid bodies are preseaaség, moving a rigid "meter" one may
compare lengths. And here comes Riemann’s general analysis of spamsE$which showsthat
spaces(manifolds) of constantcurvature guarantythe invariance of measure(the rigidity of
bodies). Euclideanspacesare a particular caseof thesemanifolds, indeedthe critical one, i.e.
when the curvature is constantly O.

But the other spaces can make sense assigdkethey cangive an account,by geodesicspf
these mysterious action at distance. Riemann dares to think that «the congepboftlyandof a
light ray, non longer are valid in the infinitegmall»: bodiesmay be no longerrigid, light may go
along varying curbs .... The point is, and tisi®ne of his major results,that the metric structure
of a (riemannian) manifold, or its measure by a length, may bi-univocally related todherésire
(the metric tensor and the tensorcafvaturearerelated,in fully generalsituations). Moreover, it
may make sense to analyze a space of non-constant curvature, as «the foundationrefatietrsc
must be found elsewheiig,cohesive forces that act om.it A "divination”, will recallH. Weyl in
the ‘20s, in referenceo Relativity Theory:forcesbetweenbodiesarerelatedto the (local-metric)
structure of space. And this approach «should be allagwedvould leadto a simplerexplanation
of the phenomena». Since Einstein’'swork, we understandhe relevanceof this extraordinary
insight of Riemann’s.

Thus the geometric organizationof spacesmay provide an understandingof physical
phenomena, beginning with the analysis of measure and dist&oc¢his purpose,Euclid’s ruler
and compass must be generalized, since «...caménuousmanifold the metric relationsmustbe
introducedon differentground$». Then, a linear elementdoesnot needto be representeas the
square root of a second order differential form (Pithagoras’ theoremjdsagenerallyas ds? =
Zgij dxldx.

This is how, for Riemann,we accessmeasureand operateon space,while understanding
physical phenomenaby Geometry. Then spacemanifolds are proposed,as a "genealogyof

could claim that this theorem not soundlyprovedby Euclid, see[Heath, 1908] and one century
long commentaries.

* Riemann’s quotations, in brakets, are from [Riemann, 1854].
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mathematicalconcepts”,by making explicit some hypothesis,which ground the mathematical
constructioninto phenomenalkpace:some key ones are, accordingto Riemann, connectivity,
isotropy, continuity .... H. Weyl will add symmetries as on¢heffundamentapropertieswhich
structure physical space.
Of course,by Riemann'ddistinction betweenthe “local” andthe “global” structureof space

(the metric structureandthe topologicalone, the latter relatedto the Cartesiandimension)a key
aspectof the unity of Euclid’s approachis lost: physical space,the spaceof microphysics(“the
infinitely small”) or of remote spaces, magvepropertieswhich escapahe experienceof senses.
In Riemann’s approach, threlation betweenlocal andglobalis the resultof a complexandnovel
mathematics: the gluing of local maps by differential methods; homothetrest dtbow any longer
to transfer “medium sized” experience and knowledge tcsaale. And this is extremelymodern:
from Relativity Theory and QuantumPhysics,we learnedthat accessmeasureand operationsjn
the very large and the very small, cannot be provided by the naive analysis of senses.

Yet, thereis a unity in Euclid'sand Riemann'sapproachesasstressechere. A synthesisis
also given by [Poincaré, 1913] ansentence«faire de la géométrie c'est étudierles propriétésde
nos instrumenic'est a dire daorps rigide».

1.3 A. Connes

Given any topological and, thus, any metric spaceX, one may considerthe set of continuous
functions, C(X), from X to the complex fields a suitablealgebraicstructure(a commutativeC*-
algebra). C(X) is very important, as it includes the space of measures on X.

A classicresult of Gelfand allows to go the other way around. Given a commutativeC*-
algebraC, it is possible to construettopologicalspaceX, suchthatC(X) = C. The pointsin X
will be characterizedby the maximalidealsof C andso on andso forth asfor reconstructinghe
geometric structure of X on the grounds of the properti€s of

In classical and relativistic physics measures happeartonute:the resultof severalmeasure
operations does not depend on their order. This is not so in Quantum Mechanioseabhee®f
position and momentumof a particle, for example,do not commute. And this is crucial: in
Quantum Physics these are the observables. Measure by instruntieatsiy accessve haveto
"physical reality". More precisely, we can construct knowledge in microphysichprEgttingup
instruments for measure: theaee no otherobservables.This is wherewe haveto start. In this,
there isa completeconceptuatontinuity w.r. to the approachedy Euclid and Riemann. But the
"instruments”of measuredo not havethe relatively simple natureof the ruler andcompassgeven
not in the generality of Riemann's notion of "rigid body" or of hig"'dMeasureis now given by
the complexphysicaland conceptualinstrumentsof microphysics:the only groundingcertainty,
which founds quantummechanicsjs given by a few observablephenomenasuch as the non-
commutativity of measure (and the related essential indeterminism).

Heisenberdirst replacedclassicalmechanics,where observablequantitiescommute,by a
"mechanics of matrices”, where observable quantittesot necessarilycommute His algebraof
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matricesis then obtainedfrom a groupoid, which replacesthe classical(commutative)group of
measures. Now, this latter group is the starting struétureconstrucspace a la Gelfand:from a
commutativealgebrato a topological space. Connes'work, since many years, consistsin
reinventingGeometryfrom a non-commutative€*-algebra:beginningwith measurablespacesto
topological, metric and differentiabtines([Connes,1994]). The differencesare dramatic,asthe
very notion of point and of trajectory are different from the classicnotions: there are no more
maximal ideals (and trajectoriesare closer to the "paths” derived from Feynman'snotion of
integral). The debateis very lively (and difficult), but many agreethat Connes'approachis
gradually givingan accountof the mysteriousnatureof somephysicalphenomenaat the level of
microphysics, including non-locality (a particle is not "located pogat”, in QuantumMechanics).
A crucial issueis the dependencef the reconstructiorof spaceof microphysicson the order of
measure: but this is how we access to it. Once more, Poincaré may be quoted for hisEusight.
though it would be too much to attribute to him a "divination" concertiagossibleGeometryof
Quantum Physics, yet he observeesétresqui éprouveraienhos sensationsiormalesdansun
ordre anormal créeraient une géométrie différente de la ndtre» [Poincaré, 1902].

1.4 Some epistemological remarks on the Geometry of Physical Space
Starting from whats accessibleand groundsknowledge the observablesiGeometryproposesan
organizationof physicalspace which makesphenomenantelligible. We have no other way to
constitute knowledge, but starting from observable,measurablephenomena.even when this
observability has nothing to do with our direct experienceby senses. As we learned from
Relativity and QuantumPhysics,we may then needto give up the identity "spaceof senses=
physicalspace",so beautifully proposedby Euclideanspacesand their closureby homotheties.
Knowledgein very large and very small scalesis constructeddifferently: no rigid ruler, no
compassof "humansize" may organizethe spacesof galaxiesand of elementaryparticles, by
homotheties. Their intelligibility cannotbe groundeddirectly in our sensespn our eyes,hands,
by our movementsand actions, normalizedby Euclid's rigid tools, but must be mediatedby
complexinstrumentsof observatiorand measure. Theseinstrumentsare themselveshe result of
complex "theoreticalcommitments”,as they are set up on the basisof an existing or proposed
theory, or of strong hypothesis, beginning with the decision to measure "this and not that".
Yet, the only dramaticchange here,is relatedto cognition: the direct experienceof sensess
no longer sufficient to understandphysical space,while thereis unity in the method. It is
surprising that we still have to digest this apparentcognitive discontinuity: the "ontological”
commitment(Geometryis "spaceper se”, beginningwith EuclideanGeometry)did not allow to
appreciate that thexathematicabbjectivityis in the construction not in an ontology. Thereis no
such athing as"absolutespace" but thereis the objectivereconstructiorof a spaceof action, by
the cognitive subject,with the contingenttools of active experience.Objectivity is reachedwhen
the cognizing ego is able telativize his constructionfix oneor morereferencesystemsor ‘view
points’, andthe forms of their communication/interaction;fix the tools for measure. Thenthe
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constructionbecomesbjective. As long asthe subjectbelievesin absolutespacesNewton), in
"absolute laws of thought" (Frege), in "views from nowhere", there is no foundation for
knowledge, but an artificially unified frame for illusory certainties.

In contrast to this, | stress that the method, from Euclid to Riemann and Connes is anidiorm
sound: accessneasureand operateon space with the appropriateand explicitly given tools, and
organizeit by one of our most beautiful conceptualconstruction Mathematics,Geometry in
particular. For an historical reference to this approach, note that Poincaré's critagieish and
formalism proposesto supplementhe foundationalinvestigationsin Mathematics«by a genetic
analysis»,the analysis of a conceptual genesisor construction [Heinzmann, 1998]. His
understanding of Geometry agienesispeginningwith the movementf rigid bodies,specifies
Riemann's approach to Mathematics as a "genealogy of conaspis!l as Helmholtz'sreference
to "facts” (see [Nabonnand,2001]); it is not an empiricist view nor rationalism, but a
"phenomenological'understandindcf. below and Husserl's fundamentaltext [Husserl,1933]).
This neo-kantian understandingof Poincaré's views has been confirmed by many (see
[Nabonnand 2000] for references).Mathématicss not goundedon arbitrary conventionsthese
conventionsare the mostconvenientchoices(«les plus comodes»¥or us, humanbeings,in this
world, with our shared biological being. Poincaré's program, as we undersiaraditeliminary
step to ground Mathematics in our reference to the regularities of thetharide seewve draw on
the phenomenableil on the groundsof our active, cognitive experienceof it. The structuresof
Mathematics are conceptual proposals, meant to makeahid intelligible («Si [la nature]offrait
trop de résistance&ouschercherionglansnotre arsenalune autreforme qui seeraitpour elle plus
acceptable»]Poincaré,1898]). The role of action, proposing,understandingare crucial. The
resistance of nature is deeply embeditlephysicalityandin our biological being,in the historical
formationof sense. In a Manifestoon web [Longo et al., 1999], a modernversion of what we
would like to call"Poincaré'sprogram"is definedasthe "Cognitive Foundation“of Mathematics.
The point, of course,is to go beyondintrospectionthe only tool thesegreat mathematiciandiad
(becausealso Riemann,Helmholtz, Enriquesand Weyl shoudbe quoted)and refer to modern
Cognitive Sciences, as a scientific analysis of our pracman and conceptuareconstructiorof
the world (seealso a conferenceheld in Rome, September2002, basedon this program, a
reference is in [Longo et al., 1999]).

Of course,the foundationalprograml am sketchinghereis an epistemologicabne:it is an
analysisof "how" we accessto knowledge,or of the "knowledge process".In Mathematics,
spacespbjectsand structuresare constructedrom the explicit assumptionof cognitive grounds,
and this is objective. This analysishas beenprogrammaticallydisregardedoy the logicist and
formalist approaches to the foundation of Mathematics, in the XX centuttyeyasnly focusedon
(formal) proofs. This was a necessary investigation, but, unfortunatekglitdedthe analysisof
the constitutiorof conceptsand structuresand pretendedo encodethe world in formal stringsof
symbols. Now, thereis no doubtthat Mathematicds abstractand symbolic, but the one century
long identification of thesedeepnotionswith “formal” excludedmeaningand epistemologyfrom
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the foundational analysis. We have to broaden the foundational projeet'tonstitutivepath” of
mathematical abstract structures, beginning by their meaningful groundjagd their organizing
phenomenal space and time.

2. Codings

It is hard to appreciate how severe wasdhgis of the 2300yearsold Euclideancertitudesijn the
XIX century, as induced by the non-Euclidean approackesge'sdeepinvestigationsstartedthe
modern“royal way out" from the novel problemof space. (Mathematical)Logic was explicitly
contrapposedo foundationalanalyseggroundedon phenomenakpace. «The wildest visions of
delirium ... remainso long as they remainintuitable, subjectto the axioms of Geometry»...
absolutecertaintycanonly be recoveredwith referenceto the conceptof numberand the logical
laws thatgovernit: «... thelaws of arithmeticgovernall thatis numerable. This is the widest
domain of all; for to it belongs no only the actual, aoly the intuitable, but everythingthinkable»
[Frege, 1884, p. 20 andff.]. Geometryitself (but Frege cautiously considersonly Euclidean
Geometry) can be founahalytically on the notion of number,as relationbetweenlengths[Frege,
1873, p. 9-10] (see the discussion in [Tappenden, 1995]).

In a different way, this program was fultievelopedoy the subsequentvork of Hilbert. His
first and main foundationalwriting, [Hilbert, 1899], is a very relevantapproachto the issueby
formal tools. The foundational problem is reduced to the analysis of foonsistencywhat only
matters, in Mathematics, Geometry in particular, is the non-contradictory statusaafdires, with
no reference to meaninm), spacein particular. By a remarkableechnicalwork, Hilbert givesall
possiblerelative consistency'proofsin Geometry:put an axiom, take anotheraway (Euclidean,
non-EuclideanPesarguesiannpon-DesarguesiarArchimedeannon-Archimedean..) ... embed
one systeminto the other. Beyond Beltrami-Klein's work, the relative interpretations of
Lobatchevski'sand Riemann'sspacesn Euclid's are broughtto the highestrigor and generality.
Then afinal masterpiecetormally encode by analytictools, EuclideanGeometryinto Arithmetic.
The following year, byposing, at the Parisconferencethe problemof consistencyof Arithmetic,
the scientific program diormal foundationis fully given: no referenceto meaningand space nor
to the way weaccesdo knowledgeof it; just proveformally thatthe axiomsof Arithmetic do not
entail "0=1". This is the foundationalproblemof Mathematicsjncluding Geometry,of course,
since the latter, by encoding, is just a subsystem of Arithmetic.

The extraordinary"tour de force" of Hilbert's is much appreciatedby many, including
Poincaré. In his review of Hilbert's 1899 book, he acknowledgeshe technicalachievementbut
he stressesas well the loss of meaning,the trivialization of our understandingof space,the
senselesseferenceto Mathematicsas codingsof axioms into «le piano raisonneurde Stanley
Jevons» from which «owerrait sortir toutela Géométrie». ElsewherePoincaréwill referto this
view of Mathematics, which underligise foundationalprogramsof Peano,PadoaHilbert, as«la
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machinea saucissesle Chicago»:from pigs and axioms produce sausagesand theorems(see
[Bottazzini, 1999]).

As observed in [Girard001], abouthalf of the XX centurymay be consideredhe «time of
codings». Hilbert's foundational program, centeredon Arithmetic (the theoretical locus of
codings),startedthe moderntrend. Thesefantastictimes, for MathematicalLogic, producedan
amazing by-product: the coding of knowledge, viewed as deduction, in digitdinespeginning
with Turing Machines. Turing's fundamentalmathematicaldistinction betweenhardwareand
software, a distinction at the hearthof his Machine,is at the origin of moderncomputing. In
particular, it starteda "Theory of Programming”,once programs (as software) have been
mathematicallydifferentiatedfrom hardware. Moreover,the "Universal Turing Machine", which
may encode any other Turing Machine and simulate it, gave motiomsof operatingsystemand
compiler. Poincaré could not imagine that the "sausage mashasioundto go so far. Thisis
how history goes:wrong foundationalprograms,basedon provably wrong conjectureqformal
decidability, completenesandfinitistically provable consistencyof Arithmetic), may have major
fall-outs, when precise and robust. Also Laplace "analysis of (plangentyybations'wvas meant
to give a complete account of the future (and past) of deterministic sygiavesnedoy Newton's
laws. Poincaré showed that it does not work (1890), but Laplace resuttsrgactureoriginated
large part of the fantastic work in Analysis in the XIX century.

However, it is time to overcome@rong projectsby reconsideringvhatis at the core of them.
One key componentof later developmentsof Frege-Hilbertideas, roughly the foundational
programof MathematicalLogic, broadly construedduring the XX century,is the believe on the
"transparency"of codings. More precisely, contentualinformation is preservedunder any
"reasonable” codingOnetakeswhateverfragmentof Mathematicsgncodest into the axiomsof
Set Theory (or, better, Arithmetic, as numbers govern «everything thinkable»), proves the
(relative) consistencyof the intended system and the game is over (of course, one may
subsequently feed by them a Turing Machane& moderncomputer,undera suitable0-1 coding.)
This reductionis rarely donein practice,but it often had amazingconsequencesWords do not
suffice to praisethe enormousamountof information we obtainedfrom Set Theory and Proof
Theory (I earnedmy life by applying the later, its constructive branch — Type Theory, to
computing,see[Asperti&Longo, 1991], [Longo, 2002]). And note that XXth century Proof
Theory is the proof theory of Arithmetic, asnce[Hilbert, 1899], the key assumptior{or aim) is
that any structureany deductioncanbe encodednto suitableextensionsof PeanoArithmetic and
then formally analysed, see footnote ©f course,the positiveimpactof theseviews in founding
digital machines have been enourmous, thus their large succesas@(tormal) DescriptiveSet
Theory, just tagive a further example unified scatteredesultsin Mathematicsdisplayedthe key
underlying assumptions, proposed new relevant problems ...les&ghanin ComputerScience,
the outcome has been immense. The logico-foanalysisremainsa necessargomponenof the
foundational work in Mathematics and Computing.
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Now we have to enrich thigrogramby whatis missing:senseand meaning the referenceio
space, both as a cognitive matsed the locusfor physicalphenomena.ln particular,we haveto
analyze knowledge by methods that are "sensitive to codings": so far this may be undsrsheod
referencemadein 8.1 to the structuring of phenomenakpace,as an interface betweenus and
physical reality, or the "veil" on which we draw Mathematics. But more will be said below

Let's concludethis section,by stressingthat the very Proof Theory which originated this
dominatingparadigm(information and deductiondo not dependon meaningnor on codings)is
now beingopenedto radically new proposals. J.-Y. Girard, by Linear Logic first, and Locus
Solum more recently [Girard, 2001] started an analysp@bfs "sensitiveto codings"andwhere
the artificial split of syntax and semantics makes no loegesé In thesetheories the geometric
structure of proofs iselevantto deductionsconnectivity(recall Riemann)and symmetriegWeyl)
govern the proof; that is, igeometric'diplay"” is crucial. Of course,RiemannandWeyl referred
to physicalspaceswhile hereit is a matterof proofs:it is asif thesepropertiesof space,in
Girard's systems, had "come back through the window"Rnt@f Theory, by structuringproofs.
Note that, for Poincaré premisesmustbe relatedto conclusionby a "mathematicalarchitecture”;
moreover,in his fight againstformalism, he hinted that mathematicareasoningis non-invariant
w.r. to meaning [Poincaré, 1905, 1908] (see the discussion in [Heinza@98]). A remarkable
insight into the incompleteness of formalisms (akls® Weyl's conjectureof the incompletenessf
Arithmetic in [Weyl, 1918]).

2.1 Geometry in computing
Turing Machineshaveno spaceandyield a Newtoniantime. As for space,theoremsprove that
one, two ... n-dimensional hardware (head and tape) does not modify their expressiveiptover:

® Often historians stress that Hilbert was not a formalist. Thabsslutelytrue: in severalpapers,
evenin the introductionto [Hilbert, 1899], in correspondence. one canfind Hilbert's major
concern for structuresand physical meaning, in Mathematics. Hilbert was an immense
mathematiciannot just the founder of modern MathematicalLogic. However, the technical
perspectivan the 1899 book, his FoundationalProgram,as specifiedfrom 1900 to the '20's,
becamehe paradigmof formalismand havecommittedthe centuryto an incompleteanalysisof
foundation, up to the recent revitalisation of Hilbert's Program. Afbegemore recentformalist
guidelines,Euclid's and Riemann's,for sure, but probably even Connes'approachto physical
spacescanbe encodedn predicativesubsystem®f SecondOrder Arithmetic, [Simpson, 1999].
An informative analysis, as for relative consistency or consist&stmngth”,for example. But it
entirely missesthe relevanceof Mathematicsfor knowledge of spaceand cognition. To this
further aim, if one wants to refer to the remarkable debate at the begniriimgXX century,it is
Poincaré's foundational program that must be revitalised today, not Hilbert's, as we pointed out.

® The very broad definition of "geometric" as "sensitiveto codings" was proposedby J.-Y.
Girard, in discussion, at a Workshop in Marseille, April 2001.

" The proofs of formally unprovablestatement®f Arithmetic use meaningalong the proof (see
[Longo,1999)); or, "geometric judgementstepin (well-ordering as definedby formal induction
over full second order comprehension principle is non effective, Wwhdesimple - and"effective"
- as a geometricjudgement,see [Longo, 2002]. Symmetryis anothergeometricjudgement,
largely used in Mathematical Physics, in proofs).
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a linear time complexity encoding (or at most polynomial time, with a small exponent),the
Cartesian dimension diie "physical" processdoesnot affect the computation. Of course,this is

so becausthese"'machines"are a remarkablebut purely logical constructionthe reductionof the
notion of sequentiadeductionto elementarysteps(move right or left a head,write 0 or 1 on a
tape). Physics is not there: space had been excftmadhe foundationaldiscussionsincelong.

Haveyou everseena physicalprocesswhich doesnot dependon dimensions? In somecases,
since Relativity,and evenmore so in modernstring-theoryfor QuantumPhysics,it is asif "only

dimension matters".

As for time, in Turing Machinest is not only absoluteandlinear, but it is actually generated
by the clock. Now, in Physics,time is understoodas a relational matter, onceone goesbeyond
Newton'sabsolutes. Moreover,measuringime by the lonely clock of a Turing Machineis like
having a meter in an empty Universe: there is no distance in that Universe, but just the meter.

In summary, Turing Machines are fantasigic machines, they are not physicaachine:they
initiated us to the first stepstowardsa "logic of programming“and, thus, how to make machine
work logically. Their main fall out has beena the invention of a Scienceof Programming,
groundedon the fundamentaldistinction hardwareand software. And the software, up to the
recent challenges in concurrent programming (see bel@asheendesignedor long on the basis
of the main paradigmsproposedby Turing and his contemporariegTuring's approachgave us
“"imperative programming'Church’sA-calculusoriginated“functional programming”;Herbrand's
theorem, "logic programming™). The physics, beginning withisaesrelatedto spaceandtime,
areout of the scopeof theseprogrammingstylesand, by this, they are turning out to be largely
inadequatgor to require major "extensions”)for the cuncurrent,asynchronousand distributed
systems mentioned below.

We briefly discussed of thgeometricintelligibility of spacein the previoussections but also
physical time has been deeply analyzed during the XX centuryreldiaized,but reversibletime
of Relativity, the irreversible time scanned by bifurcations in Dynamical Sygtemirs the Physics
of thermodynamicabr critical states) the evenmore complextime of QuantumPhysics,all these
proposedorms of time do not rely on an absoluteand unique clock; they view time, to say the
least,asa resultof a"relation”, or as the problemof synchronizationof possibly asynchronous
systems.

In the lastfew decadesit happenedhat machinesthosevery digital computersthat where
born from the head of Turing (and Peanoand Hilbert), have been distributed in space by
engineers. These practitioners even dared to have them "concur” in the same comgutatisn.
possiblyfar apartprocessesre no longerindividually isolatedin a vacuum,but run in parallel,
communicate andccessat the samedatabase.In the 60's andearly 70's only parallelismwas at
stake,yet somepioneersunderstoodhe major scientific change,which is now heavily affecting
computing.

Concurrency summarizes the new problems. The pondtithe parallelismof computations,
but that they communicateand sharedata and programsalong the computation,from different
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locationsin space. Moreover,thereneednot be a universalclock: processesnay run with their
own independent clocks.

First dramatic change:computationsare no longer compositional. The entire Theory of
Computability, born in the '30s, relies on compositionality: Herbrand-Godel-Kleeneecursive
functions, Church'slambda-calculugone of the author's main interestsfor long) and Turing
Machines,of course,(all computationallyequivalent)are obtainedby "composing”a few base
functions,termsor steps,respectively. Thus, their "mathematicakemantics'ls compositionalor
the analysisof the function computedcan be donepiecewiseandthen composed. In contrastto
this, one cannot analyze a computation carried on by concpnargssegor give its semanticor
tell which functionis computed)y analyzingeachprocessindividually and then "compose”the
results,becausgrocessemteract along the computation. Even more so: they may competein
accessing the same database, which, once used by one of the processes, may change.

In order to appreciatethe relevanceof the latter problem only, considera seat-reservation
system, e.g. an airline reservationnet of computers:in this distributed system, priority and
synchronization odccesgo an ever-changing data baserucial (while an agentis modifying the
data base, the othestouldhaveno right to accesdo it: this is a typical inacessibilitycondition.)
Supposemore generallythat you havetwo processesx andy. In a sequentiakystem,you may
have % then y or "y then X, which mutually exclude each other and exclude @thgr possibility.
Considernow the rectanglewith side namesx andy : the two sequentialpaths above are the
compositionalongthe bordersandthey go, with time, from the bottom-left vertice, (0,0), to the
top-right one, (1,1), say. But, if the two processes interact during the computation and/otoaccess
the sameesourcea goodrepresentationf the possiblecomputationss given by all (increasing)
paths (functions)n the rectanglewhich go from (0,0) to (1,1). The inaccessibikijuationsmay
be representediow as"holes" in the interior of the rectangle:when one processgoesthrougha
certain status or area, then the other cannot act (see the example abgeatwatervations).One
or more holes allow then to classify the paths by "homotopy classes": thelsasentainspaths
that may be "continually deformed" one into the other (i.e. transformedreciprocally without
crossing a hole).

And here the non-trivial mathematicsof Homotopy Theory stepsin.  Spatio-temporal
connectivity is the issue, which medrsmotopyor equivalence undesomenotion of deformation
in n-dimensionalmanifolds(as many dimensionsasthereare processes). It is surprisingto see
earlywork by Serre,in pure Geometry,and non-trivial Algebraic Geometrybeingappliedin this
novel areas of computing (see [Goubault, 2000] for surveys and results).

But the situation differs from mainstreamGeometryin a crucial point: irreversible time is
everywhere present in these analysescdirse,it cannotbe a linear time, as alreadymentioned.
Time isbranching like along the bifurcations of dynamical systemsnice way to representt, is
given by suitably parametrizinghe pathsin the exampleabovealong time: irreversibility of time
may then be given by assuminghat the pathsareincreasingfunctionsfrom (co-ordinate) x to y
(asalreadyhintedabove,in parenthesis).This originatedthe notion of directed-path(or di-path)
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and some non-trivial work which deserved the nandi-bbmotopy(the homotopianalysisof di-
paths).

Note now that, in concurrency,the nature of “feasible” vs. "unfeasible” changes,w.r.to
classical(sequential}computability. Within the Turing frame, one could prove that the halting
problemis undecidable, thahereexistspartial computationghat cannotbe extendedo total ones
etc. Now, different issues are at stake: is this "computation” (a path) access#ielementof a
given homotopyclass,in a certainn-dimensionaimanifold? Impossibility results, including time
lower bounds, may then be given on the growfdsurely topologicalmethods(variouspapersin
[Goubault, 2000]).

The idea of coding all of this into Turing Machinesmakesof courseno sense:concurrent
systems do not deal with a finite string of 0 and 1 only, but have anfloputaind an outputflow.
They are open to interaction with teavironment. Not to mentionthe complexissueof relational
and branchingtime which startedthis discussion Simulationon sequentiamachinesrequiresthe
constructionof quotients on computation paths, but this "simulating modulo” is far from
standardizedor unique, it is often "ad hoc" or missing the proper issues and challengesof
concurrency (see [Aceto et al., 2002]). For example, what really matters in these systems
a computationevolvesin spaceandtime, morethan the input-outputrelation: its ongoing space-
time structureis the "observable”. In short, concurrentsystemsperform different tasks, whose
understanding requires new questionning, a different insight (different observables).

Many openproblemsare posed. | canonly mentionthe interestof "fault tolerantsystems".
Distributed systems clearly allofault tolerancein a way inconceivableo sequentiabnes:(small)
continuous deformationsyithin an homotopyclassesmay representault tolerance. But precise
mathematicalcharacterizationsre still missing. Synchronizationas well may presentfurther
challenges. As a matterof fact, a systemis "truly distributed”"when time requiredto connect
processes is about the order of magnitude oékaimentarystepof computationwithin a process.
Now, the latter is about one nanosecaoday. And light is so slow asto go only 30 cmin that
time. Thus, a concurrentsystem,distributedover the surfaceof the hearth(different acceleration
systems) may undergorelativistic problems,asfor synchronization. Relativistic delaysmay be
computed, but thiss far from obvious. This problemdoesnot seemyet to be takenenoughinto
account, with few exceptioh’

® This section (and this paper) is clearly not a survey, but it presents a viegiqoointedon some
specific results. Thus, there is no mentiommainy other approache$o concurrencywherespace
steps in in a different way. From Milner's CCS, for example, to the very ré&eatial Logic" by
Cardelli, the issueof space- underthe form of communicationgventstructure... - is not less
crucial and breakaswell the "linear codingmyth". Yet, thosesystemsareto be viewedasvery
relevant "space sensitive" variant of the more classical analysis of computing as "deductive
systems",which originatedin lambda-calculusand Type Theory. Of course,theseand others
proof-theoreticapproachedo Concurrency,are important tools for program specification and
correcteness (see [Bahsoun et al., 1999], for example).

° See also [Aceto et al., 2002] for more on Concurrency.
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In conclusion, even digital computers, when finally embedded in phygeak hardly realise
the functionalist project, accordingto which a sequentialTuring Machine, once the world is
encodedinto it, may representany physical system - including biological ones, of course.
Distribution in spaceof thesevery machiness sufficientto change well beforethe answers,the
guestiongo be asked to the physical system, in order to understand it.

3. Living in space and time

In this section some remarks are made on Biology, as premiaesibpectthat will be just hinted:
cognition. A key assumptionis made here, about which one may well disagree:cognitive
phenomenaare a matter concerninglife, from cell to man. Others may well be interestedin
cognition for non-materialentitieson Sirius, or for various sorts of computers,but theseare
different topics. The assumption here - but we may be wronthatibrain is a materialbut living
machine and, as for humans, it only woiksts preferredecosystemthe skull of a manliving in
History (in the broad sense of a communicating community, witthamonmemory). Of course,
here and there, some cognitive performanceseasolatedand transferredon machinesgvenon
the clocksof the XVIIth and XVIlIth, the fantastic"statuesd'automates’meantto implementall
humanfunctions. Yet, in our view, human cognition dependson life, even thoughit is not
reducibleto Biology, asa science sinceit alsodependson languageand History. That s, our
constructedhistoricaland everevolving knowledgeof life cannot,aloneandasit is, provide a
complete explanationof phenomenawhich required, so far, different methodsand tools of
analysis,such as our sciencesof human communicationand History. A novel synthesisis
required, and this is the actual challenge of modern Cognitive Sciences.

Let's though focus on life phenomena amisomemathematicathallengegshat are posedby
them. Thesephenomenaare first of all a spatio-temporaimatter. Beginning with the three
dimensionalstructureof DNA andthe folding - unfolding of proteins(which arenot "alive”, but
are the "bricks of life"), the dynamics of forms is at core of life processes.

The relevance of the spatial organizatiomiological descriptionsshouldalwaysbe presentto
our minds, as it is the first step towards appreciatingthe complexity of structureswhose
functionality is entirely lost by any sort of "linear encodingichasthe descriptionon the tapeof
a Turing Machine (see8. 2.1). And all relevantcognitive functions, we claim, are irreducible
epiphenomena of life.

As a preliminary observatioaboutcomplexity (and conceptualrreducibility) of cognitiveand
biological phenomenayecall that classical Computability Theory is "compositional” and that
today'sdistributedand concurrentsystemsor computing(distributedin space)areno longer so,
see 8. 2.1. Anget, by recursion,classicalcomputingis alreadyvery expressive. More relevant
non-compositional systems are thaamicalones.

Analyze, forinstance the movementof two physicalbodies,just governedby Newton'slaw
of gravitation. Then considertwo more, independently. Both two-bodiessystemsstabilize in

13



orbits, aspredictedby Kepler. If you put the four bodiestogether,by the famousanalysisof

Poincaré a chaoticbehavior,as an entirely new organizationin space.emergesandin no sound
way the new "four bodies"geometricsystemcan be consideredthe "composition” of the 2+2

systems. Thus, it is sufficient to move from the one-dimensional tep@&uwing Machine,or any
equivalentsystemof formal rules, and analyzedistributed(concurrent)systemsor computingor

leastgravitationalsystems that entirely novel Mathematicss required. The functionalistmyth of

the "independencérom codingsand structures”of the cognitive phenomenathe most complex
expression of life, breaks dowvhenfacedwith the representationf leastextensiondo physical
spaceevenof a few digital computersor of a few gravitationalbodies. If an artificial or natural
phenomenomeedseither of the two approachesboveto be representedin no way it can be
reducedto or representedy a linear, compositionaland spaceindependentsystem, such as a
Turing Machine. Of course,one canmove higherandbe contentof encoding(or believethat it

shouldbe possibleto encode)their mathematicgnot the phenomenahemselves!)nto ... Peano
Arithmetic, in the style of Hilbert's 1899book. But this is a different analysisand, yet, enough
theoremsshow the provableincompletenes®f the formalist approach(see[Longo, 2002] for a
recent discussion and references).

However, eventhoughthere surely is "concurrency”and "dynamicity” in life, we needa
further step in conceptual complexity in ordegtaspthe kind of Mathematicseventuallyrequired
for its representation, if at all possible.

All the systemsaboveare essentially"one-scaled”. A few laws at one "conceptuallevel”
suffice to describ¢hem:interactionof processedy digital signals,by gravitationalforces... and
many other forms of possible"network structures”, but all of one "type" or a few types,
conceptuallysimilar. And Mathematicgs very effectivefor this (and, yet, we still needa good
theoryfor concurrentcomputing,for the dynamicsof true turbulence- Navier-Stokesequations
describesatisfactorilyflows only far from borders,whereturbulenceis at its high [Fargeet al.,
1996] - etc.).

Now, biological phenomenaare essentially"multi-scale”. Before discussingthis concept,
observethat an apparentlymultiscale Mathematicsis that of fractals. Starting at one level of
"magnitude” one may go to finer and finer insights into phenomena, at different scales. 18wt the
is just one, indefinitely iterated. Sometimes living entities may develop in this wayetisireery
effective descriptionsof vascular and respiratory systems as fractals (see [Brown, 1999],
[Nonnenmacher1994], [Bailly et al., 1991] for example). Maximizing exchangesurfacesand
irrigation volumes yields anathematicalaw that beautifully applies. Theseare peculiarsituations
where life is only present by tlgrowth factor and the analysismay be purely physical,asfor the
wax in a beehive.

For the purposes of this discussion, let's view livingmaalternatinghierarchyof at leasttwo
organization levels: autonomobwlogical individuals (cells), organizedgroupsof them (organs),
which in turn are integrated in a superior level and unity by their physiological fuigatidiyield a
new living unity). In [Bailly etal., 1993], it is observedthat, in physico-mathematicalerms,
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fractals geometries can bgpically found in organs,while the interactionsof biological units may
be better associatedo dynamical systems. That is, in some cases,Mathematics,by Fractal
Theories, may give a good account of the relation bets®aotureand function in organs,while,
as for living units, this relation is better analyzed, whenever possible, in terms of dynamics.

Note, that evenwithin cells, the smallestliving entity, one may find organs:the external
membraneand the cytoscheletonfirst, but also some sort of internal membranesand "rails",
microtubules, that play a key role in organizing cells' metabolism and reproduction. jlbkighe
beginningof a view of complexity wherethe mathematicatools commonlyusedare already split
into different theoretical frames, according to the "scale"; each claiming some descriptive
completeness, but just for its level of investigation. Moreawesetwo (alreadyschematic)evels
interact vertically and thus yield a novel, essentially multissgiéem:whenthe scalechangesthe
Mathematics we use for its analysis changes as well.

3.1 Multiscale phenomena and the mathematical complexity of the neural system
Whenone considersrain andits functions,the mostcomplexsingle objectwe happento know,
the situation is further enriched.

Neuronscommunicatefirst, they exchangeneurotransmitter®f various chemical natures.
Their functionality dependsalso on the shapeof the post-synaptiaeceptor,which are complex
proteins. The geometricshapeof the latter (externalshapeandinternal channels)determineshe
transferof ions into the receivingneuron. Thena very rich biochemical cascadetakes place.
Proteins largely composeit and it plays a complex role, both in transmition and in
facilitating/inhibiting the subsequent activation of receptors. Now, in proteins, aelmasantof
life, the function is in their shape these huge moleculesinteractin the metabolic/information
exchange according to their three-dimensional folding.

Move thento a larger scale,that of a neuronas a whole. We should definitely consider
neuronsas six dimensionalentities threespacedimensionsplus threemore due to the shapeof
their responseprofile. It is too rough an approximationto treat neurons,mathematically,only as
"thresholds elements”. Of course there are thresholds and these are crucial, but theysardials
to communicatiorbetweenneuronsasit may be the carrierwavein telecommunication.The fine
geometric structure and the modulation of the activation profile of a neuron is aleb tharheural
way of elaborating information.

An important example is given by timeuronsof the V1 visual cortex. Their responserofile
hasthe peculiar form of an extended,asymmetricgaussian,along a rectangle(or of an odd
derivative of a gaussian,as one can observe some sort of "Mach bent" which accentuates
contrasts). This rectanglegivesthe direction of the inspectedborderin the receptivefield. In a
sense, the V1 cortex gives the local orientatioa (virtual) borderof an objectin the visual field,
or it makesa "derivative" along a curb. Then it "integrates"or "glues” all theselocal one-
dimensionalmaps(directions)by the complex connectivity of iso-orientedneurons(see[Petitot,
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2000], [Gilbert, 1992]). In both activities, the shapehafactivationprofile seemso havea very
relevant role.

And now comes yet another scale or a further level of integration, that of neuréhaietsany
study by the Geometry of dynamical systems (see, for example [¢laitz 1991]). And, further
on, assembliesof nets and assembliesof assemblies.... Their complexity and the role of
synchronization in their functionality are analyzed in [Edelman, 2000] (see also [Varela, 1999]).

The claim is that consciouscognitive functionsappearat this latter level. However,all these
"boxed" structuresconcurto the elaborationof information, which is largely a geometricmatter:
from the spatialfolding of post-synaptiadeceptorsandof proteinsin the subsequenbiochemical
cascades within neurons, to the shap#e responseorofile, to the synchronizatiorof networks,
then assembliespf neurons. And the interaction goes throughoutall levels, horizontally and
vertically. a psychologicalstate may affect the functionality of someneurotransmittersthus the
lowest level, and ... vice versa (psycho-medicines act at the synaptic level).

This is a major challengefor Mathematicsjf we will everbe able to invent suitabletools to
give conceptual unity to the analysis of these multisspdtems which seeminherentto life. The
approache$fasedon isolating a single conceptual/mathematickdvel (the purely logical function,
the finer analysis of dynamical forms a@dnnectivity,the shapesf proteins...)arevery important
endeavorshut eachis essentiallyincomplete,as a mathematicabpproachto cognitive and brain
functions. And they are useful alsoin view of their fall-outs. As extensivelysaid above,the
logical analysisof the foundationof (mathematicalknowledgegaveus fantasticdigital machines,
for the logico-formalmanipulationof stringsof symbols, but with a very "rigid" hardwareand,
originally, no space (nor "true" time). We may expect from the Mathematics of netstie next
revolutionary machine, endowed with an evolving hardware, in space and time.

4. Theories Vs Models

Thereis a clear distinction, in Logic, between(formal) Theoriesand (semantic)Models. It is
largely artificial, but it turnedout to be very useful,so far. In Physicsthe distinctionis not so
sharpandit hasa very different nature. MathematicalModels provide "local representationsbf
phenomenaby isolatingone scaleanda few propertiesin them; Theories instead,are meantto
have a "global" nature. Yet, of course, locality may be very l&géerford'satomicmodelis or
yieldsa Theory. The pointis thatin both casesModelsand Theories,Mathematicds usedas a
tool for representingprganizing,correlatingphenomenaby laws as generalas possible. The
description'sgenerality and breath in question (as local vs. global) is a subtle matter as
mathematical physics always aims to tighestgenerality:as soonasa single "fact” is observed,
the physicist tends to transform it into a general |&dareover,"facts", asalreadymentionedare
alreadythe resultof a theoreticalcommitment:setup thesemeasurenstruments,correlatethis to
that. And facts may be cut off frooontexts:the very contoursof physicalobjectsare established
by mathematical tools, on the interface between us and the world (the "phenomermdldiland
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2). This gives them full generality. For examplesreis no sucha thing asa photonor a quark:
they are the result of a theoretical construction, groundegifew sparks,a traceon a screen put
leading to general principles. Their mathematical model is alredtigary. As muchasKepler's
model of the planetarysystemis a Theory as well, in particular when explainedin terms of
Newton's principles (gravitation). One scale in Physics may suffice to comprafghdniverse;
thus, Models border or intersect Theories.

It is not so in Biology. First, contours, membranes of celly, are alreadythere,they are not
drawn by us, by Mathematics,as in microphysics(but also planetaryorbits are a conceptual
proposal, a mathematical organizatminthe planets). Of course,in Biology, interpretationgnust
be given, but the "ontology" is essentiallydifferent: the unity of a living entity forces itself
throughout the phenomenal veil. Second, experiences and evideabesvily contextdependent:
cutting off a living entity from its ecosystem may mile very causalrelationsoneis looking for.
This gives the major differences, in general, between experienges andin vitro (in a neuron,
the artificial fluid of an in vitro experience, its being cut off from three-dimensional conneetmns
give lower firing rates, higher resistanceunreliable potentials... [Jennings&Aamodt,2000])).
The arbitrarinessof the mathematicaimodeling, a further abstractionfrom the context, is even
greater: the "intended" assumptions are out of control, as most are infpboihor late the author
will acknowledge that there are "hidden variables" not taken into account in the oftetelthis is
dueto interactionswith otherscales,out of the scopeof the given model. Thus, in contrastto
Physics, Models in Biology are alwapsorerthanphenomena.And all of this takesus far from
"biological theoretizing”. A Theory should proposegeneralconstitutive principles, which unify
properties and "explain” them. Darwin's evolutioma iBheory, Edelman’'sselectivetheoryfor the
immune systemis another. Some general principles are put into focus and have a broad
explanatory nature, which fits all scales.

All these issues ("contours”, context dependenudtiscaleinteractions)posemajor challenges
to Mathematican Biology, as theoreticalgeneralityis its aim; in Physics,this is "more easily"
obtainedby Mathematicsconstitutive role in drawing physical objects and by the possible or
discerniblecontextindependencef physicalexperienceswhile both conditionsessentiallyfail in
Biology. Thus, the gap betweenthe "local" natureof Modelsandthe required"global” natureof
Theories is much greater than in Physics, and Mathematical Biology seems to proyidedels,
so far.

Yet, even modeling, which so importantfor iterating experiencestransferringknowledge. ..
conjecturing Theories, is so hard. Consider "latent potentials” in Evolution. Thereeisafople,
strong paleontological evidence that the double jaw of some reptiieg, 200 millions yearsago,
originatedthe internalhearof birds and mammals([Gould, 1982; 1989]). How canyou model
this? Which energyis minimized,if any, or which geodetics,jn which mathematicaspacemay
simulate such a contingent evolution? There exist dynamic models of co-evolutive sgstimgs,
are called, but, before discussing preblemsthey are facedwith, let's consideranother related,
feature of life.
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In Physics,we know how to dealwith statesclose as well as far from equilibrium; but also
critical statesare well defined and treated. By definition, the latter are "temporary": a physical
system doesn't stay long in a criticshte(on the vergeof a changeof state). Yet, living entities,
both biological units and species permanenthfive in an "extendedcritical state", [Bailly, 1991].
Homeorhesis or Varelamutopoiesisare a theoreticalappreciatiorof this fact; wherehomeorhesis
meansa dynamicalreconstructionof an ever changingequilibrium, which is autopoieticwhen
internally reconstructed.In short, we live asif we wererunningon a tight string; and we do it
quitewell. And so do species. Thereis no suchathing as "equilibrium" in phylogenesisor in
ontogenesis: a non-artificial ecosystem is never in equilibrium, it is always evoimy.deathin
a desert of stones is biological "equilibrium®”.

Many physicists work at co-evolutive dynamical systems in Biolgy, by deepand powerful
mathematical toolghey try to modelfeaturedike the onesabove. The problemof courseis that
there is ngore-designedpaceof phasesvhereone could draw evolutionarygeodesicsthe phase
space is co-constituted at the same time aplibaomenorio be described. They dependon each
other, while interactingwith billions of otherphenomenaas unpredictableas the one above (the
"latent potentials”). And this, along an extended critical state. Are jinsréhiddenvariables",or
missing parameters, to be discovered and inserted in the model? Theréoseemsrethanthis.
Minor variationsin the evolutive context, a mutation say, seemto createa new phasespace:
attractorswhich should describethe dynamics,not only needto be embeddedn larger spaces
(more variables), but seem'tswing" into differentphasespaces. How to handlemathematically
these changes, which may be "conceptual" changesarédife a situationsimilar to the multiscale
natureof biological phenomenamentionedin 8. 3 (and surely relatedto it), but with its own
mathematical difficulties. Well before the proposhhklgorithms,Mathematicsandits applications
grow by proposingnovel conceptualframes as pointedout throughoutrecenthistory by [Patras,
2001], possibly grounded in new forms of "access" to phenometize(@enseof 8. 1) or to new
objects of knowledge (Newton's revolutionary conceptual fraithebe recalledbelow). And, as
stressed in [Parrini1995], conceptuaframesconnotbe reducedto nor analysedonly in termsof
linguistic symbolS.

The terminology used above (hidden variables) recalls Einstein interpretationof the EPR
(Einstein-Podolsky-Rosen) paradox in Quantum Physicq&aeardi, 1997]). For Einstein,the
standardnterpretationof non-locality and indeterminismwas due to an "incompletenessof the
theory: some hidden variables had to be taken into accoyiadoa more "realistic” interpretation.
Physicists(Bell, Aspect...) wereableto provethatit is not so: the theory is completeand non-

* Infinitesimal analysis,say, is not only a matterof "new symbols" or algorithmsfor solving
equations. Moreover, the failure of founding actual infinityfdaynal Set Theories— whoseformal
consistency requires larger and larger infinite cardinals — contireisnits of the purely linguistic
approach;the foundationof the conceptof infinity is in the geneticanalysisof its "progressive
conceptualization"see[Longo, 1999]. The sameshould be said as for Grothendieck'sToposes
and Thom's geometricapproachto scientific explanation(see[Patras,2001] for more insightful
reflections on these revolutionary aspects of XX century mathematics).
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locality, non separability,indetermismare essential. Or, that the differencein approachbetween
Classical and Relativistic Physics on one side, and Quantum Physics on this dépesiemic” (it

concernthe roots and the tools for knowledge; some prefer to say that the difference is

"ontological”.) In this sense,also Physicsis organisedat different conceptual'scales”, each
requiring its specific mathematictdols (microphysics dynamicalsystemsand GeneralRelativity,

for example) and their unificatias a major scientific challenge. Yet, eachphenomenalevel may
be soundly analisedin its autonomy,in contrastto the unavoidableunity of living beings, for

which the "vertical" interactionsof the many levels or scalesis the key issue. Moreover, in

Physics,somenew mathematicss being constructedto give an accountof the split and try to

recomposeat: in 8.1, we hinted to the different geometriesusedin Relativity and Quantum
Mechanicsand how they relate(note that we just tried to proposean epistemologicalnification,
with no commitments to ontologies).

Biologists should try to give us a rigorous interpretationof the gap between (the use of
Mathematics in) Physics and Biology, comparable to the one Quantum physicists preposed
more classicalapproachesif this is so. The difference,they shouldtell us, is ontological (or
epistemic),if any: hereor therearethe exactlimits you encounterwhere treating theseproblems
with tools from the Physicsof dynamical systemsor Quantum Mechanics (similarly as the
Geometryof Relativity doesnot apply to microphysics). We needradically different tools ....
Perhaps we could then try to invent more suitable Mathematics. Mathematiagpienconceptual
construction and may be indefinitely enrich&mttunately,it is not God given, nor it is all already
containedn and mechanicallyderivablefrom today'sZermelo-FraenkeSet Theory or predicative
fragments of Second Order ArithmetigVhen Newton and Leibniz unified metaphysicallydistinct
universes,the sub-lunarand the supra-lunarbodiesand their movementsthey did not use the
Mathematicsof projectileswell developedby the engineersof the time, largely basedon Greek
Geometry. They invented radically n@@nceptsandtools, not containedn Euclid's notionsand
axioms, and daredto use the actual infinite to analyze finite movement (trajectories, speed,
acceleration)a true revolution. Of course,therewas a paththroughHistory, which leadto their
ideas,but the dynamicsof Mathematicsswung by their work into a different conceptualspace,
which included infinitesimal analysis. Anby Gauss'and Riemann'sDifferential Geometry this
also changedGeometry. We need at least a comparablechangeof paradigmsor conceptual
enrichment of Mathematics in orderdealwith biological phenomenaby their peculiarautonomy
and contextualdependenceye cannoteasily draw their mathematicoon the phenomenaleil by
"cutting them off" from their contexts and by giving them constructedours. This, | believe,is
the underlying methodologicalchallengefor Mathematicsin Biology, as Mathematicsusually
organizes the physical world, sets norms for it.

5. Conclusion: epistemological and mathematical projects
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In the spirit ofthis lecture,l will now hint to somepossiblework directionscoming out from the

proposed perspective. The central themeprside, aims at (re-)embeddingVathematicsand its

foundationin phenomenaspaceand time, which Mathematicscontributesto constitute. On the

other, spaceand time may relate the very foundationof Mathematicswhich has beenisolated
within the enclosedermsof its internalfoundation(Hilbert's Metamathematicss a mathematical
discipline), to other forms of knowledge,such as Physicsand the Sciencesof Life, whose
phenomenalities are first of all a spatio-temporal matter.

5.1 Epistemology
The epistemologicaprogramhasbeenspelledout in severalplaces,in particularin 8. 1.4. The
analysisof the "mode of access"to phenomenakpaceis a first step towards a "cognitive"
foundation of Mathematics. Once more, this ismeantto replacethe logic andformal analyses:
these are "necessary but not sufficient” ([Weyl, 1927]). As they are necessary, they come first,
the XX century prevailing monomaniaof focusing only on the invariants of languageand
consciousreasoning(logic and formalisms), would be now a major limitation to further
investigations, even in Computer Science (8. 2.1). Again, there is no doubt that thege aed
pure formalisms, in proofs, and ththey evenconcernlarge part of them:it is the believein their
mathematicalor even"cognitive", completenessthat is wrong. Consider, say, Arithmetic or
lambda-calculusyery close systems. A lot can be derived by purely formal tools: even
consistency for the type-free version of thtter, asthe Church-Rossetheoremis a beautifuland
purely syntactic game (see [Barendregt, 198B])t assoonasyou getto Mathematicswhich is
typed, meaning and structures step in

Thus, we need to go further, in particulatie reconstructiorof the knowledgeprocesseshat
leadus to proposeconceptsand structures,beyondthe sole analysisof proofs. Conceptsand
structures areonstitutedin the interfacebetweenus andthe world, on that phenomenaVeil over
which we draw thenn orderto organizeand makeintelligible the world, by Mathematics. They
originate on the regularities we "see", as living aisdorical being, and developalongHistory, in
intersubjectivity and language. The objectivity of Mathematics is in this process.

Also the reflections proposed above, concerning the challéog&sathematicsn Biology, are
not justmeantas informal/technicalconsiderationshut they are an attemptto analyzethe peculiar
interfaceby which life presentstself to us. The mathematicabnalysisof the difficulties should

“ Normalization for typed lambda-calculi,as soon as they yield some expressivity, implies
consistencyof Arithmetic of various orders (see [Girard et al., 1989]), thus it implies well-
orderingpropertiesof numbersor ordinals(of a "geometric" nature,see[Longo, 2002]). Yet,
there are more purely formal non-obvioustheorems. "Genericity" for secondorder lambda-
calculus is an example, [Longo et al., 1993]. It tgpe- or proof-theoretic'implication” that has
no (semantic) model so far. On the othad, continuous’'geometric"structuregScott Domains)
may step in the inductive load of a proof of purely combinatorial propertiesof recursive
functionals (see [Longo&Moggi, 1984], [Longo, 2001a]).
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stimulate a foundationalinvestigationon the tools used and stressthis constitutive role that
Mathematics has w. r. to reality: these difficulties dwe to the different "autonomy", criticity and
multiscalar phenomenality of life, if compared to the physical dnegeneral,eachanalysisof the
interfacebetweenus and phenomenayvithin different forms of knowledgeor accessto reality,
bearsa foundationalcharacter. To put in husserliarterms, Mathematicgs a (key) componentof
the "phenomenal constitution”, at the core of any analysis of knowledge.

Our focusing on the issue of space is not meant to present @moeemaniathat of Geometry,
but to enrich existingparadigmsby what was programmaticallyexcludedby the foundingfathers,
and for good reasons (at their time: we are no longer troubled, today, by Rie@®emmstryand,
perhapsevennot by Connes'). Moreover,the Mathematicsof spaceand time are "transversal”
themesto different sciences. And the related foundationaland methodologicalconsiderations
should be an essentialcomponentof interdisciplinary researches. It is largely insufficient to
transferwell-establishedlgorithmsfrom onedisciplineto another(physicistsdo so too often in
relation to Biology). We have to be "monist of matter" not of the "method": different
phenomenalitiesnay needto be analyzedby different tools. Yet, an explicit reflection on the
methodologicabifferencesand analogiesmay leadto a unification, which is nevera matterof a
transfer or superposition of techniques, but of a new invention, a new syifteesilthe example
mentionedof infinitesimal analysis;but the samecould be saidfor the Geometryof manifolds or
the non-commutative one, major steps forwards, which also unified previous approaches).

5.2 Geometry in Information

In 8. 2, we focusedon "codings". Hilbert's analytic encodingof all existing Geometriesand
Godel'srepresentatiofemmato the Incompletenes§heorem(the metatheoryis encodedin the
theory, Arithmetic again) are "coding's" highest moments and marked the century. fiBst ttiee
foundationof Geometrywas definitely consideredas a subproblemof that of Arithmetic. The
second started Computability Theory, by the invention of Recursive Functions and godel-
numberings. Turing addedthe encodingof the world into Machines,and of Machines into
themselves. Foundationand knowledge were supposedto "pass through codings”, or to be
"coding independent” Shannondevelopeda Theory of Information on Turing's ideas: analyze
information properties independently of its codingsequencesf 0 and1's or whatever. Thus,
both Computability and Information Theory are coding insensitive (modulo minor complexity
results). Assaidseveraltimes,this gaveus immenseand perfectdigital databasend network of
communication. One can download the Encyclopedia Britannica and Mozart's concert fanélute
Orchestra from California in a few minutes. And the file may be copiethaytimesasrequired,
exactly in its original form.

Of course, this has nothing to do with cognitive activities. Bisaglow. Our memorydoesn't
store the details and it is very bad at making copies; indeed, forgetting is iteatair®,as a goal-
directed oblivion is at the core of our proceduralmemory, of our constituting of invariants
(including mathematicalones, [Longo, 2001]). Intersubjectivecommunicationis also slow,
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unreliable ...but very effectivefor its purposeswhich radically differ from storing, copyingand

transmitting thedigits of Encyclopediaer of Mozart'sconcerts. We rememberand communicate
meanings, forms, harmonies, emotions.... The claim, here, ih#s@#processeslependalsoon

the structure of their codingn our living brains.

We gave a very broad, very weak definition of "geometric" as "sensitiveto codings", in
conjunction to Girard's work (8. 2)This appliesto the Geometryof space:code,for example,a
finite dimensional Cartesian spacéljfto thereal numbers(R), by Cantor'smethod(the pair of
realnumbers (0.a&a; ..., 0.bbobs ...) is associatedo thereal O.ab,abraghs ...). Thisis a
bijection, easyto construct,but it misseseventhe weakestgeometricproperty of space,as the
notion of neighborhoods lost (the coding is everywherediscontinuous)that is, the topological
structureis sensitiveto Cantor'scoding. Or, all the relevantinformations concerning space
(neighborhoodmetric, ...) arelost. Technically, Cartesiandimensionis a topological invariant
and, thus, nothing is left after the set-theor&tmding”. But sensitivityto codingsappliesalsoto
Girard's Proof Theory, a theory of spatial organisationof formulae along proofs, aswell asiit
underlies the entire approach proposed here.

This issue is not just part of the continuum/discoetkatein the practiceof Mathematicsandin
its foundation:it relatesto it, butit is broader. Considera discreteset of scatteredpointson a
plane:a symmetryjudgmentabouttheir structurein spaceis as relevantand autonomousas the
inspection of the application of Mod&nens,n a formal proof. The sequentiakncodingof the
points and of all their spatialrelationsis unbearablycomplex and/or misseswhat matters,the
symmetry. Indeed, physicists currently use judgments of symmedrginrmentsand proofs;these
suffice to deduceand convinceas much as a logical rule. SymmetriespervadeNature, Arts,
Mathematics,as beatifully synthetizedin [Weyl, 1952]; recent neuro-physiologicalevidence
stresses the deep physiological embedding of "symmetry judgemenetpgaitionof symmetric
patterns ([Berthoz, 1997]).

As a long term project, it is time develop a "Geometry of Information”, as an intrinsic
mathematicatheory (see http://www.di.ens.fr/users/longafor a preliminary proposal). What
amount of information bears a "breaking of symmetrieBtiesa changeof shapeyield a form of
computation? Living neuralsystemscanprovide the startingideas. In a sense,this approachis
already presentin the Theory of Neural Nets. Their dynamicsis a form of elaboration of
information, which is largely geometric (see [Amari&Nagaoka, 2000], which meefdy toughto
the geometryof distributionsof points,in the frameof a shannoniartreatmentsof information).
Thom's approach as well contains seminal hints in this direction ([Thom, 1972, 18Ryever,
attentionto phenomenalife is extraneougo Thom's Philosophyof Nature:a drop of wax or a
jellyfish is mathematicalljthe sameandis moldedby physical forces, when falling in water. It
happenghoughthatjellyfishes havemorphogenesyhich "do Geometry"by organizinggrowth,
on the groundsof geometricallyencodedinformation. As extensivelydiscussed this kind of
models of living forms, are justodels thoughfantastic(seethe fractal approacho vascularand
respiratory systems in 8. 3, but nth@t theseare organs,not autonomousiving entities). Thus,
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asmodels,they do not provide a Theoryfor biological phenomenaasin Thom's project, but at
most one-scale models.

We should go furtheandlook more closely at the structuresof life. Thatis, on oneside, we
needto take into accountthose unique phenomenaof life, such as function, reproductionand
metabolism, which force a "contingent finalism"amery analysis. On the other,we needto refer
to finer biological phenomenaw. r. to the Formal Neural Nets approach,beginning with the
folding of proteins and the dynamic structure of dendrites (see [Perch®&,for the latter: this
structureseemsto be "almost" fractal as their growth has someregularity of the sort, yet their
morphogenesis is also due to neurotrophic factors, [Edelman, 1987] - a tgseaf a blendof a
physicaland a goal-directedorganizationof living forms, whoseanalysisis an ongoing project).
Both thesescales,neurotransmitter&and synaptic structures, contribute to the elaboration of
information. Again, though, any one-scale analysis is far from providing a Theory.

Of course,the key featureof this Geometryof Informationshouldbe "coding sensitivity". It
should be groundedn elementaryegularitiesof space(symmetriestypically) and organizethem
in a non-compositionafashion.As suggestedy Thom, the topologicalcomplexity of a structure
or of a transformationcould provide a quantitativemeasurejn a theoreticalframe, which should
mainly capturequalitativeevolutions. Invariantsand invariant preservingtransformationsshould
be analyzedon the groundsof the regularitiesone wants to preserve. Homotopy classesor
mathematical grouping of "gestalts” could be given and preservsditapleclassesf continuous
or differentiable or isometric maps.

The ideais that brain is a machine which implementssucha Geometry. But the Mathematics
may departfrom it, without any myth of providing a Theoryof brain activities. Justa changen
view point, possibly of method, w.r. to the 0 and 1 or thresholds' paradigms.

The difficulties of course are immense,also in view of the strength and depth of the
Mathematicsdevelopedsince Turing and Shannon,whose technologicalfall-outs have been
changing our world.

5.3 Geometric Forms and Meaning

Let's conclude this programmatic paper by a addayn on "meaning”,suchan indefinablenotion.
In referenceo life, (changesf) forms aremeaningful Or, forms and their action/interactionn
spacecontributeto "meaning". Considera cell shapingitself or moving in spaceto preserveor
improve its metabolismor while reproducing. For this cell anincomingsignal or physical hit is
meaningful. The signal's meaningis in the way it affects its goal-directed deformation or
movement.And neurons, as cells, have a dimnensionafform, in view of their responseprofile,
an electrostatic matter (8. 3.1Thus, a signal, including an electricone, is "meaningful”, per se,
for a neuron,accordingto the way it participatesto its ongoingactivity or metabolismby the
"deformation” it induces.

Then, meaningaffectsnetworksof neurons,assemblief netsetc., by their spatio-temporal

shapes as well, and its variations. Note thaihghthe constitutionof meaninghappensn a non-
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compositionalfashion, as definedin 8. 3, andin no way the contextualmeaningof a human
linguistic expression, say, rich of intersubjectivity and Histawyld be reducedto synapticspikes
nor to the geometriactivity of a neuralnet. Meaningfor complexliving entitiesis in the relation
betweena neural activity (as "evolving form" of a network) and its context of life. No
reconstruction of meaning is possible by reading just a neural activation or deformtersame
time one has to considerthe "ecosystem"and, for humans,the intersubjectiveand historical
experienceof it. Meaningis a relational/interactivematter,whereone of the componentf the
relation includes living entities and their forms.

The claim thenis thatall living forms and their variationsare carriersof meaning,of its co-
constitution, by the interplay between the evolving form and its contexthi®rs wheremeaning
originates or it is rooted.

Later comesthe organizationof meaningsat several scales,up to the richness of our
communicatinghumancommunity. The scientific challenge,in Cognitive Sciencesconsistsin
being able to go up and down, from one scale to another, without necessarilyassuminga
reductionist approach, bbly comparingand establishingnteractionsof different methodswhich
face different phenomenalitiesand different levels of meaning,from cell to History. Novel
syntheses are a further task, never obtained, in the past, by pure transfer of techniques.

Of course, once the artificial split between formalisms for deducing, on one sidsgraadtics,
on the other, was proposed,we could constructfantasticformal-computingmachinesand their
programminglanguages. But then a dramaticquestionpoppedout: where is meaning? How
comesthat strings of binary digits may carry meaning? This is a problem, of course, for
programming languages, machines and for coding independent Information TheoriesosBirsys
and 1's or formal languagesneedto be decodedand interpreted(compiled). Living beings,
instead,when elaboratingor transmittingmeaningsharmoniesemotions... inducedeformations
in living neuralsystemswhich carry thesecontentsin their geometricencodingandits variations.
Thus, the cognitive challengejf one associatesneaningand information to living forms and to
their evolving geometries,is in the understandingof the non-compositionalco-constituting of
sense, from elementaryliving entities up to our historical beings, as nested interaction of
phenomena. The multiscale nature of this process is one of the major mathematical challenges.
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