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Summary :   Our  relation  to  phenomenal  space  has  been  largely  disregarded,  and  with  good 

motivations, in the prevailing foundational analysis of Mathematics.  The collapse of Euclidean 

certitudes,  more  than  a  century  ago,  excluded  ‘’geometric  judgments’’  from  certainty  and 

contributed, by this, to isolate the foundation of Mathematics from other disciplines.  After the 

success of the logical approach, it is time to broaden our foundational tools and reconstruct, also in 

that respect, the interactions with other sciences.  The way space (and time) organize knowledge is  

a  cross-disciplinary issue  that  will  be  briefly  examined  in  Mathematical  Physics,  Computer 

Science  and  Biology.   This  programmatic  paper  focuses  on  an  epistemological  approach  to 

foundations, at the core of which is the analysis of the ‘’knowledge process’’, as a constitutive 

path from cognitive experiences to mathematical concepts and structures. When first presented, in 

2001, it opened to way to the idea that phylogenetic trajectories, in biology, co-construct the space 

of  possibilities,  in  contrast  to  physical  theories  which  assume a  pre-given phase  space  of  all 

possible dynamics.
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1. The geometric intelligibility of space

«The primary evidence should not be interchanged with the evidence of 
the "axioms"; since the axioms are mostly the result already of an original 
formation of meaning and they already have this formation itself always 
behind them» [Husserl, The origin of Geometry, 1933].

Man has always been organizing and giving meaning to space.  This was done by action, gestures 

and  language;  Mathematics,  Geometry  in  particular,  provided  the  most  stable  conceptual 

reconstructions of phenomenal space.  I will try to find a methodological unity to its highest 

moments, when geometric tools unified, and still now unify, the space of senses and physical  

space as well as different forms of mathematical understanding of space.  To this aim, and by a  

rather arbitrary choice, I will stress the unity in the questioning by Euclid, Riemann and Alain 

Connes2: the issue here is not the ‘names’ of the mathematicians mentioned, nor their individual  

contribution, which may interest the historian, but the focus on mathematical theories which may 

soundly refer to them.

The claim is  that  space,  in  these  three  paradigmatic  approaches,  is  made  intelligible  by 

proposing different answers to similar "questions": How do we access to space? How do we 

measure it? By which operators do we act on it?

1.1  Euclid

Euclidean  Geometry  organizes  space  by  rigid  figures  and  their  (rigid)  movements.   Its  key 

property  is  being  “closed  under  homotheties”  (its  group  of  automorphisms  contains  the 

homotheties).  By this, a theorem, a property of a figure, remains valid by enlarging or reducing 

at leisure its length, surface, volume ... .  By this, the “local” or “medium sized” space of senses is  

2 1982 Field Medal,  A. Connes works since the early '80’s at the geometric foundations of Quantum 
Mechanics.
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perfectly unified with physical space, in the very large and in the very small.   This property  

characterizes Euclidean Geometry w.r. to the non-Euclidean ones.

Euclid’s postulates are “constructions”:  draw a straight line from any point to any point ... 

produce a circle with any center and a distance ... and so on so forth. “Theorem” means “vision”, 

“scene”, in Greek: by ruler and compass further constructions are “shown” by acting on space 

(first theorem, book I: construct an equilateral triangle on any straight line ... we all know how3). 

This action though is an abstract one, as the main structure handled is the revolutionary and 

unique idea in Euclid’s geometry: the line with no thickness (definition beta). This line is the first  

and most fundamental “mathematical structure”, a border, a very difficult notion, proper to the 

dialogue with the Gods grounding geometric ideas and to the best practical way to measure a 

surface: if the border has some thickness, which is the surface of a figure? (Longo 2015).

The geometric action, a “theater” proper to theorem proving, adds to logical reasoning and is 

done by rule and compass only: these (ideal) “tools” make space mathematically accessible, they 

organize it, they allow to measure it, to operate on it.  Nothing else is needed. 

1.2  B. Riemann

Riemann’s main aim is to account for the unexplained Newtonian “action at a distance”.  He tries  

to understand gravitation (but electromagnetism and heat propagation as well) by the “structure of 

space” ([Riemann, 1854]; see also [Boi, 1995], [Bottazzini&Tazzioli, 1995]).  This revolutionary 

approach may be partly found also in Gauss and Lobatchevski, but it reaches with Riemann its 

highest mathematical unity.

One of Riemann’s concerns is to understand under which general conditions we may soundly 

measure.  This is possible when rigid bodies are preserved, as by moving a rigid "meter" one may 

compare lengths.  And here comes Riemann’s general analysis of curbed spaces, which shows 

that spaces (manifolds) of constant curvature guaranty the invariance of measure (the rigidity of 

bodies).  Euclidean spaces are a particular case of these manifolds, indeed the critical one, i.e.  

when the curvature is constantly 0.

But the other spaces can make sense as well, since they can give an account, by geodesics, of 

these mysterious action at distance.  Riemann dares to think that «the concept of rigid body and of 

a light ray, non longer are valid in the infinitely small»: bodies may be no longer rigid, light may 

go along varying curbs ....   The point is, and this is one of his major results, that the metric  

3 The intersection point of the circles centered on the end points («the extremities of a line are points») is  
given by the intended “parmenidean” continuity of the (circular) lines, since «a point is that which has no 
parts» and «two breadthless length», i.e. two lines,  produce, by intersection, “that which has no parts”. 
That  is,  in  Euclid,  a  point  is  given as  the result  of  an intersection of  two lines  (this  is  observed by 
Wittgenstein as well). Moreover, the theorem implicitly defines continuity: a line with no thickness is 
continuous when, intersecting another no-thickness line in good conditions, it produces a point and only 
one. Only the formalist rewriting of Greek Geometry could claim that this theorem is not soundly proved 
by Euclid, see [Heath, 1908] and one century long commentaries.
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structure of a (riemannian) manifold, or its measure by a length, may bi-univocally related to the 

its curvature (the metric tensor and the tensor of curvature are related, in fully general situations). 

Moreover, it may make sense to analyze a space of non-constant curvature, as «the foundation of 

metric relations must be found elsewhere, in cohesive forces that act on it».  A "divination", will 

recall H. Weyl in the ‘20s, in reference to Relativity Theory: forces between bodies are related to  

the (local-metric) structure of space.  And this approach «should be allowed if it would lead to a  

simpler explanation of the phenomena».  Since Einstein’s work, we understand the relevance of 

this extraordinary insight of Riemann’s.

Thus  the  geometric  organization  of  spaces  may  provide  an  understanding  of  physical 

phenomena, beginning with the analysis of measure and distance.  For this purpose, Euclid’s ruler 

and compass must be generalized, since «...  in a continuous manifold the metric relations must 

be introduced on different grounds4».  Then, a linear element does not need to be represented as 

the square root of a second order differential form (Pithagoras’ theorem), but more generally as 

ds2 = gijdxidxj.  

This is how, for Riemann, we access, measure and operate on space, while understanding 

physical  phenomena by Geometry.   Then space  manifolds  are  proposed,  as  a  "genealogy of 

mathematical concepts", by making explicit some hypothesis, which ground the mathematical  

construction into phenomenal space: some key ones are,  according to Riemann, connectivity, 

isotropy, continuity ....  H. Weyl will add symmetries as one of the fundamental properties, which 

structure physical space.

  Of course, by Riemann's distinction between the “local” and the “global” structure of space 

(the metric structure and the topological one, the latter related to the Cartesian dimension) a key 

aspect of the unity of Euclid’s approach is lost: physical space, the space of microphysics (“the 

infinitely  small”)  or  of  remote  spaces,  may  have  properties  which  escape  the  experience  of 

senses. In Riemann’s approach, the relation between local and global is the result of a complex 

and novel mathematics: the gluing of local maps by differential methods; homotheties do not 

allow any longer to transfer “medium sized” experience and knowledge to any scale.  And this is 

extremely  modern:  from  Relativity  Theory  and  Quantum  Physics,  we  learned  that  access, 

measure and operations, in the very large and the very small, cannot be provided by the naive 

analysis of senses.

Yet, there is a unity in Euclid's and Riemann's approaches, as stressed here.  A synthesis is 

also given by [Poincaré, 1913] in a sentence: «faire de la géométrie, c'est étudier les propriétés de 

nos instruments, c'est a dire du corps rigide».

1.3  A. Connes

4 Riemann’s quotations, in brackets, are from [Riemann, 1854].
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Given any topological and, thus, any metric space X, one may consider the set of continuous 

functions, C(X), from X to the complex field, as a suitable algebraic structure (a commutative C*-

algebra).  C(X) is very important, as it includes the space of measures on X. 

A classic result of Gelfand allows to go the other way around.  Given a  commutative C*-

algebra C, it is possible to construct a topological space X, such that C(X) = C.  The points in X 

will be characterized by the maximal ideals of C and so on and so forth as for reconstructing the 

geometric structure of X on the grounds of the properties of C.

In  classical  and  relativistic  physics  measures  happen  to  commute:  the  result  of  several 

measure operations does not depend on their order.  This is not so in Quantum Mechanics.  The 

measures of position and momentum of a particle, for example, do not commute.  And this is 

crucial: in Quantum Physics these are the observables.  Measure by instruments is the only access  

we have to "physical reality".  More precisely, we can construct knowledge in microphysics only 

by setting up instruments for measure: there is no other other way to observe.  This is where we  

have to start.  In this, there is a complete conceptual continuity w.r. to the approaches by Euclid  

and Riemann.  But the "instruments" of measure do not have the relatively simple nature of the 

ruler and compass, even not in the generality of Riemann's notion of "rigid body" or of his "ds
2
". 

Measure is now given by the complex physical and conceptual instruments for microphysics: the 

only  grounding  certainty,  which  founds  quantum  mechanics,  is  given  by  a  few  observable 

phenomena, such as the non-commutativity of measure (and the related essential indeterminism).

Heisenberg first replaced classical mechanics, where observable quantities commute, by a 

"mechanics of matrices", where observable quantities do not necessarily commute.  His algebra of 

matrices is then obtained from a groupoid, which replaces the classical (commutative) group of 

measures. Now, this latter group is the starting structure to reconstruct space, à la Gelfand: from a 

commutative  algebra  to  a  topological  space.   Connes'  work,  since  many  years,  consists  in 

reinventing Geometry from a non-commutative C*-algebra: beginning with measurable spaces, to 

topological, metric and differentiable ones ([Connes, 1994]).  The differences are dramatic, as the 

very notion of point and of trajectory are different from the classic notions: there are no more 

maximal  ideals  and  trajectories  are  closer  to  the  "paths"  derived  from Feynman's  notion  of 

integral.   The debate  is  very lively (and difficult),  but  many agree that  Connes'  approach is 

gradually giving an account of the mysterious nature of some physical phenomena, at the level of 

microphysics,  including  non-locality  (a  particle  is  not  "located  in  a  point",  in  Quantum 

Mechanics).  As stressed above, the crucial issue is the dependence of the reconstruction of space 

of microphysics on the order of measurement: this is how we access to phenomena.  Once more,  

Poincaré may be quoted for his insight.  Even though it would be too much to attribute to him a 

"divination" concerning the possible Geometry of Quantum Physics, yet he observed: «Des êtres 

qui  éprouveraient  nos  sensations  normales  dans  un  ordre  anormal,  créeraient  une  géométrie 

différente de la nôtre» [Poincaré, 1902].
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1.4  Some epistemological remarks on the Geometry of Physical Space

Starting from what is accessible and grounds knowledge, the observables, Geometry proposes an 

organization of physical space, which makes phenomena intelligible.  We have no other way to 

constitute  knowledge,  but  starting  from observable,  measurable  phenomena,  even  when  this 

observability  has  nothing  to  do  with  our  direct  experience  by  senses.   As  we  learned  from 

Relativity and Quantum Physics, we may then need to give up the identity "space of senses = 

physical space", so beautifully proposed by Euclidean spaces and their closure by homotheties. 

Knowledge  in  very  large  and very  small  scales  is  constructed  differently:  no  rigid  ruler,  no 

compass of "human size" may organize the spaces of galaxies and of elementary particles, by 

homotheties.   Their intelligibility cannot be grounded directly in our senses, on our eyes, hands, 

by our movements and actions,  normalized by Euclid's  rigid tools,  but  must  be mediated by 

complex instruments of observation and measure.  These instruments are themselves the result of 

complex "theoretical commitments", as they are set up on the basis of an existing or proposed  

theory, or of strong hypothesis, beginning with the decision to measure "this and not that".

Yet, the only dramatic change, here, is related to cognition: the direct experience of senses is 

no  longer  sufficient  to  understand physical  space,  while  there  is  unity  in  the  method.   It  is  

surprising that  we still  have to  digest  this  apparent  cognitive discontinuity:  the "ontological" 

commitment (Geometry is "space per se", beginning with Euclidean Geometry) did not allow to  

appreciate that the mathematical objectivity is in the construction, not in an ontology.  There is no 

such a thing as "absolute space", but there is the objective reconstruction of a space of action, by 

the cognitive subject, with the contingent tools of active experience.  Objectivity is reached when 

the cognizing ego is able to relativize his construction: fix one or more reference systems or ‘view 

points’, and the forms of their communication/interaction;  fix the tools for measure.  Then the 

construction becomes objective: the intended laws do not change by (suitable) transformations of 

reference system, there are invariant w.r. to these transformations.  As long as the subject believes 

in absolute spaces (Newton), in "absolute laws of thought" (Frege), in "views from nowhere", 

there is no foundation for knowledge, but an artificially unified frame for illusory certainties.

In contrast to this, I stress that the method, from Euclid to Riemann and Connes is uniform 

and sound: access, measure and operate on space, with the appropriate and explicitly given tools, 

and organize it by one of our most beautiful conceptual construction, Mathematics, Geometry in 

particular.  For an historical reference to this approach, note that Poincaré's critique of logicism 

and formalism proposes  to  supplement  the  foundational  investigations  in  Mathematics  «by a 

genetic analysis», the analysis of a conceptual genesis or construction [Heinzmann, 1998].  His 

understanding of Geometry as a genesis, beginning with the movements of rigid bodies, specifies 

Riemann's  approach  to  Mathematics  as  a  "genealogy  of  concepts"  as  well  as  Helmholtz's 

reference to "facts" (see  [Nabonnand, 2001]); it is not an empiricist view nor rationalism, but a 

"phenomenological" understanding (cf.  below and Husserl's  fundamental  text  [Husserl,1933]). 

This  neo-kantian  understanding  of  Poincaré's  views  has  been  confirmed  by  many  (see 
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[Nabonnand, 2000] for references).  Mathematics is not gounded on arbitrary conventions: these 

conventions are the most convenient choices («les plus comodes») for us, human beings, in this 

world, with our shared biological being.  Poincaré's program, as we understand it, is a preliminary 

step to ground Mathematics in our reference to the regularities of the world that we see: we draw 

on the phenomenal veil on the grounds of our active, cognitive experience of it. The structures of  

Mathematics  are conceptual proposals, meant to make this world intelligible («Si [la nature] 

offrait trop de résistance, nous chercherions dans notre arsenal une autre forme qui serait pour elle 

plus acceptable», [Poincaré, 1898]).  The role of acting, proposing, understanding are crucial.  

The resistance of nature is deeply embedded in physicality and in our biological being, in the  

historical formation of sense.  In a Manifesto on web [Longo et al., 1999], a modern version of 

what we would like to call "Poincaré's program" is defined as the "Cognitive Foundation" of 

Mathematics.  The  point,  of  course,  is  to  go  beyond  introspection,  the  only  tool  these  great 

mathematicians had (because also Riemann, Helmholtz, Enriques and Weyl shoud be quoted) and 

refer to modern Cognitive Sciences, as a scientific analysis of our practical action  and conceptual  

reconstruction of the world (see also a conference held in Rome, September 2002, based on this  

program, a reference is in [Longo et al., 1999]).

Of course, the foundational program I am sketching here is an epistemological one: it is an 

analysis  of  "how" we access  to  knowledge,  or  of  the "knowledge process".  In  Mathematics,  

spaces, objects and structures are constructed from the explicit assumption of cognitive grounds, 

and this is objective.  This analysis has been programmatically disregarded by the logicist and 

formalist approaches to the foundation of Mathematics, in the XX century, as they only focused 

on  (formal)  proofs.   This  was  a  necessary  investigation,  but,  unfortunately,  it  excluded  the 

analysis  of  the constitution of concepts  and structures and pretended to encode the world in 

formal strings of symbols. The invention of borders, that is of lines with no thickness by Euclid,  

has been forgotten, a major amputation of the foundational analysis.  Now, there is no doubt that  

Mathematics  is  abstract  and symbolic,  but  the  one  century  long identification  of  these  deep 

notions with "formal" excluded meaning and epistemology from the foundations.  We have to 

broaden the foundational project to the "constitutive path" of mathematical abstract structures, 

including by their meaningful grounding in (and their organizing) phenomenal space and time.

2. Codings

It is hard to appreciate how severe was the crisis of the 2300 years old Euclidean certitudes, in the 

XIX century, as induced by the non-Euclidean approaches.  Frege's deep investigations started the 

modern "royal way out" from the novel problem of space.  (Mathematical) Logic was explicitly 

contrapposed to foundational analyses grounded on phenomenal space.  «The wildest visions of 

delirium ...  remain so long as they remain intuitable,  subject  to the axioms of Geometry» ... 

absolute certainty can only be recovered with reference to the concept of number and the logical 
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laws that govern it: «... the laws of arithmetic govern all that is numerable.  This is the widest  

domain  of  all;  for  to  it  belongs  no  only  the  actual,  not  only  the  intuitable,  but  everything  

thinkable» [Frege, 1884, p. 20 and ff.].  Geometry itself (but Frege cautiously considers only 

Euclidean Geometry) can be found analytically on the notion of number, as relation between 

lengths [Frege, 1873, p. 9-10] (see the discussion in [Tappenden, 1995]).

In a different way, this program was fully developed by the subsequent work of Hilbert.  His 

first and main foundational writing, [Hilbert, 1899], is a very relevant approach to the issue by 

formal tools.  The foundational problem is reduced to the analysis of formal consistency: what 

only  matters,  in  Mathematics,  Geometry  in  particular,  is  the  non-contradictory  status  of  the 

axioms, with no reference to meaning, in space in particular.  By a remarkable technical work,  

Hilbert gives all possible "relative consistency" proofs in Geometry: put an axiom, take another 

away  (Euclidean,  non-Euclidean,  Desarguesian,  non-Desarguesian,  Archimedean,  non-

Archimedean ...) ... embed one system into the other.  Beyond Beltrami-Klein's work, the relative 

interpretations of Lobatchevski's and Riemann's spaces in Euclid's are brought to the highest rigor 

and generality.  Then a final masterpiece: formally encode, by analytic tools, Euclidean Geometry 

into  Arithmetic.   The  following  year,  by  posing,  at  the  Paris  conference,  the  problem  of 

consistency of Arithmetic, the scientific program of formal foundation is fully given: no reference 

to meaning and space, nor to the way we access to knowledge of it; just prove formally that the 

axioms of Arithmetic do not entail "0 = 1".  This is the foundational problem of Mathematics,  

including Geometry, of course, since the latter, by encoding, is just a subsystem of Arithmetic.

The  extraordinary  "tour  de  force"  of  Hilbert's  is  much  appreciated  by  many,  including 

Poincaré.  In his review of Hilbert's 1899 book, he acknowledges the technical achievement, but  

he stresses as well  the loss of  meaning,  the trivialization of  our understanding of space,  the 

senseless reference to Mathematics as codings of axioms into «le piano raisonneur de Stanley 

Jevons» from which «on verrait sortir toute la Géométrie».  Elsewhere Poincaré, will refer to this 

view of Mathematics, which underlies the foundational programs of Peano, Padoa, Hilbert, as «la 

machine à saucisses de Chicago»: from pigs and axioms produce sausages and theorems (see 

[Bottazzini, 1999]).

As observed in [Girard, 2001], about half of the XX century may be considered the «time of 

codings».   Hilbert's  foundational  program,  centered  on  Arithmetic  (the  theoretical  locus  of 

codings), started the modern trend.  These fantastic times, for Mathematical Logic, produced an 

amazing  by-product:  the  coding  of  knowledge,  viewed  as  deduction,  in  digital  machines, 

beginning  with  Turing  Machines.   Turing's  fundamental  mathematical  distinction  between 

hardware and software, a distinction at the hearth of his Machine, is at the origin of modern 

computing.  In particular, it started a "Theory of Programming", once programs (as software) 

have  been  mathematically  differentiated  from  hardware.   Moreover,  the  "Universal  Turing 

Machine", which may encode any other Turing Machine and simulate it, gave us the notions of 

operating system and compiler.   Poincaré could not imagine that  the "sausage machine" was 
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bound to go so far.  This is how history goes: wrong foundational programs, based on provably 

wrong conjectures (formal decidability, completeness and finitistically provable consistency of 

Arithmetic),  may have  major  fall-outs,  when precise  and robust.   Also  Laplace  "analysis  of 

(planetary)  perturbations"  was meant  to  give  a  complete  account  of  the  future  (and past)  of 

deterministic  systems,  governed  by  Newton's  laws.   Poincaré  showed  that  it  does  not  work 

(1890), but Laplace results and conjectures originated large part of the fantastic work in Analysis 

in the XIX century.

However, it is time to overcome wrong projects by reconsidering what is at the core of them. 

One  key  component  of  later  developments  of  Frege-Hilbert  ideas,  roughly  the  foundational 

program of Mathematical Logic, broadly construed during the XX century, is the believe on the 

"transparency"  of  codings.   More  precisely,  contentual  information  is  preserved  under  any 

"reasonable" coding.  One takes whatever fragment of Mathematics, encodes it into the axioms of 

Set  Theory  (or,  better,  Arithmetic,  as  numbers  govern  «everything  thinkable»),  proves  the 

(relative)  consistency  of  the  intended  system  and  the  game  is  over  (of  course,  one  may 

subsequently feed by them a Turing Machine or a modern computer, under a suitable 0-1 coding.) 

This reduction is rarely done in practice, but it often had amazing consequences.  Words do not 

suffice to praise the enormous amount of information we obtained from Set Theory and Proof 

Theory  (I  earned  my  life  by  applying  the  later,  its  constructive  branch  –  Type  Theory,  to  

computing,  see [Asperti&Longo,  1991],  [Longo,  2011]).   And note  that  XXth century Proof 

Theory is the proof theory of Arithmetic, as, since [Hilbert, 1899], the key assumption (or aim) is 

that any structure, any deduction can be encoded into suitable extensions of Peano Arithmetic and 

then formally analysed, see footnote 5.  Of course, the positive impact of these views in founding 

digital machines has been enormous, thus their large success.  But also, (formal) Descriptive Set  

Theory, just to give a further example, unified scattered results in Mathematics, displayed the key 

underlying assumptions, proposed new relevant problems ....  Not less than in Computer Science, 

the outcome has been immense.  The logico-formal analysis remains a necessary component of 

the foundational work in Mathematics and Computing.

We have to enrich though this program by what is missing: sense and meaning, the reference 

to space, both as a cognitive matter and the locus for physical phenomena.  In particular, we have  

to analyze knowledge by methods that are "sensitive to codings": so far this may be understood 

by the reference made in §.1 to the structuring of phenomenal space, as an interface between us 

and physical reality, or the "veil" on which we draw Mathematics.  But more will be said below5.

5 Often historians stress that Hilbert was not a formalist.  This is absolutely true: in several papers, even in 
the  introduction  to  [Hilbert,  1899],  in  correspondence  ...  one  can  find  Hilbert's  major  concern  for 
structures and physical meaning, in Mathematics. Hilbert was an immense mathematician, not just the 
founder  of  modern  Mathematical  Logic.   However,  the  technical  perspective  in  the  1899  book,  his 
Foundational Program, as specified from 1900 to the '20's, became the paradigm of formalism and have  
committed the century to an incomplete analysis of foundation, up to the recent revitalisation of Hilbert's  
Program.  Along these more recent formalist guidelines, Euclid's and Riemann's, for sure, but probably 
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Let's conclude this section, by stressing that the very Proof Theory which originated this  

dominating paradigm (information and deduction do not depend on meaning nor on codings) is 

now being opened to radically new proposals.  J.-Y. Girard, by Linear Logic first, and Locus 

Solum more recently [Girard, 2001] started an analysis of proofs "sensitive to codings" and where 

the  artificial  split  of  syntax  and  semantics  makes  no  longer  sense6.   In  these  theories,  the 

geometric  structure  of  proofs  is  relevant  to  deductions:  connectivity  (recall  Riemann)  and 

symmetries  (Weyl)  govern  the  proof;  that  is,  its  geometric  "display"  is  crucial.   Of  course, 

Riemann and Weyl referred to physical spaces, while here it is a matter of proofs: it is as if these  

properties of space, in Girard's systems, had "come back through the window" into Proof Theory, 

by structuring proofs.   Note  that,  for  Poincaré,  premises  must  be related to  conclusion by a  

"mathematical  architecture";  moreover,  in  his  fight  against  formalism,  he  hinted  that 

mathematical  reasoning  is  non-invariant  w.r.  to  meaning  [Poincaré,  1905,  1908]  (see  the 

discussion in [Heinzmann, 1998]).  A remarkable insight into the incompleteness of formalisms 

(see also Weyl's conjecture of the incompleteness of Arithmetic in [Weyl, 1918])7.

2.1 Geometry in computing

Turing Machines have no space and yield a Newtonian time.  As for space, theorems prove that  

one, two ... n-dimensional hardware (head and tape) does not modify their expressive power: up 

to a linear time complexity encoding  (or at most polynomial time, with a small exponent), the 

Cartesian dimension of the "physical" process does not affect the computation.  Of course, this is  

so because these "machines" are a remarkable but purely logical construction: the reduction of the 

notion of sequential deduction to elementary steps (move right or left a head, write 0 or 1 on a 

tape).  Physics is not there: space had been excluded from the foundational discussions since 

long.  Have you ever seen a physical process, which does not depend on dimensions?  In some 

cases, since Relativity, and even more so in modern string-theory for Quantum Physics, it is as if  

"only dimension matters".

even Connes' approach to physical spaces can be encoded in predicative subsystems of Second Order 
Arithmetic,  [Simpson,  1999].   An  informative  analysis,  as  for  relative  consistency  or  consistency 
"strength", for example.  But it entirely misses the relevance of Mathematics for knowledge of space and  
cognition.  To this further aim, if one wants to refer to the remarkable debate at the beginning of the XX  
century, Poincaré's and Weyl’s foundational programs must now be revitalised today, more than Hilbert's, 
see (Longo 2019) for references and some of consequences on Natural Sciences.

6 The very broad definition of "geometric" as "sensitive to codings" was proposed by J.-Y. Girard, in 
discussion, at a Workshop in Marseille, April 2001.

7 The  proofs  of  formally  unprovable  statements  of  Arithmetic  use  meaning  along  the  proof  (see  
[Longo,1999]); or, "geometric judgements" step in (well-ordering, as defined by formal induction over full 
second order comprehension principle is non effective, while it is simple - and "effective" - as a geometric 
judgement, see  [Longo, 2002].  Symmetry is another geometric judgement, largely used in Mathematical 
Physics, in proofs).
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As for time, in Turing Machines, it is not only absolute and linear, but it is actually generated 

by the clock.  Now, in Physics, time is understood as a relational matter, once one goes beyond 

Newton's absolutes.  Moreover, measuring time by the lonely clock of a Turing Machine is like 

having a meter in an empty Universe: there is no distance in that Universe, but just the meter. 

In summary, Turing Machines are fantastic  logic machines, they are not physical machine: 

their computational properties are independent from the hardware and the dimensions of coding. 

Thus, they initiated us to the first steps towards a "logic of programming" and, then, how to make 

machine  work  logically.   Their  main  fall  out  has  been  a  the  invention  of  a  Science  of 

Programming,  grounded  on  the  fundamental  distinction  hardware  and  software.   And  the 

software, up to the recent challenges in concurrent programming (see below), has been designed 

for long on the basis of the main paradigms proposed by Turing and his contemporaries (Turing's 

approach  gave  us  "imperative  programming";  Church's  -calculus  originated  "functional 

programming";  Herbrand's  theorem,  "logic  programming").   The physics,  beginning with  the 

issues related to space and time, are out of the scope of these programming styles and, by this,  

they are turning out to be largely inadequate (or to require major "extensions") for the concurrent, 

asynchronous and distributed systems mentioned below.

We briefly discussed of the geometric intelligibility of space in the previous sections, but  

also  physical  time  has  been  deeply  analyzed  during  the  XX  century.   The  relativized,  but  

reversible time of Relativity, the irreversible time scanned by bifurcations in Dynamical Systems 

(or in the Physics of thermodynamical or critical states), the even more complex time of Quantum 

Physics, all these proposed forms of time do not rely on an absolute and unique clock; they view 

time, to say the least, as a result of a "relation", or as the problem of synchronization of possibly 

asynchronous systems.

In the last few decades, it happened that machines, those very digital computers that where 

born  from the  head  of  Turing  (and  Peano  and  Hilbert),  have  been  distributed  in  space,  by 

engineers.  These practitioners even dared to have them "concur" in the same computation.  That  

is, possibly far apart processes are no longer individually isolated in a vacuum, but run in parallel, 

communicate and access at the same database.  In the 60's and early 70's only parallelism was at  

stake, yet some pioneers understood the major scientific change, which is now heavily affecting 

computing.

Concurrency  summarizes  the  new  problems.   The  point  is  not  the  parallelism  of 

computations, but that they communicate and share data and programs  along the computation, 

from different locations in space.  Moreover, there need not be a universal clock: processes may 

run with their own independent clocks.

First  dramatic  change:  computations are  no longer  compositional.   The entire  Theory of 

Computability,  born in the '30s,  relies  on compositionality:  Herbrand-Gödel-Kleene recursive 

functions,  Church's  lambda-calculus  (one of  the  author's  main interests  for  long)  and Turing 

Machines, of course, (all computationally equivalent) are obtained by "composing" a few base 
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functions, terms or steps, respectively.  Thus, their "mathematical semantics" is compositional or 

the analysis of the function computed can be done piecewise and then composed.  In contrast to 

this, one cannot analyze a computation carried on by concurrent processes (or give its semantics  

or tell which function is computed) by analyzing each process individually and then "compose" 

the results, because processes interact along the computation.  Even more so: they may compete 

in accessing the same database, which, once used by one of the processes, may change. 

In order to appreciate the relevance of the latter problem only, consider a seat-reservation 

system,  e.g.  an  airline  reservation  net  of  computers:  in  this  distributed  system,  priority  and 

synchronization of access to an ever-changing data base is crucial (while an agent is modifying 

the data  base,  the others  should have no right  to  access  to  it:  this  is  a  typical  inacessibility 

condition.)   Suppose more generally that you have two processes,  x and  y.   In a sequential 

system, you may have "x then y" or "y then x", which mutually exclude each other and exclude 

any other possibility.  Consider now the rectangle with side names x and y : the two sequential 

paths above are the composition along the borders and they go, with time, from the bottom-left  

vertice,  (0,0),  to  the  top-right  one,  (1,1),  say.   But,  if  the  two processes  interact  during  the 

computation  and/or  access  to  the  same  resource,  a  good  representation  of  the  possible 

computations is given by all (increasing) paths (functions), in the rectangle, which go from (0,0) 

to (1,1).  The inaccessibility situations may be represented now as "holes" in the interior of the  

rectangle: when one process goes through a certain status or area, then the other cannot act (see 

the example above with seat reservations).  One or more holes allow then to classify the paths by 

"homotopy classes": the same class contains paths that may be "continually deformed" one into 

the other (i.e. transformed reciprocally without crossing a hole).

And  here  the  non-trivial  mathematics  of  Homotopy  Theory  steps  in.   Spatio-temporal 

connectivity  is  the  issue,  which  means  homotopy or  equivalence  under  some  notion  of 

deformation  in  n-dimensional  manifolds  (as  many dimensions  as  there  are  processes).   It  is 

surprising to see early work by Serre, in pure Geometry, and non-trivial Algebraic Geometry 

being applied in this novel areas of computing (see [Goubault, 2000] for surveys and results).

But the situation differs from mainstream Geometry in a crucial point: irreversible time is 

everywhere present in these analyses.  Of course, it cannot be a linear time, as already mentioned.  

Time is branching, like along the bifurcations of dynamical systems.  A nice way to represent it, 

is given by suitably parametrizing the paths in the example above along time: irreversibility of  

time may then be given by assuming that the paths are increasing functions from (co-ordinate)  x 

to y  (as already hinted above, in parenthesis).  This originated the notion of directed-path (or di-

path)  and  some  non-trivial  work  which  deserved  the  name  of  di-homotopy (the  homotopic 

analysis of di-paths).

Note  now that,  in  concurrency,  the  nature  of  "feasible"  vs.  "unfeasible"  changes,  w.r.to 

classical (sequential) computability.  Within the Turing frame, one could prove that the halting 

problem is undecidable, that there exists  partial computations that cannot be extended to total 
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ones etc.   Now, different issues are at stake: is this "computation" (a path) accessible,  as an 

element of a given homotopy class, in a certain n-dimensional manifold?  Impossibility results, 

including time lower bounds, may then be given on the grounds of purely topological methods 

(various papers in [Goubault, 2000]).

The idea of coding all of this into Turing Machines makes of course no sense: concurrent 

systems do not deal with a finite string of 0 and 1 only, but have an input flow and an output flow. 

They  are  open  to  interaction  with  the  environment.   Not  to  mention  the  complex  issue  of 

relational and branching time which started this discussion. Simulation on sequential machines 

requires the construction of quotients on computation paths, but this "simulating modulo" is far 

from standardized or unique, it is often "ad hoc" or missing the proper issues and challenges of  

concurrency (see [Aceto et al.,  2002]).  For example, what really matters in these systems is  

"how" a computation evolves in space and time, more than the input-output relation: its ongoing 

space-time structure is the "observable".  In short, concurrent systems perform different tasks, 

whose understanding requires new questionning, a different insight (different observables).

Many open problems are posed.  I can only mention the interest of "fault tolerant systems".  

Distributed  systems  clearly  allow fault  tolerance  in  a  way  inconceivable  to  sequential  ones: 

(small) continuous deformations, within an homotopy classes, may represent fault tolerance.  But 

precise mathematical characterizations are still missing.  Synchronization as well may present 

further challenges.  As a matter of fact, a system is "truly distributed" when time required to 

connect processes is about the order of magnitude of the elementary step of computation, within a  

process.  Now, the latter is about one nanosecond, today.  And light is so slow as to go only 30  

cm in that time.  Thus, a concurrent system, distributed over the surface of the hearth (different  

acceleration systems), may undergo relativistic problems, as for synchronization.  Relativistic 

delays may be computed, but this is far from obvious.  This problem does not seem yet to be 

taken enough into account, with few exceptions8-9.

In  conclusion,  even digital  computers,  when finally  embedded in  physical  space,  hardly 

realise the functionalist project, according to which a sequential Turing Machine, once the world 

is  encoded into it,  may represent any physical  system - including biological  ones,  of course. 

Distribution in space of these very machines is sufficient to change, well before the answers, the 

questions to be asked to the physical system, in order to understand it. 

8 This section (and this paper) is clearly not a survey, but it  presents a viewpoint grounded on some 
specific results.  Thus, there is no mention of many other approaches to concurrency, where space steps in  
in a different way.  From Milner's CCS, for example, to the very recent "Spatial Logic" by Cardelli, the  
issue of space - under the form of communication, event structure ... -  is not less crucial and breaks as  
well the "linear coding myth".  Yet, those systems are to be viewed as very relevant "space sensitive"  
variant of the more classical analysis of computing as "deductive systems", which originated in lambda-
calculus and Type Theory.  Of course, these and others proof-theoretic approaches to Concurrency, are 
important tools for program specification and correctness (see [Bahsoun et al., 1999], for example).

9 See also [Aceto et al., 2002] for more on Concurrency.

-  -
13



3.  Living in space and time

In this section some remarks are made on Biology, as premises to a subject that will be just 

hinted: cognition.  A key assumption is made here, about which one may well disagree: cognitive  

phenomena are a matter concerning life,  from cell  to man. Others may well  be interested in 

cognition for non-material  entities on Sirius,  or for various sorts of computers,  but these are 

different topics.  The assumption here - but we may be wrong - is that brain is a material but 

living machine and, as for humans, it only works in its preferred ecosystem, the skull of a man 

living in History (in the broad sense of a communicating community, with a common memory). 

Of  course,  here  and  there,  some  cognitive  performances  can  be  isolated  and  transferred  on 

machines,  even on the clocks of  the XVIIth and XVIIIth,  the fantastic  "statues d'automates" 

meant to implement all human functions.  Yet, in our view, human cognition  depends on life, 

even though it is  not reducible to Biology, as a science, since it also depends on language and 

History.  That is, our constructed, historical and ever evolving knowledge of life cannot, alone 

and as it  is,  provide a complete explanation of phenomena,  which required,  so far,  different 

methods and tools of analysis, such as our sciences of human communication and History.   A 

novel synthesis is required, and this is the actual challenge of modern Cognitive Sciences.

Let's though focus on life phenomena and on some mathematical challenges that are posed 

by them.  These phenomena are first of all a spatio-temporal matter.  Beginning with the three 

dimensional structure of DNA and the folding - unfolding of proteins (which are not "alive", but  

are the "bricks of life"), the dynamics of forms is at core of life processes.

The relevance of the spatial organization in biological descriptions should always be present 

to  our  minds,  as  it  is  the first  step towards appreciating the complexity of  structures  whose  

functionality is entirely lost by any sort of "linear encoding", such as the description on the tape  

of a Turing Machine (see §. 2.1).  And all relevant cognitive functions, we claim, are irreducible 

epiphenomena of life.

As a preliminary observation about complexity (and conceptual irreducibility) of cognitive 

and biological phenomena, recall that classical Computability Theory is "compositional" and that 

today's distributed and concurrent systems for computing (distributed in space) are no longer so, 

see §. 2.1.  And yet, by recursion, classical computing is already very expressive.  More relevant 

non-compositional systems are the dynamical ones.

Analyze, for instance, the movement of two physical bodies, just governed by Newton's law 

of gravitation.  Then consider two more, independently.  Both two-bodies systems stabilize in 

orbits, as predicted by Kepler.  If you put the four bodies together, by the famous analysis of 

Poincaré, a chaotic behavior, as an entirely new organization in space, emerges, and in no sound 

way the new "four bodies" geometric system can be considered the "composition" of the 2+2 

systems.  Thus, it is sufficient to move from the one-dimensional tape of a Turing Machine, or  
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any  equivalent  system  of  formal  rules,  and  analyze  distributed  (concurrent)  systems  for 

computing  or  least  gravitational  systems,  that  entirely  novel  Mathematics  is  required.   The 

functionalist  myth  of  the  "independence  from  codings  and  structures"  of  the  cognitive 

phenomena, the most complex expression of life, breaks down when faced with the representation 

of least extensions to physical space even of a few digital computers or of a few gravitational 

bodies.  If an artificial or natural phenomenon needs either of the two approaches above to be  

represented, in no way it can be reduced to or represented by a linear, compositional and space  

independent system, such as a Turing Machine.  Of course, one can move higher and be content  

of  encoding  (or  believe  that  it  should  be  possible  to  encode)  their  mathematics (not  the 

phenomena themselves!) into ... Peano Arithmetic, in the style of Hilbert's 1899 book.  But this is 

a different analysis and, yet, enough theorems show the provable incompleteness of the formalist  

approach (see [Longo, 2011] for a recent discussion and references).

However,  even though there surely is "concurrency" and "dynamicity" in life,  we need a 

further  step  in  conceptual  complexity  in  order  to  grasp  the  kind  of  Mathematics  eventually 

required for its representation, if at all possible.

All the systems above are essentially "one-scaled".  A few laws at one "conceptual level" 

suffice to describe them: interaction of processes by digital signals, by gravitational forces ... and 

many  other  forms  of  possible  "network  structures",  but  all  of  one  "type"  or  a  few  types, 

conceptually similar.  And Mathematics is very effective for this (and, yet, we still need a good 

theory for concurrent computing, for the dynamics of true turbulence - Navier-Stokes equations 

describe satisfactorily flows only far from borders, where turbulence is at its high [Farge et al., 

1996] - etc.).

Now, biological phenomena are essentially "multi-scale".  Before discussing this concept,  

observe that an apparently multiscale Mathematics is that of fractals.  Starting at one level of  

"magnitude" one may go to finer and finer insights into phenomena, at different scales.  But the 

law is just one, indefinitely iterated.  Sometimes living entities may develop in this way: there 

exist  very effective descriptions of  vascular  and respiratory systems as  fractals  (see [Brown, 

1999], [Nonnenmacher, 1994], [Bailly et al., 1991] for example).  Maximizing exchange surfaces 

and irrigation volumes yields a mathematical law that beautifully applies.  These are peculiar 

situations where life is only present by the growth factor and the analysis may be purely physical,  

as for the wax in a beehive.

For the purposes of this discussion, let's view living as an alternating hierarchy of at least two 

organization  levels:  autonomous  biological  individuals  (cells),  organized  groups  of  them 

(organs), which in turn are integrated in a superior level and unity by their physiological function 

(and  yield  a  new  living  unity).   In  [Bailly  et  al.,  1993],  it  is  observed  that,  in  physico-

mathematical terms, fractals geometries can be typically found in organs, while the interactions of 

biological  units  may  be  better  associated  to  dynamical  systems.   That  is,  in  some  cases,  

Mathematics, by Fractal Theories, may give a good account of the relation between structure and 
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function in organs, while, as for living units, this relation is better analyzed, whenever possible, in 

terms of dynamics.

Note, that even within cells, the smallest living entity, one may find organs: the external  

membrane and the cytoscheleton, first,  but also some sort  of internal membranes and "rails", 

microtubules, that play a key role in organizing cells' metabolism and reproduction.  This is just 

the beginning of a view of complexity where the mathematical tools commonly used are already 

split into different theoretical frames, according to the "scale"; each claiming some descriptive 

completeness,  but just  for its  level of investigation.  Moreover,  these two (already schematic) 

levels interact vertically and thus yield a novel, essentially multiscale system: when the scale 

changes, the Mathematics we use for its analysis changes as well.

3.1  Multiscale phenomena and the mathematical complexity of the neural system

When one considers brain and its functions, the most complex single object we happen to know, 

the situation is further enriched.

Neurons communicate: first, they exchange neurotransmitters of various chemical natures. 

Their functionality depends also on the shape of the post-synaptic receptor, which are complex 

proteins.  The geometric shape of the latter (external shape and internal channels), determines the 

transfer of ions into the receiving neuron.  Then a very rich biochemical cascade takes place. 

Proteins  largely  compose  it  and  it  plays  a  complex  role,  both  in  transmission  and  in 

facilitating/inhibiting the subsequent activation of receptors.  Now, in proteins, as basic elements 

of life,  the function is in their shape:  these huge molecules interact according to their three-

dimensional folding, in a largely stochastic way [Bravi, Longo 2015].

Move then to a larger scale, that of a neuron as a whole.  We should definitely consider 

neurons as six dimensional entities: three space dimensions, plus three more due to the shape of 

their response profile. It is too rough an approximation to treat neurons, mathematically, only as  

"thresholds elements".   Of course there  are  thresholds and these are  crucial,  but  they are  as  

essential to communication between neurons as it may be the carrier wave in telecommunication. 

The fine geometric structure and the modulation of the activation profile of a neuron is also part 

of the neural way of elaborating information.

An important example is given by the neurons of the V1 visual cortex.  Their response profile 

has  the peculiar  form of  an extended,  asymmetric  gaussian,  along a  rectangle  (or  of  an odd 

derivative  of  a  Gaussian,  as  one  can  observe  some  sort  of  "Mach  bent"  which  accentuates  

contrasts).  This rectangle gives the direction of the inspected border in the receptive field.  In a 

sense, the V1 cortex gives the local orientation of a (virtual) border of an object in the visual 

field, or it makes a "derivative" along a curb.  Then it "integrates" or "glues" all these local one-

dimensional maps (directions) by the complex connectivity of iso-oriented neurons (see [Petitot,  

2000], [Gilbert, 1992]).  In both activities, the shape of the activation profile seems to have a very 

relevant role.

-  -
16



And now comes yet another scale or a further level of integration, that of neural nets, that  

many study by the Geometry of dynamical systems (see, for example [Hertz et al., 1991]).  And, 

further on, assemblies of nets and assemblies of assemblies....  Their complexity and the role of  

synchronization in their functionality are analyzed in [Edelman, 2000] (see also [Varela, 1999]).

The claim is that conscious cognitive functions appear at this latter level.  However, all these 

"boxed" structures concur to the elaboration of information, which is largely a geometric matter:  

from the spatial folding of post-synaptic receptors and of proteins in the subsequent biochemical  

cascades within neurons, to the shape of the response profile, to the synchronization of networks, 

then assemblies, of neurons.  And the interaction goes throughout all  levels,  horizontally and 

vertically: a psychological state may affect the functionality of some neurotransmitters, thus the 

lowest level, and ... vice versa (psycho-medicines act at the synaptic level).

This is a major challenge for Mathematics, if we will ever be able to invent suitable tools to 

give conceptual unity to the analysis of these multiscale systems, which seem inherent to life. 

The approaches based on isolating a single conceptual/mathematical  level  (the purely logical 

function, the finer analysis of dynamical forms of connectivity, the shapes of proteins...) are very 

important endeavors, but each is essentially incomplete, as a mathematical approach to cognitive 

and brain functions.  And they are useful also in view of their fall-outs.  As extensively said 

above,  the  logical  analysis  of  the  foundation  of  (mathematical)  knowledge  gave  us  fantastic  

digital machines, for the logico-formal manipulation of strings of symbols, but with a very "rigid" 

hardware and, originally, no space (nor "true" time).  We may expect from the Mathematics of 

neural nets the next revolutionary machine, endowed with an evolving hardware, in space and 

time.

4. Theories vs. Models

There is a clear distinction, in Logic, between (formal) Theories and (semantic) Models.  It is 

largely artificial, but it turned out to be very useful, so far.  In Physics the distinction is not so 

sharp and it has a very different nature.  Mathematical Models provide "local representations" of 

phenomena, by isolating one scale and a few properties in them; Theories, instead, are meant to 

have a "global" nature.  Yet, of course, locality may be very large: Rutherford's atomic model is  

or yields a Theory.  The point is that in both cases, Models and Theories, Mathematics is used as  

a tool for representing, organizing, correlating phenomena, by laws as general as possible.  The 

description's  generality  and  breath  in  question  (as  local  vs.  global)  is  a  subtle  matter  as 

mathematical physics always aims to the highest generality: as soon as a single "fact" is observed, 

the physicist tends to transform it into a general law.  Moreover, "facts", as already mentioned, 

are already the result of a theoretical commitment: set up these measure instruments, correlate  

this to that.  And facts may be cut off from contexts: the very contours of physical objects are  

established by mathematical tools, on the interface between us and the world (the "phenomenal 
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veil" of §.1 and 2).  This gives them full generality.  For example, there is no such a thing as a 

photon or a quark: they are the result of a theoretical construction, grounded on a few sparks, a 

trace on a  screen,  but  leading to  general  principles.   Their  mathematical  model  is  already a 

Theory.  As much as Kepler's model of the planetary system is a Theory as well, in particular  

when explained in terms of Newton's principles (gravitation).  One scale in Physics may suffice 

to comprehend a full universe; thus, Models border or intersect Theories.

It is not so in Biology.  First, contours, membranes of cells, say, are already there, they are not 

drawn by us,  by Mathematics,  as in microphysics (but also planetary orbits are a conceptual  

proposal, a mathematical organization of the planets).  Of course, in Biology, interpretations must 

be given,  but  the "ontology" is  essentially  different:  the unity of  a  living entity  forces  itself 

throughout  the  phenomenal  veil.  Second,  experiences  and  evidences  are  heavily  context 

dependent: cutting off a living entity from its ecosystem may miss the very causal relations one is 

looking for.  This gives the major differences, in general, between experiences in vivo and in vitro 

(in a neuron, the artificial fluid of an in vitro experience, its being cut off from three-dimensional  

connections  etc.  give  lower  firing  rates,  higher  resistance,  unreliable  potentials  ... 

[Jennings&Aamodt,  2000])).   The  arbitrariness  of  the  mathematical  modeling,  a  further 

abstraction from the context, is even greater: the "intended" assumptions are out of control, as  

most are implicit.  Soon or late the author will acknowledge that there are "hidden variables" not  

taken into account in the model; often, this is due to interactions with other scales, out of the 

scope of the given model.  Thus, in contrast to Physics, Models in Biology are always poorer than 

phenomena.  And all of this takes us far from "biological theoretizing".  A Theory should propose  

general constitutive principles, which unify properties and "explain" them.  Darwin's evolution is 

a Theory, Edelman's selective theory for the immune system is another example.  Some general  

principles are put into focus and have a broad explanatory nature, which fits all scales.

All  these  issues  ("contours",  context  dependence,  multiscale  interactions)  pose  major 

challenges to Mathematics in Biology, as theoretical generality is its aim; in Physics, this is "more 

easily" obtained by Mathematics constitutive role in drawing physical objects and by the possible 

or discernible context independence of physical experiences, while both conditions essentially fail 

in Biology.  Thus, the gap between the "local" nature of Models and the required "global" nature  

of Theories is much greater than in Physics, and Mathematical Biology seems to provide only 

models, so far.

Yet, even modeling, which is so important for iterating experiences, transferring knowledge ... 

conjecturing  Theories,  is  so  hard.   Consider  "latent  potentials"  in  Evolution.   There  is,  for 

example, strong paleontological evidence that the double jaw of some reptiles, living some 250 

millions years ago, originated the internal hear of birds and mammals ([Gould, 1982; 1989]). 

How can you model this?  Which energy is minimized, if any, or which geodetics, in which 

mathematical space may simulate such a contingent evolution?  There exist dynamic models of 
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co-evolutive systems, as they are called, but, before discussing the problems they are faced with, 

let's consider another, related, feature of life.

In Physics, we know how to deal with states  close as well as  far from equilibrium; but also 

critical states are well defined and treated.  By definition, the latter are "temporary": a physical 

system doesn't stay long in a critical state (on the verge of a change of state).  Yet, living entities,  

both biological units and species, permanently live in an "extended critical state", [Bailly, 1991], 

[Bailly, Longo 2011].  Homeorhesis or Varela's autopoiesis are a theoretical appreciation of this  

fact;  where homeorhesis  means a  dynamical  reconstruction of  an ever  changing equilibrium, 

which is autopoietic when internally reconstructed.  There is no such a thing as "equilibrium" in 

phylogenesis or in ontogenesis: a non-artificial ecosystem is never in equilibrium, it is always 

evolving.  Only death in a desert of stones is biological "equilibrium". 

Many  physicists  work  at  co-evolutive  dynamical  systems  in  Biology  and,  by  deep  and 

powerful mathematical tools, they try to model features like the ones above.  The problem of 

course  is  that  there  is  no  pre-designed space  of  phases where  one  could  draw evolutionary 

geodesics: the phase space is co-constituted at the same time as the phenomenon to be described. 

They depend on each other, while interacting with billions of other phenomena, as unpredictable  

as the one above (the "latent potentials").  And this, along an extended critical state.  Are there 

just "hidden variables", or missing parameters, to be discovered and inserted in the model?  There 

seems to be more than this.  Minor variations in the evolutive context, a mutation say, seem to  

create a new phase space: attractors which should describe the dynamics, not only need to be  

embedded in larger spaces (more variables), but seem to "swing" into  different phase spaces. 

How to handle mathematically these changes, which may be "conceptual" changes?  We are in a 

situation similar to the multiscale nature of biological phenomena, mentioned in §. 3 (and surely 

related to it), but with its own mathematical difficulties.  Well before the proposal of algorithms,  

Mathematics and its applications grow by proposing  novel conceptual frames,  as pointed out 

throughout  recent  history  by  [Patras,  2001],  possibly  grounded  in  new forms  of  "access"  to 

phenomena (in  the  sense  of  §.  1)  or  to  new objects  of  knowledge  (Newton's  revolutionary 

conceptual frame will be recalled below).  And, as stressed in [Parrini, 1995], conceptual frames 

connot be reduced to nor analysed only in terms of linguistic symbols10.

The  terminology  used  above  (hidden  variables)  recalls  Einstein  interpretation  of  the  EPR 

(Einstein-Podolsky-Rosen) paradox in Quantum Physics (see [Ghirardi, 1997]).  For Einstein, the 

standard interpretation of non-locality and indeterminism was due to an "incompleteness" of the 

theory:  some  hidden  variables  had  to  be  taken  into  account  to  yield  a  more  "realistic"  

10 Infinitesimal analysis, say, is not only a matter of "new symbols" or algorithms for solving equations. 
Moreover,  the  failure  of  founding actual  infinity  by  formal  Set  Theories  –  whose  formal  consistency 
requires larger and larger infinite cardinals – confirms the limits of the purely linguistic approach; the  
foundation of the concept of infinity is in the genetic analysis of its "progressive conceptualization", see  
[Longo, 1999].  The same should be said as for Grothendieck's Toposes and Thom's geometric approach to 
scientific explanation (see [Patras, 2001] for more insightful reflections on these revolutionary aspects of  
XX century mathematics).
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interpretation.  Physicists (Bell,  Aspect ...)  were able to prove that it  is not so: the theory is 

complete and non-locality, non separability, indetermism are essential.  Or, that the difference in  

approach between Classical and Relativistic Physics on one side, and Quantum Physics on the 

other, is "epistemic" (it concern the roots and the tools for knowledge; some prefer to say that the 

difference  is  "ontological".)   In  this  sense,  also  Physics  is  organised  at  different  conceptual 

"scales", each requiring its specific mathematical tools (microphysics, dynamical systems and 

General Relativity, for example) and their unification is a major scientific challenge.  Yet, each 

phenomenal level may be soundly analised in its autonomy, in contrast to the unavoidable unity  

of living beings, for which the "vertical" interactions of the many levels or scales is the key issue.  

Moreover, in Physics, some new mathematics is being constructed to give an account of the split 

and try to recompose it:  in §.1, we hinted to the different geometries used in Relativity and  

Quantum Mechanics (Riemann vs Connes) and how they relate (note that we just tried to propose 

an epistemological unification, with no commitments to ontologies).

Biologists  should  try  to  give  us  a  rigorous  interpretation  of  the  gap  between  (the  use  of 

Mathematics in) Physics and Biology, comparable to the one Quantum physicists proposed w. r. 

to more classical approaches, if this is so.  The difference, they should tell us, is ontological (or  

epistemic), if any: here or there are the exact limits you encounter where treating these problems 

with  tools  from the  Physics  of  dynamical  systems  or  Quantum Mechanics  (similarly  as  the 

Geometry of Relativity does not apply to microphysics).  We need radically different tools .... 

Perhaps  we  could  then  try  to  invent  more  suitable  Mathematics.   Mathematics  is  an  open 

conceptual construction and may be indefinitely enriched: fortunately, it is not God given, nor it 

is all already contained in and mechanically derivable from today's Zermelo-Fraenkel Set Theory 

or  predicative  fragments  of  Second  Order  Arithmetic.   When  Newton  and  Leibniz  unified 

metaphysically distinct universes, the sub-lunar and the supra-lunar bodies and their movements, 

they did not use the Mathematics of projectiles well developed by the engineers of the time,  

largely based on Greek Geometry.  They invented radically new concepts and tools, not contained 

in Euclid's notions and axioms, and dared to use the  actual infinite to analyze  finite movement 

(trajectories, speed, acceleration), a true revolution.  Of course, there was a path through History, 

which lead to their ideas, but the dynamics of Mathematics swung by their work into a different  

conceptual  space,  which  included  infinitesimal  analysis.  And,  by  Gauss'  and  Riemann's 

Differential Geometry, this also changed Geometry.  We need at least a comparable change of  

paradigms or conceptual enrichment of Mathematics in order to deal with biological phenomena: 

by their peculiar autonomy and contextual dependence, we cannot easily draw their mathematics 

on the phenomenal veil by "cutting them off" from their contexts and by giving them constructed 

contours.   This,  I  believe,  is  the  underlying  methodological  challenge  for  Mathematics  in 

Biology, as Mathematics usually organizes the physical world, sets norms for it.
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5.  Conclusion: epistemological and mathematical projects

In the spirit of this lecture, I will now hint to some possible work directions coming out from the 

proposed perspective. The central theme, on one side, aims at (re-)embedding Mathematics and 

its foundation in phenomenal space and time, which Mathematics contributes to constitute.  On 

the other, space and time may relate the very foundation of Mathematics, which has been isolated 

within the enclosed terms of its internal foundation (Hilbert's Metamathematics is a mathematical 

discipline),  to  other  forms  of  knowledge,  such  as  Physics  and  the  Sciences  of  Life,  whose 

phenomenalities are first of all a spatio-temporal matter [Longo, Montévil 2014], [Longo, 2019].

5.1 Epistemology

The epistemological program has been tentatively spelled out above, in particular in §. 1.4.  The 

analysis  of  the  "mode of  access"  to  phenomenal  space  is  a  first  step  towards  a  "cognitive"  

foundation  of  Mathematics.   Once  more,  this  is  not  meant  to  replace  the  logic  and  formal  

analyses: these are "necessary but not sufficient" ([Weyl, 1927]).  As they are necessary, they 

come first,  but  the XX century prevailing monomania of  focusing only on the invariants  of 

language and conscious reasoning (logic and formalisms), would be now a major limitation to 

further investigations, even in Computer Science (§. 2.1).  Again, there is no doubt that there are 

logic and pure formalisms, in proofs, and that they even concern large part of them: it is the 

believe  in  their  mathematical,  or  even  "cognitive",  completeness,  that  is  wrong:  beyond  the 

evidence of Incompleteness phenomena [Longo, 2018], it made us forget even Euclid’s “lines 

with no thickness”.  Consider, say, Arithmetic or lambda-calculus, very close systems.  A lot can 

be derived by purely formal tools: even consistency for the type-free version of the latter, as the 

Church-Rosser theorem is a beautiful and purely syntactic game (see [Barendregt, 1984]).  But as 

soon as you get to Mathematics, which is typed, meaning and structures step in11.

Thus, we need to go further, in particular in the reconstruction of the knowledge processes that 

lead us to propose concepts and structures, beyond the sole analysis of proofs.  Concepts and 

structures are constituted in the interface between us and the world, on that phenomenal veil over 

which we draw them in order to organize and make intelligible the world, by Mathematics.  They  

originate on the regularities we "see", as living and historical being, and develop along History, 

in inter-subjectivity and language.  The objectivity of Mathematics is in this process.

11 Normalization for typed lambda-calculi, as soon as they yield some expressivity, implies consistency of 
Arithmetic  of  various  orders  (see  [Girard  et  al.,  1989]),  thus  it  implies  well-ordering  properties  of 
numbers or ordinals (of a "geometric" nature, see [Longo, 2002]).  Yet, there are more purely formal non-
obvious theorems.  "Genericity" for second order lambda-calculus is an example, [Longo et al., 1993].  It  
is  a  type-  or  proof-theoretic  "implication"  that  has  no  (semantic)  model  so  far.   On  the  other  end, 
continuous "geometric" structures (Scott Domains) may step in the inductive load of a proof of purely  
combinatorial properties of recursive functionals (see [Longo&Moggi, 1984], [Longo, 2001a]).
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Also the reflections proposed above, concerning the challenges for Mathematics in Biology, 

are not just meant as informal/technical considerations, but they are an attempt to analyze the 

peculiar interface by which life presents itself to us.  The mathematical analysis of the difficulties 

should stimulate a foundational investigation on the tools used and stress this constitutive role 

that  Mathematics  has  w.  r.  to  reality:  these  difficulties  are  due to  the  different  "autonomy",  

criticity and multiscalar phenomenality of life, if compared to the physical one [Longo, Montévil,  

2014].  In general, each analysis of the interface between us and phenomena, within different 

forms of knowledge or  access to reality, bears a foundational character.  To put in husserlian 

terms, Mathematics is a (key) component of the "phenomenal constitution", at the core of any 

analysis of knowledge.

Our  focusing  on  the  issue  of  space  is  not  meant  to  present  a  new  monomania,  that  of 

Geometry,  but  to  enrich  existing  paradigms by what  was  programmatically  excluded by the 

founding fathers, and for good reasons (at their time: we are no longer troubled, today, by non-

Euclidian Riemann's Geometry and, perhaps, even not by Connes').  Moreover, the Mathematics 

of space and time are "transversal" themes to different sciences.  And the related foundational and 

methodological considerations should be an essential component of interdisciplinary researches. 

It  is largely insufficient to transfer well-established algorithms from one discipline to another 

(physicists do so too often in relation to Biology).  We have to be "monist of matter" not of the 

"method": different phenomenalities may need to be analyzed by different tools.  Yet, an explicit  

reflection on the methodological differences and analogies may lead to a unification, which is  

never  a  matter  of  a  transfer  or  superposition  of  techniques,  but  of  a  new invention,  a  new 

synthesis (recall the example mentioned of infinitesimal analysis; but the same could be said for 

the Geometry of manifolds or the non-commutative one, major steps forwards, which also unified 

previous approaches).

5.2 Geometry in Information

In §. 2, we focused on "codings".  Hilbert's analytic encoding of all existing Geometries and 

Gödel's representation lemma to the Incompleteness Theorem (the metatheory is encoded in the 

theory, Arithmetic again) are "coding's" highest moments and marked the century.  By the first,  

the foundation of Geometry was definitely considered as a subproblem of that of Arithmetic.  The 

second  started  Computability  Theory,  by  the  invention  of  Recursive  Functions  and  gödel-

numberings.   Turing added the  encoding of  the  world  into  Machines,  and of  Machines  into 

themselves.   Foundation  and  knowledge  were  supposed  to  "pass  through  codings",  or  to  be 

"coding independent". Shannon developed a Theory of Information: similarly one has to analyze 

information properties independently of its coding, as sequences of 0 and 1's or whatever.  Thus, 

both Computability and Information Theory are coding insensitive (modulo some minor cost of 

coding).  As said several times, this gave us immense and perfect digital database and network of  

communication.  One can download the Encyclopedia Britannica and Mozart's concert for Flute 
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and Orchestra from California in a few minutes.  And the file may be copied as many times as  

required, exactly in its original form.

Of course, this has nothing to do with cognitive activities.  Brain is slow.  Our memory doesn't  

store the details and it is very bad at making copies; indeed, forgetting is its main feature, as a  

goal-directed oblivion is at the core of our procedural memory, of our constituting of invariants 

(including  mathematical  ones,  [Longo,  2001]).   Intersubjective  communication  is  also  slow, 

unreliable ... but very effective for its purposes, which radically differ from storing, copying and 

transmitting the digits of Encyclopediae or of Mozart's concerts.  We remember and communicate 

meanings, forms, harmonies, emotions....  The claim, here, is that these processes depend also on 

the structure of their coding in our living brains.

We gave a  very broad,  very weak definition of  "geometric"  as  "sensitive  to  codings",  in 

conjunction to Girard's work (§. 2).  This applies to the Geometry of space: code, for example, a 

finite dimensional Cartesian space (Rn) into the real numbers (R), by Cantor's method (the pair of 

real numbers  (0.a1a2a3 ..., 0.b1b2b3 ...)  is associated to the real  0.a1b1a2b2a3b3 ...).  This is a 

bijection, easy to construct, but it misses even the weakest geometric property of space, as the  

notion of neighborhood is lost (the coding is everywhere discontinuous): that is, the topological 

structure  is  sensitive  to  Cantor's  coding.   Or,  all  the  relevant  informations  concerning space 

(neighborhood, metric, ...) are lost.  Technically, Cartesian dimension is a topological invariant 

and, thus, nothing is left after the set-theoretic "coding".  But sensitivity to codings applies also to 

Girard's Proof Theory, a theory of spatial organisation of formulae along proofs, as well as it  

underlies the entire approach proposed here [Girard et al., 1889].

This issue is not just part of the continuum/discrete debate in the practice of Mathematics and  

in its foundation: it relates to it, but it is broader.  Consider a discrete set of scattered points on a 

plane: a symmetry judgment about their structure in space is as relevant and autonomous as the 

inspection of the application of Modus Ponens, in a formal proof.  The sequential encoding of the 

points and of all their spatial relations is unbearably complex and/or misses what matters, the  

symmetry.  Indeed,  physicists  currently use judgments of  symmetry in arguments and proofs; 

these suffice to deduce and convince as much as a logical rule.  Symmetries pervade Nature, Arts, 

Mathematics,  as  beatifully  synthetized  in  [Weyl,  1952];  recent  neuro-physiological  evidence 

stresses the deep physiological embedding of "symmetry judgments", as recognition of symmetric 

patterns ([Berthoz, 1997]).  “Ordering judgments” step in proofs, even in Formal Number Theory 

[Longo, 2011].

What amount of information bears a "breaking of symmetries"?  Does a change of shape yield 

a form of computation?  Living neural systems can provide the starting ideas.  In a sense, this 

approach  is  already  present  in  the  Theory  of  Neural  Nets.   Their  dynamics  is  a  form  of 

elaboration  of  information,  which  is  largely  geometric  (see  [Amari&Nagaoka,  2000],  which 

mainly  refer  tough to  the  geometry  of  distributions  of  points,  in  the  frame of  a  shannonian 

treatments of information).   Thom's approach as well  contains seminal hints in this direction 
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([Thom,  1972,  1990]).   However,  attention  to  phenomenal  life  is  extraneous  to  Thom's 

Philosophy of Nature: a drop of wax or a jellyfish is mathematically the same and is molded by 

physical forces, when falling in water.  It  happens though that jellyfishes have morphogenes, 

which  "do  Geometry"  by  organizing  growth,  on  the  grounds  of  geometrically  encoded 

information.  As extensively discussed, this kind of models of living forms, are just  physical 

models - though fantastic (see the fractal approach to vascular and respiratory systems in §. 3, but 

note that these are organs, not autonomous living entities).  Thus, as models, they do not provide 

a Theory for biological phenomena, as in Thom's project, but at most one-scale models. They by-

pass the fact that organs of tissues that are not “soft matter” as some claim, but are made of cells 

reproducing with variation, a founding property for a theory of organisms [Soto, Longo, 2016]. 

We should go further and look more closely at the structures of life.  That is, on one side, we 

need to take into account those unique phenomena of life, such as function, reproduction and 

metabolism, which force a "contingent finalism" in every analysis.  On the other, we need to refer 

to finer biological phenomena, w. r.  to the Formal Neural Nets approach, beginning with the 

folding of proteins and the dynamic structure of dendrites (see [Percheron, 1987] for the latter: 

this structure seems to be "almost" fractal as their growth has some regularity of the sort, yet their  

morphogenesis is also due to neurotrophic factors, [Edelman, 1987] - a typical case of a blend of 

a physical and a goal-directed organization of living forms, whose analysis is an ongoing project). 

Both  these  scales,  neurotransmitters  and  synaptic  structures,  contribute  to  the  elaboration  of 

information.  Again, though, any one-scale analysis is far from providing a Theory.

Of course, the key feature of this Geometry of Information should be "coding sensitivity".  It  

should be grounded on elementary regularities  of  space (symmetries,  typically)  and organize 

them in a non-compositional fashion. As suggested by Thom, the topological complexity of a 

structure or of a transformation could provide a quantitative measure,  in a theoretical  frame, 

which  should  mainly  capture  qualitative  evolutions.   Invariants  and  invariant  preserving 

transformations should be analyzed on the grounds of the regularities one wants to preserve. 

Homotopy  classes  or  mathematical  grouping  of  "gestalts"  could  be  given  and  preserved  by 

suitable classes of continuous or differentiable or isometric maps.  

The idea is that brain is a machine, which implements such a Geometry.  But the Mathematics 

may depart from it, without any myth of providing a Theory of brain activities.  Just a change in 

view point, possibly of method, w.r. to the 0 and 1 or thresholds' paradigms.

The  difficulties  of  course  are  immense,  also  in  view  of  the  strength  and  depth  of  the 

Mathematics  developed  since  Turing  and  Shannon,  whose  technological  fall-outs  have  been 

changing our world.

5.3 Geometric Forms and Meaning

Let's  conclude this  programmatic paper by a bold  claim on "meaning",  such an indefinable 

notion.  In  reference  to  life,  (changes  of)  forms  are  meaningful.   Or,  forms  and  their 
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action/interaction in space contribute to "meaning".  Consider a cell,  an amoeba say, shaping 

itself or moving in space to preserve or improve its metabolism or while reproducing.  For this 

cell an incoming signal or physical hit is meaningful.  The signal's or hit’s meaning is in the way 

it  affects  its  goal-directed  deformation  or  movement.  And  neurons,  as  cells,  have  a  six 

dimensional form, in view of their response profile,  an electrostatic matter (§.  3.1).   Thus, a 

signal, including an electric one, is "meaningful", per se, for a neuron, according to the way it  

participates to its ongoing activity or metabolism by the "deformation" it induces.  Of course a 

biological and historical mountain is constructed on top of this elementary, but complex, notion 

of meaning, in order to reach the historical formation of sense practiced by animal and human 

intelligence. Indeed, meaning affects networks of neurons, assemblies of nets etc., by their spatio-

temporal shapes as well, and its variations and this within a material body in an ecosystem.  In 

this perpsective, the constitution of meaning must be seen in a non-compositional fashion, as 

defined in §. 3, and in no way the contextual meaning of a human linguistic expression, say, rich 

of intersubjectivity and History could be reduced to synaptic spikes nor to the geometric activity 

of a neural net.  Meaning for complex living entities is in the relation between a neural activity 

(as  "evolving form" of  a  network)  and its  context  of  life.   No reconstruction of  meaning is  

possible by reading just a neural activation or deformation: at the same time one has to consider 

the "ecosystem" and, for humans, the intersubjective and historical experience of it.  Meaning is a 

relational/interactive matter, where one of the components of the relation includes living entities 

and their forms.

The claim then is that all living forms and their variations are carriers of meaning, of its co-

constitution,  by  the  interplay  between the  evolving form and its  context.   Or,  this  is  where 

meaning originates or it is rooted.

Later  comes  the  organization  of  meanings  at  several  scales,  up  to  the  richness  of  our 

communicating human community.  The scientific challenge, in Cognitive Sciences, consists in 

being  able  to  go  up  and  down,  from one  scale  to  another,  without  necessarily  assuming  a  

reductionist approach, but by comparing and establishing interactions of different methods, which 

face  different  phenomenalities  and different  levels  of  meaning,  from cell  to  History.   Novel  

syntheses are a further task, never obtained, in the past, by pure transfer of techniques.

Of  course,  once  the  artificial  split  between  formalisms  for  deducing,  on  one  side,  and 

semantics, on the other, was proposed, we could construct fantastic formal-computing machines 

and their programming languages.  But then a dramatic question popped out: where is meaning? 

How comes that strings of binary digits may carry meaning?  This is a problem, of course, for  

programming languages, machines and for coding independent Information Theories: strings of 

0's and 1's or formal languages need to be decoded and interpreted (compiled).  Living beings, 

instead, when elaborating or transmitting meanings, harmonies, emotions ... induce deformations 

in living neural systems which carry these contents in their geometric encoding and its variations. 

Thus, the cognitive challenge, if one associates meaning and information to living forms and to 
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their evolving geometries, is in the understanding of the  non-compositional co-constituting of 

sense,  from  elementary  living  entities  up  to  our  historical  beings,  as  nested  interaction  of 

phenomena.  The multiscale nature of this process is one of the major mathematical challenges.
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