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Summary. This paper is divided into two parts. The first proposes a philosophical
frame and it “uses” for this a recent book on a phenomenological approach to the
foundations of mathematics. Gödel’s 1931 theorem and his subsequent philosophical
reflections have a major role in discussing this perspective and we will develop our
views along the lines of the book (and further on). The first part will also hint to the
connections with some results in Mathematical physics, in particular with Poincaré’s
unpredictability (three-body) theorem, as an opening towards the rest of the paper.
As a matter of fact, the second part deals with the “incompleteness” phenomenon
in Quantum physics, a wording due to Einstein in a famous joint paper of 1935,
still now an issue under discussion for many. Similarities and differences w.r. to the
logical notion of incompleteness will be highlighted. A constructivist approach to
knowledge, both in mathematics and in physics, underlies our attempted “unified”
understanding of these apparently unrelated theoretical issues1.

Part I. Revisiting “Phenomenology, Logic, and the
Philosophy of Mathematics”2

Constructivism is the most common philosophical attitude in the mathematics
(and practice) of Computing and this in contrast with the prevailing debate
in mathematical circles still ranging from Platonism to Formalism. But, what
do we mean, today, by “conceptual construction”, in the broadest sense? Phe-
nomenology may provide one possible answer to this, by a deeply renewed un-
derstanding of Weyl’s (and Brower’s) ideas, in a perspective close to Husserl’s
philosophy. Tieszen’s book proposes a critical account of modern views in the
foundations of mathematics, which is of direct concern for the logician and
1 To appear in Deduction, Computation, Experiment (Lupacchini ed.), Springer,

2008.
2 Part I is a largely expanded version of a review of [Tieszen05], which appeared in

Metascience, a review journal in Philosophy of Science, 15.3, 615-619, Springer,
2006.
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the theoretician in natural sciences who wants to reflect on the constructive
principles of the mathematical intelligibility of the world. We will refer to
this book to go further and motivate a broadening of the notion of “construc-
tion” as given in formal deductions and arithmetical computations, in either
classical or intuitionistic frames. By this broadening, we will understand the
incompleteness phenomenon as a “gap” between mathematical construction
principles and formal proof principles, following and further devellopping some
ideas hinted in [BaillyLongo06].

Tieszen’s perspective is original, as the Philosophy of mathematics has
been largely dominated by a contraposition between Ontologism and Nomi-
nalism, as recalled above. This separated the foundational analysis of math-
ematics both from our lifeworld and from other scientific domains, including
physics where mathematics has a constitutive role. By correlating founda-
tional issues in mathematics and physics, along the lines of [BaillyLongo06],
we will try to recompose the foundational break, at least as for the issue of
incompleteness.

Part I.I

The first part of Tieszen’book is dedicated to an introduction to a Husser-
lian perspective in the foundations of mathematics. It is interesting per se,
as a broad survey of Husserl’s phenomenology. This is made possible by the
relevance that Husserl himself gave to Logic and mathematics in his philoso-
phy of knowledge: writings on Logic and Arithmetic are among the earliest of
Husserl’s and the related issues accompany his lifelong work.

The constitution of ideal objects, in Husserlian terms, is based on a clear
distinction between the transcendental perspective and psychologism. It is
the human subject who makes science possible, yet the common endeavour of
the historical community should not be confused with the individual analysis:
epistemology is a genetic analysis, provided that history is not understood in
the usual limited sense, explains Husserl in the “Origin of Geometry” (1933).
There are different types and levels of consciousness, which allow the historical
dynamics of knowledge: science is built up from the lifeworld experience of
human subjects on the basis of active abstraction, idealization, reflection,
formalization. The objectivity of knowledge is a constructed one, a result of
the interaction by an active subject, beginning with “kinaesthesia”, in a living
body, in everyday world of life. Meaning is not the passive interpretation of
independent signs, but it is constructed in this interaction, it is the result of a
“friction” and of structuring of this very world by our attempts to give sense
to it; meaning is the result of an action. Of course, we dare to add, this must
be understood in a broad sense: Quantum Mechanics for example seems to owe
little to kinaesthesia. Yet, it is a paradigmatic case where meaning is the result
of active consciousness, beginning with the preparation of the experiment or
of the technical context for insight: we are conscious of a quantum object as
a constituted phenomenon. Our lived body is just expanded by instruments
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which, in turn, result from a theoretical commitment: this is the richest form of
interaction in the sense mentioned above, with no meaningful object without
active knowing subject. A (conscious) intentional process is at the origin of
this form of knowledge.

As Tieszen explains, consciousness, for Husserl, is consciousness of some-
thing. It could be an ideal object of mathematics. The later being the result
of a formation of sense founded on underlying acts and contents, which make
possible the ideal construction. We would like to exemplify by considering Eu-
clid’s action on space by ruler and compass. This action organises figures in
space by rotations, translations and reflections, to put it in modern terms. A
dialogue with the Gods for sure, but also active measure of ground. But, how
to define and measure surfaces, a technique that, in its mathematical general-
ity, is the key Greek invention? In order to conceive exact metric surfaces one
has to conceive lines without thickness; there is no way to give a mathematical
sound notion of surface, without first proposing, with Euclid’s clarity, lines
with 0 thickenss. Then, as a consequence of intersecting lines, one obtains di-
mensionless points, as Euclid defines them (a remark by Wittgenstein). These
extraordinarily abstract concepts, point, line etc. are the idealized result of
a praxis of measure of surfaces and access to the world by translating and
rotating ruler and compass, far away, but grounded on sensory experience.
Rotations, translations and symmetries are “principles of (geometric) con-
structions”, a notion to be often used in the sequel. In Euclid’s geometry they
are used in proofs and they define the geometric objects as given by invariant
properties w. r. to these transformations.

Tieszen stresses several times the relevance of invariants in Husserl’s foun-
dational approach. “Mathematical objects are invariants that persist across
acts” carried out in different contexts. The practical constructions of mathe-
matics, in human space and time, are also stabilized by language and, then,
by writing, says Husserl: their constituted ideal nature is primarily the re-
sult of their invariance, as conceptual constructions, with respect to suitable
transformations of context. And this is extremely modern: invariant structures
and transformations were first the foundational core of Riemann’s geometry,
in Klein’s approach, then of Category Theory. Husserl seems to precede the
underlying philosophy of Category Theory by his analysis of mathematical
knowledge. These invariants are then the essences and, thus, provide the only
possible ontology for mathematics; they are the result of different “fulfilled
mathematical intentions”, as constructions. And these constructions have a
horizon, the space of the historical praxis which leaves as trace the most stable
invariants of all our mental practices, the structures and objects of mathemat-
ics. Then, underlines Tieszen, “truth is within this horizon” as there is no, for
Husserl, absolute mathematical truth nor evidence. Yet, mathematical the-
ories are not arbitrary creations (consider the example of Greek geometry
above), they are no conventional games of signs: we do not solve open prob-
lems by convention, as they are the result of a meaningful and motivated
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construction. The genetic analysis gives evidence for the objectivity of the
constitution of mathematics, in the interface between us and the world.

One of the challenges of this approach, that stresses the exactness and
stability of mathematical structures, is the correlation with the inexact (i.e.
morphological) nature of everyday sensory objects. Even more so, it is the
challenge of the relation of mathematics to the sciences of life, where the
stability may be global but is not due to exactness. We will go back to this
at the end.

Tieszen dedicates a section to the “Origin of Geometry”. Even if the sig-
nificance of that essay is very often present in Tieszens book, we think that it
is not sufficiently stressed. This mature text of Husserl’s is a splendid progress
and a revision for his overall philosophy of mathematics. It radically departs
from the partial proximity one can find in Husserl’s early books with Frege’s
logicism and even Hilbert’s formalism. However, in this short section, Tieszen
presents very clearly Husserl’s view on the role of bodily action, by the ki-
naesthetic and orientation systems, in organising space (the distance of an
object is the evaluation of the movement needed to reach it, says Poincaré).
Abstraction is then seen as “limitation of attention” and reflection as “adop-
tion of a theoretical attitude” (one can see here the path towards the abstract
and reflected nature of our science, which begins with Euclid’s Geometry, the
original mathematics). Measure, in order to be exact, requires ideal shapes, as
given by the notions of point, line etc we mentioned above. These are invari-
ants that found knowledge, from Euclid up to Einstein’s Invariantentheorie
(the early name of Relativity Theory). Riemann’s Geometry, which was born
to understand gravitation, underlies this late developments, where, jointly to
Category Theory, one sees “invariance and objectivity go hand in hand”, since
“invariance is a cornerstone of rationality and science”. The challenge is to
propose, at the same time, the right transformations that preserve the in-
variants, i. e. to give the right Category (or metric phase-space, to put it in
physical terms).

Part I.II

The second part of Tieszen’s book is largely devoted to an effort to find some
Husserl in Gödel’s philosophy. Gödel, in the last part of his life, became, appar-
ently, a close reader of Husserl. But, Gödel’s reading seems more concentrate
on some of the writings by Husserl of the beginning of the century and does not
seem to span the mature reflection of Husserl, typically to the “Origin of Ge-
ometry”, in landmark of Husserl’s foundational reflection on Mathematics. In
particular, Gödel stresses the possible ontological understanding of Husserl’s
phenomenology far away from the theory of invariance we sketched above. He
proposes in particular an identification of physical and mathematical objects,
made not in the ground of a similar construction of objectivity, but in reference
to a similar objective and autonomous existence. Of course, the foundation of
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physical knowledge is strictly related to the mathematical one, but this com-
mon foundation may be understood, in phenomenological terms, by reversing
bottom-up Gödel’s realism: their simultaneous constitution is the result of
a common praxis, not of a similar transcendent reality. Quantum physics is
the highest example for this: an electron is a solution of Dirac’s equation and
nothing else; but Dirac’s equation is given on the grounds of robust empiri-
cal evidence, prepared by a theoretically oriented acting subject. Here is the
virtuous circle of knowledge, which is hypothetical - principles driven, where
these principles are grounded on a friction, on a “reality”, whatever it may
mean, which opposes frictions or resists and canalises our endeavour towards
knowledge construction.

So, if one reads Gödel the other way round (both mathematical and phys-
ical objectivity - and objects, in a sense - are constituted, including the book
and the table mentioned by Gödel), then this is (modern) phenomenology,
otherwise one stays with the current interpretation of Gödel as an ordinary
Platonist in mathematics. It is not by chance that this interpretation is pre-
vailing, as most published writings of Gödel largely favour this understand-
ing. Of course, the table and the book in Gödel’s working place, pre-exist the
knowing subject, as they are the result, both the object and the concept (of
table, of book), of previous human activities. But also the mountain, which
is out there, for sure, is delimited and given a name, isolated from the con-
text, by our historical endeavour towards organising the world (where is it its
lower bound, exactly? We draw the mountain’s contours). For Gödel, instead,
concepts are abstract objects, which exist independently of our perception of
them, “perceived” by some physical “ad hoc” organ, which allows intuiting
the essence. The lesson instead we learn from (the late) Husserl gives even to
intuition the structure of a constituted: intuition in not an absolute, it is the
result of our historical praxis, beginning with our phylogenetic history. More
closely to us, the mathematician’s intuition of the continuum, for example,
150 years after the splendid construction of Cantor’s, is deeply indebted to
the Cantorian real line: we see the continuum in that way and it is very hard
to appreciate different continua (Leibniz’s insight, for example.)

In short, Gödel’s philosophy of mathematics contains transcendence and
very little transcendental constitution, in spite of Tieszen’s claim. And Tieszen
rightfully recalls Merleau-Ponty’s stress on the change towards a theory of
existence as preceding essence in the late Husserl, in “Krisis” in particular:
existence as invariance and as a result of a constitution. It is a process of free
variation that gives the conceptual stability of mathematical (or more gener-
ally, conceptual) rules and structures. And this process is similar in mathe-
matics and in physics; while for Gödel it is static perception that is similar
in mathematics and physics, as if Physical knowledge (years after Quantum
Mechanics) were based on sense perception. Perception, both everyday, com-
mon perception, and organised one, is far from static. Even vision requires
an activity (saccades at least): perception is the result of an action, which,
by its variations, singles out stabilities and invariance. Late unpublished (or
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recently published) reflections by Gödel show an increasing appreciation of
the dynamic of thought in Husserl and the role of transcendental constitution
in his philosophy. But this unknown writings had little or no relevance in the
major influence that Gödel has had in the formation of the platonist approach
to foundations. And a philosophy matters also for the effect that it has.

As a matter of fact, the modern perspective in phenomenology even more
radically departs from Gödel’s blend of realism and idealism: by, perhaps,
forcing slightly Husserl (and surely beyond Tieszen’s approach), we can even
say that any constitution is contingent, as it is the result of a history and a
praxis (a praxis in this world, with its frictions to our action).

Whatever is the true teaching by Husserl, our strong stand here is the
opposite of the Fregean absolutes that still invade Gödel’s views. Of course,
though, this constitution has a pre-human history: we share with many an-
imals basic counting praxes, appreciation of borders and trajectories. These
are invariants of pre-linguistic activities and, thus, partly precede conscious
intentionality, in Husserl’s sense.

More generally, mathematics is practiced in “our space of humanity”, by
our “historical communicating community”, as Husserl says, not by an individ-
ual subject: this adds to it its further, conscious and intersubjective stability.
At once, then, one also understands the effectiveness of mathematics, which
suddenly becomes reasonable: it follows from this contingency. There is no
real line in the world, nor imaginary number i, but we organise the world by
these construed concepts, which are strictly conceived by us, against Gödel’s
view, and are conceived by acting in this world, this is why they are not ar-
bitrary. Mathematics is the result of this contingent friction between us and
the world by a complex praxis of “action - abstraction of the action”. The
memory of a prey’s trajectory, say, is already “abstract”: it is the retention
of a protension, of the inexistent line, preceding the prey to be caught and
that the predator traces in advance, by saccades. And later, the concept of
line is the result of our symbolic-linguistic culture, by language, drawing and
writing, a further stabilization by intersubjective practices. Here lies its ob-
jectivity. Clearly, the resulting invariants, both in mathematics and, perhaps,
in general conceptual constructions, may be surely transcendental and, once
constituted, non-contingent. By this, we mean that they may be invariant
w.r. to transformations of reference system, in physics or mathematics, or of
humanly possible forms of life. It is the constitution of these transcendental
invariants that is contingent.

Similarly, as humans, we constructed this chair and this table, which were
not already there, nor was the concept of chair, of table, but resulted, both the
object and the concept, from our constructive action and linguistic exchanges.
Once constructed, the table, the chair and their concepts stay there, go cross
generations and history, through changes, and transcend each individual life.
And we also invented language and the alphabet, which are not in the world;
yet, by their constitutive history, they are extremely (yet, reasonably) effective
in understanding each other and the world, no less than mathematics, in their
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domains of application. They are at least as effective as this chair, which seats
us so well, it fits us and the physical world! And we understand each other
by talking and by (re-)producing language in writing: where is the miracle?
It is no more than in the panglossian nose and spectacles, which surprisingly
fit each other so well. And we can even use words with certain prevailing
meanings to express very different situations, by metaphors say. That is, we
may transfer linguistic expressions and conceptual structures, by formal or
semantic drifts, similarly as complex numbers can be used to express conjugate
values in Quantum Physics, three centuries after their invention.

In conclusion and against Logicism and Platonism metaphysical necessi-
ties, which need miracles and/or inspire an unreasonable effectiveness when
transferred to the world, we claim that mathematics is objective and effective,
exactly because it is the constructed contingency of maximally stable invari-
ants of our action in space-time and of reasoning, by gestures and language,
along our phylogenetic and human history. Or, also, we define mathematics as
the set of conceptual practices that is maximally stable and independent from
the contingency of their constitutive path (they are invariant under trans-
formations of humanly possible frames, as we said). And this, since Euclid’s
triangles, which, by definition, do not depend on the thickness of the traits,
or the colour of the ink. This maximal stability and independence, which is
part of their construction, makes the mathematical concepts more stable than
a chair and a table or their concepts; they better go through history.

Finally, let’s observe that mathematical objects are limit constructions,
obtained by a conceptual “critical” transition (see part 2), where the consti-
tutive contingency is lost at the limit. Euclid’s line with no thickness or the
“transcendental” number π is the result of a geometric construction, pushed to
the limit. But, in the end, their objectivity does not depend on the specific-
contingent and more or less abstract reference to actual traits or sequence
of rational numbers, needed to conceive or present them: at the limit, the
transition to infinity provides us with a perfectly stable conceptual object (a
mathematical ideality, some like to say). Their value and their sense do not
depend on the specific construction or contingent converging sequence of ra-
tionals, yet needed to conceive or define them. And the conceptual transition
is irreversible: no way to go from π to a given specific converging sequence;
there are infinitely many of them and π is the invariant under transforma-
tion (change) of equiconvergent sequence. In the second part we will return
at length on this understanding of the constitution of mathematical idealities
as a conceptual (we will say “critical”) transition, in analogy to the physics
of critical phase change.

Let’s go back to Tieszen’s book. In a very scholarly fashion, Tieszen’s chap-
ters on Gödel’s allow to grasp the differences between the mature Husserl and
Gödel’s philosophy, as well as the ontological shift of Gödel’s which may at
most be referred to Husserl’s work at the beginning of the century. Yet, we
would continue further to dig into the non-phenomenological reference to ab-
solutes in Gödel’s thinking. Tieszen explains how Gödel believed Hilbert to
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be correct in supposing the decidability of all number-theoretic questions, in
spite of his own undecidability (incompleteness) theorem: rationality needs
just to be extended by new laws and procedures. This rationalistic optimism,
a belief in absolute-ideal essences and their possible perfect knowledge, is
paradigmatic of how both Formalism and Platonism detached the foundation
of mathematics from physics and allows us to understand the opposite views
of mathematicians more deeply concerned with the latter (philosophically
at least, as Hilbert greatly contributed to Mathematical physics): Poincaré,
Weyl, Enriques. How could a leading Nominalist and a leading Ontologist (in
an broad semi-Husserlian sense), Hilbert and Gödel respectively, both possibly
say that there could be no undecidable assertion? And this when Poincaré had
shown that, given a formal system of a few equations (the Newton-Laplace sys-
tem for three bodies in their gravitational fields, 1890), one could state a (for-
malizable) proposition, parametrized on a sufficiently distant time, that could
be provably shown to be undecidable, under the intended (and best) physical
approximation of initial data. This was the first great result on the mathemat-
ical unpredictability of non-linear deterministic systems. No added (physically
possible) mathematical knowledge can solve this. This is why Poincaré cries
out against Hilbert’s “sausage machine’s view of mathematics” (an aggres-
sive stand recalled also by Tieszen): he has an entirely different Philosophy of
Knowledge. Let’s analyse this point more closely.

Preliminary reflections on Incompleteness, in mathematics and in
physics

In [Longo01], it was suggested that Poincaré’s three-body theorem (see
[Barrow97] for an introduction and an historical account) is an epistemo-
logical predecessor of Gödel’s undecidability result. Of course, Hilbert and
Gödel were speaking about purely mathematical ’yes or no’ questions, while
unpredictability shows up, at finite time, in the relation between a physical
system and a mathematical set of equations (or evolution functions). That is,
in order to give unpredictability, Poincaré’s Negative Result, as he called his
proof of the non-analyticity of the equations for three-body system, needs a
reference to physical measure. Measure is always, in classical (and relativis-
tic) physics, an interval, that is an approximation, by which non-observable
initial fluctuations may give observable thus unpredictable evolutions, in pres-
ence of non-linearity of the mathematical determination - a set of equations
or an evolution function (main reasons: the initial interval expands exponen-
tially, by the so-called Lyapounov exponents, and it is “mixed”, [Devaney89],
[Diacu92]). Yet, one can reformulate the problem in terms of a formal trajec-
tory “reaching or keeping away” from a given target neighbourhood: if the
deterministic system is chaotic, the mathematical question cannot be decided
(see [Hoyrup07], [Hoyrup08] for surveys). However, this is slightly unsatisfac-
tory as it only shows undecidability properties of chaotic dynamics (and not
the converse) and it partly relies on abstract properties of real computable
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numbers, instead of intervals, that do not need to fully express the mathe-
matics of physical systems. In particular, an effective measure theory (along
the lines of Lebesgues’s measure, the locus for dynamic randomness) needs to
be introduced. The problem then is to have a sound and purely mathematical
treatment of the epistemological issue (and obtain a convincing mathematical
correspondence between unpredictability and undecidability).

Now, unpredictability of deterministic systems is randomness in classi-
cal physics (see [BaillyLongo07]) and it may also be expressed as a limit or
asymptotic notion. Under this form, it may be soundly turned into a purely
mathematical issue. That is, randomness, as a mathematical limit property,
lives in formal systems of equations or evolution functions, with no need to
refer to physical processes and their approximated measure.

On these purely mathematical grounds, the second author conjectured that
a rigorous formal link could be shown, between Poincaré’s unpredictability
and Gödel’s undecidability, by passing through Martin-Löf number-theoretic
randomness. This is a “gödelian” notion of randomness, as it is based on Re-
cursion Theory and yields a strong form of (strong) undecidability for infinite
0-1 sequences (an infinite sequence is random if it passes all effective statis-
tical tests, see [ML66]3). On the side of physical dynamics, its mathematical
counterpart can be found in reference to Birkhoff’s notion of ergodicity, which
refers to infinite trajectories, a purely mathematical approach at the infinite
limit, with no need to refer to the interval of physical measure to engeder
randomness. That is, mathematical dynamical systems, in their (Lesbesgue)
measurable spaces, allow to define generic points and infinite random trajec-
tories, in the ergodic sense, [Petersen90].

Recently, M. Hoyrup and C. Rojas, under Galatolo’s and the second au-
thor’s supervision, proved that dynamic randomness (à la Poincaré, thus, but
asymptotically, following Birkhoff), in suitable effectively given measurable
dynamical systems, is equivalent to (a generalization of) Martin-Löf random-
ness. This is a non-obvious result, spreading across two doctoral dissertations
(available by summer 2008, see aknowledgements) and gives an indirect, but
relevant, we believe, technical link between Gödel’s incompleteness as unde-
cidability and Poincaré’s unpredictability4.

On more philosophical grounds, Poincaré, in several writings, also tried to
relate the foundations of mathematics to that of physics, passing by cognition
and action in space. Similarly for Weyl and Enriques, who insisted, during
their entire life, on a parallel foundation of scientific knowledge in these exact
Sciences, see [BaillyLongo06]. We insisted here on the connections between

3 Martin-Löf’s randomness, inspired by Kolmogorof’s ideas, has been developped
by many, Chaitin most remarkably, see [Calude02] for a classic.

4 Other links betwen physical and algorithmic randomness may be found in the
litterature, yet the connection via ergodic theory seems new. In particular,
[CaludeStay05] relates algorithmic randomness to quantum indetermination, a
different issue; in Part 2 we will discuss the difference between incompleteness
and indetermination in Quantum Mechanics.
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the issues of decidability and predictability, at the core of mathematical and
physical theoretizing. Of course, unpredictability in not in the world, it is not
an ontological matter, it concerns the relation of our forms of (mathematical)
knowledge to the world and this by the role of physical measure (our form of
access to the world). However, as we hinted, mathematics brings it within a
purely theoretical realm, by pushing to the asymptotic limit the mathematical
treatment of the intended physical processes in space-time continua, following
Birkhoff ergodicity. And this relates, as we said, to algorithmic randomness.

Observe now that, since the beginning of the XXth century, physicists have
been discussing the immense philosophical challenge of the intrinsic indeter-
mination of Quantum Physics (again, an issue related to measure) and that, in
1935, the possible “incompleteness” of Quantum Mechanics was proposed as
a key theoretical issue, as we shall see in Part II. These internal limitations to
knowledge (physico-mathematical unpredictability, intrinsic indetermination
vs. quantum incompleteness), whose understanding opened the way to two
major scientific domains, in classical and Quantum physics, were simply out
of the scope of the discussion of the two metaphysical rationalisms of Hilbert
and Gödel, in foundations.

Back to Gödel’s philosophy

Gödel’s philosophy, in our opinion, seems far away from any internal debate in
physics such as the one we will discuss in Part II (an example is given by the
mathematically remarkable, but physically unsound paper on the circularity
of relativistic time, see [Goedel49]). It escapes though trivial physicalism, as
for Theory of Mind. As Tieszen explains, Gödel argues against Turing’s claim
that mental procedures cannot carry any further than mechanical procedure,
as both mind (in the brain) and machines are both “finite state devices”. To
this, Gödel observes that mind is not static, but constantly developing. A very
modern view, as it is now clear that there are no “states” in brain/mind, but
only processes: Turing’s Machines “instantaneous descriptions” simply do not
make sense in cognition. In particular, Gödel remarks that abstract meanings
or concepts may be the result of limit procedures (to put it short: after a few
iterations, we “look at the horizon” and we construct and understand, say,
irrational numbers, projective limits, transfinite ordinals.)

In chapters 6 and 7, Tieszen further develops his close analysis of Gödel’s
path towards phenomenology. This is a rather unaccomplished path, as we
explained above and as one may deduce also from Tieszen’s many references
and comparisons. Yet, this path is very interesting, as it brings Gödel to a
clarification of the role of meaning in Arithmetic. With the help of notions
from phenomenology, Gödel derives from his incompleteness results the need
for a reference to meaning as “categorial intuition” in (arithmetic) proofs.
Thought structures or thought contents, in Gödel’s words, are the result of
insights which go beyond the combinatorial properties of symbols and require
a reflection upon the meanings involved. This is what we call the meaningful
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construction principles, as rooted in our cognitive history (from evolution
to human history); the well-ordering of integer numbers is an example (see
[Longo02]). It is in this sense that formal proof principles are incomplete
w. r. to construction principles, see also below. As we recalled, for the late
Husserl as well, these meanings are the result of a “formation of sense” which
is grounded in our “historical spaces of humanity”.

While missing this point about the constitution of meaning and principles,
Gödel takes up another fundamental theme of phenomenology: intentionality.
In Tieszen’s interpretation, Gödel uses and understands it as directedness
towards invariants. This fundamental structure of thought allows us to un-
derstand even sense perception as a non passive but active and constitutive
first step of knowledge building: the early, pre-conceptual, singling out of in-
variants. Of course, from this perspective, Benacerraf’s dilemma or alike, to
which Tieszen refers in a highly critical way, are just part of the new scholastic
which F. Enriques had forecasted long before (“the Philosophy of Mathemat-
ics is heading towards a new scholastic: the Scylla of Ontologism and the
Charybdis of Nominalism”, he observed in 1937). As a matter of fact and well
beyond Quine’s Platonism, in particular in Set Theory (meaning as truth is
“out there”), Gödel proposes an understanding of meaning as content, that is
as a result of intentional processes. Husserl’s intentionality again allows un-
derstanding categorization, from perception to thought, and thus content as
part of meaning formation.

As we are talking of more or less naive forms of Platonism, which regained
relevance by, helas, too common interpretations of incompleteness, a reference
should be made here to Penelope Maddy’s book. Tiestzen begins by some high
praises of it and continues with . . . an extremely severe critique of any relevant
idea in that book. Tieszen explains the misunderstanding of Gödel’s refined
Platonism which is brought back to the usual flat ontology, in contrast to the
phenomenological components that Tieszen showed to contain. He insists on
the wrong “bon sens” (our words) attitude of considering that “(some) sets
are part of the physical world” and perceived by us as such, without any of
the constructed conceptual stability and invariance that is proper to mathe-
matics. This brings Maddy to an unavoidable relativism, which is rather alien,
says Tieszen, to that science. There are three eggs, three atoms and so forth
and, ho miracle, we have the mathematical “set of three” and the concept of
“three”! But mathematics is a science of structures: there is no mathematics
without structures. Set Theory originated in the logical foundations of math-
ematics and passed aside the foundation of modern physics exactly because
this refers to geometric invariants or geodetic principles (which are symmetry
invariants: they reflect a structure). Mathematics actively organises the world
and our forms of scientific knowledge, it shapes them simultaneously, since it
is grounded on invariant structures, beginning with perception: the line is not
a set of points (let alone a set of eggs), but a gestalt. It may be logically found
or reconstructed, a posteriori, as a set of points (Cantor), or even without
points, in some toposes (Lawvere, Bell, see [Bell98]).
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Tieszen analysis continues by scholarly and stepwise demolishing Maddy’s
book (in a very gentle and motivated way, of course, though some polemic
tension may be appreciated in between the lines). One further issue should be
mentioned here; it concerns the naive attitude of confusing “bon sens” (which
is different from “common sense”) with “formation of sense”: there is a huge
gap between the two and this is called the constructed objectivity of science.
Science always goes against “bon sens”. Greek mathematics did not begin by
looking at sets of eggs, but by daring to propose non-existing lines with no
thickness and nondimensional points. Modern science began against the “bon
sens” evidence of the Sun turning around the Hearth. But even the concept of
number is a constructed and complex invariant w.r. to ordering, organizing
and “small” counting, as ancient (pre-human?) practices ([Dehaene97] is a
classic about this). It is complex, as it is the result of many active experiences
of transformations and their invariants.

But then, why not to propose that the unity of consciousness (and math-
ematical meaning) is due to Quantum entanglement as global effects in the
brain? This is the question discussed in chapter 10. Personally, we are not
against occasional audacious speculations as the one proposed by Penrose in
several bestsellers and analyzed by Tieszen. However, as it is a matter of find-
ing physical phenomena in a material structure (the brain) it would be better,
at least in principle, to start from some empirical evidence. Of course, there is
none of this and Penrose’s starting point is Gödel’s incompleteness theorem.
And a few assumptions.

First, awareness is a physical action and any (classical) physical action can
be simulated computationally (in Turing’s sense); then, truth is an absolute
matter, to which we have access by awareness. So, again, in order to escape
the Scylla and Charybdis of Nominalism and Ontologism, Penrose suggests a
shortcut from microphysics to consciousness.

As for the role of Gödel’s theorem, unfortunately this is based on a mis-
understanding of the proof of it: Tieszen quotes a fine analysis of Penrose’s
mistakes made by Feferman. The result of this misunderstanding is the belief
that one can deduce from it the absolute and transcendent nature of truth.
Tieszen criticizes this point not only on the technical grounds of Feferman’s
remarks but also along the lines of his phenomenological analysis of meanings
as intentions. In short, infinity, as meaningful thought structure, constituted
along history, steps in the proof of consistency of Arithmetic. This may be
more closely understood by an analysis of recent “concrete” incompleteness
results, carried on in [Longo02] and, more informally, in [Longo05].

There is no place here to criticize further Penrose’s physicalism. It takes
explicitly for granted that current physical theories are complete w.r. to the
world (this was also Aristotle’s opinion): so, if a phenomenon is not classical
(relativistic) - thus computable (really? see [LongoPaul08]), it must be describ-
able by some Quantum Theory. If the founding fathers of Quantum physics
had had the same attitude, they would have searched in existing theories,
Relativity Theory, say, or in variants of (thermo-) Dynamics the solution to
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strange phenomena such as the energy spectrum of the hydrogen or the three
bodies’ problem of the helium. They proposed instead a radically new theory.

It is interesting to see how often physicists, who in general defend non
trivial philosophies of knowledge within their discipline, when looking at life
or cognitive phenomena, just claim: this must be understood in terms of (re-
duced to) one of our theories (usually: the one I know best). Typically, when
discussing of General Relativity and Quantum Mechanics they talk of “unifi-
cation” not of reduction, as many do when referring to biology. Unification,
in contrast to reduction, means that one must be ready to invent a new the-
ory that changes radically both pertinent notions of field or even the intended
objects (String Theory) or the structure of space-time (Non Commutative Ge-
ometry). The point is that in order to “unify” one must have two robust field
theories and, in biology, we miss exactly an autonomous and proper notion
of “biological (causal) field” (this is discussed at length in [BaillyLongo06]).
There is no use to analyse any further Penrose’s claim that all classical phys-
ical processes are computational, since we know, for example, that even the
evolution of our planetary system is provably non computable. As a matter
of fact, recent results of unpredictability in deterministic systems, [Laskar94]
prove that there is no way to compute the relative positions of all planets and
the Sun in more than ten million years. That is, the system will have a position
in the continuum of space that no digital machine can compute; this a “con-
crete” and difficult version of Poincaré’s theorem on non-linear Dynamical
Systems and their unpredictability, as uncomputability. It is a “concrete” re-
sult, similarly as the famous combinatorial results by Paris and Harrington, or
Freidman version of Kruskal’s theorem, which provide concrete combinatorial
example, that is (interesting) propositions about interger numbers, that are
provably unprovable in Formal Arithmetic, see [ParisHarr78], [Harrington85]
(and [Longo02] for a discussion).

Of course, by this we do not pretend to exhaust the discussion on mind, as
developed also in Tieszen’s chapter on Penrose: even a sound biological theory
of brain would still be far from our symbolic culture and the phylogenetic and
historical formation of sense in our “communicating community”, which is the
place where meaning, consciousness and intentionality are formed. That is, a
purely biological theory of brain would be incomplete w.r. to cognition, as this
should be embedded in our social and historical “forms of life”: brain signs
have meaning only within a context. A contingent distinction of theories does
not imply dualism, as much as the distinction of quantum field from relativistic
one is not dualism, but a distinction of phenomenal levels. And unification
is a difficult matter. Yet, Gödel’s attitude on the matter, as explained by
Tieszen, is a traditional ontological dualism Mind vs. Brain: the first has
access to (infinitary) truth and meaning, by a metaphysical ahistorical path,
the second should be less complex than our planetary system as, according
to Gödel, it is fully computational. Unfortunately, Penrose’s answer to this
ordinary dualism is highly insufficient.
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Part I.III

This part of Tieszen’s book is largely dedicated to Weyl and Poincaré’s
philosophies, with a final reflection returning to Frege and Husserl. First,
though, a very interesting understanding of Intuitionism is presented. Dum-
mett’s approach, in particular, is surveyed, with a clear presentation of his
Wittgensteinian constructivism: “meaning is use”. Unfortunately, Dummett
seems to focus only on linguistic sense of use, in a clear contraposition with the
Brouwerian orthodoxy (for Brouwer, mathematics is languageless!). In addi-
tion to language, use as action, as gestures, as (imagined) figures and drawings
as forms of presence in space and time or of human interaction contribute to
the transcendental constitution and to single out invariants by our intentional
attitude. In our phenomenogical perspective, meaning goes well beyond the
linguistic truth-conditions and brings us back again to intentionality, broadly
construed (here we would like to pause and insist, with Merleau-Ponty, that,
well before consciousness, “le mouvement et l’action sont l’intentionalite’ orig-
inaire”). Tieszen stresses another crucial point which is not captured by the
linguistic turn: the intentional grasp of meaning doesn’t need to be fully de-
terminate nor clear and exact. This allows inserting the phenomenological
theory of meaning in human contexts where communication is enriched (and
made possible) by polysemy, ambiguity, cross references . . . . Mathematics, in
our approach, singles out and is determined as the locus of maximal stability
and invariance among our conceptual constructions: no polysemy is allowed,
in principle, no ambiguity: we force a - relative - stability of meaning; this is
mathematics.

Tieszen’s analysis of Weyl’s constructivism is unfortunately limited to his
views on the foundations of mathematics. The point though is that both
Weyl’s and Poincaré’s views should not be detached from their Philosophies
of Nature, though difficult it may be to spell them out, in particular from the
overloaded and unorganised writings by Poincaré. Thus, while it is true that
in “Das Kontinuum” Weyl spends several pages in sketching a (mathemati-
cally remarkable) predicative theory of reals, however, his short “flirt” with
brouwerian intuitionism is motivated by his broader constructivist perspec-
tive that always tries to relate the foundations of mathematics to our general
“human endeavour towards knowledge”. Thus, like Brouwer, but well beyond
Brouwer’s psychological time, Weyl reflects to the continuum as space-time
structure. He distinguishes between space continua and the phenomenal time
continuum, the time we experience in consciousness. This cannot be reduced
to analytic representations by points, in his view. Tieszen gives a very clear
account of Weyl’s understanding of time (based on a “specious or extended
present”) as well as of his short lasting predicativism; yet, the presentation
makes an insufficient effort in connecting “Das Kontinuum” and the con-
temporary work in “Raum-Zeit-Materie”. Moreover, later on, Weyl invented
gauge theory, in physics, as an analysis of invariance, with a peculiar role of
symmetries. Considering the constitutive role of both these notions for the
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foundations of mathematics and physics, one should find also there the rich
perspective of Weyl’s.

An informal survey of this physico-mathematical unity may be found in
“Symmetry”, Weyl’s last book. Observe also that, while stressing the interest
of Brouwer’s free choice sequence as an approach to the continuum, Weyl, in
several places, radically disagrees with Hilbert’s formalist project as “the idea
of a potential mechanization trivializes mathematics” (in “Das Kontinumm”,
where in an early section Weyl hesitantly conjectures the incompleteness of
Arithmetic, in 1918! This should be noted more often).

Weyl’s reflections are of a rare depth in the XXth century Philosophy of
mathematics, scattered in several writings, from “Das Kontinuum” (1918) to
Weyl’s simple, but deep masterpiece that we mentioned, “Symmetry” (1954).
One can find there the key role of symmetries in the constructed objectivity
of our physico-mathematical knowledge. There is no ontological miracle nor
miracle whatsoever, but the role of mathematics as a science structuring the
world, by its very definition. One sees, in that book, the classification of planar
symmetries (by rotation, translation, reflection: the Greek insight) as the pre-
requisite for understanding that of finite groups. Other classifications, from
Platonic solids to crystals’ symmetries are then understood as conceptual,
if not technical, consequences of these regularities, which make space-time
intelligible and objective. Gauge invariance, a result of rotation/translation
symmetries, is also seen as a foundation of Relativity and Quantum Theories
(more on symmetries in the foundations of physics and mathematics may be
found in [vanFrassen], [BaillyLongo06]). In short, Weyl shows that we sin-
gled out from and imposed on the world, also by our own bodily symmetries,
a few regularities as tools for knowledge (for understanding, organizing), of
which symmetries are the core part, and we called it “mathematics”. In some
cases, this is exhaustive of our spatio-temporal and linguistic representations:
it covers them completely (by classifications). In no way does it follow from
this, however, that mathematics can be detached from our own existence in
this world and its concrete, active representations; on the contrary, it roots
mathematics in them, starting with these resonance of symmetries, between
us and the world5.

The passage to Poincaré’s philosophy is motivated by Tieszen in the best
possible way, in our opinion, that is by the call for an epistemological or
cognitive dimension of proof. Poincaré refers to proofs by their meaning and
geometric organization (against the flat arithmetic coding by Hilbert), and
stresses the cognitive grounding of mathematical structures. Proof is the re-
alization of a mathematical expectation, it is grounded on possibly new con-
5 “But perhaps this question can be answered by pointing toward the essentially

historical nature of that life of the mind of which my own existence is an integral
but not autonomous part. It is ... contingency and necessity, bondage and freedom,
and it cannot be expected that a symbolic construction of the world in some final
form can ever be detached from it.” [Weyl49], p.62.
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cepts, it requires a conceptual investigation, as in the contentual approach by
Martin-Löf quoted by Tieszen. The geometric intuition of the real line pre-
cedes, in Poincaré’s view, its logical foundation. In general, the analysis of
the construction of mathematical concepts and structures (the epistemology
of mathematics), which is extraneous to the formalist and logicist (Platonist)
approaches, is a matter of a “living process in which the mind remains active”:
an analysis of human cognition, thus, in our sense. And here Tieszen moves
to Husserl’s “Krisis”, a lesson for today even more than for his time: by “the
construction and mastery of formal systems, Science becomes nothing but
technique”. It loses meaning and “forgets its historical origin”. It loses also
students, a dramatic process in Western world, as, once that making physical
experiments, for example, is transformed into implementing computer simu-
lations (isn’t any classical-relativistic physical process computational?), why
should one study physics? And many claim that also understanding biology
or Cognition is only a matter of good computer models and compilers. Thus,
financing increasingly goes only to short term technical and “competitive” in-
dustrially oriented projects, possibly producing quick computational models
of whatever natural process. This is gradually killing theoretical long-term
collaborative construction of knowledge, often grounded on “negative results”
such as Goedel’s or Poincaré’s. In their time, these results were the opposite
of positive modelization. It happened though that they opened the way to
major scientific areas, the geometry of dynamical systems and computability,
whose practical fall-out are under everybody’s eyes.

The epistemological relevance of the major negative results we have been
talking about goes toghether with their technical interest and actually moti-
vated them. Tieszen’s final chapter goes back to Husserl’s philosophy in order
to single out more closely, from his early writings, the role of meaning and
intentionality as constitutive of the epistemological analysis and, in our views,
of the analysis of proofs as well (in view of the incompleteness of formalisms).
Husserl’s reflection may thus be mentioned both for the need to preserve
“meaning and sense” to the general scientific enterprise, beyond its technical
developements, and for opposing Frege’s project of eliminating intuition from
proofs (meaning would be “obtruding”, according to Frege!).

Conclusion on mathematical incompleteness

We tried to better understand incompleteness, which is usually seen just as
an incomplete covering of semantics by syntax, as the gap between proof
principles (on which formal deductions are based) and construction principles
(the locus of meaning, in the constitutive relation between mathematics and
our life world). Both principles are the result of the contingent constitution
we mentioned above, but the former are the late commers of this process and,
by principle, they forget the constitutive path. The latter instead may allow a
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reconstruction of the cognitive and historical gestures that lead to them and
yield meaning6.

This view of principles and incompleteness further specifies Husserl’s ap-
proach in mathematics and it is even more remote from Frege’s view, as he
actually believed in Peano Arithmetic’s “categoricity” (to put it in modern
terms: there is only one model, or syntax coincide wit semantics), a much
stronger property than Hilbert’s completeness. As we shall see next, the dis-
cussion on “meaning” and “interpretation”, also in relation to “completeness”,
is at the core of theoretical and foundational analysis also in physics.

Part 2. Incompleteness and Uncertainty: differences and
similarities between Physics and Mathematics.

In the view of discussing some themes around the notion of incompleteness,
such as it appeared with force during the 30s, a period which saw the flourish-
ing of Gödel’s great logical theorems, and such as it started to foster debates
and arouse new perplexities in physics during the same era, we will delve here
into some concepts of quantum physics.

Firstly, and somewhat trivially, we know that in physics the accumulation
of empirical proof does not suffice to account for the totality of the theoret-
ical construction which represents phenomena. This is how, in physics and
at a very first level, is manifested the incompleteness of proof principles, as
grounded on empirical evidence, relative to construction principles. The latter
are principles of conceptual construction and are, often, limit principles. No
empirical evidence showed to Galileo that bodies never stop. Yet he dared to
propose the principle of inertia at the non-existing limit of absence of fric-
tion, which is the only general and pertinent one (cf. [BaillyLongo06] for more
on this; chapter 4 for example, shows the constructive role of the geodesic
principle).

However, this incompleteness has been thought way beyond this first and
simple level, both in classical and in quantum frames.

Completeness/incompleteness in classical theories

We first return to a conceptual comparison between the positions of Laplace
and Hilbert on the one hand and of Poincaré and Gödel on the other. The first
two refer to a sort of strict completeness of theories that are physical in one
case, and mathematical in the other: they would be complete in the sense that
any statement concerning the future would be decidable (this is the Laplacian
predictability of systems determined by a finite set of equations) or, regarding
logico-formal derivations, the completeness or decidability of arithmetics (or

6 More on this may be found in In [Longo02], [BaillyLongo06] and [Longo05].
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of any sufficiently expressive axiomatic theory: this is Hilberts completeness
and decidability conjecture).

The other two demonstrate incompleteness: Poincaré, with his theorem
on the three-body problem, showed unpredictability of interesting non-linear
systems, which we may understand as undecidability of future states. Their
dynamics will be said to be sensitive to the initial conditions, and in that,
deterministic, yet unpredictable: minor variations, possibly below the level
of observability, could cause major changes in the evolution of the system.
Gödel proved at once the unprovability of coherence and the intrinsic un-
decidability and incompleteness of arithmetics (and of all its formal exten-
sions), by constructing an undecidable statement, equivalent to the formal
assertion of consistency (which is thus also unprovable within the system).
We hinted to the epistemological and the recent technical link between the
physico-mathematical problem and the purely mathematical one. It can then
be interesting to try to characterize the main types of physical theories in
terms of this relationship to completeness.

If relativistic theories may indeed proclaim theoretical completeness in the
sense defined above, it very well appears that theories of classical dynamics
on the one hand and quantum theories on the other hand, may present two
distinct manners by which they manifest incompleteness.

In the case of chaotic dynamic systems, as we observed, unpredictability is
associated to the sensitivity to the initial conditions joint to the non-linearity,
typically, of the (formal) determination. It may however be observed that a
(theoretically) infinite precision regarding the initial data is meant to generate
a perfectly defined evolution (deterministic aspect of the system), or that a
reinitialization of the dynamic system with rigorously identical values leads to
reproducible results. Of course, this in principle and from the mathematical
viewpoint, because physically speaking, we are still within the context of an
approximation and the result of a measurement in classical and relativistic is
always, in fact, an interval and not a unique point, in spite of the supposed
mathematically continuous (space-time)background. Hence, we may notice
that an essential conceptual transition appears between that which pertains
to a finite level of approximation and that which constitutes a singularity,
at the “actual” infinite limit of precision (or, one could say, between the
unpredictable and the theoretically reproducible).

In quantum theories, contrastingly, as we shall see, be it an issue of rela-
tionships of indetermination or of non-separability, unpredictability is intrinsic
to the system, it is inherent to it. In this case, the degree of approximation
matters little: there is no conceptual break between finite and infinite, since,
as for measurement, there is no supposed continuous space-time background
(conitnuity may be found in Hilbert spaces, before measurement, but this is
a different issue). Another way to observe this consists in noticing that this
time, regardless of the rigor of the reinitialization of the system, the results
of the measurement will not necessarily be individually reproducible (proba-
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bilistic character of quantum measurement), even if the law of probability of
these results can be perfectly well known.

It is randomness then which is at the center of these theories, and this
by subtle differences from classical frameworks. This point is delicate and we
refer the reader to [BaillyLongo07].

Incompleteness in quantum physics

In the debate on the completeness of quantum physics, Einstein, Podolski and
Rosen (EPR) highlighted three characteristics of the physical object which
they believed to be fundamental in order to be able to speak of a complete
theory (see [Einstein35], [Bohm51]):

1. the reference to that which they called elements of reality (as existing
objects “beyond ourselves”, independently of measurement or access, say);

2. the capacity to identify a principle of causality (including in the relativist
sense);

3. the property of locality (or of separability) of physical objects.

Bell inequalities, [Bell64], and their experimental verifications, notably by
Aspect and his team, [Aspect82], have shown that the third EPR postulate
was not corroborated: experience shows that two quantum objects having in-
teracted remain for certain measurements a single object, consequently non
separable, regardless of their distance in space. In other words, for two quan-
tons having interacted, even if they are afterwards causally separated in space,
any measurement of a value on the one would instantaneously determine the
value of the other, against fundamental principles of Relativity Theory.

Presented this way, the eventual incompleteness (or, conversely, complete-
ness) of quantum physics seems to have nothing to do with what is meant by
completeness or incompleteness in logic, which have been addressed above7.
However, a deeper examination reveals that what appears at first glance as a
lexical telescoping may not be completely fortuitous.

To each of these characteristics “required” by EPR in physics, one may,
indeed, without distorting the significations too much, associate characteris-
tics “required” by mathematics (recall that principles of proof correspond to
formal deductions in mathematics and to empirical “evidence” in physics):

1. elements of reality would be put into correspondence with proofs that con-
struct existence, that is, the effectiveness of mathematical constructions
(which, axiomatically or not, we have seen the difference, cause mathemat-
ical structures to exist - similarly as we construct, isolate or “point-out”
objects in physics, see 1 above);

7 By accepting, for this discussion, to use the framework of arithmetics or of set the-
ory (ZFC type) and its models, a framework within which the questions relative
to logical completeness were first raised.
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2. the principle of causality would be put into correspondence with the ef-
fectiveness of the administration of proof (which presents and works upon
the rational sequences of demonstrations, be they stemming from formal-
ism as such or not - the deductive chain is here placed in correspondence
with the causal one in physics, see 2 above);

3. the property of locality (or of separability) would be put into correspon-
dence with the autonomy of mathematical theories and structures inas-
much as they would be “locally” decidable (or that within a formal theory,
any statement or its negation would be demonstrable, see next for a rela-
tion to 3 above).

Now it is precisely this local autonomy of theories, this “locality” in terms of
decidability, which seems to be contradicted by the theorems of incompleteness
in mathematics. The latter indeed refer to a sort of globality of mathematical
theories in that one may need to use stronger principles to prove a statment in
a given theory. Techinically, recent results by Friedman show that, relatively
simple combinatorial statements of Peano Arithmetic may require increasingly
large ordinals or cardinals to be proved8. In a sense, the “global” structure
of orders, even of the entire mathematics (if one believes that ordinals and
cardinals express the proof theoretic power in mathematics) seems to step in
the proof of local properties of the first order arithmetic. So, the adjunction of
(finetely or recursively many ) axioms to a theory doesn’t render“decidable”,
at most “more expressive” (or capable of deciding previously undecidable
statements), but at the cost of generating a new theory which requires the
same treatment itself, because, remaining formal, it would still be incomplete.
In other words, there is no way to isolate arithmetic nor any other sufficiently
expressive mathematics and deduce within it “completely”: tools from any
other branch of mathematics may be need in a proof of a statement of the
given (apparently simple) theory.

But we can probably push the analysis further than suggested by these
conceptual analogies.

In mathematics, if we refer to the interpretation of Gödelian incomplete-
ness in terms of discrepancy between construction principles (structural and
significant) and proof principles (formal) that is, in terms of incomplete cov-
ering, between semantics and syntax (all achievable propositions are not
formally derivable, or, more traditionally: semantics exceeds syntax), then
a closer relationship may be established. This relationship concerns, among
other things, the introduction and the plurivocity of the term interpretation,
according to whether it is used in a context of model theory or if it is taken
in its common physical sense. In model theory, the excess of semantics (con-
struction principles) with regard to syntax (proof principles) is first mani-
fested in distinct interpretations (existence of non-isomorphic models, that is,
non-categoricity) of a same syntax (for example, the non-standard model of
Peano’s arithmetic, cf. above). Gödelian incompleteness furthermore demon-

8 see http://www.math.ohio-state.edu/users/friedman/ .
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strates that some of these models realize different properties (technically, they
are elementarely non-equivalent).

In physics, if we accept to see the equivalent of syntax in the mathemat-
ical structure of quantum mechanics and the equivalent of semantics in their
proposed conceptual-theoretical interpretations (hidden-variable theories, for
example, see below), then the “semantics” would also exceed “syntax” and,
consequently, a certain form of incompleteness (in this sense) would be man-
ifest.9 But more profoundly, in the case of quantum physics, it is the excess
of the “possible”, the quantum states in a Hilbert space, over the “actual”,
once states are measured, which best illustrates this type of parallelism and
of comparison. In other words, the result of a measurement corresponds to a
plurality of potential states leading to it, each with its well defined probability.
A sort of non-categoricity of the states (non-isomorphic, even if they belong
to the same system) relatively to the well defined result of the measurement.
The latter operates here like a sort of “axiomatic” constraint in that it stems,
as we have seen, from the physical principles of proof, which are empirical
(empirical proofs are “constraint” by physical measure).

The concept of incompleteness was then understood by EPR in the sense
that quantum physics should be deterministic in its core and that its proba-
bilistic manifestations would only be due to the lack of knowledge of “hidden
variables” and of their behaviors. This actually amounts to saying “there are
hidden causal relationships between particles that are not described by the
theory”. Now, the EPR argument is experimentally contradicted by the viola-
tion of the Bell inequalities and the fact that the property of non-separability
is indeed inherent to quantum physics. In this sense quantum theory has been
shown to be complete (there are no hidden variables).

Can we nevertheless speak of incompleteness in a sense different than that
of EPR without however it being totally extraneous? In other words, would
it be possible to formulate a proposition that is undecidable in the sense that
it would be true according to one model and false according to another? Let’s
consider the crucial statement which can be attributed to EPR: “there are
hidden variables”. As we have just seen, this statement is false according to
the usual model (standard interpretation) of quantum mechanics. Yet a theory
presenting the same properties as quantum mechanics can be constructed, in
9 If we want to continue with the analogy and in parallel with Logic, we will also

notice that this search for hidden variables, which prove to be non-local, evokes
in a way the method of forcing, which enabled Cohen to demonstrate the inde-
pendence in ZFC of the Continuum Hypothesis and of the Axiom of Choice (by
constructing a model not realizing them, whereas Gödel had constructed a model
that does, see [Jech97]). The hidden variables in question are indeed “forcing” for
the physical model they nevertheless continue to respect. This is somewhat anal-
ogous, conceptually speaking, to the logical situation where forcing propositions
are compatibly integrated with the original axiomatic construction: one adds or
forces extending variables or properties, previously “hidden” or not assumed.
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which this statement is true on condition that an adjective is added: “there
are non-local hidden variables”.10

Incompleteness vs. indetermination.

Sometimes, confusion is set in between the concept of incompleteness (as pre-
sented by EPR) and that of indetermination (as highlighted by Heisenberg).
So let’s try to further explain how are the relationships between incomplete-
ness and indetermination, which do not cover the same conceptual construc-
tions.

The issue of incompleteness such as raised by EPR leads, we have seen, to
the search for “hidden variables” which would “explain” the counter-intuitive
behavior of quantum phenomena. As we observed, it is possible to elabo-
rate hidden-variable theories, but these variables are themselves non-local,
therefore simply postponing the intuitive difficulties. In this regard, it is bet-
ter to preserve the canonical version of quantum physics, the Bell inequali-
ties and the experiments by Aspect which highlight the property of quantum
non-separability (that for two separated quantons, which have previously in-
teracted, measurement on one would determine the value of the other). By
highlighting the fact that one of the origins of this situation stems from the
use of complex numbers (in state vectors or wave function) as additive quan-
tities (principle of superposition), whereas that which is measured is a real
number and refers to the squares of the modules of these quantities. We will
return to this in a moment.

Quantum indetermination (“the uncertainty principle”), for its part, mo-
bilizes somewhat different concepts: it consists in the treatment of explicit
variables (non-hidden), such as positions and momentums, of which the as-
sociated operators will present a character of noncommutativity (measuring
first one observable, then the other does not commute: a fundamental property
10 “Local variables” is an expression which is also equivalent to “variables attached

to particles” (they depend only on properties specific to a given particle each:
this is locality). To speak then of non-local variables is to express the fact that
the value of a variable which governs the behavior of a particle may not only
depend on this particle, but may also depend on (remote) other particles. This
is also another way to consider the non-separability we have just mentioned.
As a matter of fact, the distinction (separability) between two particles having
interacted is a representation that stems directly from classical physics, be it
relativistic. For its part, quantum physics proves to be fundamentally non-local,
that is to contain entangled (non-separable) quanta. Thus, a type of valid propo-
sition in an interpretation (no hidden variables and non-separability) can be false
in another (existence of hidden variables, but by specifying non-local variables).
In fact, more broadly, the controversy first initiated by L. de Broglie continues
among some physicists, currently a small minority, with regards to the character
of causal determination, which would be classical but hidden, undescribed by the
theory: an incompleteness of quantum physics.
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which will lead moreover to the development of non-commutative geometry,
the current insight into the space of microphysics). It is in fact an issue of the
constraints which weigh the Plank constant (small but non-null) upon physical
measurement, precluding simultaneous measurement with an “infinite” pre-
cision of two conjugated magnitudes such as positions and the corresponding
momentums, which we have just mentioned.

If we wanted to roughly distinguish the two types of conceptual ambiguity
introduced by these quantum properties with regard to habitual intuition, we
would say that incompleteness refers rather to an ambiguity of object (is the
object local or global? How is it that according to the nature of the experi-
ment it appears to manifest either as a particle or a wave?11). Indetermination
instead leads to an ambiguity of the “state” of the system: a quantum object
of which we know the precise position would be affected by an imprecise
velocity; conversely, the precise knowledge of a velocity would entail an “in-
determinacy” regarding the position occupied. In a purely mathematical way,
a quantum object which we would manage to “stop” would occupy all space.

In fact, both versions of these quantum specificities refer to a difficulty of
describing quantum phenomena “classically” within time and space of classical
or relativistic theories, while their description within their own “abstract”
spaces (a Hilbert space, for instance) is perfectly clear12.

Regarding space, we will note several traits which make of our usual intu-
ition of space (and even of the Riemannian manifold of general relativity) an
instrument which is unadapted to properly represent quantum phenomenal-
ity13:

i) Firstly, as we have indicated above, quantum quantities are defined at
the onset on the field of complex numbers C, as opposed to classical and
relativistic quantities which are defined at the onset of the field of real
numbers R. It stems from this that in quantum physics, what is added
(principle of superposition) is not what is measured (complex amplitudes
are added - as vectors, their square norms are measured - as real numbers).
At the same time and for the same reason, quantum objects so defined

11 Situations with regard to which Bohr was lead very early on to introduce the
concept of complementarity (in the sense of a complementarity specific to the
quantum object, which could manifest itself, according to the type of measure-
ment performed, either as particle or as a wave), which was the object of many
controversies.

12 These differences between the notions of incompleteness, as meant by EPR, and
of indetermination make our conceptual analysis concerning incompleteness, from
Goedel to EPR, very different from the technical correlation, à la Chaitin, beween
Goedel’s theorem and quantum indetermination in [CaludeStay05].

13 For example, with inseparability, everything seems to occur as if an event locally
well defined in the state space of the definition of quantum magnitudes - an
Hilbert space typically, was to potentially project itself upon two distinct points
in our usual state space.
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(wave function or state vector, for example) are no longer endowed with
the “natural” order structure associated to real numbers (a total order).

ii) Then, as we have seen, the definition of the observables makes it so that
some among them (corresponding to the conjugated magnitudes) are not
commutable, as opposed to the classical case. This, in the context of the
geometrization of this physics, necessitates the introduction of a geometry
that is itself non-commutative, thus breaking, as we said, with all previous
traditions [Connes94].

iii) Finally, the enquiry may lead even further, with regard to the relationships
between quantum phenomenality and the nature of our usual geometric
space. May the latter be Newtonian or Riemannian, it will admit a rep-
resentation as a set of points and its continuum stems from an indefinite
divisibility. Now given the existence of a scale of length (possibly minimal,
cf. [Nottale99]) such as the Plank length, recent string theories lead to ask
if in fact this space would not escape a description in terms of punctual
elementarity (eventually to the benefit of another, in terms of interval
elementarity14, or in terms of higher dimensionality such as “branes”).

It should be clear that these specific issues lead to a conceptual revolution
in our relating to physical space, at least the space of microphysics. The key
idea is that geometry, as a human construction, as we stressed in part, is the
consequence of the way we access to space, possibly by measure. So Euclid
started by accessing, measuring, with rule and compass. Riemann analyzed,
more generally, the rigid body (and characterized the spaces where this tool
for measure is preserved: those of constant curbature). Finally, todays non-
commutative geometry, in Connes approach, begins by reconstructing space
by quantum measure. In microphysics, this happens to be noncommutative
(measure this and, later, that, is not equivalent to measuring that and, later,
this). And this takes us very far from the space of senses or even classi-
cal/relativistic spaces. In conclusion, measure, by rule and compass, by the
rigid body, or quantum measure is the form of access we have to space and
events in it. This access may differ, yet it may provide a geometric way to a
novel unity, by explaining first how to pass from one mathematical organiza-
tion/understanding of space to another.

Constitutions of objectivity. Conceptual comparisons
between mathematics and physics.

We will now try to understand some aspects of the contingent constitution
of mathematical idealities, in analogy to some physical processes, the phase
transitions.
14 We would then maybe pass from a Cantorian representation of continuity to a

representation by interval interlockings such as proposed by Veronese or to the
nil-potent infinitesimals, see [Bell98].
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“Actual infinity”, once conceptually constructed by constitutive intersub-
jectivity, is not only conducive to imagining the idea of God (and theology)
or, like Giordano Bruno, the infinity of worlds. It is, on one side, a mathe-
matical concept, and on the other it is involved in the process of constitution
of the mathematical objects themselves (both finitary and infinitary). The
idea is that mathematical objects are “substantially” (if we may say so) a
concentrate of actual infinity brought into play by human beings, within their
symbolic culture. Let’s explain and argue.

The transcendental constitution of mathematical objectivities (from the
finitary ones which are the triangle or the circle, to the structures of well
order, or even to the categories of finite objects of which we have spoken) ac-
tually involves a very fundamental change of level : the process of abstraction
of acts of experience and of the associated constructions (see part I) leads
to this transition, which constitutes the forms thus produced, into abstract
structures as eidetic objects. This transition (which also leads to their con-
ditions of possibility) presents all the characteristics we ascribe to “physical
criticality” (the theory of “critical phase transitions”, [Binney92], [Jens98]).
Notably, this describes the passage from the local (such or such empirical
form) to the global (the structure which is defined abstractly and which is
to be found in all particular manifestations), as well as the passage from a
certain (“subjectivizing”) heteronomy to an autonomy (objectivity), and from
a certain instability (circumstantial) to a stability (a-evential). For example,
even Euclid’s passage from the empirical practice of lines, in measuring “geo”,
to the concept of thickless line or o dimensionless point, is a conceptual tran-
sition, which may be better specified, in our view, in analogy to the critical
ones in physics. It is namely these constituted characteristics, resulting from a
sort of passage to the effective infinite limit as process of constitution, which
lead to mathematical platonic thinking. The latter though, as much as the
formal axiomatic approach, forgets the constitutive process itself.

The examples we can use to try to account for this conceptual transition,
which leads to the constitution of new objectivities, are varied. In mathemat-
ics, we recall the example of the sum of rational numbers (1/n!, for example)
which gives, at the actual infinite limit, a transcendental number (e, in this
case). This may be seen as a critical transition, or “space transition”, which
leads from one field (the rationals, Q) into another one encompassing it (the
reals, R). In physics, we may find an equivalent in a change of phase, associated
to the divergence of an intensive magnitude of the system (a susceptibility,
for example, which formally is considered to go to infinity) and to the passage
from local to global (divergence of the correlation length of interactions). In
biology, it would be a case of a change in the level of functional integration
and regulation (the organism in relation to its constituents, for example).

If mathematical structures are also the result of the search for the most
stable invariants, as is conceptually characterized in the preceding, it is then
probably due, at least in part, to this process of constitution mobilizing a form
of actual infinity and leading to a sort of stable autonomy, at the limit. Let’s



26 Francis Bailly & Giuseppe Longo

continue with the physical metaphor of phase changes. A phase transition
can be manifested for instance in a symmetry breaking of the system and
a concomitant change (sudden or more progressive) of an order parameter
(the total magnetic moment for a para-ferromagnetic transition, density for a
liquid/solid transition). In fact, the phase transition is, in a way or another,
a transition between disorder (relative) and order (also relative). If we keep
these characteristics in mind and make them into a conceptual trait that
is common to the transcendental constitution of mathematical objectivities,
we will readily notice the disordered situation with regards to the often un-
coordinated collection of “empirical” mathematical beings, and the ordered
situation in mathematical objects and structures as such, as resulting from
the process of abstraction and of constitution.

So it is easily conceivable why the axiomatization, or even the logicization
of the statements characterizing these mathematical structures, are geneti-
cally and in some respects conceptually second relatively to the mathemati-
cal activity and to the process of constitution itself, as we emphasize in the
first part of this paper. In our view, here are the roots of the mathematical
incompleteness of formalisms. Indeed, the formal statements describe order
consecutively to the “phase transition” we have just invoked. But mathemat-
ical thinking concerns as much the process of transition as the putting into
form and description of its result. And to go even further, we could almost
say that the evacuation of the “contingent disorder” accompanying transition-
constitution corresponds to the evacuation of the “significations” associated
to the structures over the course of their elaboration and to the “infinitary
involvement” it presupposes. This is why the purely logico-formal foundations
lead to pure syntaxes devoid of meaning and intrinsically incomplete.

It is probably also one of the reasons enabling to understand why formalism
“works” when it is an issue of describing the order resulting from the transition
in question (the constituted mathematical structures), but that it fails from
the moment it is given the task of also describing the transition itself, that
is, the process of constitution as such, from and in the terms of its result.
In fact, one may consider that formalism fails to capture “actual infinity”
that enabled the passage and which has become a major characteristic of the
objectivities thus constructed. In this sense, the “semantic” aspect is the most
deeply involved in the occurrence of this effective passage to the infinite limit,
whereas the syntactic aspect is much more relative to the rigorous, possibly
axiomatic, description of the once stabilized results of this passage. We insist
that it is the non-coincidence of these two dimensions that is at the origin of
the properties of incompleteness, that we saw as a discrepancy or gap between
construction principles (conceptual) and proof principles (formal), of which
we speak in part I. The results of incompleteness are a demonstration of these
lackings.

So here ends, in our view, the proposed conceptual analogy with phase
transitions in physics because we know that in physics, as we have recalled
earlier, renormalization theory proves itself in a way to be able to address the
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critical transition itself. This difference in behavior relatively to the processes
put into play is to be referred to the difference between the objects considered
themselves, such as they are elaborated in physics and in mathematics: if
the construction principles are similar, as we have shown in [BaillyLongo06]
and hinted here, the proof principles are completely different (empirical vs.
formal), and it is indeed regarding the status of the proof that the difference
is manifest.

It is probably what transpires in this dichotomy introduced in [BaillyLongo06]
relatively to elementarity. As a matter of fact, we opposed the elementary and
simple (related to the artificial processes of algorithmic calculus, to the con-
catenation of simple logical gates, or even to any artifact) to the elementary
and complex (related to natural processes such as strings in quantum physics
or cells in biology). Quantum physics and biology address natural phenomena
that are confronted to elementarities that are rather complex and hence they
seem irreducible to processes grounded on simple elementarities, in the sense
of artificial computation and general artefacts. Besides the role of meaning
in deduction (a role stressed by “concrete” incompleteness in particular, see
[Longo02]), this further prevents from reducing scientific judgment to a calcu-
lus, in this sense, without denying, of course, the interest of the complementary
understanding provided by the formal and computational descriptions.

Conclusion

Let’s conclude this paper by stressing the perspective that guided our work.
In our views, the epistemological investigation of mathematics cannot be de-
tached from a constitutive analysis of concepts and structures (and thus of the
very object of knowledge) in other scientific disciplines, such as physics. This
is the project that, in a very preliminary and modest fashion, but along the
same phenomenological approach, we try to pursue in several papers and in
[BaillyLongo06], an extension, within a scientific project, of some of the ideas
we hinted here. The analogies and differences in the “phenomenology of in-
completeness” is a fundamental part of it. We believe that further work should
lead to an analysis of this phenomenon in other disciplines (see [LongoTe07]
for some reflections on a form of causal incompleteness in biology).
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