
1

Proofs and Programs1

Giuseppe Longo

Département d'Informatique

CNRS - Ecole Normale Supérieure

http://www.di.ens.fr/users/longo

1 . Introduction.

In order for machines to do Mathematics what is required first of all is a language that describes

Mathematics in adequate terms for machines. This language has to be completely formalised and

without any semantic ambiguity. Computers cannot make operational choices as a function of the

meaning of a phrase, especially if it is uncertain or depends on the context, but only on analysing its

syntactic structure. Furthermore, the language has to be sufficiently simple, even if artificial, and

comprehensible by the human programmer.

There are two main approaches to making computers do Mathematics. On the one hand, the

studies of ‘computation’ systems, that is the study of languages and techniques that aid algebrists or

analysts in ‘calculating’ what would otherwise be arduous or out of reach for a human being. On

the other hand, the development of languages that replace or complement the logical and deductive

activity of a mathematician (automatic proof and symbolic calculus). In this exposition, we will

present, in a very informal manner, the second approach, with the particular point of view, which is

important or at least paradigmatic, of logical and functional computations that are grouped under the

name ‘λ−calculus’. We will especially see the linguistic aspect of the problem of elaborating a

language to perform deductions and manipulate symbols, and more generally to program in a

rigorous, modular and translatable manner. Indeed, the ability to conceive advanced languages and

reliable programs is the principal objective of the ‘relation’ we will describe, between machines and

mathematical proofs, and it is also the reason for this paper.

Let us observe to begin with, that if today the existence of machines encourages the development

of automatic proofs and of symbolic calculi, it can also be stated that the basic ideas for the

conception of modern computers is found in the study of proofs, as abstract human activity. The

notion of effective computation and languages of which we will speak dates from the twenties and

thirties, that is well in advance of numerical computers and formed an integral part of the Hilbertian

Proof Theory, that is of the project to formalise mathematical deduction, and answer Hilbert's

1 Synthese, Kluwer, Boston, 2002, to appear.

giuseppe
Textbox
Longo, G. (2004). Proofs and Programs. Synthese, 134(2), 85-117.

giuseppe
StrikeOut

giuseppe
Textbox
Longo, G. (2004). Proofs and Programs. Synthese, 134(2), 85-117.

2

fondational problem. The goal was to give rigor or logico-formal foundations to all mathematical

activities.

In spite of the failures of the Hilbert's initial project, the ideas of logicians and mathematicians

like Turing, Kleene, Church, Gödel, Herbrand... set the bases for Computer Science. Turing

Machines, later developed also by Von Neumann, have formed the paradigm of the first computers

and of languages known as imperative programming (based on orders like ‘do’, ‘go to’...). The

formal systems for computing we will talk about had above all an influence on functional

programming and logical programming, which are recent styles of programming and differ from the

imperative style. Moreover, they are linked even more directly to the developments of mathematical

logic since the ‘30s.

Mathematical logic, in its ‘metamathematical’ analysis aspect, has Mathematics themselves as its

object of study, its languages and its deductive methods, like geometry, to take a purely

mathematical discipline as an example, has as its object of study figures and structures of space.

One can therefore imagine rather artificial but convenient a three-level stratification, which has

organised, with the passing of this century, the ‘mathematical discourse’: the geometric-algebraic

structures, the mathematical theories which study them (algebra, geometry...) and, finally,

metatheories that deal with mathematical theories and where one may develop a ‘theory of proofs’

(one will also try to see the limits of this ‘organisation of mathematical discourse’). In other words,

from the point of view of computations and languages, linear algebra and analytic geometry, for

instance, study the expressions that represent lines on a plane or surfaces in space; λ−calculus, as a

language of Proof Theory, manipulates words or expressions that represent formal proofs. In fact,

expressions of this language codify abstract mathematical proofs and, therefore computations

carried out on them correspond to formal operations on proofs, rather than on the lines or on the

surfaces. The fact that λ-calculus is programmable, and that in fact it is a paradigmatic programming

language, allows to describe the passage from Proof Theory, as an abstract theory in mathematical

logic, to automated proofs and symbolic calculus, as mathematical methods in computing.

Although we will speak further on of Proof Theory, we will underline here the ‘constructivist’

approach in order to present ‘proofs as lambda-terms’ and study the computer version of

provability. While using λ−calculus, we will mention the role of Category Theory in the

mathematical semantics of deduction and of formal programming languages (see below). Indeed,

the results that link the different sectors of Mathematics and Computer Science place λ−calculus and

Combinatory Logic, an equivalent system, at the meeting point of vast sectors of Logic and their

applications, providing these theories with an importance that goes beyond their origins as a system

for calculability or effective provability. As we have said, the two theories, which have as a

common base the ‘algebraic calculus without variables’ of Shoenfinkel dating from the early

Twenties and that are owed to Church and Curry (1928-1936), essentially proposed to ‘formalise’

3

the notion of computable function or process and effective proof, to give them a mathematical

definition and to found Mathematics on the ‘unshakeable certainties’ of minimal symbolic systems.

The equivalence, due to Church, Turing and Kleene, with the other computation systems (recursive

functions and Turing machines in particular) provided a complete generalisation for these systems

as instruments for computation as early as the Thirties. During this time, it was λ−calculus that

played a central role in the proofs of these equivalence theorems: in fact it was proved that calculable

functions, in Turing's sense, are exactly those that are definable within λ−calculus and that these, in

turn, coincide with partial recursive functions (see Barendregt [1984]). The coincidence of the

expressive capacities of these diverse formal systems suggested to Turing and Church a working

hypothesis known as Church's Thesis: all intuitively calculable functions in a finite manner (a finite

number of instructions, a finite number of computation steps...) can be represented in one of the

mentioned systems and therefore, thanks to the equivalence, in all of them.

In the same way and till today, λ−calculus played a central role while becoming an important

medium, as we will try to establish, in the applications of Proof Theory and Category Theory to

Computer Science, and also a language for automatic proof, especially thanks to some of its recent

extensions, such as the Calculus of Constructions (see section 8). In general, automatic methods of

proof allow deduction of theorems within a logic system, and to synthesise both proofs and

theorems. In this paper, we will omit a fundamental aspect: the methods known as methods of

resolution and unification. The difficult technique of these methods renders their synthetic

presentation arduous; and furthermore, a glance over the other aspects of automatic elaboration

(symbolic calculus, functional programming and its mathematical semantics), more than the

deepening of specific techniques, allows for a better outline of the transfer of certain mechanical

tasks from the man to the machine, by treating them from the point of view of different forms of

mathematical knowledge.

In sections 2 and 3, we will present ‘types as propositions’, that is to say that we will study a

very simple logical calculus, whose system of proofs is a calculus of terms, the terms of

λ−calculus. The goal of this presentation isn't only to give a certain unity to these related topics, but

to produce a simple ‘semantic’, for both logical formulas and types. In fact, on one hand, the

logical meaning of types is certainly rich in information, particularly for the reader who is familiar

with propositional calculus. On the other hand, an interpretation of propositions and proofs as types

and terms (§ 4) can be of great use for the programmer who is accustomed to functional languages

but ignores logic. In other words, we will underline that the translation between diverse formalisms

is a ‘semantic’ itself. However, in chapter 5 we will study the most complex point of a true

‘mathematical semantic’ of a programming language, even if it is in a very limited frame, such as

that of λ−calculus. By mathematical semantic, we understand something more than a translation of

a language or formal system into another. In short, a formal sign calculus acquires a mathematical

meaning when basically different mathematical instruments, geometric or algebraic structures for

4

example, having an aim, and with independent techniques from the given calculus, provide an

interpretation or translation, within these structures, of these terms and formal operations. In

general, more of the mathematical structures proposed for interpretation are ‘culturally remote’ from

the formalism in question, more is the provided sense rich in information, because it establishes

unexpected bridges, and requires theories that unify. It needs to be said that the general study of the

semantics of programming languages rose greatly, specifically thanks to λ−calculus, from the work

of D. S. Scott in the Seventies.

Furthermore, this is a concrete experience in computing: an innovative mathematical meaning can

suggest extensions or variations in the language in question, inspired by the present constructions in

the models and not obtainable within the given formalism.

In chapters 6 and 7 we will study the polymorphism and its semantics, that is, the possibility for

a lambda-term or for a functional program to have numerous types or to prove proposition schemes.

Polymorphism is a paradigmatic form of modularity in programming, directly derived from higher

order logic.

Chapter 8 will be devoted to general methods and the limits of automatic proof. Conclusions, in

chapter 9, will provide the opportunity for a methodological reflection. The reader that solely

wishes to reflect on the ‘philosophical’ thesis of this article can go directly to chapters 8 and 9. The

real motivation of considerations that one finds, resides however in the notions and in the technical

results presented in the preceding sections.

2 . Natural Deduction and Terms.

The basic idea of natural deduction systems, to those that which we will refer, is the

formalisation of the notion of logical derivation, understood as the abstraction of mathematical

deduction. The minimum deductive step is given by the application of a rule of inference that
describes the deduction of a consequence, say C, from given premises, for example A1, A2, . . . ,

An:

C

AAA n 21 .

The rules can be composed vertically, that is, given the rules

€

A B
D

C
E

 D E
C

it is possible to compose them in a deduction (or deductive tree) of E over the hypotheses A, B, C,

in the following manner:

5

E

C
E

C

D

BA

.

A ‘tree’ represents a deduction formed from the vertical composition of several rules:

C

B

AAA n

:

:

 21

.

In this case one can use a fundamental notion, that of erasing. One erases hypothesis A from which

hypothesis B will be derived, if such a derivation is a premise in the deduction of the formula

A →B. In fact, the truth of A→B does not depend on that of A: it may be observed that A →B is

true, even when A is false (‘ex falso quodlibet’). Let us suppose for example to have deduced that if

it rains, then the weather is wet. In whatever formal language with an implication ‘ → ‘ this

metalinguistic deduction will have as a formal consequence ‘it rains → the weather is wet’.

However, such an implication is true even if it doesn't rain. One can hence omit or erase the

hypothesis ‘it rains’ in the deduction ‘it rains → the weather is wet’, since the formal implication

subsists in any case, independently from the hypothesis, and can be asserted with all truth, even on

a sunny day.

The minimum intuitionist system has as formulas, the atomic formulas, A, B, C, ... and the

implications between formulas, (A →B), and no others. This one is based, on terms of natural

deduction, only on two inference rules: the introduction rule, (→ I), where [A] indicates that A is

erased, and the elimination rule, (→E):

6

Introduction rule Elimination Rule

 [A]

 :

 B A A →B

(→ I) _______ (→E) ___________________

 A→B B

The reader will recognise in (→E) a classic ‘modus ponens’: if A and A imply B, then B. In (→ I),

A is erased, in the sense that we mention below, that is to say that it isn't a necessary hypothesis to

validate (A →B). The rule (→ I) transfers into the language of formulas the metalinguistic

deduction

€

A
B

 . That is, it asserts that from the deduction of B from A, the formula (A→B) can be

deduced.

A proof is a tree made of successive applications of rules of inference. The roots, that are at its

base, are the proved theorem. What will interest us more particularly are the metatheorems, that is,

the properties of deductive calculus or, more precisely, of calculus of the terms associated to the

theorems.

The constructive meaning of this minimal system, based solely on the implication, is given by

what is called Heyting-Kleene's interpretation: a proof of (A →B) is a procedure of calculus that

transforms every proof of A into a proof of B. We will see that the terms found in λ-calculus (λ-

terms) formalise this interpretation, they explicitly provide a calculus of proofs. In fact, c : C will

mean that the λ-term c is (the code of) an effective proof of the formula C.

Let us build a ‘language for proofs’aand its words (or terms). In other words, let us define the

λ-terms. In first place, the variables x, y, ... are the terms, and x : A means that x is an arbitrary

proof of A and that this one can be used in a hypothesis that can eventually be erased. Suppose then

that from an arbitrary proof x of A, that is, x : A, a proof b of B can be deduced, b : B (read b

proves B). Then, the rule (I→) gives A →B: in our calculus, one will denote λx : A.b the term

that proves A →B, that is (λx : A.b) : A →B. If on the other hand c : A →B and a : A, we will

write (c a) as the term that denotes the application of the proof of c to A →B to the proof a of A;

this, as we had said, is a proof of B, and thus ca : B.

The rules of inference thus define the λ-terms as being variables, x, y..., λ-abstraction (λx :

A.b) of a term b w.r. to an arbitrary variable x, and applications (ca) of a term c to a term a. We will

7

omit the parenthesis when there is no ambiguity. We can now rewrite the rules of introduction and

elimination as follows

(→ I)

[]

BAbAx

Bb

Ax

→:.:

:

:

:

λ
 (→E)

Bac

BAcAa

:

: : →
.

The rules clarify or give name to the transformations that will pass, for example, from a proof
bAxc .:λ≡ of BA → to the proof ()bAx .:λ a of B, for a : A, thanks to (→E). We will observe

that ‘λx : A’ is an abstraction operation that bounds the variable x in λx : A.b, which may occur free

in b, that is to say that it can appear without already being bound to b. In fact, (λx : ...) corresponds

to {x | ...} in set theory or to the integral ∫ dx . . . in analysis: the meaning or the value of the term,

the set or the integral, does not depend on the name of the variable, thus { x | P(x)} is equivalent to
{ y | P(y)}, ∫ dxxf)(to ∫ dyyf)(, as λx : A.b is identical to λy : A.b', provided that b' is

obtained from b when substituting y for x in the correct manner (we write []xyb ≡' b, and we will

equally say that x is renamed y in b).

We will use |– a : A to indicate the provability of a : A in this minimal system; the possible

undeleted hypotheses will be placed to the left of ‘|–’ : for example, x : A |– b : B. To simplify this,

we can omit the type A in the term (λx : A.b) : (A →B), and write λx.b. A result, mentioned

below, on the possibility to decide the affectation of a proof to a proposition will justify this

convention. We observe that the free variables in one term always depend on a hypothesis which is

not erased: λy.yz : (C→D) →D, for example, will be written instead of (λy : (C→D).yz) :

(C→D) →D, under the hypothesis z : C which is not erased. So as to not abuse the λ 's, we will

abbreviate λx.λy.λz.(...) as λxyz.(...). The interested reader can study and complete the two

examples that follow, by observing that those develop the proofs of two axioms of propositional

calculus and, at the same time construct the λ-terms that code the proofs. (Those intended axioms,

thus, need not be assumed : the introduction and elimination rules here are strong enough to derive

them).

2.1 Examples:

|– λxyz.xz(yz) : (A →(B →C)) → ((A →B) → (A →C));

|– λxy.x : A → (B →A).

Proof: the rules that are used are indicated to the side of the line of inference.

8

[] []
()E

Cyzxz

E
Byz

BAy Az
E

CBxz

CBAxAz

→
→

→
→

→
→→

:)(

)(
:

]:[]:[
)(

:

)(: :

€

λ
λ

λ

z xz yz A C
I

yz xz yz A B A C
I

xyz xz yz A B C A B A C
I

. ():
()

. ():() ()
()

. ():(()) (() ())
()

→ →

→ → → →

→ → → → → → →

We leave the second example, which is simpler, to the reader. ⊗

In the worked out example, the hypotheses are all erased in the last three deductive steps; in

particular, the third to last erases two occurrences of the hypothesis z : A. Let us note moreover that

the structure of the term λxyz.xz(yz) bi-univocally codes the tree of the proof of

))()(())((CABACBA →→→→→→ .

In fact, in a general manner, the order of the applications and the λ-abstractions corresponds

exactly to the order in which the rules (→E) and (→ I) have just been used.

2.2 Note: 1 (Combinatory Logic). The reader who is experienced in elementary logic will

have perceived that the two proven propositions in the example are exactly the two axioms of

(positive) propositional calculus, whose formulas do not contain but the implication and which only

uses the inference rule ‘Modus Ponens’, that we called (→E). Thus, by 2.1, with only the two

rules of inference (→E) and (→ I) and without any axioms, we have the possibility to deduce the
axioms of propositional calculus. Now let)(. yzxzxyzS λ≡ and xxyK .λ≡ be the two associated

terms as proofs of the two axioms in our inference system. And well, S and K are the two base

combinators, or constants that, with the sole application (ab), that is the rule (→E), constitute

Combinatory Logic. Reciprocally, a theorem of propositional calculus, the deduction theorem,

restores the rule (→ I), thus proving the logical equivalence between λ-calculus and Combinatory

Logic.

2. (Products). The minimal system can easily be widened with conjunctions or product logic.

The following rules introduce and eliminate the product, by associating them the terms which in this
case are equally formed by couples <... , ...> and the first and second projections, p1 and p2, in

addition to the applications and λ-abstractions.

BAba

BbAa
I

×><
×

:,

: :
)(

Acp

BAc
E

:)(

:
)(

1
1

×
×

Bcp

BAc
E

:)(

:
)(

2
2

×
×

9

Observe the constructive meaning of the introduction of the conjunction: the proof of the

conjunction of two formulas is constructed from proofs of each component. It needs to be observed

that, since there is no negation, the conjunction is not derivable from the implication.

3 . Calculus of Proofs and Terms.

A variable in a term can be instantiated by another term. For example, with the same notation as

the one used to rename variables, we write [a/z](xzx) ≡aza to instantiate x by a in xzx. In an

inductive manner: [a/x]x≡a; if x is not free in b (i.e. it is not bound by λ) or if it does not appear in

b, then [a/x]b≡b; finally, [a/x]λy.c≡λy.[a/x]c and [a/x](cd) ≡ ([a/x]c)([a/x]d). It also needs to be

supposed that, in λy.[a/x]c the variable y, does not appear to be free in a, otherwise it would be

bound in an improper manner to λ (we will say that a is independent for x in λy.c). This condition

is not restrictive: it only forces us to rename y, that appears bound in λy.c with a variable that is not

independent in a if necessary. Computation will essentially be based on the operation of substitution

of a term in the places of occurrence (which might be several) of an independent variable. Lets us

see from the beginning the logical meaning of the operation that needs to be formally introduced.

Consider the following proof:

Baby

AaBAby
E

:).(

: :.
)(

λ
λ →

→

Since x : A is an arbitrary or hypothetical proof of A and x can have an occurrence in b, the proof

(P.1) is simplified (is reduced) in the following manner:

a : A

(P.2)

[a/x]b : B.

The passage from proof P.1 to proof P.2 is known as the elimination of a cut and corresponds to

the following mathematical reasoning: if I know that from an arbitrary proof x of A I can always

deduce a proof b of B, then, in particular, I can deduce from a specific proof a of A, a specific

proof, [a/x]b of B. To be precise, the inverse reasoning is particularly pertinent and common in

Mathematics: to prove B from a specific proof of A, I may prove at the beginning a general lemma,

that assures me that, from each proof x of A, I can deduce a proof b of B, that is to say, I prove

that λx.b : A→B; hence, I obtain the particular case, [a/x]b : B, as an instance of a general case,

(λx.b)a : B. In conclusion, the general proof (λx.b)a, given by the lemma λx.b : A →B, is reduced

to the particular proof of [a/x]b. We write c > d to say that the term c is reduced to the term d.

10

3.1 Definition. 1 - λ-calculus (λβ>) is the calculus of the terms introduced above based on the

following axiom of reduction: bxaabx]/[).(>λ where a is independent of x in b (read substitute a

in place of all the free occurrences of x in b).

2 − λβη> calculus is obtained adding the following axiom: λx.cx > c provided x is not independent

in c.

The logical meaning of (η) is not as relevant as that of (β). It can on the other hand be used to

point out the functionality of the calculus we are defining. λx.cx is understood as a function that

depends explicitly on x, whose body of the definition is cx. Now if c does not contain x, apply the

function λx.cx or c directly to a term a, of the same type as x, it is the same thing: indeed, due to

(β), we have (λx.cx)a > ca. Then (η) reduces λx.cx to c.

The operational meaning of the symbol calculus that we present should be clear. The

fundamental axiom (β) is but a mechanical rule for rewriting: the symbol a is taken and rewritten or

put in place of all the free occurrences of x in b. It is copied n times if x appears n times in b (in fact

deleted, if n = 0). In accordance with observation 2.2.2, it becomes easy to widen the computation

of terms by means of logical conjunction: it simply needs to be described formally that the first and
second projections, p1 and p2 choose the first or second element of each couple and that the couples

are always obtained by coupling the first and second projections. The calculus is completed by a

rule that expresses the transitive character of the reduction and by the rules that thus guarantee the

possibility of the application of the axioms in the sub-terms (substitutability). Summarising what is

wanted is the following: if c > d, then λx.a(cb) > λx.a(db), in any context λx.a(-b).

3.2 Note (Theories of equality). An immediate extension of the theory of reduction that we

just presented is given by considering the equality between formulas as the minimum congruence

indicated by ‘>‘. That is to say, a > b implies a = b and ‘=’ is the minimal relation, thus created, that

is reflexive, symmetric, transitive and substitutive. λβη= is the theory of equality.

The fundamental notion is then the notion of normal form for the λ-terms. A term is in normal

form if it does not contain sub-terms of the form (λx.b)a, i.e. sub-terms to which the axiom (β)

can be applied. It has a normal form if it reduces to a term in normal form. We then have the typed

calculus for:

3.3 Theorem (Normalisation). Each term of λβ> has a normal form.

From the standpoint of natural deduction, a proof is a normal form when it does not contain the
application of the rule ()I→ followed by the application of the rule ()E→ , two rules that, when

followed by each other, introduce (λx.b) and (λx.b)a respectively. Therefore thanks to the bi-

11

univocal correspondence between terms and proofs, that was established by construction, the proof

of 3.3, carried out within the calculus of terms, provides a logical result for the intuitionist Proof

Theory: every proof can be reduced to another, without cuts, of the same assertion.

It needs to be observed that a term can contain several sub-terms to which (β) can be applied,

thus different chains of reduction can arise. However, the following theorem guarantees that they

are always confluent.

Theorem (Church-Rosser). If a term a of λβ> is reduced to b and c, then there exists d to

which b as well as c are reduced.

The two proofs require a few specifications (see Hindley & Seldin [1986]). They can easily be

extended, however, to computations with (η) and the projections for the product (see 2.2.2), since

these reductions do not interfere with (β).

Therefore, because of the perfect correspondence between terms and proofs, each proof, in the

corresponding deductive systems, has a canonical form, without cuts, by 3.3, and is itself unique in

view of 3.4. If in fact a term a is reduced to two normal forms b and c, those cannot be reduced

again, in particular don't have terms in common, they can't but be identical. This fact also

guarantees the non contradiction or consistency of the equation systems presented, where, in

absence of negation, by consistency we understand that not all equations are provable. In fact, 3.4

is equivalent to the following statement: cb = implies that there exists d such that b > d and c > d.

It is therefore not possible to deduce the equality of two distinct normal forms, say b and c, since,

once again, they cannot be reduced to a common d.

In conclusion, this constructive approach to Proof Theory suggests a language where the terms

code the proofs. The language can be written by a machine, implemented and manipulated

automatically, it suffices that the automaton applies axioms (β) and (η). We have thus presented at

the same time a language for mathematical proofs and a programming language where the programs

are λ-terms. On one side, in fact we are able to manipulate proofs as terms of λ-calculus; of

synthesising them from propositions and, inversely, to write the proven proposition from a term; on

the other, to carry out purely symbolic computations of terms without logical meaning. In the next

section we will examine these facts from the viewpoint of programming.

4 . Formulas as Types; Calculus without Types.

λ-calculus has acquired an important role in programming, especially thanks to the programming

language LISP (List Processing), which is very common in artificial intelligence and the language

ML (Meta Language) and its derivatives, see Mitchell [1993]. In fact, λ-calculus became a paradigm

12

for all languages that are referred to as functional or application languages, often obtained from this

calculus, solely thanks to extensions with constructions that make them more efficient from the

standpoint of programming. Functional languages are based on the writing of programs as

functions to be applied to arguments (λx.b that is functionally applied to a and reduced to [a/x]b)

instead of sets of orders (the ‘do's’, ‘go to's’ of imperative language programming). The

manipulation is purely symbolical, it does not deal with meaning, a priori: as we have explained, the

base axioms formalise the very simple operations of deletion and copy of symbols.

From the programming point of view, the λ-terms are programmed and the propositions (A, B,

(A →B)...), that we have considered as the proven formulas by the λ-terms are called types of

programs, taking in this a concept developed by Russell. Intuitively, a type is a set of terms; in the

terminology of Physics, this can be understood as the ‘dimension’ of an expression: in f = ma, in

Mechanics, the expressions that have two members have the ‘type’ of a force. Obviously not all

formulas are propositions: only the formulas that have a proof are. Consider, say, A →B and A →
(B →A): only the second formula is provable and the proof is coded as xxyK .λ≡ . We will thus

call inhabited a type that is a proposition, that is to say, that, as a formula, it has a proof coded by

terms without free variables. According to what we saw, the type of a term, without a free variable

or that has an explicitly typed variable is unique, while a type can contain several terms even if they

are all in normal form (a theorem can have many proofs). This corresponds to practical intuition,

that a type of program can contain numerous programs: if, for instance, Int is the type (the set) of

integers, Int → Int contains all the programs from the integers with an integer value. The types of

computations presented until now are called simple and, as we have seen, correspond to the

formulas (and propositions) of a positive propositional calculus.

However it still needs to be mentioned that λ-calculus as well as LISP, as programming

languages, were conceived without type. In fact, if we only consider the terms that admit types, the

definable mathematical functions are far from numerous: it is due to this that we talk of the

extensions of λ-calculus with variable types in § 5. For us who started with the correspondence

between λ-calculus and logic, it is possible to come back to a calculus without types, simply

rereading the rules of good formation of terms without any information or restriction of type. Then,

the application (ab) is authorised for each a and b, a = b inclusive, without the restrictions imposed

by the hypotheses in the rule (→E). Evidently, we cannot attribute a type to all the terms: precisely,

xx is a term of the type-free (or untyped) calculus, while it isn't in the calculus with types, since in

the rule (→E)'s hypothesis it cannot be that x has a type A and, at the same time, a type A →B, as

should be necessary to apply x to itself. The reduction axioms (β) and (η) are identical. However,

for the calculus without types, the normalisation theorem (3.3) is not valid. It can be seen
immediately that for example the term).)(.(xxxxxxo λλ= does not have normal form: it reduces to

itself indefinitely. It is worthwhile to note the analogy between λx.xx and the non founded set

{ }xxx ∈| , which is complementary to the paradoxical set, that suggested to Russell the paradox for

13

Frege's system and the introduction of a Theory Types for set theory: it suffices to substitute the set
abstraction { }. . .|x with the abstraction λx... and the self-belonging xx ∈ with the self-application

xx. The non convergence of).)(.(xxxxxxo λλ= , a ‘negative’ fact, if you wish, is in reality linked to

the whole expressiveness of computations in a calculus without types. In fact, a variant of o is of

great interest. Consider θ ≡ λy.(λx.y(xx))(λx.y(xx)) (like in LISP, the parentheses are very

important!). Then, in terms of equality and of applying three times axiom (β), one obtains

θa = [a/y](λx.y(xx))(λx.y(xx)) ≡ (λx.a(xx))(λx.a(xx))

= a(λx.a(xx)(λx.a(xx))) = a(θa)

This result is very important, as it ensures that for each term a we can find a fixed point θa , i.e. an

term such that θa = a(θa). Moreover, the fixed point is provided in a uniform and effective manner,

in other words, inside the language, thanks to the term θ. From this we can deduce the

representability, in λ-calculus without types, of all the partial recursive functions, that we

mentioned in the introduction. These precisely are defined by recursive equations, where the

equations with a fixed point are a generalised version: type-free λ-calculus computes all of them, by

solving the defining equations in a uniform and effective manner.

However, having lost all relation to logic (the terms do not necessarily code the proofs, given

that they may be type-free) the problem that arises is that of consistency of reduction or equation

theory, they have been defined exactly in the same way as experienced in the calculus with types,

thus leaving aside all restrictions of type in the formulation of the axioms (β) and (η). Again, in

absence of negation, consistency is expressed in terms of non provability... of all the equations

between the terms. The Church-Rosser theorem (see 3.4), which subsists as well for the λβη
calculus without types, guarantees the fact that the equations are not all deducible: like in the case

with types, thus it is not possible to deduce the equality of distinct normal forms.

As we have already said, terms in normal form are quite important. The normalisation theorem is

the fundamental application of calculus with types in logic, especially important in the case, that we

will mention in chapter 6, of higher order logic. In the calculus without types, the terms with a

normal form represent the computations that end; certain authors, and from the start Church and

Böhm considered endowed with meaning only these terms (we shall return to the notion of

‘meaning’, not only in computations but when speaking of models). In that case, because of a result

due to Böhm [1968] (see also Barendregt [1984]) it is not possible to make equal two different
computations that end. More precisely, if: a and b possess different normal forms,)(ba =+λβ is

not consistent. Böhm's theorem also ensures that no calculus of symbols, that is an extension of λ-

calculus, can be ambiguous on the computations that end: if they can be expressed in the λ-calculus,

we cannot confuse them with each other. From the semantic point of view, Böhm's theorem is a

result of "relative compliteness", relative to normal forms: once that an arbitrary model of calculus

without types is fixed (see § 5), an equality between normal forms is true if and only if it can be

proven.

14

Another result, that is extremely interesting for programming, that links non typed calculus with

typed calculus, is the following: one can decide if a term with type is well typed, and also if a non

typed term can be assigned a type (Hindley-Milner algorithm, see Hindley & Seldin [1986]). Said

in other words, given a functional program, or a freely written term, without paying attention to

types, an automatic type-checker can determine if the program is well typed or if it can admit types.

Remember the analogy we have mentioned, between the notion of type in programming and

dimension in Physics: the type checking algorithm for the functional programs can be compared,

due to its nature and practical side, to the dimensional control of equations in Physics. It is known

that general algorithms for the control of the exactitude of programs are not possible (Rice's

theorem), that is, it is proven in general that it is not possible to effectively control whether a

program calculates the function that it is going to implement. Types then provide an effective tool to

partially control the correction of programs, completely analogous to ‘dimensional control’ in

Physics: given an equation in Physics, one calculates, one develops, and at the end one verifies that

to the left one finds a force (an energy ...), then to the right one also has to find a force (an energy

...), if the computation is correct. In this case it is also about partial control: in no case does the

dimension control ensure the exactitude of the computations made. The same is true for the control

of types in a program. However, almost all computation errors in an equation in Physics, or in the

implementation of a program, are revealed by a dimensional errors or a type errors. The type

checking algorithm is in fact the heart of programming languages of the kind ML: in fact it is

divided into a control for the ‘typability’ and a type assignement algorithm, based on the logical

inference rule in § 1.

Let us summarize finally the relation between terms and types from the view point of logic. In

short, the affectation of a type to a program is the proof of a proposition, that is, its type. The

association of a term to a type is the synthesis of a proof, that coded by the term.

5 . Semantics.

Formalisation of the types and terms presented up to now already has an interpretation: types as

propositions, terms as proofs (or vice versa). Let us reflect now on the possibility of a mathematical

meaning, non formal or by a purely sign calculus, for the introduced rules and terms. It is desirable

to make room for this aspect, apparently not important for the mechanic elaboration, for at least two

reasons. Abstract logic formalisms can be adapted to machines that elaborate without ‘giving

meaning’, but that are often hostile to human intelligence. Comprehension of a logic system,

whether it be essential or minimal in the formal parts, improves if it is immersed in mathematical

structures, not necessarily constructive nor elementary, but based on known experiences of

conceptual synthesis or non formal intuition of space-time. Lastly, the role played by λ-calculus in

15

Computer Science, as a symbolic manipulator and language that describes mathematical functions,

is also due to the study of semantics of programming languages that it itself inspired.

We will remember that the two inference rules of λ-calculus, (→ I) and (→E), have very precise

roles. The first one "introduced" the metalinguistic deduction from A to B, into the language as a

formal implication ‘A →B, as well as the terms that code it. This passage is essential for a

formal/linguistic treatment of logic as metamathematics: its object of study is mathematical proof and

it may give a rigorous linguistic form to deduction in Mathematics, which is often informal, always

metalinguistic, of an assertion in a specific language or mathematical theory (the language or theory

of groups, of topological spaces...). The other rule, (→E), codes with the terms of λ-calculus the

classic ‘modus ponens’ underlining its functional character, as already described by Heyting-

Kleene's interpretation. That is to say that the intuitive meaning of A →B is that of being a set of

effective functions or procedures that transform the elements (proofs) of A into elements (proofs) of

B.

In order to give a rigorous mathematical meaning to this intuitive meaning of syntax, we recall

the mathematical definition of category as a collection of objects, A, B,... and morphisms between
objects, f, g,... Morphisms include the identity idA for each object A and are closed by

composition, gf o ; associativeness)()(hgfhgf oooo = and the identity properties foid = f and

id og = g, complete the definition (see Asperti & Longo [1991]). The category of sets (without

structure) with classic functions between sets like morphisms, the category of groups with

homomorphisms between groups like morphisms and that of topological spaces, with continuous

functions as morphisms, are the common examples of categories. In fact, a category is often a

collection of ‘structured sets’ where the structural properties are described by sets, which are not

necessarily structured, of morphisms between each pair of objects. The reader, even if

inexperienced can understand in an intuitive manner, that the notion, be it explicit or implicit, of

category is fundamental in Mathematics.

We understand thus our formal symbols and logical computations by interpreting types as

objects and terms as appropriate category morphisms. However, in general the space of morphisms

between two objects of a category is a collection or a set ‘outside’ the category, in other words, as

we have said, it is not necessarily structured as the objects of the category in question, exactly like

the deduction of mathematical and metalinguistic practice is outside the theory or the mathematical

language object of this study. The necessity to correlate the two notions is clearly suggested by the

Heyting-Kleene interpretation of the type A →B as a collection of morphisms of A in B, see § 2.

Then, to give a mathematical meaning to the rule (→ I), that brings metalinguistic deduction inside

the language, it should be necessary to find categories in which the notion of collection of

morphisms between two objects can be internalised, that is, that it can be seen as an object of the

given category. In other words, if A and B are objects of the category C, it will also be needed that

16

C[A,B], the set of morphisms of A in B, be it (represented by) an object of the same category, the

exponent of A in B, that we define by BA or A →B. In the case of the category of sets (without

structure), it is clear that the notion of morphisms space is immediately internalised: the set of

functions between two sets is a set, that is, an object of the category. This is not the case of the

other two examples in which the objects are sets with structure: in general, homomorphisms

between two groups do not form a group. When dealing with topological spaces, even if the set of

continuous functions between two topological spaces can be given a topological structure, it is not

always the case that it itself has the necessary property to define exponents in a sufficiently

expressive manner so as to interpret the types as objects and the terms of the λ-calculus as

morphisms. One observes in the first place that a λ-abstraction allows the formation of a function of

more arguments, by ‘an argument at a time’: given a term a : A, that may contain two free variables

x : B and y : C, the term λx : C.(λy : B.a) : (C→(B →A)) has the meaning of a function that on

taking an argument in C gives as a result a function λy : B.a in (B →A). But the two free variables

in a, equally give a : A the meaning of a function of two arguments:
() ()ABCaBCyx →××>< :.:,λ , provided that we have some notion of product in the category

of meanings. But this is easy: the Cartesian product of two sets is a set and the same holds as for

groups and topological spaces. The categorical generalisation of the idea of Cartesian product as a

(structured) set of couples of two (structured) sets is simple and we send the reader to the existing

literature or cited text for details. The difficulty lays precisely in the following fundamental

operation of λ-calculus called ‘currying’ (due to H. B. Curry, see Hindley & Seldin [1980]): a

function of several arguments can be defined in an equivalent manner by the abstraction of an

argument each time. For example, it would be necessary, so that topological spaces provide an

interpretation, that a continuous function be considered such, knowing only that it is so w.r. to each

argument; it is known on the contrary that, in topology, there exist functions of several variables,

continuous in relation to each argument, but not globally continuous, that is not continuous in the

topology of the product space. The reader that is familiar with elementary continuous functions on

product spaces and that knows that continuity cannot be proved variable by variable, has

understood the real mathematical meaning of λ-abstraction and its expressive power: if endowed

with great inventiveness or mathematical experience, he/she can construct the class of categories that

can provide a rigourous semantic to this peculiar phenomenon. Let us now present them explicitly,

for convenience of the readers.

The property required by a category to interpret λ-calculus is to be Cartesian Closed, that is to

have all products C×B and an isomorphism (uniformly internal to the category or natural, see

Asperti & Longo [1991]) between (C→ (B →A)) and (C×B →A), for all C, B and A, objects of

the category. For different reasons, as we have said, groups and topological spaces do not have this

property. Again, the category of sets comes to our rescue: this isomorphism is trivial between sets.

17

However, in the semantics of λ-calculus it is necessary to go beyond the simple category of

unstructured sets. From the start, as λ-calculus is also a paradigm for functional programming and,

if we want to write sufficiently expressive programs with a calculus with simple types, it is

necessary to understand it to have the possibility to give recursive definitions of functions. Those,

as we have said in § 4, are the ones that are definable in the calculus without types (and thus in the

programming language LISP and its dialects). They must be added in the case of languages with

types like the language ML. In fact we remember that a recursive definition of a term or a function f

is given when this one is the solution of an equation x = a(x), or well when f is a fixed point of a, §

4. For example, the factorial function fact can be defined as follows, by an equation:

fact (n) = if n = 0 then 1, otherwise n· fact (n – 1).

Now, while supposing to have coded our metalanguage in λ-calculus, that is our (if ... then ...)

and in allowing some abuse of the language, the term .xya λ= (if y = 0 then 1, otherwise y·x(y–1))

has as a fixed point the factorial since fact = a fact . According to what we observed in § 4 on the

calculus without types, by taking fact = θa one mechanically obtains the solution. Moreover, if one

finds a mathematical semantic of typed calculus in which there exists an operator, a functional, with

the properties of θ, this would justify and also guarantee the logical consistency of the extension of

this calculus with a term having θ 's property. We are interested, in second place, in a more

structured category than that of sets because we want to find in it a model of the calculus without

types. In the end this isn't ‘but a particular case’ of calculus with types: it is the same calculus

without the restrictions of types or, if one wants, it is a calculus with a single ‘universal’ type. It

should be necessary, to give meaning, to find a structure with a ‘universal’ type in the sense that it

must contain all the functions on the proper elements; then, each term could be applied to every

other term, and in particular to itself. However, no set can ‘contain’ the set of functions defined on

it, except a set composed of a single element or the trivial set. In fact, a classic Cantor result ensures

that the set of functions on a non trivial set is strictly larger, in terms of cardinality, than the given

set. We will find, and it is not easy, a non trivial topological space in which one can isomorphically

immerse the space of endomorphisms (morphisms of an object on itself).

With this double goal in mind, the recursion for terms with types and a model for the calculus

without types, we will construct a subcategory of the category of topological spaces that are

Cartesian Closed and that have fixed points for every endomorphism. Furthermore, it will contain a

universal object, in which, in particular, its own endomorphisms can be immersed. The

construction demands certain mathematical attention.

Let us take a partially ordered set (A, ≤), a subset D of A is called directed if every pair of
elements of D admits an upper bound in D (that is: Dyx ∈∀ , (for all x and y in D) D∈∃z (there

18

exists z in D) x≤z & y≤z). Now let A = (A, A0, ≤) be a partially ordered set and A0 a subset of

A; A is a Scott space (S-space) if the following conditions are satisfied.

1. every directed set D admits a least upper bound, sup D, in A;

2. A has a least element, lets say ∇ ;

3. for every x and y in A, if x/ ≤y (x is not inferior or equal to y), there exists z0 in A0 such

that z0≤x and z0/≤y (A0 separates elements in A);

4. for every x0 and y0 in A0, if x0 and y0 have an upper bound in A, then they have a least

upper bound z0 = sup {x0, y0} in A0.

The reader that knows some Geometry can observe that each S-space A can be endowed a

topological structure, given by the order, that has as base elements {z∈A: x0≤z} for x0 in A0, and

the empty set. In such a topology, the continuous functions between two S-spaces are all monotone

(non decreasing), that is, they preserve order and, in particular, when applied to a directed set the

result is a directed set. Moreover, if f is continuous and D is directed the f (sup D) = sup f (D).

An interesting example of an S-space is constituted by the set of subsets, PB, of an arbitrary

infinite set B. It suffices to take the inclusion between sets as a partial order, the collection of finite

sets as subsets PB0 of PB, so that PB = (PB, PB0, ⊆) satisfies (1-4), with the empty set as least

element.

One can now verify that the category of S-spaces is Cartesian Closed. Thus, a function with

more than one argument is continuous if it is continuous in each argument. The Cartesian closure

guarantees the possibility to interpret types as S-spaces. The interpretation of λ-terms as morphisms

is an easy induction over the structure of the terms themselves: each variable of type A is a

morphism of the trivial space {o}, with a single element, in the interpretation of A; the abstraction

λx : A.b : A →B defines a morphism of the interpretation of A into that of B; the formal application

cd, for c : A→B and d : A, is the functional application of c to d.

The other property of the construction that interests us is that the objects of the category are

topological spaces that also are complete partial orders which is exactly what is required in the

hypothesis (1). It is now possible to use a construction due to Knaster and Tarski to construct

minimum fixed points of monotone functions. If f is any continuous function, and thus monotone,
of an S-space A into A , then the chain ...,))(()()(2 ≤∇=∇≤∇≤∇ ffff as a directed set, admits a

least upper bound, sup)(∇nf . Indeed, as f is continuous, f (supn)(∇nf) = supn f ()(∇nf) =

supn)(∇nf ; furthermore, supn)(∇nf is the minimum fixed point of f. Thus, the functional Θ (f)

= supn)(∇nf , that associates to each endomorphism f of the category its minimum fixed point,

provides an interpretation for a recursion operator θ of λ-calculus with types.

19

In conclusion, we have constructed a mathematical model of the calculus with types and

operators of fixed points. The instruments used are taken from elementary Geometry and are all

independent of λ-calculus.

 It is now necessary for us to find, in the category of S-spaces, a model for the calculus without

types, in which the terms can be at the same time functions and arguments of functions. To be able

to do this it is necessary to construct an object that contains or into which the spaces of its

endomorphisms (functions are elements) can be immersed and such that each element defines an

endomorphism (elements are functions). Recall that the power set of an infinite set is an S-space

and consider the familiar power set PN , of the set N of natural numbers. The proof that the order

and topological structure of PN, as an S-space, has the desired qualities is rather technical and uses

the property of integer numbers; in particular, the possibility to code pairs and finite sets with

numbers (see Scott [1976]). Thus, every function is an element of PN and, conversely, every

a∈PN can be applied, as a function, to each element b∈PN: the application ab between arbitrary

elements of PN gives a meaning to the formal application between arbitrary terms, without type

restriction, as it is defined in the type-free calculus.

The above mentioned construction completes the semantics of λ-calculus with and without

types, while giving a mathematical meaning to abstract symbol manipulations, such that the

internalisation of the metalinguistic application, λ-abstraction, the auto-applicability of a term to

itself. The autonomy of the used topological structure from the syntax has been underlined not only

for epistemological reasons, linked to the notion of meaning as translation, all the more filled with

information than the possibility to correlate the different universes, but also for practical reasons. As

we said in the introduction, the issue that we study is not only a particular case of mathematical

research in Computer Science; in fact, the semantics of λ-calculus has had a paradigmatic role in the

manner in which research activity is carried out in the semantics of programming languages. In

certain cases, the meaning of geometric or algebraic structures has suggested variants or extensions

to programming languages (the ML dialect CAML, the extensions of the prototype language Quest

... and much more). Sometimes, the obscure programming constructions, which are barely clear for

the author himself, become intelligible, and are improved if needed. The effort to immerse

languages and programs in solid mathematical models has certainly (and at least) contributed to an

important improvement of the presentation style of many of them. It is certain that in recent years

some programming manuals have become readable, or almost readable, thanks to the increasing

influence of a mathematical style that encourages, at the same time, rigor generality and search for

meaning.

6 . Polymorphism

20

At the end of § 4 we said that given a term without types, is ‘decidable’ if it can be assigned a

type. This type however, is not necessarily unique: the identity λx.x, for example has type A →A

for all types A. That is, it has a scheme of type, denoted usually by metavariables of type: X →X .

The Hindely-Milner type assignement algorithm (§ 4), implemented in ML, gives to each term, if it

has it, the most general scheme for which all other scheme or type of the term in question is a

particular instance. For example, λx.x also has the scheme (Y→Y) → (Y→Y), a particular of

X →X. The notion of type scheme is completely analogous to that of axiom schemes in logic. To

return to the examples given in 2.1, λxy.x has a type scheme (the most general) X → (Y→X) and

this is one of the two axiom schemes of positive propositional calculus of which we talked about in

2.2.1

Thus, briefly, terms without types, when they can be given a type, are polymorphic, because

they have type schemes and thus usually more types, contrary to what we saw in § 2 and 3 when

dealing with terms with types. The languages of the class ML are polymorphic exactly in this sense.

From the point of view of logic, the programs are the proofs of schemes of propositions.

In the implicit polymorphism, ML style, quantification by relation of variables of type is

metalinguistic and only external to type schemes. Recall now the elementary or intuitive meaning of

types as sets or, more formally, as objects of a category. Explicit quantification, within the

language, on variables of sets or objects of a category is on the contrary at the base of second order

systems, where sets or objects of categories are quantified. In particular, it is at the base of

Analysis, interpreted as a second order arithmetic, since real numbers are sets of integer numbers.

Second order λ-calculus, λβη2 (the F system of Girard in 1971, see Girard [1989]), is obtained

when adding quantification by relation to the variables of type. Before speaking of explicit

polymorphism we observe that the polymorphism of a program can be seen as an invariance

property by relation to types as structures. That is, the program λx.x, that calculates the identity, or

λxy.x, which calculates a constant function in the first argument, are invariant by relation to each

domain of arguments.

The reading of the end of this paragraph (and its semantics in § 7) requires certain attention,

although, formally it only supposes instruments already introduced. Higher order logics are based

in fact on an ulterior mathematical abstraction.

The types of λβη2 are obtained while extending those of λβη= with variables of type, X, Y, …

and with universally quantified types, ATpX .:∀ where Tp is the collection of types (read for all

X, A is valid, where it can appear X in A); the terms are also constructed from abstraction with
relation to type variables, aTpX .:λ , and the application of terms to types, bA. The rules that are

introduced by the new types and terms are the following:

21

(*)
).:(:).:(

:

:

]:[

)(
BTpXbTpX

Bb

TPX

I
∀λ

∀

BXAbA
TpABTpXb

E
]/[:)(

:).:(:
)(

∀
∀

(*) in b no free variables has the type which depends on X.

The first rule forms functions from the collection of types to terms. The second states that a term b

can be (functionally) applied to a type A and give a term bA within type B where it substitutes A in

X .

The axioms that need to be added to (β) and (η) in § 3 are the following (observe that they are

the second order version):

)(β∀ bXAAbTpX]/[).:(=λ with A free of X in b

)(η∀ :).:(aaXTpX =λ with X not free in a.

For example, (λX : Tp.λx : X.x) : (∀ X .X →X) is the second order identity or explicitly

polymorph; λX : Tp.(λY : Tp.(λx : X.λy : Y.x))of type ∀ X ∀ Y.X →(Y→X) is the function that

is explicitly polymorph and constant in the second argument. Applying the first to a type A one

obtains (λX : Tp.λx : X.x)A = λx : A.x, the identity of type A →A. In an analogous fashion for

(λX : Tp.(λY : Tp.(λx : X.λy : Y.x)))AB : (A →(B →A)).

The types inhabited are exactly the theorems of what we call second order propositional calculus,

which is the subjacent logic system of Analysis, as second order Arithmetic (real numbers are sets

of integer numbers, this is why we need the quantification over sets). In addition, one can

understand the Computer Science side shown in this passing to a second order: types are

‘automatically updated’ since terms can take types as arguments. That is to say, types are dealt with

within the language or manipulated by a formal calculus feasible for a machine, instead of being

handled outside the language in a metalinguistic manner.

Observe that the theory of types of λβη2 is essentially impredicative (or non predicative). In

other words, while stating that ATpX .:∀ is a type, formally (ATpX .:∀) : Tp, one defines an

element of the collection of types, Tp, and this is done by quantifying on the collection Tp itself
(note that the defined type ATpX .:∀ contains the quantification TpX :∀ .) Such definitions are

commonplace in Analysis, or Topology: for instance, when one defines a set as the intersection of a

22

collection of sets that may include the set that is being defined (least upper or greatest lower bounds,

Lebesgue measure, …). The impredicativeness of types is at the base of the expressiveness of the

language and constitutes a non negligible logical or semantical challenge. However, even for λβη2,

the normalisation and Church-Rosser theorems are valid, stated as done so in 3.3 and 3.4; the

proof, of the first in particular, is rather complex by the impossibility of stratifying the formulas and

using any form of induction, due to the implicit circularity in the impredicative definition of types

(Girard [1989], see Hindley & Seldin [1986). By means of the analogy between types and

propositions (belonging to the second order, now), the normalisation and Church-Rosser theorems

prove the results of ‘elimination of cuts’ and ‘uniqueness of canonical proofs (or normal form)’ for

second order systems, like we observed for propositional calculus in § 3. Moreover, these results

guarantee the logical consistency of calculus of types and equation calculus, confirming the

robustness of impredicative constructions that are at the base of Analysis as second order

Arithmetic. The relation with this last theory is shown by the theorem that characterises the

expressiveness of calculus. Because of the normalisation theorem it may be shown that the

representable functions are all total (always convergent). In fact, the computable functions in λβη2

are exactly the recursive functions that can be proved total in second order Arithmetic (Girard Lafont

Taylor [1986]). Such a set of functions is much larger than that of recursive primitive functions and

it largely includes all total functions which one can need for practical computing. However, current

experimental programming languages based on explicit polymorphism extend λβη2 with fixed

point operators or recursive operators. Then, the normalisation theorem is not valid anymore and

the correspondence between programs and proofs is lost; however, the effectiveness of recursion,

as an instrument to define functions, allows a greater simplicity for programming.

7 . Semantics of Polymorphism

The mathematical meaning of polymorphism is relatively simple in the case of implicit

polymorphism: it is only needed to correlate the meaning of terms without type to their version

when assigned types. Consider thus the model P N = (PN, PN0, ⊆) of calculus without types

mentioned at the end of § 5 and recall that in it every element a∈PN is an endomorphism and vice

versa: ab interprets the functional application between terms, considered as elements of the model.

To interpret types, construct the category PER of partial relations of equivalence on P N in the

following manner. Objects are partial equivalence relations, A, B… on PN (subsets of the product

PN × PN , which are symmetric and transitive, but need not be reflexive: elements need not be

correlated to themselves). PER is Cartesian Closed. The base construction to verify it is quickly

given: the internalisation of the morphism space between two objects A and B is the partial

equivalence relation A →B such that (d,d')∈(A →B) if and only if, for all (a,a') ∈A, (da,d'a')

∈B; in other words, d and d' are equivalent in A→B if they transfom equivalent elements of A into

equivalent elements of B. It is precisely this construction of the internal space of morphisms that

leads to choose partial relations: take an arbitrary d and a rather small relation target B, then, d does

23

not associate all equivalent elements in A to equivalent elements in B. Thus, it is not generally the

case that (d,d)∈(A →B), in other words, not all d is equivalent to itself in A →B. In PER the

affectation of types to terms without type has the following meaning: if a term c is formally given a

type C, then the interpretation in PN of c, as a term without type, is equivalent to itself in the

interpretation of type C as a partial relation of equivalence. Since this is true for each interpretation

of free variables in c with elements in PN and variables (of type) free in C with objects of PER, we

have given a correct meaning to polymorphism: every term, seen as an element of PN , has many

relations, and in particular all those that interpret its formal types. One also succeeds in showing the

interpretation of a term without type in the equivalence class of its interpretation as a term to which

all the types are given. This completes the semantic correlation between terms, types, calculus

without types and the assignement of type schemes.

To move on to explicit polymorphism, recall that it is based on a impredicative theory of types, a
theory in which the type ATpX .:∀ is obtained quantifying on the collection of all types. The

general mathematical meaning, in fact categorical, of this construction is not obvious. In the first
place, it is a question of interpreting the universal quantification TpX :∀ as an indexed (or

generalised) product. In fact, for the rule (E∀), if a: ATpX .:∀ , then aB : [B/X]A; in other

words, the term a is interpreted as a function that, taking (the interpretation of) a type B as

argument, gives a result (the interpretation of) in a type A in which B is substituted for the variable

X. This is precisely the intuitive definition of n product indexed by an arbitrary set, an idea that

generalises the ordinary product between sets: a Cartesian product is a product indexed by a finite

set. The difficulty lays in finding a category that is closed w. r. to a product indexed over the

category itself: in fact, if the collection Tp of types is interpreted by the collection of objects of a
category, ATpX .:∀ has to be interpreted as a product indexed over the category and also has to be

an object of the category. The reader must pay attention to the strong reflexiveness or strong

property of closure that we require; its rigorous understanding is a typical and beautiful side of

Mathematics in which the geometrical and categorical instruments give meaning to symbols that
otherwise would not be but a game of signs: we can obviously write (ATpX .:∀) : Tp, with Tp,

the definiendum that appears in the definiens, it is here that it is interesting to comprehend if we

mean something. Many indeed find this writing unacceptably circular, in spite of the important

syntactic results of normalisation and Church-Rosser that have been cited. The construction of a

sound mathematical model makes it acceptable.

Briefly, the category PER has the desired property of closure. To fully prove this however, it is

necessary to immerse PER into a larger context, one in which a product indexed by PER itself can

be defined. The idea is to find a category in which one can immerse PER as a subcategory, and at

the same time, as an object on which the product can be defined. The answer is given thanks to an

appropriate topos. These are categories with strong closure properties and provide models of

intuitionist set theory. In a particular topos, said to be ‘effective’ and built in generalising the

24

construction of the category PER, one can define the product indexed by PER, considered as an
object of the topos itself. The result, say)(PER AFA∈∏ , is not only an object of the topos but of

PER, which is also a subcategory of the topos. In other words, ()(PER AFA∈∏), the product

indexed over PER, is an object of PER, as a (sub-)category. In carrying out the construction step

by step, one ‘understands’, mathematically, what an obscure impredicative formal definition can

mean (see Asperti & Longo [1991]). In particular, the relations or sets of subsets of natural

numbers, the objects of PER, are defined and understood independently of the product in question;

thus the circularity in the syntax of the collection of types, Tp, defined while listing between the

types also those obtained by the products indexed by the collection itself (or quantifications:
ATpX .:∀), is reduced to proving a closure property of a predefined mathematical structure. Since

this semantics is based on geometrical categories (the topos have their origin in Algebraic

Geometry), that can as well provide an interpretation to intuitionist set theory, we have in a certain

sense closed the scope of our understanding. We started from a formal propositional calculus and

from terms of the intuitionist propositional calculus, both simple and second order calculi, in

passing by topological and order structures, the relations on natural numbers, quotient spaces, etc…

we have given an interpretation to apparently circular formalisms and found an independent link to

other aspects of logic, and intuitionist set theory. The thus established unity between different

theories gives a meaning, and adds to the comprehension, of each of them; it shows the proofs as

programs, morphisms, calculable functions, while proposing a rigorous mathematical frame for

programming in machines. This is only one possible semantic construction, but, as a side effect, it

also helps to enrich the empirical methodology of programming: the untranslatable, non

generalisable, ‘ad hoc’ solutions that are only understandable by the programmer, which are

sources of mistakes, are "understood" in a unified manner, and in a uniform mathematical style.

8 . Automatic Proof

We started this presentation by underlining the role of λ-calculus as a language for proofs: each

term of the calculus with types is the coding of a proof and its reduction in normal form leads to a

canonical or ‘minimum’ proof of the proposition corresponding to its type. Moreover, if a term

without types admits a simple type, the assignement of a type to a term and its reduction to normal

form can be done in an automatic way. They are thus the instruments for automatic proof, and in

particular for the proofs of program properties. In fact, it is a program property to admit types or

not; but not only this, a type is in reality a specification or a way to specify a program. While saying

that a program goes from integers to booleans, one specifies a property that partially contributes to

define it. In certain cases, the type can univocally determine the program: there exists only one
program, that is understood as a term without free variables and that has type).(XXX →∀ , the

identity. In other words, if one specifies a program as a function that applies each type to itself, the

formal description of the type, of second order, univocally determines the program that calculates

the identity function.

25

In general, as we have already said, the type assignement to a program is at the same time, a

proof of logical propositions, the types, and a synthesis method of programs (which is automatic).

Let us return to the second example in 2.1: stqrting with hypotheses on variables, one constructs a

program of type A →(B →A) step by step. In fact, the only program with type scheme X →
(Y→X). Thus already, in the current context, we can say that we have a partial method to prove

propositions and program properties, and also of program synthesis (programs or proofs are

synthetized by this proof method). A partial method, because, it requires an external (human)

intervention in choosing the hypotheses that can be added if necessary along the deduction process,

and also because, by comparison with the statements on programs, one can deduce in this manner

only some properties and some programs.

Moreover, to speak of automatic proof as a substitute for human mathematical proof, we need to

add at least the instruments that can formalise properties that are more or less commonplace in

Mathematics. It is indeed obvious that mathematics is based from the start on the use of individual

variables, for the elements of sets, and their quantification. In other words, it is necessary to be able

to write formulas that describe statements as: given any integer there exists another integer that is
larger than it; every element of a group has an inverse, etc… in the manner)(yxyx <∃∀ ,

)1(1 =∃∀ −xyyx … In the formulas, or types, introduced until now, there were no first order

variables, or elements and we passed directly from simple propositional calculus to second order

systems. These allow us to deal with the logical aspect of mathematical Analysis, not necesseraly

its "mathematics".

Martin-Löf's (predicative) Intuitionist Type theory and Coquand and Huet's Calculus of

Constructions (see Coquand & Huet [1988]), in different ways, extend the types of λ-calculus with

the possibility to also define first order formulas as types, that is with the structure ∀ x:A.B, where

x is a variable of type A (see Hindley & Seldin [1986]). Indeed, λ-calculus already has first order

variables: those that appear in the terms. As we have already said, λ-abstraction is a quantification

over the terms, analogous to set abstraction: { x | P(x)} is the set of all elements x, of a certain

universe, that satisfy property P. But, the variables are also terms, in full right, and they don't only

have the meaning of elements as in Mathematics. In Mathematics, ‘for every integer x…’ only

means that x can be particularised by an arbitrary integer. On the contrary, variable x, in λ-calculus,

is also a term in normal form that can be manipulated, treated as the other terms, closed,

constants,… The systems just mentioned use this linguistic richness of λ-calculus to give a unified

treatment of formulas and types. Briefly, mathematical formulas are the first order terms and types,

on which on can carry out computations in an automatic and uniform manner. For example, the

formula x(x + 1)=12 becomes, by obvious calculation, x2 + x = 12, where one has declared x as

integer (a non erased assumption: x : Int). The solution of the equation is given by the

particularisation or substitution of x by the integer 3. Note that the formulas or mathematical

26

propositions are not but "restrictions" to be satisfied: that is, propositions are types as specifications

and a program is a proof of a specification or type, as in the already discussed cases. One can note

here a substantial difference with Logic Programming where a program is a proposition and its

evaluation is the proof of the proposition. The current interest of an integration of functional

programming methods and logical programming ones is precisely due to the possibility of studying

the synthesis of functional programs, from logical specifications, as a compilation method for

logical programs in functional programming. Note though, as it has already been announced in the

introduction, that we have omitted the principal instrument to deal with first order formulas or the

restrictions that describe usual mathematical properties: unification techniques that handle uniform

particularisation of first order formulas. These techniques, crucial in Logic Programming, are

introduced in the Calculus of Constructions, both first and second order, the latter being what is

new.

As a whole, the research direction that we have been detailing has given good results, if they are

read with care. De Bruijn, for example, has developed mathematical jargon in the extensions of λ-

calculus of an important intuitive effectiveness (see Hindley & Seldin [1986]). However, the truly

important properties that can be handled are the properties of programs. The purely mathematical

assertions proved in a strictly automatic fashion are not numerous. The problem is that the implicit

richness in a true mathematical proof is found in the language changes, in the bridges and in the

indirect analogies, in the superposition of methods. Their sterilising reduction in a single language,

poor and static, can be of some effectiveness if enriched by the man-machine interaction. In this

perspective, more instruments, to make proofs, are welcomed, including the automatic ones.

Various computational algebras, or systems based on the language ‘Mathematica’ for example,

provide greater effectiveness to the work of the algebrist by intervening when long calculations are

needed, when innumerable explorations are required and in other tasks in which practical

complexity renders computation impossible for a human being. The methods presented here,

inspired by λ-calculus develop the complementary approach, while aiming to deduce the most for

Mathematics from the logical formalisation. In spite of the limitative character and the failures of any

"completeness program" (mathematics is completely formalisable), considered as a base project,

from the practical standpoint, the interaction between man and machine can create miracles, but only

if one accentuates the interactive character of proofs. Take, for example a proof by induction. λ-

calculus perfectly describes the induction scheme and the inductive proofs are a typical candidate for

automatic treatment. However, every one knows that in non trivial cases, the true mathematical

problem, in a proof by induction, lays in the choice of induction hypothesis. Often the ‘inductive

load’ has to be much stronger than the thesis; in other words, to inductively prove ∀ x.P(x), one

does not always succeed in proving that for every n, P(n) can be deduced from P(n – 1) and it is

necessary to turn to a property Q, stronger than P, to have that Q(n – 1) implies Q(n).

27

The problem of choosing inductive loads is today a crucial problem in automatic proof. It is not

clear in fact that it suffices to explore a finite number of possible inductive hypotheses or that, to

obtain relatively complete methods, it is necessary to consider an infinite number. That is, if in the

standard sectors of Mathematics, one has only to do long induction proofs or if, rather, such proofs

are essentially difficult, due to the choice of inductive load: the choice criteria between an infinity of

possible inductive hypotheses are difficult because they are generally external to a pre-established

methodology, to a language and a formal frozen frame. They are based on ‘intentional’ choices

where man integrates many experiences, uses analogy, refers to metaphors,… The analyses of

these methods, as a part of the proof, is one of the stakes of the future, if one does not want to be

restricted to a solely formal analysis of proofs that can be fully mechanised. The project then is the

development of interactive programs of automatic synthesis of proofs where, for example, the user

tells the machine the propositions to be proved in the induction (the inductive load) and lets the

machine do the base work. The study of interactive or heuristic methods that are as automated as

possible can lead to useful or acceptable systems, even if they remain incomplete.

9 . Conclusion

In this presentation of λ-calculus we have sought with insistence to describe λ-terms, at the

same time as programs, as codification of proofs and as category-theoretic morphisms. That is, we

explained and enriched syntax by semantics and viceversa. By this, we underlined that the

"cognitive" aspects of Mathematics are also present in proofs, if not in a principal role, but yet in

bridges, in correlation between diverse contexts, where the informal suggestion, for instance, that

allows to extend a language by a construction inspired by a model have a great practical and

gnoseological interest. The proposal of new ideas and structures, the formulation of conjectures

often are made possible thanks to a reflexive equilibrium of theories that integrate and explain each

other mutually and are developed and modified in interaction. The unity of mathematics is given,

not by a logical, linguistic or metaphysical unity but by the relations between theories and diverse

languages. This is crucial, if we want to go further in automatizing as much as possible the

deductive processes as well as in foundational analysis.

Luckily, the time is over for a ultimate and unique purely formal foundation of Mathematics,

which inventors of λ-calculus and Combinatory Logic took as starting point in the Thirties. Only

extreme formalists and reductionists are still pleased by heavy totalling programs. Their efforts

sometimes are not useless, evven today, thanks to Computer Science, where pure minimal

computations of signs can suggest more languages adapted to machines. Furthermore, this is

exactly what is achieved by the examined systems: the formalist attitude at their origin has found an

application, on the one hand within the rigidity of machines and it has been enriched, on the other,

by its reencounter with mathematical Platonism or realism. In fact, this is the implicit or explicit

28

vision of researchers who seek meaning in geometric and categorical structures, while contributing

to the intertwining of meaning to which they refer to.

More in general, the formalist approach and the Platonism spread in Mathematics, apparently

completely different, have a common justification and origin in the observation that a mathematical

concept, leaving aside the specific structure from where it emerges, acquires a generality and an

independence that renders it applicable to many structures. Logical computations of which we spoke

of here, in their perfect linguistic autonomy, that include provable consistency (see § 3), are a

paradigmatic example of independence, generality and abstraction that make us ‘forget’ the

structures that suggested them: algebras without variables for Combinatory Logic (Curry), the idea

of (effective) function for λ-calculus (Church). Then it was not trivial to re-construct mathematical

models that interpret the formalisations that have finally been reached. These structures branch out

into many connections and applications, often well beyond expectation.

It is necessary to underline, to this effect, that it is precisely the generality and the independence

from specific meanings that is the origin of this generality and objectivity of Mathematics: the

importance of an idea and a theorem reside in their invariance by relation to linguistic notation and to

particular mathematical structures. The concrete historical experience of this invariance w. r. to a

plurality of practical universes, often as real as counting with numbers, is at the base of formalist

foundations or ontological visions in Mathematics, as we said. Both, each in its own manner,

attribute universality and existence to the pure, although very refined, linguistic and geometrical

constructions of man, and are due to the mathematician's amazement when faced with the generality

of these constructions nevertheless arisen from life and real world conceptual reconstructions. By

mathematics we made the (physical) world intelligible and, then, by an abuse, we later detached one

from the other.

One of our tasks today is to fix this formalism/Platonism breach and to surpass it, to understand

mathematical proof not as pure formal calculus without meaning nor as a ‘vision’ of an external

reality to man, given by concepts without conceptors. It is especially necessary to analyse them as

conceptual constructions, rich with the plurality of human experiences, that go from a purely formal

calculus to the practice of geometrical construction. As a matter of fact, meaning is involved in a

non removable way in proofs: certain passages are possible only due to references to logical or

geometrical structures rich in meaning to us. It is thus that certain recent incompleteness results

point out a shift between formal principles of proof and principles of geometric construction (see

Longo [1999a and b, 2001a]). Every analysis of proofs has well to deal with computations, but it

also needs to be reorganised around a new unity between formal symbols and meaningful

structures, where the organisation of space and time, with their symmetries, connectivity etc. give

meaning, allow and structure the proof itself (see Longo [2001a and b] and Girard's program,

Girard [1997, 2001]).

29

Some Bibliography

Abramsky, S. et al. (eds.) [1992] Handbook of logic in computer science. Vol. I and 2, Oxford:
Clarendon Press.

Asperti A., Longo G. [1991] Categories, Types, and Structures: an Introduction to Category
Theory for the Working Computer Science, MIT Press.

Barendregt H. [1986] The Lambda Calculus, Its Syntax and Semantics, revised edition, North-
Holland.

Böhm C., Berarducci A. [1985] "Automatic synthesis of typed lambda-programs on term algebras"
Theor. Comp. Sci. 39, pp. 135-154.

de Bruijn N. [1980] "A survey of the project AUTHOMATH" in To H.B. Curry: essays in
Combinatory Logic, lambda calculus and formalism (Hindley, Seldin eds.), Academic Press.

Cardelli L., Longo G. [1991] "A semantic basis for Quest", Journal of Functional Programming,
vol.1, n.2, 1991 (pp.417-458).

Church A. [1941] The Calculi of Lambda Conversion, Princeton University Press

Coquand T., Huet G. [19881 ‘The Calculus of Constructions’ Information and
Computation, 76, pp. 95-120.

Girard J.-Y. [1987] "Linear Logic" Theoretical Comp. Sci., 50 (1-102).

Girard J.Y., Lafont Y., Taylor R. [1989] Proofs and Types, Cambridge University Press.

Girard J.-Y. [2001] "Locus Solum" Mathematical Structures in Computer Science, vol.11, n.3.

Goubault-Larrecq J., Mackie I. [1997] Proof theory and automated deduction. Dordrecht; Boston;
London: Kluwer, 1997.

Hindley J.R., Seldin J.P. [1980] To H.B. Curry: Essays on combinatory logic, Lambda Calculus
and Formalism, Academic Press.

Hindley J.R., Seldin J.P. [1986] Introduction to Combinators and Lambda-Calculus, Cambridge
University Press.

Lambek J., Scott P.J. [1986] Introduction to higher order Categorical Logic, Cambridge University
Press.

Longo G. [1983] "Set-Theoretical Models of Lambda-Calculus: Theories, Expansions, Isomorphis
ms", Annals Pure Applied Logic, 24.

Longo G. [1999a] ‘The mathematical continuum, from intuition to logic’ in Naturalizing Phenomen
ology: issues in contemporary Phenomenology and Cognitive Sciences, (J. Petitot et al., eds) Sta
nford U.P..

Longo G. [1999b] "Mathematical Intelligence, Infinity and Machines: beyond the Gödelitis" Journal
 of Consciousness Studies, special issue on Cognition, vol. 6, 11-12..

Longo G. [2001a] "On the proofs of some formally unprovable propositions and Prototype Proofs
in Type Theory" Types' 00, Durham, December 2000, invited lecture, to appear.

30

Longo G. [2001b]‚ "The reasonable effectiveness of Mathematics and its Cognitive roots", in
New Interactions of Mathematics with Natural Sciences (L. Boi ed.), Springer, to appear.

Mitchell J.C. [1993] Introduction to Programming Language Theory, M.I.T. Press.

Martin-Löf P. [1982] "Constructive logic and computer programming," In Logic, Methodology and
Philosophy of Science VI, ed. L.J. Cohen et al. (eds.) North-Holland (pp. 153-175).

Martin-Löf P. [1984] Intuitionistic Type Theory Bibliopolis, Napoli.

Robinson J. [1965] ‘A machine-oriented logic based on the resolution principle’ Journal of the
Association for Computing Machinery, 12, pp. 23-41.

Scott D. [1972] "Continuous lattices" Toposes, algebraic Geometry and Logic, (Lavwere ed.),
SLNM 274, (pp.97-136) Springer-Verlag.

Scott D. [1976] "Data types as lattices," SIAM Journal of Computing, 5 (pp. 522-587).

Scott D. [1980] "Lambda-calculus, some models, some philosophy" The Kleene Symposium
(Barwise et al. eds.) North-Holland.

Smyth M., Plotkin G. [1982] "The category-theoretic solution of recursive domain equations"
SIAM Journal of Computing 11.

