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1. Introduction.

In order for machines to do Mathematics whateiguiredfirst of all is a languagehat describes
Mathematican adequatdermsfor machinesThis languagehasto be completelyformalisedand
without any semanticambiguity. Computerscannotmakeoperationalkchoicesas a function of the
meaning of a phrase, especially if it is uncertain or depends on the context, but anghamgits
syntacticstructure.Furthermorethe languagehasto be sufficiently simple, evenif artificial, and
comprehensible by the human programmer.

There are two main approacheso making computersdo Mathematics.On the one hand, the
studies of ‘computation’ systems, that is the study of languages and techniquesdlgstaidtsor
analystsin ‘calculating’ what would otherwisebe arduousor out of reachfor a humanbeing. On
the other hand, thdevelopmenbf languageshat replaceor complementhe logical and deductive
activity of a mathematicianlautomaticproof and symbolic calculus).In this exposition,we will
present, in a very informal manner, the second approach, with the particular point ofviekwis
important or at least paradigmatic, of logical and functional computationarégtoupedunderthe
name‘A—calculus’. We will especiallyseethe linguistic aspectof the problem of elaboratinga
languageto perform deductionsand manipulatesymbols, and more generallyto programin a
rigorous, modular and translatable manmedeed,the ability to conceiveadvancedanguagesnd
reliable programs is the principal objective of the ‘relation'wi¢ describe pbetweenmachinesand
mathematical proofs, and it is also the reason for this paper.

Let us observe to begin with, that if today the existence of machneesirageshe development
of automaticproofs and of symbolic calculi, it can also be statedthat the basic ideas for the
conceptionof moderncomputerds found in the study of proofs, asabstracthumanactivity. The
notion of effective computation andnguage®f which we will speakdatesfrom the twentiesand
thirties, that is well in advance of numerical computers and foanéategral part of the Hilbertian
Proof Theory, that is of the projectto formalise mathematicaldeduction,and answer Hilbert's
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fondationalproblem.The goalwasto give rigor or logico-formal foundationsto all mathematical
activities.

In spite of the failuresof the Hilbert's initial project,the ideasof logiciansand mathematicians
like Turing, Kleene, Church, Gédel, Herbrand... set the basesfor Computer Science.Turing
Machines, later developed also by Von Neumann, fawveed the paradigmof the first computers
andof languageknown asimperativeprogramming(basedon orderslike ‘do’, ‘go to’...). The
formal systemsfor computing we will talk about had above all an influence on functional
programmingandlogical programmingwhich are recent styles of programming and diifem the
imperative style. Moreover, they are linked even nabrectly to the development®f mathematical
logic since the ‘30s.

Mathematical logic, in its ‘metamathematicahalysisaspecthasMathematicgshemselvessits
object of study its languagesand its deductive methods, like geometry, to take a purely
mathematicadiscipline as an example hasasits objectof study figures and structuresof space.
One can thereforeimagine rather artificial but convenienta three-levelstratification, which has
organisedwith the passingof this century, the ‘mathematicaldiscourse’:.the geometric-algebraic
structures,the mathematicaltheories which study them (algebra, geometry...) and, finally,
metatheories thateal with mathematicatheoriesand whereone may developa ‘theory of proofs’
(one will also try to see the limits of this ‘organisatiommdthematicatiscourse’).In otherwords,
from the point of view of computationsand languageslinear algebraand analytic geometry,for
instance, study the expressions that represent lines on a plane or sorfpeee A —calculus,asa
language of Proof Theory, manipulates woodexpressionshat representormal proofs. In fact,
expressionsof this languagecodify abstractmathematicalproofs and, therefore computations
carriedout on themcorrespondo formal operationson proofs, ratherthanon the lines or on the
surfaces. The fact thatcalculus is programmable, and that in fact it is a paradigrpedgramming
language, allows to describe thassagdrom Proof Theory, asan abstractheoryin mathematical
logic, to automated proofs and symbolic calculus, as mathematical methods in computing.

Althoughwe will speakfurther on of Proof Theory, we will underlineherethe ‘constructivist’
approachin order to present‘proofs as lambda-terms’and study the computer version of
provability. While using A—calculus, we will mention the role of Category Theory in the
mathematicabemanticof deductionand of formal programminglanguageqseebelow). Indeed,
the results that link the different sectors of Mathematics and Computer Science-galoellusand
CombinatoryLogic, an equivalentsystem,at the meetingpoint of vastsectorsof Logic and their
applications, providing these theories with an importance that goes beyoratitfias asa system
for calculability or effective provability. As we have said, the two theories,which have as a
common base the ‘algebraic calculus without variables’ of Shoenfinkeldating from the early
Twenties and that amwedto Churchand Curry (1928-1936) essentiallyproposedo ‘formalise’



the notion of computablefunction or processand effective proof, to give them a mathematical
definition and to found Mathematics time ‘unshakeablecertainties’of minimal symbolicsystems.
The equivalence, due to Church, Turing and Kleene, witlottier computationsystemgrecursive
functionsand Turing machinesn particular)provideda completegeneralisatiorior thesesystems
asinstrumentgor computationas early as the Thirties. During this time, it was A—calculusthat
played a central role in the proofs of these equivalence theorems: in fact it was proveltuladile
functions, in Turing's sense, are exactly those that are definable Avittafculus and that thesi,
turn, coincidewith partial recursivefunctions (see Barendregt[1984]). The coincidenceof the
expressivecapacitiesf thesediverseformal systemssuggestedo Turing and Church a working
hypothesis known &Shurch's Thesisll intuitively calculable functions ia finite manner(a finite
numberof instructions,a finite numberof computationsteps...)canbe representedn one of the
mentioned systems and therefore, thanks to the equivalence, in all of them.

In the sameway andtill today, A—calculusplayeda centralrole while becomingan important
medium,aswe will try to establish,n the applicationsof Proof Theory and CategoryTheory to
Computer Science, and also a languagafmomaticproof, especiallythanksto someof its recent
extensions, such as the Calculus of Constructions (see sectinrg8peral automaticmethodsof
proof allow deductionof theoremswithin a logic system,and to synthesiseboth proofs and
theoremslin this paper,we will omit a fundamentalaspect:the methodsknown as methodsof
resolution and unification The difficult technique of these methods renders their synthetic
presentatiorarduous;and furthermore,a glanceover the other aspectsof automaticelaboration
(symbolic calculus, functional programmingand its mathematicalsemantics),more than the
deepeningof specifictechniquesallows for a better outline of the transferof certain mechanical
tasksfrom the manto the machine by treatingthemfrom the point of view of different forms of
mathematical knowledge.

In sections2 and 3, we will presenttypes aspropositions’,thatis to saythatwe will studya
very simple logical calculus, whose system of proofs is a calculus of terms, the terms of
A—calculus. The goal of this presentation isn't only to give a certain unity to these refpatsdbut
to producea simple ‘semantic’, for both logical formulas and types. In fact, on one hand, the
logical meaning otypesis certainlyrich in information, particularlyfor the readerwho is familiar
with propositional calculus. On the other hand, an interpretation of propositions andgstyqpiss
and terms (8 4) can be of greeefor the programmemho is accustomedo functionallanguages
but ignores logic. In other words, we will underline thattilaslationbetweendiverseformalisms
is a ‘semantic’ itself. However, in chapter5 we will study the most complex point of a true
‘mathematicalsemantic’of a programminglanguagegvenif it is in a very limited frame,suchas
that ofA—calculus. By mathematical semantige understandsomethingmore than a translationof
a language oformal systeminto another.In short, a formal sign calculusacquiresa mathematical
meaningwhen basically different mathematicainstruments,geometricor algebraicstructuresfor



example,having an aim, and with independentechniquesrom the given calculus, provide an
interpretationor translation,within these structures,of theseterms and formal operations.In
general, more of the mathematical structures proposed for interpretatiounlarally remote’from
the formalismin question,moreis the provided senserich in information, becauset establishes
unexpected bridges, and requires theories that unify. It needs to be said that the generathstL
semantics of programming languages rose greatly, specifically thakksaigulus,from the work
of D. S. Scott in the Seventies.

Furthermore, this is a concrete experience in computing: an innovative mathemea#oaigcan
suggest extensions or variations in the language in question, inspired by the present congtru
the models and not obtainable within the given formalism.

In chapters 6 and 7 we will study the polymorphism and its semathidétss, the possibility for
a lambda-term or for a functional program to have numeygmesor to prove propositioschemes.
Polymorphism is garadigmatidorm of modularityin programmingdirectly derivedfrom higher
order logic.

Chapter 8 will be devoted to general methaddthe limits of automaticproof. Conclusionsjn
chapter9, will provide the opportunity for a methodologicalreflection. The readerthat solely
wishes to reflect on the ‘philosophical’ thesis of this article cadigmtly to chapters8 and9. The
real motivation of considerations that one finds, resia®geverin the notionsandin the technical
results presented in the preceding sections.

2. Natural Deduction and Terms.

The basic idea of natural deduction systems,to those that which we will refer, is the
formalisationof the notion of logical derivation understoodas the abstractionof mathematical
deduction.The minimum deductivestepis given by the applicationof a rule of inferencethat
describeghe deductionof a consequencesay C, from given premisesfor exampleA1, A2, ...,
An:

AA A
= :

The rules can be composed vertically, that is, given the rules

it is possible to compose them in a deduction (or deductivedfdepver the hypotheses\, B, C,
in the following manner:



A ‘tree’ represents a deduction formed from the vertical composition of several rules:
A A Ay
B
C

In this case one can use a fundamental notion, tlesing OneerasedypothesisA from which
hypothesisB will be derived,if sucha derivationis a premisein the deductionof the formula
A - B. In fact, the truth oA - B doesnot dependon thatof A: it may be observedhatA - B is
true, even wheA is false (‘ex falso quodlibet’). Let us suppose for example to have deducéd
it rains, then the weatheris wet. In whateverformal languagewith an implication * - * this
metalinguisticdeductionwill have as a formal consequencét rains - the weatheris wet'.
However, such an implication is true evenif it doesn'train. One can henceomit or erasethe
hypothesis ‘itrains’ in the deduction’it rains — the weatheris wet’, sincethe formal implication
subsists in any case, independently from the hypothesis, and can be agsierdddruth, evenon
a sunny day.

The minimum intuitionist systemhas as formulas, the atomic formulas, A, B, C, ... andthe
implicationsbetweenformulas, (A - B), and no others. This one is based,on termsof natural
deduction,only on two inferencerules: the introductionrule, ( - 1), where[A] indicatesthat A is
erased, and thaimination rule ( - E):



Introduction rule Elimination Rule
[A]
B A A-B

(-n (-B)
A-B B

The reader will recognise in{ E) a classic ‘modus ponens’:AfandA imply B, thenB. In ( - 1),
A'is erased, in the sense that we mention below, that is thaalyisn't a necessaryhypothesigo
validate (A - B). The rule ( - 1) transfersinto the languageof formulas the metalinguistic

deduction% . That is, it asserts that from the deductioB @fom A, the formula A - B) canbe

deduced.

A proofis a treemadeof successivapplicationsof rulesof inference.The roots, thatareat its
base, are the proved theorem. What inikkrestus more particularly are the metatheoremghatis,
the propertiesof deductivecalculusor, more precisely,of calculusof the termsassociatedo the
theorems.

The constructivemeaningof this minimal system,basedsolely on the implication, is given by
whatis calledHeyting-Kleene'snterpretation:a proof of (A - B) is a procedureof calculusthat
transforms every proaff A into a proof of B. We will seethatthe termsfoundin A-calculus(A-
terms)formalisethis interpretationthey explicitly provide a calculusof proofs. In fact, ¢ : C will
mean that tha-termc is (the code of) an effective proof of the formGla

Let us build alanguagefor proofs’aandits words (or terms).In otherwords, let us definethe
A-terms. Infirst place,the variablesy, vy, ... aretheterms,andx : A meansthatx is an arbitrary
proof of A and that this one can be used in a hypothesis that can eventuailsbd Supposehen
that from an arbitrary proof x of A, thatis, x : A, aproof b of B canbe deducedb : B (readb
provesB). Then,therule ( - 1) givesA - B: in our calculus,onewill denoteAx : A.b theterm
thatprovesA - B, thatis (Ax : A.b) : A - B. If ontheotherhandc: A - B anda: A, we will
write (c a) asthe term that denoteghe applicationof the proof of c to A - B to the proof a of A;
this, as we had said, is a proofBfand thusa: B.

The rulesof inferencethus definethe A-terms as being variables x, y..., A-abstraction(AX :
A.b) of a termb w.r. to an arbitrary variabbe andapplications(ca) of a termc to a terma. We will



omit the parenthesis when there isambiguity. We cannow rewrite the rules of introductionand
elimination as follows

[x: A]

b:B a: A c:A- B

(1) ———— ;
AX:Ab:A- B ca:.B

The rules clarify or give nameto the transformationghat will pass,for example,from a proof
c=Ax:Ab of A - B totheproof (Ax: Ab)aof B, for a: A, thanksto ( - E). We will observe
that ‘Ax : A’ is anabstractionoperation thaboundsthe variablexin Ax : A.b, which may occufree
in b, that is to say that it can appear without already being boumdridact, QX : ...) corresponds
to {x| ...} in set theoror to the integraIJ’. . dx in analysis:the meaningor the value of the term,

the set or the integral, does not depend on the wédirie variable,thus{x | P(X)} is equivalentto
{y | PW}, J’f(x)dx to J’f(y) dy, asAx : A.b is identicalto Ay : A.b", providedthat b' is
obtained from b whesubstitutingy for x in the correctmanner(we write b'= [y/x]b, andwe will
equally say that isrenamedy in b).

We will use|-a: A to indicatethe provability of a : A in this minimal system; the possible
undeleted hypotheses will be placed to the left of ‘|- : for exampl&,|—- b : B. To simplify this,
we canomit the type A in the term (Ax : A.b) : (A -~ B), andwrite Ax.b. A result, mentioned
below, on the possibility to decidethe affectation of a proof to a propositionwill justify this
convention. We observe that the free variables in one term abtle@gndon a hypothesiswvhich is
not erased:Ay.yz : (C - D) - D, for example,will be written insteadof (Ay : (C - D).y2) :
(C -~ D) - D, under the hypothesis C which is not erased So asto not abusethe A's, we will
abbreviateAx.Ay.Az.(...) asAxyz(...). The interestedreadercan study and completethe two
exampleghat follow, by observingthatthosedevelopthe proofsof two axiomsof propositional
calculus and, at the same tiroenstructthe A-termsthat codethe proofs. (Thoseintendedaxioms,
thus, need not be assumed : the introduction and eliminationhereare strongenoughto derive
them).

2.1 Examples:

|-Axyzxzy : A-(B-C)) - (A-B) - (A-Q);
|-Axyx:A > (B - A).

Proof: the rules that are used are indicated to the side of the line of inference.



[z:A] [-x:Aq(B~C)](_) E) [z: Al .[y:A_.B] (- E)
xz:B - C yz.B (a E)
xqy7:C
Azxz(y2).A-C (1)

Myzxa(y2)(A-B) - (AC) (=1 o
Axyzxz(yz)(A-(B-C)) - ((A-B)-(A-C))

We leave the second example, which is simpler, to the reldder.

In the worked out example,the hypothesesare all erasedin the last three deductivesteps;in
particular, the third to last erases two occurrences of the hypathdsitet us note moreoverthat
the structure of the terixyzxzy2) bi-univocally codes the tree of the proof of

(A-(B-C) - ((A-B)-(A-C)).

In fact, in a generalmanner,the order of the applicationsand the A-abstractionscorresponds

exactly to the order in which the rules, ) and (- I) have just been used.

2.2 Note: 1 (Combinatory Logic). Thereaderwho is experiencedn elementarylogic will
have perceivedthat the two proven propositionsin the exampleare exactly the two axioms of
(positive) propositional calculus, whose formulas do not contain but the implieettbmhich only
usesthe inferencerule ‘Modus Ponens’,thatwe called( - E). Thus, by 2.1, with only the two
rules of inference & E) and( — 1) andwithout any axioms,we havethe possibility to deducethe
axiomsof propositionalcalculus.Now let S=AxyzxZy2 and K = Axyx be the two associated
termsas proofs of the two axiomsin our inferencesystem.And well, S and K are the two base
combinators,or constantshat, with the sole application(ab), thatis the rule ( - E), constitute
CombinatoryLogic. Reciprocally,a theorem of propositionalcalculus, the deductiontheorem,
restoregherule ( - 1), thus proving the logical equivalencebetweeni-calculusand Combinatory
Logic.

2. (Products). The minimal systemcan easily be widenedwith conjunctionsor productlogic.
The following rules introduce and eliminate the product, by associating them the term&wthish
case areequallyformedby couples<... , ...> andthefirst and secondprojections,p1 andp2, in

addition to the applications andabstractions.

a:A b:B
(xI)
<a,b> AxB
c. AxB c:AxB

XE,) ———— xXE _—
CB) LA “E) o8




Observethe constructive meaning of the introduction of the conjunction: the proof of the
conjunction of two formulas is constructed from proofs of each component. It todeelsbserved
that, since there is no negation, the conjunction is not derivable from the implication.

3. Calculus of Proofs and Terms.

A variable in a term can hestantiatedby anotherterm. For example with the samenotationas
the one usedto renamevariables,we write [a/Z](xzX) =azato instantiatex by a in xzx In an
inductive manner:gd/x]x=a; if xis not free irb (i.e. it is not bound b¥) or if it doesnot appeairin
b, then p/x]b=Db; finally, [a/X]Ay.c=Ay.[a/X]c and p/X](cd) = ([a/X]c)([a/X]d). It alsoneedsto be
supposedhat, in Ay.[a/X]c the variabley, doesnot appearto be freein a, otherwiseit would be
bound in an improper manneridwe will say thata is independentor x in Ay.c). This condition
IS not restrictive: it only forces us to renagné¢hat appears bound Ay.c with a variablethatis not
independent i if necessary. Computation will essentially be based on the opecatsuistitution
of a termin the placesof occurrencgwhich might be several)of anindependenvariable.Lets us
see from the beginning the logical meaning of the operation that needs to be formally introdu

Consider the following proof:

Ayb:A - B a:A

(- ) (Ayb)a: B

Sincex : Ais an arbitraryor hypotheticalproof of A andx canhavean occurrencen b, the proof
(P.1) is simplified (is reduced) in the following manner:

a:A
(P.2)
[a/X]b : B.

The passage fromroof P.1 to proof P.2 is known asthe elimination of a cut and correspondso

the following mathematicateasoningif | know that from an arbitrary proof x of A | can always
deducea proof b of B, then,in particular,I candeducefrom a specific proof a of A, a specific
proof, [a/X]b of B. To be precise,the inversereasoningis particularly pertinentand commonin

Mathematics: to prove B from a specific proof of A, | npagve at the beginninga generallemma,
that assures me that, from egwiof x of A, | candeducea proof b of B, thatis to say, | prove
thatAx.b : A - B; hence|] obtainthe particularcase,[a/x]b : B, asaninstanceof a generalcase,
(Ax.b)a: B. In conclusion, the general proai(b)a, given by the lemmax.b: A - B, is reduced
to the particular proof offx]b. We writec > d to say that the termis reduced to the term



3.1 Definition. 1 - A-calculus(AB>) is the calculusof the termsintroducedabovebasedon the
following axiom of reduction(Ax.b)a >[a/x]b where a isndependenbf x in b (read substitutea
in place of all the free occurrences of x in b).

2 — APBn>calculus is obtained adding the following axioim:cx > ¢ provided xs not independent
in c.

The logical meaning dfn) is not asrelevantasthatof (). It canon the otherhandbe usedto
point out the functionality of the calculuswe aredefining. Ax.cx is understoodas a function that
depends explicitly or, whosebody of the definitioms cx. Now if ¢ doesnot containx, apply the
functionAx.cx or ¢ directly to aterm a, of the sametype asx, it is the samething: indeed,dueto
(B), we have Xx.cx)a > ca. Then ) reduces\x.cx to c.

The operational meaning of the symbol calculus that we present should be clear. The
fundamental axiomf3) is but a mechanical rule for rewriting: the symbaas takenand rewrittenor
put in place of all the free occurrencexai b. It is copied n times i appears n times im (in fact
deleted, ifn = 0). In accordance with observation 2.2.2, it becosasy/to widen the computation
of terms by means of logical conjunction: it simply netxise describedormally that the first and
second projectiong andpp choose the first or second element of each couple and traiupkes
are alwaysobtainedby couplingthe first and secondprojections.The calculusis completedby a
rule thatexpresseshe transitivecharacterof the reductionand by the rulesthat thus guaranteghe
possibility of the application of the axions the sub-termgsubstitutability).Summarisingvhat is
wanted is the following: i€ > d, thenAx.a(cb) > Ax.a(db), in any contextAx.a(-b).

3.2 Note (Theories of equality). An immediateextensionof the theoryof reductionthatwe
just presenteds given by consideringthe equality betweenformulasas the minimum congruence
indicated by ‘>*. That is to sag >b impliesa =b and ‘=" is the minimal relation, thus creatdat
is reflexive, symmetric, transitive and substitutivgdn= is the theory of equality.

The fundamentahotion is thenthe notion of normal form for the A-terms. A termis in normal
form if it doesnot containsub-termsof the form (Ax.b)a, i.e. sub-termgo which the axiom ()
can be applied. hias a normal fornif it reduces tca termin normalform. We thenhavethe typed
calculus for:

3.3 Theorem (Normalisation). Each term ofA3> has a normal form.

From the standpoint of natural deduction, a piea normalform whenit doesnot containthe
application of the rule { 1) followed by the applicationof therule ( — E), two rulesthat, when

followed by eachother, introduce (Ax.b) and (Ax.b)a respectively.Thereforethanksto the bi-
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univocal correspondence between terms and proofs, that was estabjistwtstruction the proof
of 3.3, carriedout within the calculusof terms, providesa logical resultfor the intuitionist Proof
Theory: every proof can be reduced to another, without cuts, of the same assertion.

It needsto be observedhat a term can containseveralsub-termsgo which () can be applied,
thus different chainsof reductioncanarise.However, the following theoremguaranteeshat they
are always confluent.

Theorem (Church-Rosser). If atermaof AB> is reducedto b and c, then there existsd to
which b as well as c are reduced.

The two proofsequirea few specificationgseeHindley & Seldin[1986]). They caneasilybe
extended, however, to computations witf) &nd the projections fdhe product(see2.2.2), since
these reductions do not interfere wit). (

Therefore, becausaf the perfectcorrespondencbetweentermsand proofs, eachproof, in the
corresponding deductive systems, has a canonical form, without cuts, by 3.3, and is itselhul
view of 3.4. If in factatermais reducedo two normalforms b andc, thosecannotbe reduced
again, in particular don't have termsin common,they can't but be identical. This fact also
guaranteeghe non contradictionor consistencyof the equationsystemspresentedwhere, in
absence of negation, by consistencyuméeerstandhat not all equationsare provable.In fact, 3.4
is equivalent to the following statemebt= c implies that there exist$ suchthatb > d andc > d.
It is therefore not possible to dedube equality of two distinct normalforms, sayb andc, since,
once again, they cannot be reduced to a comanon

In conclusion, thisonstructiveapproachto Proof Theory suggestsa languagevherethe terms
code the proofs. The languagecan be written by a machine, implementedand manipulated
automatically, it suffices that the automatmppliesaxioms([3) and(n). We havethus presentedt

the same time a language for mathematical proofs and a prografangoggevherethe programs
are A-terms. On one side, in fact we are able to manipulateproofs as terms of A-calculus; of

synthesising them from propositions and, inversely, to write the proven proposition from arte
the other, to carry ouiurely symboliccomputationof termswithout logical meaning.In the next
section we will examine these facts from the viewpoint of programming.

4. Formulas as Types; Calculus without Types.
A-calculus has acquired an important role in programming, especially tteatflesprogramming

languageL ISP (List Processing)which is very commonin artificial intelligenceandthe language
ML (Meta Language) and its derivatives, see Mitchell [1993]. In Aacglculus became paradigm

11



for all languages that are referred to as functionalppticationlanguagesopften obtainedfrom this
calculus,solely thanksto extensionswith constructionghat make them more efficient from the
standpointof programming. Functional languagesare basedon the writing of programsas
functionsto be appliedto argumentgAx.b thatis functionally appliedto a andreducedto [a/x]b)
instead of sets of orders (the ‘do’'s’, ‘go to's’ of imperative languageprogramming). The
manipulation is purely symbolical, it does not deal with meamirmiori: as we have explainethe
base axioms formalise the very simple operations of deletion and copy of symbols.

From the programming point of viewhe A-termsare programmedand the propositions(A, B,
(A - B)...), thatwe have consideredas the provenformulas by the A-terms are called types of
programs, taking in this a concept developed by Russalitively, a typeis a setof terms;in the
terminology of Physics, thisanbe understoodas the ‘dimension’ of an expressionin f = ma, in
Mechanicsthe expressionghat havetwo membershavethe ‘type’ of a force. Obviously not all
formulas are propositions: only the formulas that hapeoaf are. Consider,say, A - B andA -
(B - A): only the secondformulais provableandthe proof is codedas K = Axyx. We will thus
call inhabiteda type that is a propositiothat is to say, that, asa formula, it hasa proof codedby
terms without free variables. According to what we sawtythe of a term, without a free variable
or that has an explicitly typed variable is unique, while a typecoatainseveraltermsevenif they
areall in normalform (a theoremcan havemany proofs). This correspondgo practical intuition,
that a type oprogramcan containnumerousprogramsif, for instancent is the type (the set) of
integers,Int — Int containsall the programsfrom the integerswith anintegervalue. The types of
computationgpresenteduntil now are called simple and, as we have seen, correspondto the
formulas (and propositions) of a positive propositional calculus.

However it still needsto be mentionedthat A-calculus as well as LISP, as programming
languages, were conceived without type. In fact, if we only considéertmsthat admit types, the
definable mathematicalfunctions are far from numerous:it is due to this that we talk of the
extensionf A-calculuswith variabletypesin 8 5. For us who startedwith the correspondence
betweenA-calculusand logic, it is possibleto come back to a calculus without types, simply
rereading the rules of good formation of terms without any informatioestrictionof type. Then,
the applicationdb) is authorised for eacnandb, a = b inclusive,without the restrictionsimposed
by the hypotheses in the rule:(E). Evidently, we cannot attribute a type to all taems:precisely,
xX is a term of theéype-free (or untyped) calculuhile it isn't in the calculuswith types,sincein
the rule (- E)'s hypothesis it cannot be thahas a typ@ and, atthe sametime, atype A - B, as
should be necessary to apgljo itself. The reductionaxioms() and(n) areidentical. However,

for the calculus without types, the normalisationtheorem(3.3) is not valid. It can be seen
immediately that for example therm o = (AxxX(Ax.xX) doesnot havenormalform: it reducego

itself indefinitely. It is worthwhile to note the analogybetweenAx.xx and the non foundedset
{x|x0x}, which is complementary to the paradoxical set, that suggested to Ruspaliatiexfor
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Frege's system and the introduction of a Theory Types for set theory: it suffszésstibutethe set
abstraction{x | } with the abstractiom\ x... andthe self-belongingx [ xwith the self-application

xx. The non convergence of= (Ax.xX(Ax.xX , a ‘negative’ fact, if you wish, is in reality linked
the wholeexpressivenessf computationsn a calculuswithout types.In fact, a variantof o is of
great interest. Consider 6 = Ay.(Ax.y(xx))@Ax.y(xx)) (like in LISP, the parenthesesre very
important!). Then, in terms of equality and of applying three times aXipnorie obtains
Ba = [aly](AX.y(xX))AX.y(xX))= (AX.a(xXx))AX.a(xx))
=a(Ax.a(xx)@Ax.a(xx)))= a(6ba )

This result is very important, as it ensures that for eachaavecan find dixed point fa , i.e. an
term such thafla = a(6a ). Moreover, the fixed point is provided inuaiformandeffectivemanner,
in other words, inside the language,thanks to the term 6. From this we can deducethe
representability,in A-calculus without types, of all the partial recursive functions, that we
mentionedin the introduction. These precisely are defined by recursive equations,where the
eqguations with a fixed point are a generalised version: type-taé&culus computes atif them, by
solving the defining equations in a uniform and effective manner.

However, havinglost all relationto logic (the termsdo not necessarilycode the proofs, given
that they may be type-free)the problemthat arisesis that of consistencyof reductionor equation
theory, theyhavebeendefinedexactlyin the sameway as experiencedn the calculuswith types,
thusleavingasideall restrictionsof type in the formulation of the axioms () and (n). Again, in
absencef negation,consistencys expressedn termsof non provability... of all the equations
betweenthe terms. The Church-Rossetheorem(see 3.4), which subsistsas well for the Apn
calculuswithout types, guaranteesghe fact that the equationsare not all deducible:like in the case
with types, thus it is not possible to deduce the equality of distinct normal forms.

As we have already said, terms in normal form are quite importantadrhelisationtheoremis
the fundamental application of calculus with types in logic, espeamapigrtantin the case,thatwe
will mentionin chapter6, of higher order logic. In the calculuswithout types, the termswith a
normalform representhe computationghat end; certain authors,and from the start Church and
Bohm consideredendowedwith meaningonly theseterms (we shall return to the notion of
‘meaning’, not only in computations but when speaking of models). In that case, becaussutif
dueto BOhm [1968] (seealso Barendregii1984]) it is not possibleto make equaltwo different
computations that end. More preciselyafandb possesdlifferent normalforms, AB+(a =b) is
not consistent. Bohm's theorem also ensures that no calculus of symbaotsathattensionof A-
calculus, can be ambiguous on the computations that end: if they can be expressedaidhies,
we cannotconfusethemwith eachother. From the semantigpoint of view, Béhm's theoremis a
result of "relativecompliteness"relative to normalforms: oncethat an arbitrary model of calculus
without typesis fixed (see8 5), an equality betweenmormalformsis trueif andonly if it canbe
proven.
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Another result, that is extremely interesting poogramming that links non typed calculuswith
typed calculus, is the following: one can deaida term with type is well typed,andalsoif anon
typed term carbe assigneda type (Hindley-Milner algorithm,seeHindley & Seldin[1986]). Said
in otherwords, given a functional program,or a freely written term, without paying attentionto
types, an automatic type-checker can determine if the program is wellaygetl canadmittypes.
Rememberthe analogy we have mentioned,betweenthe notion of type in programmingand
dimensionin Physics:the type checkingalgorithmfor the functional programscan be compared,
due to its nature and practical sitethe dimensionalcontrol of equationsn Physics.It is known
that generalalgorithms for the control of the exactitudeof programsare not possible (Rice's
theorem),that s, it is provenin generalthat it is not possibleto effectively control whethera
program calculates the function that it is going to implement. Types then peowvalfective tool to
partially control the correction of programs,completely analogousto ‘dimensional control’ in
Physics: given an equation in Physics, one calculates, one develops, arehdtaheverifies that
to the left one finds a force (an energy ...), thethéxright onealsohasto find a force (an energy
...), If thecomputationis correct.In this caseit is alsoaboutpartial control: in no casedoesthe
dimension control ensure the exactitude ofdbmputationsmade.The sameis true for the control
of types in a program. However, almost@imputationerrorsin an equationin Physics,or in the
implementationof a program,are revealedby a dimensionalerrors or a type errors. The type
checkingalgorithmis in fact the heartof programminglanguagesof the kind ML: in fact it is
divided into a control for the ‘typability’ and a type assignemenalgorithm, basedon the logical
inference rule in 8 1.

Let us summarizeinally the relation betweentermsandtypesfrom the view point of logic. In
short, the affectationof a type to a programis the proof of a proposition,that is, its type. The
association of a term to a type is the synthesis of a proof, that coded by the term.

5. Semantics.

Formalisation of the types and terms presenietb now alreadyhasan interpretationtypesas
propositions, terms as proofs (or vice versa). Let us reflect now on the possikalityatfiematical
meaning, non formal or by a purely sign calculus, for the introducedantsgrms.lt is desirable
to make room for this aspect, apparently not important for the mechanic elabdatamrieasttwo
reasons.Abstract logic formalisms can be adaptedto machinesthat elaboratewithout ‘giving
meaning’, but that are often hostile to human intelligence. Comprehensiorof a logic system,
whetherit be essentiabr minimal in the formal parts,improvesif it is immersedin mathematical
structures,not necessarilyconstructive nor elementary,but basedon known experiencesof
conceptual synthesis or non formal intuitiohspace-timeLastly, the role playedby A-calculusin
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Computer Sciences a symbolic manipulatorand languagethat describesnathematicafunctions,
is also due to the study of semantics of programming languages that it itself inspired.

We will remembethat the two inferencerulesof A-calculus,( - I) and( — E), havevery precise
roles. The first one "introduced" the metalinguistic deduction from A tant®, the languageasa
formal implication ‘A - B, aswell as the terms that code it. This passages essentialfor a
formal/linguistic treatment of logic as metamathematics: its object of study is mathematicainatc
it may give a rigorous linguistic form to deductionNtathematicswhich is often informal, always
metalinguistic, of an assertion in a specific languageathematicatheory (the languageor theory
of groups, of topological spaces...). The othée, ( - E), codeswith the termsof A-calculusthe
classic ‘modus ponens’ underlining its functional character,as already describedby Heyting-
Kleene'sinterpretation.Thatis to saythatthe intuitive meaningof A - B is thatof beinga setof
effective functions or procedures that transform the elements (prodfsihtof elementgproofs) of
B.

In orderto give a rigorousmathematicameaningto this intuitive meaningof syntax,we recall

the mathematical definition chtegoryasa collectionof objects,A, B,... andmorphismsbetween
objects, f, g,... Morphisms include the identity ida for each object A and are closed by

composition, f og ; associativenesgf og) oh = f o(g oh) and the identity propertiésid = f and
id og = g, completethe definition (see Asperti & Longo [1991]). The categoryof sets(without
structure)with classic functions betweensets like morphisms, the category of groups with

homomorphism®betweengroupslike morphismsandthat of topological spaceswith continuous
functions as morphisms,are the commonexamplesof categoriesln fact, a categoryis often a
collectionof ‘structuredsets’ wherethe structuralpropertiesare describedby sets, which are not
necessarily structured, of morphisms between each pair of objects. The reader, even if

inexperiencectanunderstandn an intuitive manner that the notion, be it explicit or implicit, of

category is fundamental in Mathematics.

We understandthus our formal symbols and logical computationsby interpreting types as
objects and terms as appropriate category morphisms. However, in deaspEceof morphisms
between two objects of a category isadlectionor a set‘outside’ the category,in otherwords, as
we have said, it is not necessaslyucturedasthe objectsof the categoryin question,exactlylike
the deductionof mathematicabnd metalinguisticpracticeis outsidethe theory or the mathematical
language object of this study. The necessityawelatethe two notionsis clearly suggestedby the
Heyting-Kleeneinterpretationof the type A — B asa collectionof morphismsof A in B, see§ 2.
Then, to give a mathematicaleaningto therule ( - 1), that brings metalinguisticdeductioninside
the language,it should be necessaryto find categoriesin which the notion of collection of
morphismsbetweentwo objectscanbe internalisedthatis, thatit canbe seenasan objectof the
given category. In other words,AfandB are objects of theategoryC, it will alsobe neededhat
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C[A,B], the set of morphisms & in B, beit (representedby) an objectof the samecategory the
exponendf A in B, thatwe defineby BA or A - B. In the caseof the categoryof sets(without
structure),it is clear that the notion of morphismsspaceis immediately internalised:the set of
functionsbetweentwo setsis a set, thatis, an objectof the category.This is not the caseof the
other two examplesin which the objects are setswith structure:in general,homomorphisms
between two groups do not form a group. Wiealingwith topologicalspacesgvenif the setof
continuous functions between twapologicalspacesan be given a topologicalstructure,it is not
always the casethat it itself has the necessaryproperty to define exponentsin a sufficiently
expressivemannerso as to interpret the types as objects and the terms of the A-calculus as
morphisms. One observes in the first place thatbstraction allows the formation ofanction of
more arguments, by ‘an argument at a time’: given a &eri, that may containtwo free variables
x:Bandy: C, thetermAx : C.(Ay : B.a) : (C - (B - A)) hasthe meaningof a function thaton
taking an argument in C gives as a result a funetyonB.a in (B — A). But the two free variables
in a equally give a : A the meaning of a function of two arguments:
(A <xy>CxBa):(CxB - A), providedthatwe havesomenotion of productin the category
of meanings. But thigs easy:the Cartesiarproductof two setsis a setandthe sameholdsasfor
groups andopologicalspacesThe categoricalgeneralisatiorof the ideaof Cartesiarproductasa
(structured) set of couples of twstructured)setsis simpleandwe sendthe readerto the existing
literature or cited text for details. The difficulty lays precisely in the following fundamental
operationof A-calculuscalled ‘currying’ (dueto H. B. Curry, seeHindley & Seldin [1980]): a
function of severalargumentscan be definedin an equivalentmannerby the abstractionof an
argumenteachtime. For example,it would be necessaryso that topological spacesprovide an
interpretation, that a continuous function be considered such, knowing only that it is tsoeach
argument;jt is known on the contrarythat, in topology, thereexist functionsof severalvariables,
continuousin relationto eachargumentput not globally continuous thatis not continuousin the
topology of the productpace.The readerthatis familiar with elementarycontinuousfunctionson
product spacesand that knows that continuity cannot be proved variable by variable, has
understoodhe real mathematicameaningof A-abstractionand its expressivepower: if endowed
with great inventiveness or mathematical experience, he/she can construct the class of dhsdg
can provide a rigourous semantic to théculiarphenomenonLet us now presenthemexplicitly,
for convenience of the readers.

The propertyrequiredby a categoryto interpretA-calculusis to be CartesianClosed,thatis to
have all productsCxB and an isomorphism(uniformly internal to the categoryor natural, see
Asperti & Longo [1991]) betwee(C —» (B — A)) and(CxB - A), for all C, B andA, objectsof
the category. For different reasons, as we have said, groups and topological spaceawktmet
property. Again, the category of sets comes to our rescue: this isomorphism is trivial betwee
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However,in the semanticsof A-calculusit is necessaryo go beyondthe simple categoryof
unstructured sets. From the startAasalculus is also paradigmfor functional programmingand,
if we want to write sufficiently expressiveprogramswith a calculuswith simple types, it is
necessary to understandathavethe possibility to give recursivedefinitions of functions.Those,
as we have said in § 4, are the ones thatlefieablein the calculuswithout types(andthusin the
programminglanguagel ISP andits dialects).They mustbe addedin the caseof languageswith
types like the language ML. In fact we remember that a recursive definiticierh ar a function f
is given when this one is the solution of an equatiera(x), or well wherf is a fixedpoint of a, 8
4. For example, the factorial functidact can be defined as follows, by an equation:

fact (n) = if n =0 then 1, otherwise-fact(n — 1).

Now, while supposing to have coded our metalanguafyecaiculus,thatis our (if ... then...)
and in allowing some abuse of the language, the germxy. (if y = 0 then 1, otherwisey-x(y—1))
hasasa fixed point the factorial sincefact = afact Accordingto whatwe observedn § 4 on the
calculus without types, by takirfgct = 6a one mechanicallpbtainsthe solution. Moreover,if one
finds a mathematical semantictgpedcalculus in which there exists aperator,a functional, with
the properties 08, this would justify and also guarantee tbgical consistencyof the extensionof
this calculuswith a term having 8's property. We are interested,in secondplace, in a more
structuredcategorythanthat of setsbecausave wantto find in it a modelof the calculuswithout
types.In the endthis isn't ‘but a particularcase’of calculuswith types:it is the samecalculus
without the restrictionsof typesor, if onewants, it is a calculuswith a single ‘universal’ type. It
should be necessary, to give meaning, to fisttacturewith a ‘universal’ typein the sensethat it
mustcontainall the functionson the proper elementsithen, eachterm could be appliedto every
other term, and in particular to itself. However, nocget‘contain’ the setof functionsdefinedon
it, except a set composed of a single element drithi& set. In fact, a classic Cant@sultensures
that the set of functions aanon trivial setis strictly larger,in termsof cardinality,thanthe given
set. We will find, and it is not easy, a non trivial topological spaaehich one canisomorphically
immerse the space of endomorphisms (morphisms of an object on itself).

With this doublegoalin mind, the recursionfor termswith typesanda modelfor the calculus
without types, we will constructa subcategoryof the categoryof topological spacesthat are
Cartesian Closed and that have fixed points for every endomorphism. Furthermdlrezontaina
universal object, in which, in particular, its own endomorphismscan be immersed. The
construction demands certain mathematical attention.

Let us takea partially orderedset (A, <), a subsetD of A is called directedif every pair of
elements oD admits an upper bound i (that is:[Ix, yOOD (for all x andy in D) OzOD (there
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existszin D) x<z & y<z). Now letA = (A, A0, <) be a partially orderedsetand AO a subsetof
A; Ais a Scott spacé&(spacgif the following conditions are satisfied.
1. every directed sdd admits a least upper bound, $pn A;
2. Ahas a least element, lets day
3. foreveryxandy in A, if x/<y (x is not inferior or equalto y), thereexistsz0 in AO such
thatz0<x and zOKy (AO separates elementsAir
4. for everyx0 andyO in AQ, if X0 andy0 havean upperboundin A, thenthey havea least
upper bound0 = sup {0, y0} in AO.

The readerthat knows some Geometrycan observethat eachS-spaceA can be endoweda
topological structure, given by the order, that has as base elerngAtsx) <z} for x0 in AO, and
the empty set. In such a topology, the continuous functions betwees spwacesre all monotone
(non decreasing}hatis, they preserveorderand, in particular,whenappliedto a directedsetthe
result is a directed set. Moreoverf i§ continuous anB® is directed thé (supD) = supf (D).

An interestingexampleof an S-spaceas constitutedby the set of subsets,PB, of an arbitrary
infinite setB. It suffices to take the inclusion betwesgtsas a partial order, the collection of finite
sets as subselB0 of PB, sothatPB = (PB, PBO, [1) satisfies(1-4), with the emptysetasleast
element.

Onecannow verify thatthe categoryof S-spacess CartesianClosed. Thus, a function with
more thanone arguments continuousif it is continuousin eachargument.The Cartesianclosure
guarantees the possibility to interpret types as S-spaces. The interpretatiermnasas morphisms
is an easyinduction over the structureof the terms themselves:ieach variable of type A is a
morphism of the triviaspace{o}, with a single element,n the interpretationof A; the abstraction
Ax:A.b: A - B defines a morphism of the interpretatiomAahto that ofB; the formal application
cd, forc: A - Bandd: A, is the functional application afto d.

The otherproperty of the constructionthat interestsus is that the objectsof the categoryare
topological spaceghat also are completepartial orderswhich is exactly what is requiredin the
hypothesig1). It is now possibleto use a constructiondue to Knasterand Tarski to construct
minimum fixed points of monotone functionsflfs any continuousfunction, andthus monotone,
of an S-spacd into A, then the chaird < f(0) < f%(0)= f(f(0))<...,as a directedet, admitsa
leastupperbound,sup f"(0). Indeed,asf is continuousf (sum f"(0)) =sumf (" (O)) =
sum f"(0); furthermore, sup f"(0) is the minimum fixed poindf f. Thus, the functional © (f)
=sum f"(0), thatassociateso eachendomorphisnt of the categoryits minimum fixed point,
provides an interpretation for a recursion oper@tof A-calculus with types.
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In conclusion,we have constructeda mathematicalmodel of the calculus with types and
operatorsof fixed points. The instrumentsusedare takenfrom elementaryGeometryand are all
independent aok-calculus.

It is now necessary for us to find, in the categuirB-spacesa modelfor the calculuswithout
types, in which the terms can be at the same fiimetionsand argumentf functions.To be able
to do this it is necessarjto constructan object that containsor into which the spacesof its
endomorphismgfunctionsare elementsanbe immersedand such that eachelementdefinesan
endomorphisn{elementsare functions).Recallthat the power setof an infinite setis an S-space
and consider the familiar poweetPN, of the setN of naturalnumbers.The proof thatthe order
and topological structure of\R as an S-space, has the desired qualgiesthertechnicalanduses
the property of integer numbers;in particular,the possibility to code pairs and finite sets with
numbers(seeScott[1976]). Thus, every function is an elementof PN and, conversely,every
alIPN canbe applied,asa function, to eachelementbLIPN: the applicationab betweenarbitrary
elementsf PN givesa meaningto the formal applicationbetweenarbitrary terms, without type
restriction, as it is defined in the type-free calculus.

The above mentionedconstructioncompletesthe semanticsof A-calculuswith and without
types, while giving a mathematicaimeaningto abstractsymbol manipulations,such that the
internalisationof the metalinguisticapplication,A-abstraction the auto-applicabilityof a term to
itself. The autonomy of the used topological structure from the sywisseenunderlinednot only
for epistemological reasons, linkéalthe notion of meaningastranslation,all the morefilled with
information than the possibility to correlate the different universes, but also for practical réasc
we saidin the introduction,the issuethatwe study is not only a particular caseof mathematical
research in Computer Science; in fact, the semanticsaliculus has had a paradigmatite in the
mannerin which researchactivity is carried out in the semanticsof programminglanguagesin
certain cases, the meaning of geometric or algebtaictureshassuggestedariantsor extensions
to programming languages (tML dialect CAML, the extensionf the prototypelanguageQuest
... and much more). Sometimes, the obscure programming constructions, which are barely
the author himself, becomeintelligible, and are improved if needed.The effort to immerse
languages and prograrrssolid mathematicamodelshascertainly (and at least)contributedto an
importantimprovementof the presentatiorstyle of manyof them.lt is certainthatin recentyears
someprogrammingmanualshave becomereadable, or almostreadable thanksto the increasing
influence of amathematicaktyle that encouragesat the sametime, rigor generalityand searchfor
meaning.

6. Polymorphism
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At the endof 8§ 4 we saidthat given a term without types, is ‘decidable’if it canbe assigneca
type. This type howevers not necessarilyunique:the identity Ax.x, for examplehastype A - A
for all typesA. That is, it has schemeof type, denotedusually by metavariable®f type: X - X.
The Hindely-Milner type assignement algorithm (8 4), implementaddLin givesto eachterm, if it
hasit, the mostgeneralschemefor which all other schemeor type of the term in questionis a
particularinstance For example Ax.x alsohasthe scheme(Y - Y) - (Y -Y), a particularof
X = X. The notionof type schemds completelyanalogoudo that of axiom schemesn logic. To
return to the examples given in 2Aky.x has a typeschemgthe mostgeneral)X - (Y - X) and
this is one of the two axiom schemes of positive propositional calotiwkich we talked aboutin
2.2.1

Thus, briefly, termswithout types,whenthey canbe given a type, are polymorphic, because
they have type schemasdthususually moretypes,contraryto whatwe sawin 8 2 and3 when
dealing with terms with types. The languages of the class ML are polymorphic exdbitysanse.
From the point of view of logic, the programs are the proofs of schemes of propositions.

In the implicit polymorphism,ML style, quantification by relation of variables of type is
metalinguistic and only external to type schemes. Recall noeléhgentaryor intuitive meaningof
types as sets or, more formally, as objectsof a category. Explicit quantification, within the
language, on variables of sets or objects of a category is on the cantrepaseof secondorder
systems,where sets or objects of categoriesare quantified. In particular, it is at the base of
Analysis, interpreted as secondorder arithmetic,sincereal numbersare setsof integernumbers.
SecondorderA-calculus,ABn2 (the F systemof Girardin 1971, seeGirard [1989]), is obtained
when adding quantification by relation to the variables of type. Before speakingof explicit
polymorphismwe observethat the polymorphismof a programcan be seenas an invariance
property by relation to types as structures. That is, the progxasmthat calculateghe identity, or
AXxy.x, which calculatesa constantfunction in the first argumentareinvariantby relationto each
domain of arguments.

The readingof the endof this paragraph(and its semanticsn § 7) requirescertain attention,
although, formallyit only supposesnstrumentsalreadyintroduced.Higher orderlogics are based
in fact on an ulterior mathematical abstraction.

The types oApn2 are obtained while extending those\pf= with variablesof type, X, Y, ...
and with universally quantified type&IX : TpA whereTp is the collectionof types(readfor all

X, Ais valid, whereit canappearX in A); the termsare also constructedrom abstractionwith
relationto type variables,AX : Tpa, andthe applicationof termsto types,bA. The rulesthat are

introduced by the new types and terms are the following:
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[X :TP]

b:B .
@ (AX :Tpb):(OX : TpB) ®)

b:(OX :TpB) A:Tp
(bA):[A/ X]B

(DE)

(*) in b no free variables has the type which depends on X.

The first rule forms functions from the collectiontgpesto terms. The secondstatesthata termb
can be (functionally) applied to a typeand give a ternA within type B whereit substitutesA in
X.

The axioms that neeid be addedto () and(n) in 8 3 arethe following (observethatthey are
the second order version):

(4p) (AX :Tpb)A=[A/ X with A free ofXin b
(0n) (AX :TpaX) =a: with X not free ina.

For example,(AX : Tp.Ax : X.x) : (OX.X - X) is the secondorder identity or explicitly
polymorph; AX : Tp.(AY : Tp.(Ax : XAy : Y.x))of type OXOY.X - (Y = X) is the function that
is explicitly polymorphand constantn the secondargument.Applying the first to a type A one
obtains AX : Tp.AX : X.X)A = AX : A.X, theidentity of type A — A. In ananalogoudashionfor
AX:Tp.AY : Tp.(AXx : XAy : Y.X))AB: (A - (B - A)).

The types inhabited are exactly the theorems of what we call secongbarpesitionalcalculus,
which is the subjacent loggystemof Analysis,as secondorder Arithmetic (real numbersare sets
of integer numbers,this is why we needthe quantification over sets). In addition, one can
understandthe Computer Science side shown in this passingto a secondorder: types are
‘automatically updated’ since terms can take types as arguments. Thsays tigpesare dealtwith
within the languageor manipulatedoy a formal calculusfeasiblefor a machine,insteadof being
handled outside the language in a metalinguistic manner.

Observethat the theory of typesof ABn2 is essentiallyimpredicative(or non predicative). In
otherwords, while statingthat X : TpA is atype, formally (X :TpA ) : Tp, onedefinesan

elementof the collectionof types, Tp, andthis is doneby quantifyingon the collection Tp itself
(notethatthe definedtype UX : TpA containsthe quantification OX :Tp.) Suchdefinitions are

commonplace in Analysis, or Topology: for instance, when one defines a setrdaserdextionof a
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collection of sets that may include the set that is being defined (least upper or greatdst lowisy,
Lebesgue measure, ..he impredicativenessf typesis at the baseof the expressivenessf the
language and constitutes a non negligible logical or semantical challenge. Hevewéor A3n2,
the normalisationand Church-Rossetheoremsare valid, statedas doneso in 3.3 and 3.4; the
proof, of the first in particular, is rather complex by the impossibility of stratifyindaimeulasand
using any form of induction,dueto the implicit circularity in the impredicativedefinition of types
(Girard [1989], see Hindley & Seldin [1986). By meansof the analogy betweentypes and
propositions (belonging to the second oraew), the normalisationand Church-Rossetheorems
prove the results of ‘elimination of cuts’ and ‘uniquenessamionicalproofs (or normalform)’ for
second ordesystems|ike we observedor propositionalcalculusin 8 3. Moreover,theseresults
guaranteethe logical consistencyof calculus of types and equation calculus, confirming the
robustnessof impredicative constructionsthat are at the base of Analysis as second order
Arithmetic. The relation with this last theory is shown by the theorem that characterisesghe
expressivenessf calculus. Becauseof the normalisationtheoremit may be shown that the
representable functions are all total (always convergentact, the computablefunctionsin An2
are exactly the recursive functions that can be proved total in second order Arithmeticl(&fwatd
Taylor [1986]). Such a set of functions is much larger than thaooirsiveprimitive functionsand
it largely includes all totdlunctions which oneanneedfor practicalcomputing.However, current
experimentalprogramminglanguagesasedon explicit polymorphismextend Apn2 with fixed
point operatorsor recursiveoperators.Then, the normalisationtheoremis not valid anymoreand
the correspondendeetweenprogramsand proofsis lost; however,the effectivenes®f recursion,
as an instrument to define functions, allows a greater simplicity for programming.

7. Semantics of Polymorphism

The mathematicalmeaning of polymorphismis relatively simple in the case of implicit
polymorphism:it is only neededto correlatethe meaningof termswithout type to their version
whenassignedypes.Considerthusthe model PN = (PN, PNO, [) of calculuswithout types
mentioned at the end of § 5 aretall thatin it everyelementalIPN is an endomorphisnmandvice
versa:ab interpretsthe functional applicationbetweenterms, considerecas elementsof the model.
To interprettypes, constructthe categoryPER of partial relationsof equivalenceon PN in the
following manner. Objects apartial equivalenceelations,A, B... on PN (subsetsf the product
PN x PN, which are symmetricand transitive, but neednot be reflexive: elementsneed not be
correlatedto themselves)PERis CartesianClosed. The baseconstructionto verify it is quickly
given: the internalisationof the morphism spacebetweentwo objects A and B is the partial
equivalenceelationA - B suchthat(d,d")LI(A - B) if andonly if, for all (a,a) LA, (dada’)
LIB; in other wordsd andd' are equivalent i\ - B if they transfom equivalent elements/Afinto
equivalentelementsof B. It is preciselythis constructionof the internal spaceof morphismsthat
leads to choose partial relations: take an arbittaayd a rather small relation tardgtthen,d does

22



not associate a#quivalentelementan A to equivalentelementsn B. Thus, it is not generallythe
casethat (d,d)LI(A - B), in otherwords, not all d is equivalentto itself in A - B. In PER the
affectation of types to terms without type has the following meairfiragterm c is formally given a
type C, then the interpretationin PN of c, as a term without type, is equivalentto itself in the
interpretation of typ€ as a partial relation of equivalenc8incethis is true for eachinterpretation
of free variables in ¢ with elements iNRnNd variables (of type) free inWith objectsof PER, we

havegiven a correctmeaningto polymorphism:everyterm, seenas an elementof PN, has many
relations, and in particular all those that interpret its formal types. Onswaiseedsn showingthe

interpretation of a term without type in tequivalenceclassof its interpretationas a termto which

all the types are given. This completesthe semanticcorrelation betweenterms, types, calculus
without types and the assignement of type schemes.

To move on to explicit polymorphism, recall that it is based on a impredith&oey of types,a
theory in which the type 0OX : TpA is obtainedquantifying on the collection of all types. The

generalmathematicameaning,in fact categoricalof this constructionis not obvious. In the first
place, it is a questionof interpreting the universal quantification X :Tp as an indexed (or
generalisedl product In fact, for the rule (OE), if & OX :TpA, thenaB : [B/X]A; in other

words, the term a is interpretedas a function that, taking (the interpretationof) a type B as
argument, gives a result (the interpretation of) in a &pe which B is substitutedor the variable
X. This is preciselythe intuitive definition of n productindexedby an arbitrary set, an idea that
generalises therdinary productbetweensets:a Cartesiarproductis a productindexedby a finite
set. The difficulty lays in finding a categorythat is closedw. r. to a productindexedover the
categoryitself: in fact, if the collectionTp of typesis interpretedby the collection of objectsof a
category,[1X : TpA has to be interpreted as a product indexed over the category and dsbéne
an object of the category.The readermust pay attentionto the strong reflexivenessor strong
propertyof closurethat we require;its rigorous understandings a typical and beautiful side of
Mathematicsin which the geometricaland categoricalinstrumentsgive meaningto symbolsthat
otherwise would nobe but a gameof signs:we canobviouslywrite (X : TpA ) : Tp, with Tp,
the definiendunthat appearsn the definiens it is herethat it is interestingto comprehendf we
meansomething.Many indeedfind this writing unacceptablycircular, in spite of the important
syntacticresultsof normalisationand Church-Rossethat havebeencited. The constructionof a
sound mathematical model makes it acceptable.

Briefly, the category PER has the desired propertiagure.To fully provethis however,it is
necessary to immerse PER into a larg@ntext,onein which a productindexedby PERitself can
be defined. The idea is fond a categoryin which one canimmersePER asa subcategoryand at
the same time, as an object on whichghaductcanbe defined. The answeris given thanksto an
appropriatetopos Theseare categorieswith strong closure propertiesand provide models of
intuitionist settheory. In a particulartopos, said to be ‘effectivé and built in generalisingthe
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constructionof the categoryPER, one candefinethe productindexedby PER, consideredas an
objectof the topositself. Theresult,say [],per F(A), is not only an objectof the topos but of

PER, which is also a subcategoryof the topos. In other words, ([]ameer F(A)), the product

indexed ovelPER, is an objectof PER, asa (sub-)categoryln carryingout the constructionstep
by step,one‘understands’ mathematicallywhat an obscureimpredicativeformal definition can
mean(seeAsperti & Longo [1991]). In particular, the relations or setsof subsetsof natural
numbers, the objects of PER, are defined and undergtdegendentlyof the productin question;
thusthe circularity in the syntaxof the collectionof types, Tp, definedwhile listing betweenthe
types also those obtainedby the productsindexed by the collection itself (or quantifications:
OX :TpA ), is reduced to proving a closure property piredefinedmathematicabtructure.Since
this semanticsis basedon geometrical categories(the topos have their origin in Algebraic
Geometry), that can as well provida interpretationto intuitionist settheory, we havein a certain
senseclosedthe scopeof our understandingWe startedfrom a formal propositionalcalculusand
from termsof the intuitionist propositional calculus, both simple and secondorder calculi, in
passing by topological and order structures, the relations on natural numbers, quotienetpac
we have given an interpretatiém apparentlycircular formalismsand found an independentink to
other aspectsof logic, and intuitionist set theory. The thus establishedunity betweendifferent
theories gives a meaningnd addsto the comprehensiomf eachof them;it showsthe proofsas
programs,morphisms,calculablefunctions, while proposinga rigorous mathematicalframe for
programming in machines. This is only gmessiblesemanticconstruction put, asa side effect, it
also helps to enrich the empirical methodology of programming: the untranslatable,non
generalisable;ad hoc’ solutionsthat are only understandabldéy the programmer,which are
sources of mistakes, are "understood" in a unified manner, and in a uniform mathematical st

8. Automatic Proof

We started this presentation by underlinihg role of A-calculusasa languageor proofs: each
term of the calculus with types ise coding of a proof andits reductionin normalform leadsto a
canonicalor ‘minimum’ proof of the propositioncorrespondingo its type. Moreover,if a term
without types admits a simple type, the assigneratattype to a term andits reductionto normal
form canbe donein an automaticway. They arethusthe instrumentgor automaticproof, and in
particularfor the proofs of programproperties.In fact, it is a programpropertyto admit types or
not; but not only this, a type is in realitgpecificationor a way to specify a progratwhile saying
that a program goes from integéosbooleans pne specifiesa propertythat partially contributesto
defineit. In certaincases,the type can univocally determinethe program:there existsonly one
program, thats understoodas a term without free variablesandthat hastype X .(X - X), the
identity. In other words, if one specifies a program as a funthi@rapplieseachtype to itself, the
formal descriptionof the type, of secondorder, univocally determineghe programthat calculates
the identity function.
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In general,aswe havealreadysaid, the type assignementp a programis at the sametime, a
proof of logical propositions, the types, amdynthesismethodof programs(which is automatic).
Let us return to the second example2.1: stgrtingwith hypothese®n variables,one constructsa
programof type A - (B — A) stepby step. In fact, the only programwith type scheme X -
(Y - X). Thus alreadyin the currentcontext,we cansaythatwe havea partial methodto prove
propositionsand program properties,and also of program synthesis(programsor proofs are
synthetizedby this proof method). A partial method,becauseijt requiresan external (human)
intervention in choosing the hypotheses that can be addedaksarglongthe deductionprocess,
and also because, lspmparisorwith the statement®n programs,one candeducein this manner
only some properties and some programs.

Moreover, to speak of automatic proof as a substitute for humaséimematicaproof, we needto
add at leastthe instrumentsthat can formalise propertiesthat are more or less commonplacein
Mathematics. It is indeed obviotisat mathematicss basedfrom the starton the useof individual
variables, for the elements of sets, and their quantification. In other words, it is necebsaalyl¢o

to write formulasthat describestatementss: given any integerthere existsanotherinteger that is
larger than it; every elementof a group has an inverse, etc... in the manner Ox[y(x < y),

OxCy(xy™* =1)... In the formulas, or types, introduceduntil now, there were no first order
variables,or elementsandwe passedlirectly from simple propositionalcalculusto secondorder
systems. Thesallow us to dealwith the logical aspectof mathematicaAnalysis, not necesseraly
its "mathematics".

Martin-Lof's (predicative) Intuitionist Type theory and Coquand and Huet's Calculus of
Constructions (see Coquand & Huet [1988]), in different ways, extend thedlypesalculuswith
the possibility to also define first order formulas as types, thaitlsthe structured x:A.B, where
x is a variable otype A (seeHindley & Seldin[1986]). Indeed,A-calculusalreadyhasfirst order
variables: those that appearthe terms.As we havealreadysaid, A-abstractions a quantification
over the terms,analogoudo set abstraction{x | P(x)} is the setof all elementsx, of a certain
universe, that satisfy property P. But, the variables are also terms,iig/fiz/land they don't only
have the meaningof elementsasin Mathematics.In Mathematics,for everyinteger x...” only
means that can be particularised by an arbitrary integer. On the contrary, vaxialsie\-calculus,
is also a term in normal form that can be manipulated,treated as the other terms, closed,
constants,... The systems just mentioned usditigsistic richnessof A-calculusto give a unified
treatment of formulas and types. Briefly, mathematical formulatharfst ordertermsandtypes,
on which on cancarry out computationsn an automaticand uniform manner.For example,the
formulax(x + 1)=12 becomesby obviouscalculation,x2 + x = 12, whereone hasdeclaredx as
integer (a non erasedassumption: x : Int). The solution of the equationis given by the
particularisationor substitutionof x by the integer 3. Note that the formulas or mathematical
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propositions are not but "restrictions” to be satisfied: that is, propositiohgpaisas specifications
and a program is a proof of a specificatiortyqgre, asin the alreadydiscussectases One cannote
herea substantialdifferencewith Logic Programmingwhere a programis a propositionand its

evaluationis the proof of the proposition. The currentinterestof an integration of functional
programming methods and logical programming ones is predselio the possibility of studying
the synthesisof functional programs,from logical specifications,as a compilation method for

logical programs in functional programming. Néi®ugh,asit hasalreadybeenannouncedn the

introduction,that we haveomittedthe principal instrumentto dealwith first orderformulasor the

restrictionsthat describeusualmathematicaproperties:unification techniquesthat handle uniform

particularisationof first order formulas. Thesetechniques,crucial in Logic Programming,are
introducedin the Calculusof Constructionshpoth first and secondorder, the latter being what is

new.

As a whole, the research direction that we have been detailing has given good rethéisaré
read with care. De Bruijrfpr example hasdevelopedmathematicajargonin the extensionsof A-
calculus of anmportantintuitive effectivenesgseeHindley & Seldin[1986]). However,the truly
importantpropertiesthat can be handledare the propertiesof programs.The purely mathematical
assertions proved in a strictytomaticfashionare not numerous.The problemis that the implicit
richnessin a true mathematicaproof is found in the languagechangesjn the bridgesand in the
indirect analogies, in the superposition of methddieir sterilisingreductionin a singlelanguage,
poor andstatic,canbe of someeffectivenessf enrichedby the man-machindnteraction.In this
perspective,more instruments,to make proofs, are welcomed,including the automatic ones.
Various computationalalgebras,or systemsbasedon the language‘Mathematica’ for example,
provide greater effectiveness to the wofkhe algebristby interveningwhenlong calculationsare
needed,when innumerableexplorations are required and in other tasks in which practical
complexity renderscomputationimpossiblefor a human being. The methods presentedhere,
inspiredby A-calculusdevelopthe complementarnapproachwhile aiming to deducethe most for
Mathematics from the logical formalisation. In spite of the limitative character and the failam@s
"completenesprogram” (mathematicss completelyformalisable),consideredas a baseproject,
from the practical standpoint, the interaction between man and machine can create imirzmhdy,
if one accentuatethe interactivecharacterof proofs. Take,for examplea proof by induction. A-
calculus perfectly describes the induction scheme and the inductive proofs are afypmcdtefor
automatictreatment.However, every one knows that in non trivial cases,the true mathematical
problem,in a proof by induction,lays in the choiceof induction hypothesis Often the ‘inductive
load’ hasto be much strongerthanthe thesis;in otherwords, to inductively prove [0 x.P(x), one
does notalwayssucceedn proving thatfor everyn, P(n) canbe deducedrom P(h — 1) andit is
necessary to turn to a property Q, stronger than P, to have thatlimplies Qf).
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The problem of choosing inductive loadgaslay a crucial problemin automaticproof. It is not
clearin fact thatit sufficesto explorea finite numberof possibleinductive hypothesesr that, to
obtain relatively complete methods, itnecessaryo consideran infinite number.Thatis, if in the
standard sectors of Mathematics, one has only to do long induction proofsathref,suchproofs
are essentially difficult, due to the choice of inductive load: the clooiegia betweenan infinity of
possibleinductive hypothesesre difficult becausehey are generallyexternalto a pre-established
methodologyo a languageand a formal frozen frame. They are basedon ‘intentional’ choices
where man integratesmany experiencesusesanalogy,refersto metaphors,...The analysesof
these methods, as a part of the proognis of the stakesof the future, if onedoesnot wantto be
restricted to a solely formal analysis of protsfat canbe fully mechanisedThe projectthenis the
development of interactive programs of automatic syntleégisoofs where,for example the user
tells the machinethe propositionsto be provedin the induction (the inductive load) and lets the
machinedo the basework. The study of interactiveor heuristicmethodsthat are as automatecdas
possible can lead to useful or acceptable systems, even if they remain incomplete.

9. Conclusion

In this presentatiorof A-calculuswe have soughtwith insistenceto describeA-terms, at the
same time as programs, as codification of praoigas category-theoretionorphisms.Thatis, we
explainedand enrichedsyntax by semanticsand viceversa. By this, we underlined that the
"cognitive" aspectof Mathematicsare also presentin proofs, if notin a principalrole, but yet in
bridges,in correlationbetweendiversecontexts,wherethe informal suggestionfor instance that
allows to extenda languageby a constructioninspired by a model have a great practical and
gnoseologicalnterest.The proposalof new ideasand structures the formulation of conjectures
often are made possible thanksatreflexive equilibrium of theoriesthatintegrateand explaineach
othermutually and are developedand modified in interaction.The unity of mathematicdgs given,
not by a logical, linguistic or metaphysicalinity but by the relationsbetweentheoriesand diverse
languages. This is crucial, if we want to go further in automatizingas much as possible the
deductive processes as well as in foundational analysis.

Luckily, thetime is over for a ultimate and unique purely formal foundationof Mathematics,
which inventorsof A-calculusand CombinatoryLogic took as startingpoint in the Thirties. Only
extremeformalists and reductionistsare still pleasedby heavytotalling programs.Their efforts
sometimesare not useless,evven today, thanks to Computer Science,where pure minimal
computationsof signs can suggestmore languagesadaptedto machines.Furthermore,this is
exactly what is achieved by the examined systems: the formalist attttiggr origin hasfound an
application, on the one hand within the rigiditymachinesandit hasbeenenriched,on the other,
by its reencountewith mathematicaPlatonismor realism.In fact, this is the implicit or explicit
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vision of researchers who seeleaningin geometricand categoricalstructureswhile contributing
to the intertwining of meaning to which they refer to.

More in general,the formalist approachand the Platonismspreadin Mathematicsapparently
completely different, have @@mmonjustification and origin in the observatiorthat a mathematical
concept,leavingasidethe specific structurefrom whereit emergesacquiresa generalityand an
independence that renders it applicable to many structures. Logical computations of wépahkey:
of here,in their perfectlinguistic autonomy,that include provableconsistency(see8 3), are a
paradigmaticexample of independencegenerality and abstractionthat make us ‘forget’ the
structures that suggested them: algelifisout variablesfor CombinatoryLogic (Curry), the idea
of (effective) function foA-calculus(Church).Thenit was not trivial to re-construcimathematical
models that interprahe formalisationsthat havefinally beenreachedThesestructuresoranchout
into many connections and applications, often well beyond expectation.

It is necessary to underline, to this effébgtit is preciselythe generalityandthe independence
from specific meaningsthat is the origin of this generality and objectivity of Mathematics:the
importance of an idea and a theorem reside in their invariance by relation to linguistic notatmr
particularmathematicaktructures.The concretehistorical experienceof this invariancew. r. to a
plurality of practicaluniversespften asreal as countingwith numbers,is at the baseof formalist
foundationsor ontological visions in Mathematicsas we said. Both, eachin its own manner,
attributeuniversality and existenceto the pure, althoughvery refined, linguistic and geometrical
constructions of man, and are due to the mathematician's amazement whevitfateelgenerality
of these constructionseverthelessrisenfrom life andrealworld conceptualeconstructions.By
mathematics we made the (physical) world intelligible and, then, by an abuse, wietathedne
from the other.

One of our tasks today is to fix this formalism/Platonls@achandto surpasst, to understand
mathematicaproof not as pure formal calculuswithout meaningnor as a ‘vision’ of an external
reality to man, giverby conceptswithout conceptorslt is especiallynecessaryo analysethemas
conceptual constructions, rich with the plurality of human experiences, that ga froraly formal
calculusto the practiceof geometricalconstruction As a matterof fact, meaningis involved in a
non removableway in proofs: certain passagesre possibleonly due to referencedo logical or
geometricalstructuresich in meaningto us. It is thus that certainrecentincompletenessesults
point out a shift betweenformal principlesof proof and principles of geometricconstruction(see
Longo [1999a and ©001a]).Every analysisof proofs haswell to dealwith computationsput it
also needsto be reorganisedaround a new unity betweenformal symbols and meaningful
structures, wheréhe organisatiorof spaceandtime, with their symmetriesconnectivityetc. give
meaning,allow and structurethe proof itself (seeLongo [2001aand b] and Girard's program,
Girard [1997, 2001]).
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