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Abstract This paper briefly reviews some epistemological perspectives on the 

foundation of mathematical concepts and proofs. It provides examples of axioms and 

proofs, from Euclid to recent “concrete incompleteness” theorems. In reference to 

basic cognitive phenomena, the paper focuses on order and symmetries as core 

“construction principles” for mathematical knowledge.  A distinction is then made 

between these principles and the “proof principles” of modern Mathemaical Logic. 

The role of the blend of these different forms of founding principles will be stressed, 

both for the purposes of proving and of understanding and communicating the proof. 

 

1.    THE CONSTRUCTIVE CONTENT OF EUCLID’S AXIOMS.  

From the time of Euclid to the age of super-computers, Western mathematicians have 

continually tried to develop and refine the foundations of proof and proving.  Many of these 

attempts have been based on analyses logically and historically linked to the prevailing 

philosophical notions of the day.  However, they have all exhibited, more or less explcitly, 

some basic cognitive principles – for example, the notions of symmetry and order.  Here I 

trace some of the major steps in the evolution of notion of proof, linking them to these 

cognitive basics. 

For this purpose, let’s take as a starting point Euclid’s Aithemata (Requests), the 

minimal constructions required to do geometry: 

                                         
1  Invited lecture, ICMI 19 conference on Proof and Proving, Taipei, Taiwan, May 10 - 15, 2009, (Hanna, de 
Villiers eds.) Springer, 2010. 



 

 2 

1. To draw a straight line from any point to any point. 

2. To extend a finite straight line continuously in a straight line. 

3. To draw a circle with any center and distance. 

4. That all right angles are equal to one another. 

5. That, if a straight line falling on two straight lines make the interior angles on the same side 

less than two right angles, the two straight lines, if produced indefinitely, meet on that side on 

which are the angles less than the two right angles.  (Heath, 1908; pp. 190-200). 

 

These “Requests” are constructions performed by ruler and compass: an abstract ruler and 

compass, of course, not the carpenter’s tools but tools for a dialogue with the Gods. They 

provide the minimal “constructions principles” the geometer should be able to apply.  

Note that these requests follow a “maximal symmetry principle”. Drawing a straight 

line between two points, one obtains the most symmetric possible structure: any other line, 

different from this one, would introduce a-symmetries by breaking at least the axial symmetry 

of the straight line. The same can be said for the second axiom, where any other extension of 

a finite line would yield fewer symmetries. Similarly, the third, a complete rotation symmetry, 

generates the most symmetric figure for a line enclosing a point. In the fourth, equality is 

defined by congruence; that is, by a translation symmetry. Finally, the fifth construction again 

is a matter of drawing, intersecting and then extending. The most symmetric construction 

occurs when the two given lines do not intersect: then the two inner angles are right angles on 

both sides of the line intersecting the two given lines. The other two cases, as negations of this 

one (once the theorem in book I n. 29 in Euclid’s Elements has been shown), would reduce 

the number of symmetries. Their equivalent formulations (more than one parallel in one point 

to a line, no parallel at all) both yield fewer symmetries, on a Euclidian plane, than having 

exactly one parallel line. 

Euclid’s requests found geometry by actions on figures, implicitly governed by 

symmetries. Now, “symmetries” are at the core of Greek culture, art and science. They refer 

to “balanced” situations or, more precisely, “measurable” entities or forms. But the meaning 

we give to symmetries today underlies Greek “aesthetics” (in the Greek sense of the word) 

and their sensitivity, knowledge and art, from sculpture to myth and tragedy. Moreover, loss 

of symmetries (symmetry-breakings) originate the world as well as human tragedy; as 

breakings of equilibria between the Gods, they underlie the very sense of human life. As tools 
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for mathematical construction, they participate in the “original formation of sense”, as Husserl 

would say (see below and Weyl, 1952). 

Concerning the axioms of geometry, the formalist universal-existential version (“For 

any two points on a plane, there exists one and only one segment between these points” etc.) 

misses the constructive sense and misleads the foundational analysis into the anguishing quest 

for formal, thus finitistic, consistency proofs2. We know how this quest ended: by Gödel’s 

theorem, there is no such proof for the paradigm of finitism in mathematics, formal 

arithmetic. 

  

2.  FROM AXIOMS TO THEOREMS 

“Theorem” derives from “theoria” in Greek; it means “vision”, as in “theater”: a 

theorem shows, by constructing. So, the first theorem of Euclid’s first book shows how to take 

a segment and trace the (semi-)circles centered on the extremes of the segment, with the 

segment as radius. These intersect in one point. Draw straight lines form the extremes of the 

segment to that point: this produces an equilateral triangle. 

For a century we have been told that this is not a proof (in Hilbert’s sense!): one must 

formally prove the existence of the point of intersection. These detractors could use more of 

the Greeks’ dialogue with their Gods.3 Lines are ideal objects, they are a cohesive continuum 

with no thickness. Both points and continuous lines are founding notions, but the conceptual 

path relating them is the inverse of the point-wise constructions that have dominated 

mathematics since Cantor. Points, in Euclid, are obtained as a result of an intersection of 

lines: two thickless (one-dimensional) lines, suitably intersecting, produce a point, with no 

parts (no dimension) The immense step towards abstraction in Greek geometry is the 

invention of continuous lines with no thickness, as abstract as a divine construction. As a 

matter of fact, how else can one propose a general Measure Theory of surfaces, the aim of 

“geo-metry”? If a plane figure has thick borders, which is the surface of the figure?  

Thus came this amazing conceptual (and metaphysical) invention, done within the 

Greek dialogue with the Gods: the continuous line with no thickness. Points – with no 

                                         
2 In my interpretation, existence, in the first axiom, is by construction and unicity by symmetry. 

3 Schrödinger stresses that a fundamental feature of Greek philosophy is the absence of “the unbearable division, 
which affected us for centuries… : the division between science and religion,” (quoted in Fraisopi, 2009). 
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dimension, but nameable, as Euclid defines them4 – are then produced by intersecting lines or 

sit at the extremes of a line or segment (definition γ). But lines are not composed of signs-

points.  A line, either continuous or discrete, is a gestalt, not a set of points.  

Greek geometric figures and their theatrical properties derive by constructions from 

these fundamental gestalts, signs-points and lines, in a game of rotations and translations, of 

constructing and breaking symmetries. These gestalts inherently penetrate proofs even now. 

 

3. ON INTUITION 

Mathematical intuition is the result of an historical praxis; it is a constituted frame for 

active constructions, grounded on action in space, stabilized by language and writing in inter-

subjectivity. 

A pure intuition refers to what can be done, instead of to what it is. It is the seeing of a 

mental construction; it is the appreciation of an active experience, of an active (re-

)construction of the world. We can intuit, because we actively construct (mathematical) 

knowledge on the phenomenal screen between us and the world.  

As for that early and fundamental gestalt, the continuous line, our evolutionary and 

historical brain sets contours that are not in the world, beginning with the activity of the 

primary cortex. There is a big gap – actually, an abyss – between the biological-evolutionary 

path and the historical-conceptual construction; yet, I’ll try to bridge it in a few lines. 

The neurons of the primary cortex activate by contiguity and connectivity along non-

existent lines and “project” by this non-existing continuous contours on objects (at most, 

contours are singularities). More precisely, recent analyses of the primary cortex (see Petitot, 

2003) highlight the role of intra-cortical synaptic linkages in the perceptual construction of 

edges and of trajectories. In the primary cortex, neurons are sensitive to “directions”: they 

activate when oriented along the tangent of a detected direction or contour. More precisely, 

the neurons which activate for almost parallel directions, possibly along a straight line, are 

more connected than the others. In other words, neurons whose receptive field, approximately 

and locally, is upon a straight line (or along parallel lines) have a larger amount of synaptic 

connections among themselves. Thus, the activation of a neuron stimulates or prepares for 

activation neurons that are almost aligned with it or that are almost parallel – like tangents 

                                         
4 Actually “signs” (σηµεια, definition α): Boetius first used the word and the meaning of “point”. Note that a 
sign-point (σηµειον) in Euclid is identified with the letter that names it (see Toth, 2002). 
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along a continuous virtual line in the primary cortex. We detect the continuity of an edge by a 

global “gluing” of these tangents, in the precise geometrical (differential) sense of gluing. 

More exactly, our brain “imposes” by continuity the unity of an edge by relating neurons 

which are structured and linked together in a continuous way and locally almost in parallel. 

Their “integral” gives the line (Petitit, 2003). 

The humans who first drew the contours of a bison on the walls of a cavern (as in 

Lascaux) instead of painting a brown or black body, communicated to other humans with the 

same brain cortex and life experience. A real bison is not made just of thick contours as in 

some drawings on those walls. Yet, those images evoke the animal by a re-construction of it 

on that phenomenal screen which is the constructed interface between us and the world. The 

structures of mathematics originate also from such drawings, through their abstract lines. The 

Greek “limit” definition and construction of the ideal line with no thickness is the last plank 

of our long bridge: a constructed but “critical” transition to the pure concept (see Bailly & 

Longo, 2006), far from the world of senses and action, well beyond all we can say by just 

looking at the brain, but grounded on and made possible by our brain and its action in this 

world. 

Consider now the other main origin of our mathematical activities: the counting and 

ordering of small quantities, a talent that we share with many animals (see Dehaene, 1998). 

By language we learn to iterate further; we stabilize the resulting sequence with names; we 

propose numbers for these actions. These numbers were first associated, by common names, 

with parts of the human body, beginning with the fingers. With writing, their notation 

departed from just iterating fingers or strokes; yet, in all historical notations, we still write 

with strokes up to 3, which is given by three parallel segments interconnected by continuous 

drawing, like 2, which is given by two connected segments. However,  conceptual iteration 

has no reason to stop: it may be “apeiron”,  “without limit”, in Greek. Thus, since that early 

conceptual practice of potential infinity, we started seeing the endless number line, a discrete 

gestalt, because we iterate an action-schema in space (counting, ordering …) and we well 

order it by this very conceptual gesture. For example, we look at that discrete endless line, 

which goes from left to right (in our Western culture, the opposite for Arabs (Dehaene, 

1998)), and observe “a generic non-empty subset has a least element” (the reader should 

pause here and observe this in his – enough mathematized – mind). This is the principle of 

well-ordering as used every day by mathematicians. It is a consequence of the discrete spatial 

construction, a geometric invariant resulting from different practices of discrete ordering and 

counting into mental spaces. It originates in small counting and ordering that we share with 
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many animals (Dehaene, 1998; Longo, Viarouge, 2010) Further on, in a long path, via 

language, from those early active forms of ordering and counting objects, arithmetic (logico-

formal) induction follows from them rather than founding them, contrary to Frege’s and 

Hilbert’s views (see below). The mathematical construction, induction, is the result of these 

ancient practices, by action and language, and, then, it organizes the world and allows proofs. 

Yet, it is grounded on a “gestalt”, the discrete well-ordering where individual points make no 

sense without their ordered context.  

 

4. LITTLE GAUSS’ PROOF 

At the age of 7 or 8, Gauss was asked by his school teacher to produce the result of the 

sum of the first n integers (or, perhaps, the question was slightly less general … ).5  He then 

proved a theorem, by the following method. He wrote on the first line the increasing sequence 

1,… , n,  then, below it and inverted, the same sequence; finally, he added the vertical lines: 

1  2  ….   n 

  n  (n-1)…  1 

  --------------- 

 (n+1) …   (n+1) 

Then the result is obvious:  Σin i = n(n+1)/2. 

This proof is not by induction.  Given n,  it proposes a uniform argument which works 

for any integer  n.  Following Herbrand (Longo, 2002), we may call this kind of proof a 

prototype: it provides a (geometric) prototype or schema for any intended parameter of the 

proof.  Of course, once the formula  Σin i = n(n+1)/2  is given, we can very easily prove it by 

induction as well.  But one must know the formula or, more generally, the ‘induction load’.  

Little Gauss did not know the formula; he had to construct it as a result of the proof. On the 

contrary, we have the belief induced by the formalist myth: that proving a theorem is proving 

an already given formula! We learn, more or less implicitly, from the formal approach, that 

mathematics is “the use of the axioms to prove a given formula” – an incomplete foundation 

and a parody of mathematical theorem proving. 

Except in a few easy cases, even when the formula to be proved is already given (best 

                                         
5  This section is partly borrowed from the introduction to Longo, 2002. 
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known example: Fermat’s last theorem), the proof requires the invention of an induction load 

and of a novel deductive path which may be very far from the formula. In Fermat’s example, 

the detour requires the invention of an extraordinary amount of new mathematics. The same is 

true also in Automatic Theorem Proving, where human intervention is required even in 

inductive proofs because except in a few trivial cases, the assumption required in the 

inductive step (the induction load) may be much stronger than the thesis or have no trivial 

relation to it. Clearly, a posteriori the induction load may be generally described within the 

formalism, but its “choice”, out of infinitely many possibilities, may require some external 

heuristics (typically: analogies, symmetries, symmetry-breaking, etc.). 

More generally, proving a theorem is answering a question, like Gauss’ teacher’s 

question, about a property of a mathematical structure or about relating different structures; it 

is not proving an already given formula. 

Consider a possible way to Gauss’ proof. Little Gauss “saw” the discrete number line, 

as we all do, well ordered from left to right. But then he had a typical hit of mathematical 

genius: He dared to invert it, to force it to go backwards in his mind, an amazing step. This is 

a paradigmatic mathematical invention: constructing a new symmetry, in this case by an 

audacious space rotation or order inversion. That reverse-reflection (or mirror) symmetry 

gives the equality of the vertical sums. The rest is obvious.  

In this case, order and symmetries both produce and found Gauss’ proof. Even a 

posteriori, the proof cannot be founded on formal induction, as this would assume the 

knowledge of the formula. 

4.1 Arithmetic induction and the foundation of Mathematical Proof.  

Above, I hinted at an understanding of the ordering of numbers with reference to a 

mental construction in space (or time). Frege would have called this approach 

“psychologism”, Herbart’s style, according to (Frege, 1884). Poincaré instead could be a 

reference for this view on the certainty and meaning of induction as grounded on intuition in 

space. In Brouwer’s (1948) foundational proposal, the mathematician’s intuition of the 

sequence of natural numbers, which founds mathematics, relies on another phenomenal 

experience: It should be grounded on the “discrete falling apart of time”, as “twoness” (“the 

falling apart of a life moment into two distinct things, one which gives way to the other, but is 

retained by memory”; Brouwer, 1948). Thus, “Brouwer’s number line” originates from (a 

discrete form of) phenomenal time and induction derives meaning and certainty from it. 

Intuition of the (discrete and increasing) ordering in space and time contributes to 
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establishing the well-ordered number line as an invariant of these different active phenomenal 

experiences: Formal induction follows from and is founded on this intuition, in Poincaré’s and 

Brouwer’s philosophy. Recent scientific evidence (see Longo, Viarouge, 2010), suggests that 

we use extensively, in reasoning and computations, the “intuitive” number line as an order in 

space; those remarkable neuropsychological investigations take us beyond the “introspection” 

that the founding fathers used as the only way to ground mathematics on intuition. We are 

probably in the process of transforming the analysis of intuition from naive introspection to a 

scientific investigation of our cognitive performances, in which the “Origin of Geometry” and 

the intuition of numbers blend in an indissoluble whole. 

I return now to the sum of the first n integers and induction. About 80 years later, 

Peano and Dedekind suggested that little Gauss’ proof was certainly a remarkable 

achievement (in particular for a child), but that adults had to prove theorems in Number 

Theory by a “formal and uniform method”, defined as a “potentially mechanisable” one, by 

Peano and Padoa. Then Peano definitely specified “formal induction” as the proof principle 

for arithmetic thus defining Peano Arithmetic, or PA (Kennedy, 2006).   

Frege set induction at the basis of his logical approach to mathematics; he considered 

it a founding (and absolute) logical principle, and thus gave PA the foundational status that it 

still has. Of course, Frege thought that logical induction (or PA) was “categorical” (in modern 

terms); that is, that induction exactly captured the “theory of numbers” or that everything was 

said within PA: This logical theory simply coincided, in his view, with the structure and 

properties of numbers. (Frege didn’t even make the distinction “theory vs. model” and never 

accepted it; the logic was exactly the mathematics, for him.) 

The story continues. In The Foundation of Geometry (1899), Hilbert set geometry on 

formal grounds, as a solution for the incredible situation where many claimed that rigid 

bodies could be not so rigid and that light rays could go along curved geodetics. Riemann’s 

(1854) work (under Gauss’ supervision) had started this “delirium”, as Frege called the 

intuitive–spatial meaning of the new geometry (1884, p.20). Later, Helmholtz, Poincaré and 

Enriques (see Boi, 1995 & Bottazzini, 1995) developed both the geometry and Riemann’s 

epistemological approach to mathematics as a “genealogy of concepts”, partly grounded on 

action in space. 

For these mathematicians, meaning, as a reference to phenomenal space and its 

mathematical structuring, preceded rigor and provided “foundation”. Thus, through 

mathematics, geometry in particular, Poincaré and Enriques wanted to make the physical 
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world intelligible. For them, proving theorems by rigorous tools and conceptal constructions 

did not coincide with a formal/mechanical game of symbols. Hilbert (1899) had a very 

different foundational attitude: For the purposes of foundations (but only for these purposes), 

one has to forget the meaning in physical spaces of the axioms of non-Euclidean geometries 

and interpret their purely formal presentation in PA. In his 1899 book, he fully formalized a 

unified approach to geometry and “interpreted” it in PA. Formal rigor and proof principles as 

effective-finitistic reduction lie at the core of his analysis6. 

On one hand, that geometrization of physics, from Riemann (1854) to Einstein and 

Weyl, 1949 (via Helmholtz, Clifford and Poincaré, see Boi, 1995), brought a revolution in 

that discipline, originating by breathtaking physico-mathematical theories (and theorems). On 

the other, the attention to formal, potentially mechanisable rigor, independent of meaning and 

intuition, provided the strength of the modern axiomatic approach and fantastic logico-formal 

machines, from Peano and Hilbert to Turing and our digital computers (Longo, 2009). 

At the 1900 Paris conference, Hilbert contributed to giving PA (and formal induction) 

its central status in foundation by suggesting one could prove (formally) the consistency of 

PA. In his analytic interpretation, the consistency of the geometric axiomatizations would 

have followed from that of formal Number Theory, with no need of reference to meaning. 

Moreover, a few years later, Hilbert proposed a further conjecture, the “final solution”,  to all 

foundational problems, a jump into perfect rigor: Once shown the formal consistency of PA 

by finitistic tools, prove the completeness of the formal axioms for arithmetic. Independent of 

its heuristics, a proof’s certainty had to ultimately be given by formal induction. 

However, the thought of many mathematicians at the time (and even now) proposed more 

than that. That is, in addition to acting as a foundation for “a posteriori formalization”, they 

dreamed the “potential mechanization” of mathematics was not only a locus for certainty, but 

also a “complete” method for proving theorems. The Italian logical school firmly insisted on 

this with their “pasigraphy”: a universal formal language that was a mechanisable algebra for 

all aspects of human reasoning. Now the “sausage machine” for mathematics (and thought), 

as Poincaré ironically called it (Bottazzini, 2000), could be put to work: Provide pigs (or 

axioms) as input and produce theorems (or sausages) as output (traces of this mechanization 

may still be found in applications of AI or in teaching). The story of complete a posteriori 

formalization and, a fortiori, of potential mechanization of deduction ended badly. Hilbert’s 

                                         
6 For more on the connections between “proof principles” vs. “construction principles” in mathematics and in 

physics, see Bailly & Longo, 2006. 
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conjectures on the formally provable consistency, decidability and completeness of PA turned 

out to be all wrong, as Gödel (1931) proved.  Gödel’s proof gave rise to (incomplete but) 

fantastic formal machines by the rigorous definition of “computable function”. More 

precisely, Gödel’s negative result initiated a major expansion of logic: Recursion Theory (in 

order to prove undecidability, Gödel had to define precisely what decidable/computable 

means), Model Theory (the fact that not all models of PA are elementarily equivalent strongly 

motivates further investigations) and Proof Theory (Gentzen) all got a new start. (Negative 

results matter immensely in science, see Longo, 2006.) The latter led to the results, among 

others, of Girard and Friedman (see Longo, 2002). 

For Number Theory, the main consequence is that formal induction is incomplete and 

that one cannot avoid infinitary machinery in proofs (e.g., in the rigorous sense of Friedman, 

1997). In some cases, this fact can be described in terms of the structure of “prototype proofs” 

or of “geometric judgments” (see below), with no explicit reference to infinity.  

 

4.2 More on prototype proofs 

“. . . when we say that a theorem is true for all x, we mean that for each x individually 

it is possible to iterate its proof, which may just be considered a prototype of each 

individual proof.” Herbrand,1930; see Goldfarb, 1987.  

Little Gauss’ theorem is an example of such a prototype proof. But any proof of a universally 

quantified statement over a structure that does not realize induction constitutes a “prototype”. 

For example, consider Pythagoras’ theorem: one needs to draw, possibly on the sand of a 

Greek beach, a right triangle, with a specific ratio among the sides. Yet, at the end of the 

proof, one makes a fundamental remark, the true beginning of mathematics: Look at the 

proof; it does not depend on the specific drawing, but only on the existence of a right angle. 

The right triangle is generic (it is an invariant of the proof) and the proof is a prototype. There 

is no need to scan all right triangles. By a similar structure of the proof one has to prove a 

property to hold for any element of (a sub-set of) real or complex numbers; that is, for 

elements of non-well ordered sets. However, in number theory, one has an extra and very 

strong proof principle: induction.  

In a prototype proof, one must provide a reasoning which uniformly holds for all 

arguments; this uniformity allows (and is guaranteed by) the use of a generic argument. 

Induction provides an extra tool: the intended property doesn’t need to hold for the same 

reasons for all arguments. Actually, it may hold for different reasons for each argument. One 
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only has to give a proof for 0, and then provide a uniform proof from x to x + 1. That is, 

uniformity of the reasoning is required only in the inductive step. This is where the prototype 

proof steps in again: the argument from x to x +1. Yet, the situation may be more 

complicated: In the case of nested induction, the universally quantified formula of this 

inductive step may be given by induction on x. However, after a finite number of nestings, 

one has to get to a prototype proof going from x to x + 1 (induction is logically well-founded). 

Thus, induction provides a rigorous proof principle, which, over well-orderings, holds 

in addition to uniform (prototype) proofs, though sooner or later a prototype proof steps in. 

However, the prototype/uniform argument in an inductive proof allows one to derive, from 

the assumption of the thesis for x, its validity for x + 1, in any possible model. On the other 

hand, by induction one may inherit properties from x to x+1 (e.g., totality of a function of x; 

see Longo, 2002). 

As we already observed, in an inductive proof, one must know in advance the formula 

(the statement) to be proved: little Gauss did not know it. Indeed, (straight) induction (i.e., 

induction with no problem in the choice of the inductive statement or load) is closer to proof-

checking than to “mathematical theorem proving”; if one already has the formal proof, a 

computer can check it. 

5. Induction vs. well-ordering in Concrete Incompleteness Theorems 

Since the 1970s several examples of “concrete incompleteness results” have been 

proved.7 That is, some interesting properties of number theory can be shown to be true, but 

their proofs cannot be given within number theory’s formal counterpart, PA. A particularly 

relevant case is Friedman Finite Form (FFF) of Kruskal Theorem (KT), a well-known 

theorem on sequences of “finite trees” in infinite combinatorics (and with many 

applications).8 The difficult part is the proof of unprovability of FFF in PA. Here, I am 

interested only in the proof that FFF holds over the structure of natural numbers (the standard 

model of PA). FFF is easily derived from KT, so the problems of its formal unprovability lies 

somewhere in the proof of KT. Without entering into the details even of the statements of FFF 

or KT (see Harrington, 1985; Gallier, 1991; Longo, 2002), I skip to the place where 

                                         
7 Concerning “concrete” incompleteness, an analysis of the nonprovability of normalization for nonpredicative 
Type Theory, Girard’s system F, in terms of prototype proofs is proposed in Longo, 2002. 

8 For a close proof-theoretic investigation of KT, see Harrington, 1985; Gallier, 1991. I borrow here a few 
remarks from Longo, 2002, which proposes a further analysis.  
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“meaning,” or the geometric structure of integer numbers in space or time (the gestalt of well-

ordering) steps into the proof. 

The set-theoretic proof of KT (Harrington, 1985; Gallier, 1991) goes by a strong non-

effective argument. It is non-effective for several reasons. First, one argues “ad absurdum”; 

that is, one shows that a certain set of possibly infinite sequences of trees is empty by deriving 

an absurd if it were not so (“not empty implies a contradiction; thus it is empty”). More 

precisely, one assumes that a certain set of “bad sequences” (sequences without ordered pairs 

of trees, as required in the statement of KT) is not empty and defines a minimal bad sequence 

from this assumption. Then one shows that that minimal sequence cannot exist, as a smaller 

one can be easily defined from it. This minimal sequence is obtained by using a quantification 

on a set that is going to be proved to be empty, a rather non-effective procedure. Moreover, 

the to-be-empty set is defined by a ∑11 predicate, well outside PA (a proper, impredicative 

second order quantification over sets). For a non-intuitionist who accepts a definition ad 

absurdum of a mathematical object (a sequence in this case), as well as an impredicatively 

defined set, the proof poses no problem. It is abstract, but very convincing (and relatively 

easy). The key non-arithmetizable steps are in the ∑11 definition of a set and in the definition 

of a new sequence by taking, iteratively, the least element of this set. 

Yet, the readers (and the graduate students to whom I lecture) have no problem in 

applying their shared mental experience of the “number line” to accept this formally non-

constructive proof: From the assumption that the intended set is non-empty, one understands 

(“sees”) that it has a least element, without caring about its formal (infinitary, ∑11) definition. 

If the set is assumed to contain an element, then the way the rest of the set “goes to infinity” 

doesn’t really matter: the element supposed to exist (by the non-emptiness of the set) must be 

somewhere in the finite, and the least element will be among the finitely many preceding 

elements, even if there is no way to present it explicitly. This is well-ordering. Finally, the 

sequence defined ad absurdum, in this highly non-constructive way, will never be used: it 

would be absurd for it to exist. So its actual “construction” is irrelevant. Of course, this is far 

from PA, but it is convincing to anyone accepting the “geometric judgment” of well-ordering: 

“A generic non-empty subset of the number line has a least element”. This vision of a 

property, a fundamental judgment, is grounded in the gestalt discussed above. 

An intuitionistically acceptable proof of KT was later given by Rathjen&Weierman, 

1993. This proof of KT is still not formalizable in PA, of course, but it is “constructive”, at 

least in the broad sense of infinitary inductive definitions as widely used in the contemporary 
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intuitionist community. It is highly infinitary because it uses induction beyond the first 

impredicative ordinal Г0. Though another remarkable contribution to the ordinal classification 

of theorems and theories, this proof is in no way “more evident” that the one using well-

ordering given above. In no way does it “found” arithmetic more than that geometric 

judgment, as the issue of consistency is postponed to the next ordinal, on which induction 

would allow one to derive the consistency of induction up to Г0. 

 

6. The Origin of Logic 

Just as for geometry or arithmetic, mathematicians have to pose the epistemological 

problem of logic itself. That is, we have to stop viewing formal properties and logical laws as 

meaningless games of signs or absolute laws preceding human activities. They are not a 

linguistic description of an independent reality; we have to move towards understanding them 

as a result of a praxis in analogy to our praxes in and of space and time, which create their 

geometric intelligibility, by their own construction.  

The logical rules or proof principles have constituted the invariants of our practice of 

discourse and reasoning since the days of the Greek Agora; they are organized also, but not 

only, by language. Besides the geometry of figures with their borders with no thickness, 

which forced symmetries and order in space (our bodily symmetries, our need for order), the 

Greeks extracted the regularities of discourse. In the novelty of democracy, political power in 

the Agora was achieved by arguing and convincing. Some patterns of that common discourse 

were then stabilized and later theoretized, by Aristotle in particular, as rules of reasoning 

(Toth, 2002). These became established as invariants, transferable from one discourse to 

another (even in different areas: politics and philosophy, say). The Sophistic tradition dared to 

argue “per absurdum”, by insisting on contradictions, and, later, this tool for reasoning 

became, in Euclid, a method of proof. All these codified rules made existing arguments 

justifiable and provided a standard of acceptability for any new argument, while nevertheless 

being themselves the a posteriori result of a shared activity in history. 

Much later, the same type of social evolution of argument produced the practice of 

actual infinity, a difficult achievement which had required centuries of religious disputes in 

Europe over metaphysics (see Zellini, 2005). Actual infinity became rigorous mathematics 

(geometry) after developing first as perspective in Italian Renaissance painting. Masaccio first 

used the convergence point at the horizon in several (lost) Annunciations, mentioned one 

century later by Vasari, 1998; Piero della Francesca followed his master and theoretized this 
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practice in a book on painting, the first text on projective geometry9. The conception of actual 

infinity enabled mathematics to better organize the finite. The advance of discourse helped to 

conceive infinity, initially as a metaphysical commitment, to be restored in space as a 

projective limit, a very effective tool to represent three dimensional finite spaces in (two 

dimensional) painting. Mathematicians later dared to manipulate the linguistic-algebraic 

representations of such inventions, abstracted from the world that originated them but 

simultaneously making that same world more intelligible. For example, infinity became an 

analytic tool which Newton and Leibniz used for understanding finite speed and acceleration 

through an asymptotic construction. In the XIX century, the extremely audacious step by 

Cantor (see Cantor, 1955) followed and turned infinity into an algebraic and logically sound 

notion: he objectivized infinity in a sign and dared to compute on it. A new praxis, the 

arithmetic of infinity (both on ordinal and cardinal numbers) started a branch of mathematics. 

Of course, this enrichment of discourse would have been difficult without the rigorous 

handling of quantification proposed in Frege’s foundation of logic and arithmetic (Frege, 

1884). 

That fruitful resonance between linguistic constructions and the intelligibility of space 

contributed to the geometrization of physics. Klein’s and Clifford’s algebraic treatment of 

non-Euclidean geometries (see Boi, 1995) was crucial for the birth of Relativity Theory10. 

Hilbert’s axiomatic approach, since his 1899 book, was also fundamental in this, despite his 

erroneous belief in the completeness and (auto-)consistency of the formal approach. In 

addition, physicists, like Boltzmann, conceived limit constructions, such as the 

thermodynamic integral, which asymptotically unified Newton’s trajectories of gas particles 

and thermodynamics (Cercignani, 1998). Statistical physics, or re-normalization methods, 

play an important role in today’s physics of criticality, where infinity is crucial (Binney et al., 

1992). Logicians continued to propose purely linguistic infinitary proofs of finitary 

statements. The development of infinity is but one part of the never-ending dialogue between 

geometric construction principles and logical proof principles. It started with projective 

geometry, as a mathematization of the italian invention of perspecive in painting, first a 
                                         
9 Masaccio and Piero invented the modern perspective, in Annunciations first (1400-1450), by the explicit use of 
points of converging parallel lines. As a matter of fact, the Annunciation is the locus of the encounter of the 
Infinity of God with the Madonna, a (finite) woman (see Panovsky, 1991).  Later, “infinity in painting”, by the 
work of Piero himself, became a general technique to describe finite spaces better.  

10 Klein and Clifford, also stressed the role of symmetries in Euclidean Geometry: it is the only geometry which 
is closed under homotheties. That is, its group of automorphisms, and only its group, contains this form of 
symmetry. 
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praxis, a technique, in art. It is a subset of the ongoing historical interaction between 

invariants of action in space and time and their linguistic expressions, extended also by 

metaphisical discussions (on infnity), originating in human inter-subjectivity, including the 

invariants of historical, dialogical reasoning (logic). These interactions produce the 

constitutive history and the evolving, cognitive and historical, foundations of mathematics. 

 

Conclusion 

In my approach, I ground mathematics and its proofs, as conceptual constructions, in 

humans’ “phenomenal lives” (Weyl, 1949): Concepts and structures are the result of a 

cognitive/historical knowledge process. They originate from our actions in space (and time) 

and are further extended by language and logic. Mathematics, for example, moved from 

Euclid’s implicit use of connectivity to homotopy theory or to the topological analysis of 

dimensions. Symmetries lead from plane geometry to dualities and adjunctions in categories, 

some very abstract concepts. Likewise, the ordering of numbers is formally extended into 

transfinite ordinals and cardinals.  

In this short essay, I have tried to spell-out the role of prototype proofs and of well-

ordering vs. induction. I insisted on the role of symmetries both in our understanding of 

Euclid’s axioms and in proofs; I stressed the creativity of the proof, which often requires the 

invention of new concepts and structures. These may be, in most cases, formalized, but a 

posteriori and each in some ad hoc way. However, there is no Newtonian absolute Unverse 

nor Zermelo-Fraenkel unique, absolute and complete set theory, nor ultimate foundations: this 

is a consequance of incompletenness (see Longo, 2011). More deeply, evidence and 

foundation are not completely captured by formalization, beginning with the axioms:  “The 

primary evidence should not be interchanged with the evidence of the ‘axioms’; as the axioms 

are mostly the result already of an original formation of meaning and they already have this 

formation itself always behind them”, (Husserl, 1933). This is the perspective applied in my 

initial sketchy analysis of the symmetries “lying behind” Euclid’s axioms.  

Moreover, recent concrete incompleteness results show that the reference to this 

underlying and constitutive meaning cannot be avoided in proofs or in foundational analyses. 

The consistency issue is crucial in any formal derivation and cannot be solved within 

formalisms. 

After the early references to geometry, I focused on arithmetic as foundational 

analyses have mostly done since Frege. Arithmetic has produced fantastic logico-arithmetical 
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machines – and major incompleteness results. I have shown how geometric judgments 

penetrate proofs even in number theory; I argue, a fortiori, their relevance for general 

mathematical proofs. We need to ground mathematical proofs also on geometric judgments 

which are no less solid than logical ones: “symmetry”, for example, is at least as fundamental 

as the logical “modus ponens”; it features heavily in mathematical constructions and proofs. 

Physicists have long argued “by symmetry”. More generally, modern physics extended its 

analysis from the Newtonian “causal laws” – the analogue to the logico-formal and absolute 

“laws of thought” since Boole, 1854 and Frege, 1884 – to understanding the phenomenal 

world through an active geometric structuring. Take as examples the conservation laws as 

symmetries (Noether’s theorem) and the geodetics of Relativity Theory.11 The normative 

nature of geometric structures is currently providing a further understanding even of recent 

advances in microphysics (Connes, 1994). Similarly, mathematicians’ foundational analyses 

and their applications should also be enriched by this broadening of the paradigm in scientific 

explanation: from laws to geometric intelligibility (we discussed symmetries, in particular, but 

also the geometric judgement of “well-ordering”). Mathematics is the result of an open-ended 

“game” between humans and the world in space and time; that is, it results from the inter-

subjective construction of knowledge made in language and logic, along a friction over the 

world, which canalizes our praxes as well as our endeavor towards knowledge. It is effective 

and objective exactly because it is constituted by human action in the world, while by its own 

actions transforming that same world. 
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