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Introduction

Zalamea’s book is as original as it is  belated. It is indeed surprising, if we give it a moment’s thought, just how

greatly  behind  schedule  philosophical  reflection  on  contemporary  mathematics  lags,  especially  considering  the

momentous changes that took place in the second half of the twentieth century. Zalamea compares this situation with

that of the philosophy of physics: he mentions D’Espagnat’s work on quantum mechanics, but we could add several

others who, in the last few decades, have elaborated an extremely timely philosophy of contemporary physics (see

for  example  Bitbol  2000;  Bitbol  et  al. 2009).  As  was  the  case  in  biology, philosophy –  since  Kant’s crucial

observations in the Critique of Judgment, at least – has often “run ahead” of life sciences, exploring and opening up

a space for reflections that are not derived from or integrated with its contemporary scientific practice. Part of these

reflections are still very much auspicious today. And indeed, some philosophers today are saying something truly

new about biology.

Often Zalamea points the finger at the hegemony of analytic philosophy – and the associated “linguistic turn”

1 In  Speculations,  2015.   This  text  was  written  during  the  author's  visit  in  Nantes,  hosted  by the  stimulating
interdisciplinary environment of the Institut d'Etudes Avancées (http://www.iea-nantes.fr/).

2 The translator would like to thank Robin MacKay for his precious and generous help in revising this translation.

http://www.iea-nantes.fr/
https://www.di.ens.fr/users/longo/


– and the associated foundationalist projects in mathematics, highlighting the limits of a thought that, by and large,

in  spite  of  ongoing major  advances,  remains stuck to  a  debate on Hilbert’s program (1900-1920) and Gödel’s

theorem (1931) – respectively an extremely important program and an equally important (negative) result, certainly.

However, we should do well to consider that something important happened in the decades that followed, both in

mathematics and in the correlations between the foundations of mathematics and physics, topics to which Zalamea

dedicates  several  pages  of  his  book.  The  conceptual  and  technical  frames  invented  by  Grothendieck  are  a

fundamental part of these novelties.

At  this  juncture,  I  would like  to  introduce a first  personal  consideration:  for  far  too long philosophical

reflection on mathematics has, with a few rare exceptions,3 remained within the limits of the debate going “From

Frege to Gödel” (as per the title of a classic collection) a debate at best reaching the statement of Gödel’s theorem,

or indeed a simplified reduction of it which deprives it of its meaning. The meaning of a theorem is mostly (but not

only) to be found in its proof, but in the case of Gödel’s, it is found only by looking closely to its proof (see Longo

2010). Thus, with a limited range of references going from Euclid to, at best, the statement of Gödel’s theorem,

passing through Frege and Hilbert (often skimming over a great deal– Riemann and Poincaré being cases in point),

for far too long we have debated ontologies and formalisms, thus moving, as Enriques had already foreseen in 1935,

between the  Scylla  of  ontologism and the Charybdis  of  formalism,  a  kind  of  new scholasticism. 4 I  think,  for

example, that even within Logic, the beautiful results of Normalization in Impredicative Type Theory (see Girard,

1971, Girard et al. 1989), and of  concrete Arithmetical incompleteness, as in the Kruskal-Friedman Theorem (see

Harrington and Simpson 1985) – which allow for a breakout from this scholasticism (see Longo 2011) – or indeed

the more recent progress in Set Theory, have not yet received a sufficient and properly philosophical attention. This

attention should not be confused with, but should be a further insight w.r. to the remarkable ongoing work on “the

philosophy of mathematical practice”. First, because mathematics is a (historical) practice, no more no less, as any

human  cognitive  and  knowledge  construction;  yet,  its  specificity  is  in  the  proposal  of  maximally  invariant

principles, as in no other form of knowledge, largely grounded on cognitive activities that are common or accessible

to mankind, often preceding language, while becoming linguistic. Ordering, tracing borders … in space and time are

examples of them. Second, because the founding principles that, in particular, allow (and justify) the proofs in, say,

the theory and results just mentioned (see Longo 2011), deserve a foundational analysis, grounding them in those

cognitive praxes, as active “gestures” as proposed by (Châtelet 1993). The invention of the first and fundamental

mathematical structure, the “line with no thickness” in Euclid’s books (see below), is a paradigmatic blend of tracing

a trajectory and describing in language an impossible property to draw, its absence of thickness. No Euclidean line is

possible without acting a trace and defining it “with no thickness”, then deriving its properties by both drawing and

Logic. No gestures alone, no Logic alone found it. 

3 Among these exceptions, an excellent collection is Mancosu 2008.

4“If we refuse to look for the object of logic in the operations of thought we open the door to this “ontology” which
scientific philosophy must to fight as the greatest nonsense. … On the other hand, guarding oneself from the Scylla
of ontologism, one falls into the Charybdis of nominalism: how could an empty and tautological system of signs
satisfy our scientific reason?” … “On both sides I see emerging the spectre of a new scholastics”. F. Enriques,
‘Philosophie Scientifique’, Actes du Congrès International de Philosophie Scientifique, Paris, 1935, vol. I-VII.



Zalamea’s book is thematically vast. It is truly astounding to behold the rich range of mathematical themes

that are touched upon, arguably including all of the most important objects of contemporary exploration. I can only

single out a few of them, in an attempt to hint here to an “epistemology of new interfaces”, and to emphasize, for my

own account,  the  timeliness  and  epistemological  relevance  of  the  triadic  relation  mathematics-physics-biology

which, obviously, is not the theme of this book.

Modes of Conceptualization, Categories, and Worldviews

6.5.1 Nowadays we may want to overturn Galileo’s phrase: Is the book of

mathematics written in a natural language?

(Lochak  2015).

I would like to begin with what Zalamea considers, if I am not misreading his argument, the highest and most

revolutionary point reached by post-World War II mathematics: Grothendieck’s work. With a daring table (43) – as

daring as it is arbitrary, like any such schematization – Zalamea sums up the principal “modes of conceptualization

and construction pertaining to contemporary mathematics […]: arithmetical mixing, geometrization, schematization,

structural fluxion and reflexitity”. In his text, he gradually develops the meaning of each of these modes, attributing

to  Grothendieck  alone  the  distinction  of  having  contributed  to  every  one  of  these  forms  of  mathematical

construction.

Before delving deeper into the arguments, and maintaining a rather survey-like approach (an inevitability

when trying to sum up a book this rich) I think that I can single out the core node of Zalamea’s thought in this

statement: ‘contemporary mathematics systematically studies deformations of the representations of concepts’ (172).

In more classical fashion, I would rephrase this by saying that mathematics is, in primis, the analysis of invariants

and  of  the  transformations  that  preserve  them  (including  the  analysis  of  non-preservations,  deformations  and

symmetry breakings). This does not aim to be an exhaustive framing of mathematical construction, but rather the

proposal of a different point of view, in opposition to, for example, the set-theoretical analytical one.

I will also try to show how Grothendieck, in particular, went beyond this vision of mathematics inherited

from Klein's Erlangen Program and developed by many others (that of symmetries, invariants, and transformations).

Gorthendieck proposed notions and structures of  an intrinsic  mathematical  “purity”,  free from any contingency

requiring proof of invariance, presented in an highly abstract (yet not formal) mode, always rich of mathematical

sense, particularly thanks to the analysis of relations with other structures.

Symmetries have clearly laid at the heart of mathematics since well before Klein’s work or before 1931.

Indeed we can trace its centrality to Euclid, whose geometry is entirely constructed out of rotations and translations

(symmetry groups as invariants and as transformations), through Erlangen Program, Noether’s Theorems (1918) and

Weyl’s work between the two World Wars. I would like to highlight, more than Zalamea’s text does, the correlations

with the foundations of physics which these last two mathematicians put at the very core of their work – and, in

Weyl’s case, of his philosophical thought (see Weyl 1932; 1949; 1952; 1987). 

Weyl’s work profoundly marked the period examined by Zalamea, moving within a framework which we



could legitimately define as that of Category Theory, with frequent mention, for example, of Topos Theory. Mac

Lane, one of the founders, along with Eilenberg, of this theory, had spent a year in Göttingen in the early 1930s, in

close contact with Weyl, the great “geometer” (and mathematician, and physicist…). Category Theory, considering

the role it plays in the analysis of invariants and their transformations, is indeed a profoundly geometrical theory, so

much so that it led, in Grothendieck and Lawvere, to the geometrization of logic, a topic I shall consider later (see

Johnstone 1982; Mac Lane and Moerdijk 1992). I should also mention (again echoing Zalamea but with an even

stronger emphasis) the role of physical theory in mathematical invention, with particular reference to Connes. But

we cannot  do everything, and I  –  not  being a geometer, and thus unable to  adjudicate on many of  Zalamea’s

conceptual and technical analyses – shall attempt to read the text though my contemporary lens, shaped by several

years of cooperation with physicists and biologists on the interface between the foundations of these disciplines (see

Bailly and Longo 2011; Longo and Montévil 2014).

I am no geometer and Zalamea’s text, one could say, is dominated by geometrical work, if intended in an

extremely broad and modern sense. It is partially this central role assigned to geometry that motivates Zalamea’s

vigorous polemic against analytic philosophy. The latter has done nothing but increase its focus on linguistic play

and logico-formal axiomatics, without any programmatic relationship with space and the constructions of physics;

without paying attention to the constitution of mathematics in the world, and to the interface between ourselves and

the  world  described  by  physics.  Frege  and  Hilbert,  in  different  ways,  both  programmatically  wanted  to  avoid

founding mathematics in relation to the ‘delirium’ (Frege 1884) or to the challenges of meaning of  non-euclidean

geometry and physical (lived and intuited) space (Hilbert 1901). And they did so for very good reasons. In order to

give certainty to mathematics, it was necessary to keep in check

1. The dramatic break between the common-sense intuition of space and a physics in which “all that

happens are continuous changes in the curvature of space” (Clifford, referring to Reimann 1854);

2. The unpredictability of dynamical systems (Poincaré 1892): a result of undecidability of future state

of affairs for non-linear deterministic systems – that is,  for formalizable systems of equations – at

the interface between mathematics and physics (see Longo 2010). It was considered necessary to

make sure that,  at  least  in pure mathematics,  every well-formalized statement  could be decided

(Hilbert). This is  by principle far, therefore, from the undecidability and chaos that systems of non-

linear equations had already started to reveal in the context of physical dynamics.

3. The new and bewildering role played by measurement in physics, where (classical) approximation

or  (quantum) non-commutativity  had  introduced  unpredictability  (Poincaré)  and  indetermination

(Plank) in the interface between physics and mathematics.

The exactitude of the whole number, a “logical and absolute” concept (Frege) and its theory – Arithmetic – were

supposed to guarantee “unshakable certainties” (Hilbert), thanks to the demonstrable coherence and to the formal

decidability of pure mathematics: a far cry from the protean, approximate, unpredictable, and indeterminate world of

physics.  And so it  happened that  a century of debates on foundations remained trapped (and for good reasons)

between programmatically meaningless formalisms and Platonist ontologies attempting to deliver a meaning from

outside the world; outside, that is, of the difficult analysis of conceptual construction, the latter being the real bearer



of meaning. It is precisely this latter kind of project that lies at the heart of Zalamea’s philosophical work.

From physics, Zalamea borrows a methodological question: “the great paradigm of Grothendieck’s work,

with its profound conception of a relative mathematics [140-141] interspersed with changes of base of every sort in

very general topoi [141 -142], should be fully understood as an ‘Einsteinian turn’ in mathematics” (270). And so

Einstein’s Invariantentheorie (as he preferred to call it) thoroughly becomes part of the method of this analysis of

mathematical construction, broadly based on invariants and the transformations that preserve them.

It is clear then why this approach assigns a central role to the notion of the Category. This is not a Newtonian

universe anymore, a unique and absolute framework, the Universe of Sets, with an absolute origin of time and space

(the empty set). It is rather the realm of a plurality of Categories and of an analysis of transformations, functors, and

natural transformations that allow their correlation (preserving what is interesting to preserve). Among them, the

Category of Sets is surely one of the most interesting, but just one of many. We are presented with an open universe

of  categories,  then,  to  which  new  categories  are  constantly  added;  new  invariants,  and  new  transformations.

Concepts are created by being correlating with existent ones, and by deforming one into the other, thus enriching

them, paying attention to the meaning (the mathematical meaning, at least) of what is being done.

Thus Zalamea also retrieves an  operational relation with the supposed delirium or desorder we refered to at

the interface of geometry with physics : “Advanced mathematics are, by contrast [to the elementary mathematics

analyzed in most philosophical reflections], essentially dynamic, open, unstable, ‘chaotic’ […] the ‘geometry' of

mathematical  creativity  is  replete  with  unpredictable  singularities  and  vortices”  (39).  Yet  there  is  an  order,  a

dynamical  organization to  all  this  since,  as  Lautman puts  it,  we continuously reconstruct  “a hierarchization of

mathematical geneses […] a structural explanation of mathematics’ applicability to the sensible universe” (58). And

this, in particular, is possible thanks to structural dualities at the heart of any attempt to organize the world, like

those  between ''local/global,  whole/part,  extrinsic/intrinsic,  continuous/discrete,  etc.”,  as  Zalamea,  writes,  again

quoting Lautman (64).  Indeed, “Lautman intuits a mathematics of structural  relations beyond a mathematics of

objects – which is to say, he prefigures the path of category theory” (68), which was indeed born just a few years

after his death.

The conceptual node that must be added to the analysis of proof, which was the dominant preoccupation of

foundational projects in twentieth-century mathematics, is that of the analysis of the constitution of concepts and

structures  (where  these  latter  are  seen  as  an  additional  organization  of  mathematical  concepts).5 This  is  what

Zalamea aims at: for him, Lautman and Cavaillès are frequent points of reference, two philosophers utterly forgotten

5 Proof theory is an extremely important and elegant branch of mathematics (and by working with its varieties (with
and without Types), its “categorial semantics” and its applications I have managed to earn a living for most of my
life). However, in philosophy, to omit this or that pillar of foundational analysis is a typically analytic limit. Corfield
(2003) and Mancosu (2008) have worked to overcome this limit and to avoid both the Scylla and the Charybdis I
mentioned above, by referring to “Mathematical Practice” (or “Real Mathematics”), as if there were a mathematics
which  is  not  a  very  real  praxis:  a  way  to  underline  the  delay  of  philosophical  reflection  on  contemporary
mathematics, something that Zalamea does more explicitly. Among the interesting analyses of the contemporary
mathematical  work  that  these  volumes  present,  I  want  to  single  out  the  articles  by  McLarty on the  notion of
“scheme” (a topological space with a sheaf of rings or more), and of Urquhart on mathematical inventiveness in
physics,  often  non-rigorous or  presenting an  original  informal  rigour, a  co-constitution of  sense and therefore,
gradually, of new mathematical structures (see Mancosu 2008).



by logico-linguistic approaches to mathematics (yet enjoying a more flattering oblivion than Poincaré and Weyl,

who have been subject to offensive caricature as, for example, half-hearted Brouwers or semi-intuitionists). 

I omit several passages and citations from the opening chapters of the book, where I find myself somewhat

perplexed by what seems to me the excessive space dedicated to those, like Badiou and Maddy, who place the

category of Sets in the usual role of absolute, Newtonian universe – albeit (in Badiou’s case) with some dynamical

inflection.  Badiou,  for  example,  in  a  recent  seminar  at  the  École  Normale  Supérieure  (Paris)  has  explained  –

referring uniquely to the (original) statement of the Yoneda Lemma – that every (locally small) category is reducible

to (embeddable in) the Universe of Sets (Set), modulo a Topos of prescheaves (on Set). This would definitely prove

the absolute  role of Set for mathematics. Now, the proof of the Lemma yields a more general result.  The functional

embedding just described is possible within every Topos considered as a Universe in which one sees the given

(locally  small)  category  as  an  object:  the  embedding  is  then  possible  towards  the  presheaves  on  any Topos.6

Therefore, by this construction, every Topos  (typically a pre-sheaves category, but I shall come back to this) can

play an analogous ‘relativizing’ role, without for all that becoming an indispensable absolute. 7 Similarly, Maddy

identifies  mathematical  practice with the work done upon a structureless set  theory and identifies,  in this non-

structured assembling of points and elements, the cognitive foundations of mathematics. These approaches are in

explicit contrast with the key ideas of Zalamea’s book which, centered upon categorical universes of geometrical

inspiration, attempts to make us appreciate the structural sense of mathematical construction.

Luckily, soon afterwards, a reference to Châtelet enlightens us with a much different insight. References

(perhaps too cursory) to that masterpiece that is Châtelet 1993, bring our attention back to the “gesture” constitutive

of mathematical objectivity, which lies “on the border of the virtual and the actual”, in a tight interrelation between

the construction of objects of study and objectivity in physics and the analysis of the organizational structures of the

world, starting with symmetries. Châtelet’s book, it should be emphasized, is also an history; rather, it is a historico-

rational reconstruction of the rich entanglement between physics and mathematics running through the 1800s up to,

and stopping short of, the advent of Set Theory. Regarding some related aspects of contemporary mathematics,

Patras 2001 (a book that Zalamea cursorily mentions), has retrieved the point of view of “structural mathematics”

with a philosophical competence rare to find in a mathematician. Patras exhibits the weaving together of structures

and transformations that governs mathematical construction from the inside, from the point of view of mathematical

practice and invention.

In general, the origin of meaning in mathematics is to be found in the ways in which it allows us to organize,

to structure, the world. Only then does it detach itself from the world in the autonomy of constitutive gestures,

6 One of the few required properties is the “locally small” hypothesis: every collection of morphisms Hom(A,B),
must be a set (see Mac Lane and Moerdijk 1992). Once more, a close look at the assumptions and the proof (its right
level of generality, in this case) is essential for the understanding of a theorem.

7 Many (all?) categorial objects can be codified as sets, even  Set, the paradoxical “set of all sets”. In every such
occasion an ad hoc construction or codification is necessary, and in such a case, we pay the price of “stretching” the
sets, up to cardinals as “inaccessible” (Kanamori 2003) as they are far from the construction one wants to interpret.
These are codifications that push the meaning of categorial structures out of sight. The point, indeed, is not the
possibility of a coding, perhaps a meaningless one: it is rather the relativizing -- and geometrical – diagrammatical
knowing proper of categories, which is “sensitive to coding”, as we might put it, that makes all the difference.



between the virtual and the actual where, at a farther remove from the original constitution of meaning, one obtains

relevant results at the intersection between constructions of diverse origin. From classic algebraic geometry and

differential geometry, two very productive blends, to sheaf-cohomology and cohomology-sheaves, between complex

analysis and algebra (179), where, as Serre puts it, “such problems are not group theory, nor topology, nor number

theory:  they  are  just  mathematics”.  Structural  continuity  becomes  conceptual  continuity, a  navigation  between

concepts as a “sophisticated technical transits over a continuous conceptual ground”. 

In  brief,  the  study  of  structures,  of  their  continuous  enchaînements and  deformations,  is  an  essential

component of foundational analysis; without it one can at best hope to do Set Theory.8 The latter is an extremely

interesting theory and category: the error is to make an absolute out of it and to posit sets of meaningless points at

the root of every mathematical construction,  in what amounts to a ruinous disintegration of sense. The origin of

mathematics and its principle of construction are located in that which is meaningful, in thought operations that

structure and organize the world, but which then go to intersect on planes far removed from the world and acquire

by these conceptual interactions a proper mathematical sense.

Thus Zalamea cites the “Langlands Program”. Langlands dared to write to the more famous André Weil

proposing an “extensive web of conjectures by which number theory, algebra, and analysis are interrelated in a

precise manner, eliminating the official divisions between the subdisciplines”, and suggesting that one “approach the

world of the complex variable and the world of algebraic extensions functorially, by way of group actions”. This

will  indicate  an  “unexpected  equivalence  between certain differentiable  structures  associated  with  an  extended

modularity (the automorphic forms associated with the linear group) and certain arithmetical structures associated

with analytic continuations (the L-representations of the Galois group)” (180-182). Here we see groups again, and

thus transformations and symmetries, both technical and conceptual, which allow for this splendid structural unity

which  lies  at  the  heart  of  mathematics:  in  a  certain sense,  Langlands  program extends  Erlangen’s program to

Number Theory. So technical and conceptual invariants get transformed, like the generalized analysis of continuity

that underlies the notion of fibration, and the subtle interplay between continuous and discrete, “the founding aporia

of mathematics […] that drives the discipline”, as Thom puts it (138).

Zalamea  recognizes  that  “nothing  could  therefore  be  further  from  an  understanding  of  mathematical

invention than a philosophical posture that tries to mimic the set-theoretical analytic, and presumes to indulge in

such ‘antiseptic’ procedures as the elimination of the inevitable contradictions of doing mathematics or the reduction

of the continuous/discrete dialectic” (183-184). This, I would add, extends all the way to the discrete-computational

approaches, flat (or better: unidimensional) visions of the world, according to which the Universe (Wolfram and

others), the brain (too many to mention), or DNA (Monod, Jacob, Crick…) would be a (large, medium or small )

Turing Machine (see Longo 2009, 2012). The great invention of Gödel, Turing and others in the 1930s, the theory of

logical-formal - computability, instantiated in machines that today are changing our world, is projected by these

stances to the world and  identified with it,  even while it  was originally developed, within (Frege and) Hilbert's

logical  systems,  thus  to  explicitly  distinguish  itself  from  the  world.  Nowadays  these  approaches  are  not  so

8 Consider that the axioms of Set Theory, essentially created in order to adjudicate the validity of principles of
“well-ordering”  and  “choice”,  are  silent  on  them: a  failure  for  a  whole  program.  A refined  analysis  has  been
conducted, in structured environments wherein these constructions can be relativized, by Blass (1983).



counterproductive in physics, where they are mostly ignored: in biology, instead, such frameworks and methods

exclusively grounded on discrete sets of strings of code have profoundly impaired the comprehension of biological

phenomena. It is here that I will introduce a correlation of outlooks, the necessity of which I hope to convince the

reader of.

Let us begin with an example. The discrete-computational outlook has not helped us (or has not permitted us)

to detect the role of endocrine perturbators of the 80.000 (sic) artificial molecules that we produced in the  twentieth

century. These were mostly presumed to be innocuous, below arbitrarily imposed individual thresholds, since not

stereo-specific  (not  in  exact  physico-chemical-geometric  correspondence)  and  thus unable  to  interfere  with

molecular-computational cascades, necessarily stereo-specific, going “from DNA to RNA to proteins” (the Central

Dogma of molecular biology), and with hormonal pathways. It should be noted, indeed, that exact molecular stereo-

specificity was  deduced, against experimental evidence that were already available (since 1957, see Elowitz and

Levine 2002;  Raj  and Oudernaaden 2008):  it  is  ‘necessary’,  as  Monod (1972)  puts  it,  for  the  transmission of

computational information and for the genetic programme to function. Thus, negating the role of context in genetic

expression and hormonal control, the consequences (direct and indirect) of the finite combinations of said 80.000

molecules on the organism and on the chemical ecosystem of the living have receded from view. Cancer incidence

has grown in the last half century, across all age groups, jointly to the halving (sic) of the average density of human

spermatozoa in Western countries (Diamanti-Kandarakis et al. 2009; Soto and Sonnenschein 1999, 2010). As for

cancer, the failure of the fifty years old, DNA centered, molecular approach has been recently aknowledged even by

one if its founding fathers, Weinberg (2014). 

In contrast with the claims of the informational analyses, macromolecular interactions – even within the cell,

where the macromolecules in Brownian motion have quasi-chaotic entalpic oscillation –  are stochastic, and are

given as probabilities, and these probabilities depend upon the context;  a strongly influential  context,  made of

interactions, deformations, morphogenetic fields, biological networks and structures, and so on (see Elowits and

Levine 2002; Noble 2006, among others. See also Longo and Montévil 2014). A context, then, made of ecosystemic

structures and their  transformations, very different from the fragmentation of the analysis of organisms as sets of

molecules  promoted  by  the  still-dominant  Laplacean  reconstruction  (a  linear  one,  molecule  after  molecule,  a

“cartesian mechanisms” says Monod).

The  discourse  on  the  foundations  of  mathematics  has  played  an  enormous  scientific,  suggestive  and

metaphorical  role  in  these  events:  the absolute  certainty  of  the  arithmetical  discrete/finite,  decidable  (and  thus

programmable) has produced, on the one hand, original and powerful machines, perfectly artificial instruments for

formal calculus allowing the “networking” of the world, while on the other it has contaminated our worldview –

even though, originally, it had been lucidly and courageously originally proposed, by Frege and Hilbert, in order to

detach those foundations from the world.

Logics, Topos, and Symmetries. In Brief.

Returning  to  less  dramatic  topics,  another  author  Zalamea  often  refers  to  is  Lawvere.  The  latter  transferred

Grothendieck’s  notions  into  an  original  analysis  of  Logic,  grasping  how  Topos  Theory  and,  more  generally,



Category  Theory  presents  “a  permanent  back-and-forth  between  the  three  basic  dimensions  of  the  semiotic,

emphasizing  translations  and  pragmatic  correlations  (functorial  comparisons,  adjunctions)  over  both  semantic

aspects  (canonical  classes  of  models)  and  syntactic  ones  (orderings  of  types)”  (191).  Going  back  to  my  first

scientific life, I remember the interest around the categorical interpretation of Type Theory, which owes much to

many brilliant mathematicians who Zalamea has no space to mention (but who are cited in Longo 1988; Asperti and

Longo 1991). A wonderful community, where a logical sensibility – and I am thinking of the challenge offered by

Girard’s Impredicative Theories of Types – found in categorical  semantics a strong link to the mathematics of

structures that concerns Zalamea. The crucial point is the “geometrization” of logic and its “relativization” to Topoi

that can have different internal logics, properly correlated by functors and natural transformations.

In these circles, Fregean quantifiers, for example, are interpreted in terms of adjunctions. More precisely,

existential and universal quantifiers become right and left adjuncts to a sort of diagonal functor: the pullback along a

projection. Then the existential quantifier is interpreted as the projection in a product of objects in well-defined

Topoi, and the universal quantifier is its dual, modulo an adjunction. So the level of “effectivity” of the existential

quantifier (the possibility of “effectively constructing” the mathematical object whose existence is predicated), a

delicate issue that has been the object of a century-long debate, is relativized to the effective nature of morphisms in

the  intended  Topos  as  a  (relative)  Universe  –  that  is,  to  its  “internal  logic”.  The  meaning  of  logico-formal

construction,  then,  is  given  by  a  reflexive  interplay  of  invariances  and  symmetries  (the  duality  present  in  an

adjunction) without the need for an understanding of “for every” as meaning for every, or that “exists” really means

exists  – just as, for far too long, we have been told that “snow is white” is true just when  snow is white, a truly

remarkable mathematical discovery. When the “geometric” meaning of an adjunction is known, qua profound and

omnipervasive construct of Category Theory, the meaning and the relation between the quantifiers is enriched with a

new structural significance through the construction described above. That is, they become immersed in a geometric

context, a universe of dynamic and modifiable structures. In particular, it becomes possible to go from one logic to

another, from one Topos to another, studying their invariants and transformations, that is, the functorial immersions

and the adjunctions correlating them. For this reason I often say, in provocative manner, that I am happy to leave the

question of truth to priests and analytic philosophers: we operate constructions of sense, we organize the world by

proposing and  correlating structures  that  have a meaning because of  our being  world-bound active humans  in

different conceptual worlds which we strive to put into dialogue. Let us not confuse this with the fact that the judge

seeks, in witnesses for example, the “truth”: science is not a testimony of, but an action upon the world, aimed at

organizing it and giving meaning to it.

I  will  return shortly to  this extremely timely geometrization of  Logic,  a  “royal way out” of the narrow

singlemindedness of the logico-linguistic turn. In this regard, Zalamea quotes Girard who, within Proof Theory, has

subsumed the same structural  sensibility, the same distance from Tarskian  truth and its  ontological  flavours.  I

remember when I first attended, in the 1980s, a talk by Girard on Linear Logic; I asked him why, after having

radically modified the “structural” rules of logics, changing their symmetries in formal notation, he had introduced a



certain inference rule. He replied: for reasons of symmetry.9. Symmetries are at the core of the close relationship

between physics and mathematics, ever since Archimedes asked himself: why doesn’t a scale with equal weights on

both sides move? And answered: For reasons of symmetry. Guided by the same symmetry reasons, Sacharov and

Feynman proposed anti-matter, thus giving a meaning – faced with experimental phenomena in need of explanation

– to the negative solution of Dirac’s electron equation. Alas, unfortunately (or fortunately?) cellular reproduction is

at the heart of ontogenesis and phylogenesis, also because it is asymmetrical.

More  on  Invariance  and  Symmetries,  in  Mathematics  and  the  Natural
Sciences

1-Between mathematics and physics: Symmetries, Gestures, and Measures.

I have been too critical, much more than Zalamea is, of Set Theory as a foundational discipline, since there is one

concept  about  which  it  has  been  the  field  of  a  rigorous  and  useful  foundational  analysis:  the  question  of  the

infinite.10 This is a crucial concept in mathematics. All mathematics is construction to the limit, starting with the  line

with no thickness of Greek geometry, a limit construction, all the way to the higher constructs I have discussed

above. It has come into relation with physics since Galileo’s  asymptotic principle of inertia. Great merit goes to

Shelah, whose work Zalamea discusses at great length, for he demonstrated that “the theory of singular cardinals

corresponds to the idea of seeking natural algebraic invariants (homotopies, homologies) for topology” (202). From

there, we are referred to Serre’s work on homotopy, which makes possible an algebraic-topological relativization of

the notions of finite and infinite. Once again, it is a relativizing operation, breaking with the absolutes of logicist

formalisms,  according  to  which  the  “finite”  is  locus  of  certainty  and  absoluteness.  Likewise,  in  physics,  the

“Riemann Sphere”, a bidimensional model of the relativistic universe, is infinite for its surface-bound inhabitant

moving towards the poles,  whose meter  stick progressively contracts;  it  is  finite  as  observed from an external

reference frame.

At the level of groups, however, a discrete combinatorics can be fundamental; indeed, Zalamea refers to the

Grothendieck-Teichmüller groups, which “may come to govern certain correlations between the universal constants

of  physics  (the  speed  of  light,  the  Planck  constant,  the  gravitational  constant),  while,  conversely,  certain

mathematical theories originating in quantum mechanics (non-commutative geometry) may help to resolve difficult

problems  in  arithmetic  (the  Riemann  hypothesis)”  (205).  As  Zalamea  tells  us,  here  we  witness  “absolutely

unanticipated results, which bring together the most abstract mathematical inventions and the most concrete physical

9 Symmetry principles – or more precisely principles of “inversion” –  were already present in Grentzen’s sequent
calculus,  to  which  Girard explicitly  refers  to.  They permit  the “generation”  of  a  calculus  starting with logical
connectives, and to finely analyze the properties of proof-theoretic normalization (see Negri and von Plato 2001).

10 This analysis extends all the way to the recent and daring “anti-Cantorian” explorations of Benci, Di Nasso and
Forti (in Blass et al. 2012). According to them, as for Euclid, “the whole is larger than its parts”, even for infinite
sets (at least when denumerable: this approach, for the time being, is not extended beyond the denumerable. For this
latter domain, we will probably have to look beyond the category of sets, towards other structural invariants).



universe” (206).

Through a back-and-forth between mathematics and physics, various intersections far from the world are

drawn  out,  between  domains  with  roots  in  diverse  conceptual  constructions,  each  originating  in  different

organizational actions upon the physical world. It is neither unreasonable nor surprising that the locus of conceptual

invariance and of the analysis of its transformations – mathematics – should influence theoretical physics. Beyond

the  strict  relation  mentioned  above  between  mathematical  symmetries  and  conservation  principles  in  physics

(Noether,  Weyl),  the  physicist’s  theoretical  work  begins  from the  invention  of  appropriate,  and  very  abstract,

mathematical  phase-spaces  (observables  and pertinent  parameters)  like  the  spaces  of  state-function in  quantum

mechanics or Hilbert spaces; all phase-spaces the physicist uses or builds to analyze (generic) objects and (specific)

trajectories, result, in turn, from symmetries and invariances. I will try to sum up here analyses and notions which

are central  to attempts to  differentiate  and establish a dialogue between mathematics,  physics,  and biology (as

exposed in Bailly and Longo 2011 and Longo and Montévil 2014).

Mathematics and physics share a common construction insofar as they isolate and draw pertinent objects,

perfectly abstract and with pure contours – like Euclid’s  lines with no thickness, edges of figures drawn on the veil

of phenomenality, at the interface between us and the world. Euclid, indeed, invents the difficult notion of border:

his figures are nothing but borders, and thus without thickness – one thinks of Thom’s cobordism (Rudyak 2008).

These  objects,  in  mathematics  as  in  physics,  are  generic,  that  is  interchangeable,  symmetrical  according  to

permutations within their definitional domains. A right-angled triangle in Euclid, a Banach space, or a sheaf, are all

generic, as are Galileo’s weight, an electron, a photon, and so on. These are generic insofar as they are invariants of

theory and of physical experience, symmetrically permutable with any other. So that the same theory can deal with

falling apples and planets as generic gravitational objects, just as the even more marked theoretical invariance of the

theory of relativistic bodies allows us to unify gravitation and inertia. The genericity of objects and of structures,

therefore, is the result of a fundamental symmetry/invariance, shared by both mathematics and physics.

Beginning with the genericity of its objects, physics analyzes “trajectories” in a suitable phase-space. The

classical one based on momentum and position (or energy and time) is only one among many (thermodynamics, for

example,  operates  within a space defined by pressure  × volume  × temperature,  and has  added a revolutionary

observable: entropy). These trajectories are specific, unique, and are imposed by the geodetic principle in its various

instances. Even in quantum mechanics, where the quanta certainly do not follow “trajectories” in space-time, the

Hamiltonian allows the derivation of the Schrödinger equation, defining the trajectory of a probability amplitude in

Hilbert space. But the Hamiltonian,  or the extremization of a Lagrangian functional, follow from a conservation

principle – a principle of symmetry – as Noether’s theorems have explained (see Kosmann-Schwarzbach 2004;

Bailly  and  Longo  2011).  Here  is  the  extraordinary  unity,  completely  construed  or  better  co-construed,  of  the

physical-mathematical edifice. Here is the power of its intelligibility, utterly human, for we animals characterized by

a fundamental bilateral symmetry who, in language and intersubjective practices, organize the world, our arts, and

our knowledge in terms of symmetries (see Weyl 1949, 1952, followed by Van Fraassen 1993) and, subsequently,

their breaking.

Such unity will be discovered in the symmetry breaking constituted by the non-Euclidean modifications of

Euclid’s fifth postulate – which yields  the closure of the Euclidean plane under the group of homotheties –  a



breaking  that  will  allow  Einstein  to  give  a  mathematical  foundation  to  relativist  physics,  beginning  with  the

astonishing measurement of the invariance of the speed of light. Likewise, in Connes’ non-commutative geometry,

which includes physical measure in the foundations of his approach: Heisenberg’s matrix algebras, from which it

derives  in  analogy with Gefland’s construction,  are built  starting with the non-commutable nature  of  quantum

measurement. In a striking difference from arithmetical foundations, geometry, the privileged locus of invariance

and transformations, has always had an origin in a constructive relationship of “access” to space and its processes:

from the Greek compass and straightedge to Riemann’s rigid body, to the algebras derived from Connes’s quantum

measurement, yet another bridge between mathematics and the universe of physics.

To sum  up,  a  fundamental  component  of  the  unity  we  have  delineated  between  mathematics  and  the

theorization  of  the  inert  is  this  central  role  assigned  to  the  genericity of  objects  and  the  specificity of  their

trajectories, both being definable in terms of symmetries. To this we should add an active relation to the world,

grounded on both the constitutive gesture of the continuous line, of the trajectory – a movement at the origin of the

phenomenic continuum – and on the access to the world as mediated by measurement: classic,  relativistic,  and

quantum.  Following  Zalamea,  I  will  return,  in  what  follows,  to  some  contemporary  consequences  of  these

considerations (which sum up ideas extensively developped in Bailly and Longo 2011 and in Longo and Montévil

2014, and are directed towards a discussion of biology).

2- What About Biology?

What can we say about the theorization of the living? The only great biological theory, Darwin’s, was born by

positing some principles: of which the first in particular, “descent with modification” (indispensable for the second,

“selection”), stands in stark contrast to those conservation principles (symmetries) which, starting with Galileo’s

inertia and the geodetic principle (think of Hamilton’s variational method, contemporary to Darwin), were taking

center  stage  in  physics.  “Descent  with  modification”  is  a  principle  of  non-conservation of  the  phenotype,  of

organisms, of species and of all the observables of Evolutionary Theory. The morphogenetic iterationin the living, in

particular reproduction as conservation by inheritance, is never identical to itself, and this must be take its place as a

fundamental principle, together with Darwin’s, of the intelligibility of ontogenesis (see Longo et al. 2014).

We are  working  towards  an  understanding  of  onto-phylogenetic  trajectories  as  “cascades  of  symmetry

change”, a kind of “extended critical transitions” (see below), borrowing a  method from physics: a mathematical

construction of objectivity, yet  with dual principles. Critical  transitions capture the continuity of change that is

proper to reproduction. The challenge is to unify ontogenesis and phylogenesis, on the basis of the same, or similar,

principles (see Longo et al. 2014), thus towards a “theory of organism” and therefore of ontogenesis, avoiding the

prescientific  metaphors  of  an Aristotelian homunculus  codified in  the DNA (even  when the  defenders  of  such

“theories” dress their ideas in modern garments: the homunculus is in a machine code and the DNA contains both

the program and the operating system (Danchin 2009)).

The problem is that biological trajectories, cascades of changes of symmetry in constant interaction with the

ecosystem, must be considered as generic: they are “possible” trajectories among the many which are compatible

with the ecosystem – the limbs of an elephant, of a kangaroo, of a whale (its vestigial forms) are so many possible

evolutions originating form a same tetrapod vertebrate. What’s particularly hard to grasp is that they are possibilia in



phase-spaces (to use a physics jargon), not pre-given but rather co-constituted with trajectories: so an organism, in

phylogenesis as well as in ontogenesis, co-constructs its ecosystem: consider how, two to three billion years ago,

bacteria created oxygen, beginning with a primitive atmosphere which contained none or in negligible amounts. And

so the pertinent observables – that is, the phenotypes – are modified up to speciation. The result of this evolutionary

trajectory is an historical and individuated object, a specific organism, the result of a contingent cascade of change

of symmetry (qua changes of the coherence between organism and ecosystem) channeled by massive historical

“constraints”.  One  of  the  most  important  of  which  is  the  DNA:  the  imposing  chemical  trace  of  an  history,

continuously employed by the organism throughout the course of ontogenesis. 

To sum up: biological trajectories are generic, while their objects are specific – a radical duality, as opposed

to the physical-mathematical realm, where we pointed out the genericity of the objects and the specificity of the

trajectories.  Such  duality  profoundly  modifies  the  role  –  so  rich  in  physics  –  of  symmetries,  invariances  and

transformation.  To  the  impenitent  reductionist,  hellbent  on  an  abstract  physics  (and  not  the  physics  of  the

historically-situated theories) to which everything must be reduced, we respond (see the introduction of Longo and

Montévil 2014) with a recommendation, for example, to try to “reduce” the classical domain to the quantum one, or

the hydrodynamics of incompressible fluids in a continuum to quantum mechanical principles, if she can – after all,

there are both classical and quantum dynamics (and plenty of water) at play within a cell. The unity of knowledge

and of its scientific instruments, starting with unity in physics, is a hard-won conquest – as in the case of quantum

and relativistic physics – and not a theoretical a priori.

I mention these problems both because they are my current interests and because the construction of objects

and structures in mathematics has proceeded in lockstep with a prodigious construction of objectivity in physics,

simoultaneously locating in the richness of language and of historically located human gestures an autonomy that

pushed  it  steadily  away  from  physical  experience  (where  is  Euclid’s  thickless  line  to  be  found?  Where  is  a

Grothendieck pre-sheaf  located?).  And yet,  considering the analogous approach  in  physics  and  mathematics  to

“objects” and “trajectories”, this was a process of constitution capable of falling back again upon physics, through

unexpected  avenues:  think of  the  marvelous story  of  Cardano’s imaginary  numbers,  having  an  highly abstract

algebraic origin and yet being today essential to talk about microphysics (yet Argand’s and Gauss’s interpretation

allows us to discern a possible role for them in the description of wave amplitudes and their trajectories: before

falling back upon the world, they became a rich geometric structure).

This parallel construction of objects and concepts does not merely concern the interaction of physics and

mathematics.  Indeed,  even in  the ambit  of  proof,  mathematics  does not  proceed by way of  demonstrations of

already-given formulae – as the formalist caricature would have it  – and physics does not construct theories as

summations  of  experiences  and  facts.  Neither  proofs  nor  theories  are  “already  there”,  not  even  in  the  most

dynamical and weakly-Platonic sense. The construction of sense plays a powerful role in proof, even arithmetical

proof (see Longo 2010, 2011); likewise, physical theory tells us which observables are to be isolated and analyzed,

which experiences to have, which phenomena to observe. Mathematics and physics are the result of a laborious

effort of knowledge construction, as Weyl has it, through a non-arbitrary friction with the world. Non-arbitrary and

effective precisely because rich in history and contingency: mathematics and physics are thus a human praxis in and

towards the world, as Peirce – a thinker Zalamea often likes to refer to – would say.



Contemporary biology poses enormous challenges: to face them we would need to combine the imagination

of Newton (a Newton of the blade of grass, as Kant has it, without denying the possibility of such a science), with

his differential calculus as infinitary construction to understand the movement of the finite; of Hamilton, with the

variational method for the geodetic principle; of Dirac, with his delta, for a long time without any mathematical

sense; and of Feynman, with his integral, the solution of a still-non-defined equation. The principal invariant in

biology (fortunately not the only one) is  variability: it allows diversity adaptability, at the heart of the structural

stability of the living. What to do with our invariantentheorien?

Groups Everywhere, Metrics Everywhere

Among the omnipresent references to Grothendieck, Zalamea underlines time and again how his work incorporates

“a transit between objects (variations, perturbations) so as to then proceed to determine certain partial stabilities

(invariants)  beneath  the transit”  (212).  As  for  the invariants,  I  have  often  referred,  as  Zalamea does,  to  those

correlated with symmetries, i.e. group structures. But together with groups (to be interpreted as instruments of action

upon spaces, all the way to the most abstract ones due to Grothendieck), a crucial epistemic role should be assigned

to semigroup structures.  As it  is  observed in Bailly and Longo 2011, on the one hand we should consider the

gnoseological  and  mathematical  complex  of  {space,  group,  equivalence  relation},  on  the  other  that  of  {time,

semigroup, ordering relation}. In the passage between the two we see a useful instrument to analyze the interplay

between  space  and  time  in  the  natural  sciences,  as  well  as  the  difference  between  physics  and  biology:

oriented/ordered time plays a crucial operatorial role in biology, as we say also in Longo and Montévil 2014, well

beyond its role as parameter in physics. In this regard, Zalamea insists on the role of semigroups in the hyperbolic

varieties of Lax and Phillips (218). These are collections of operators Z(t), with a parameter that can be interpreted

as time, which permit the construction of  “the deep connection that lets us unfold the ‘intrinsic meaning' hidden in

differential equations like the non-euclidean wave equation, a meaning that can be glimpsed precisely in virtue of

the semigroup Z(t)” (220). 

In this inexhaustible search for unity, not forced towards impossible reductions, but constructed with bridges,

correlations,  and  structural  passages,  we can  “naturally  mediate”  between “the  Poincaré  plane,  seen as  a  non-

Euclidean model, with its differential Riemannian geometry and analytic invariants, on the one hand; and the same

plane, seen as a complex model, with its theory of automorphic functions and arithmetical invariants, on the other”

(220). Here we arrive at Connes’s programme for non-commutative geometry, a programme for the reconstruction

of vast sections of mathematics, grounded on the non-commutativity of quantum measure (and its algebras). The

objective of this geometrization of quantum mechanics is to contribute to its intelligibility and, ultimately, to deliver

a unification with the relativistic universe, radically changing the theory of space – not a mere “background”, as

string theorists claim. Zalamea adroitly sums up several bridging aspects, correlating them with the work of other

geometers, starting with the recent developments of Riemaniann differential geometry, with particular focus on

the passage from infinitesimal manifolds (Riemann) to C*-algebras of compact operators (Hilbert,

von Neumann), the passage from dual K-homology (Atiyah, Brown, Douglas, Filmore) to non-



commutative C*-algebras (Connes), the passage from the index theorem (Atiyah, Singer) to the

handling of non-commutative convolutions in groupoids (Connes), the passage from the groups

and algebras of modern differential  geometry (Lie) to quantum groups and Hopf algebras, the

passage from set-theoretic punctuality to the actions of non-commutative monoids in Grothendieck

topoi, etc. (224).

There is no doubt in my mind that this allows for a correspondence  in fieri between mathematics (as a study of

quantities and organized in structures) and the cosmos (as order), as Zalamea argues, legitimately philosophizing

from a conjecture of Cartier. But this shouldn’t be considered a new Pythagoreanism, in my view: it is we who

single out elements of order in the cosmos (those we can and want to see – symmetries for example). As Kontsevich,

quoted by Zalamea, has it, in physics we begin with very little: “where one doesn’t see structures so much as the

symmetry, locality and linearity of observable quantities” (229). We then enlarge these almost Gestaltic elements

(symmetries and locality),  we generalize them, and we transform them into the language of a metaphysics-rich

communicating community. Finally we project them back again upon the cosmos, recognizing it as orderly because

intelligible, and intelligible because orderly. This process is legitimate because, in this theoretical back-and-forth,

our friction and action upon the world are real: the world resists, it says “no”, and channels our epistemic praxis,

which is of an eminently organizational character, and it is always active. 

Such  knwoledge  construction  works  because  of  this  cognitive  entanglement,  beginning  with  the  common

genericity  (of  objects)  and  specificity  (of  trajectories),  both  physical  and  mathematical:  the  first  brick  of  an

enormous physico-mathematical edifice of our making. No surprise then, a surprise still affecting Kontsevich and

Zalamea; we are left with great admiration for such a majestic, but very reasonable, mathematical construction.

Similarly, the linguist is not surprised if, when we talk, we understand each other: language was born with dialogue,

through the practice of mutual understanding and communication. The linguist surely admires a great poem which,

with words, introduces a different worldview or an original intelligibility of humans, without ontological miracles

but merely with the strength of the words' meaning, a co-constituted product of our human community. Alongside

myths,  poems  and  tragedies  –  rich  in  human  experience,  in  human,  concrete  and  lived  praxis  as  well  as  in

metaphysics – we have been able to propose the structures of mathematics with their invariants and transformations,

rich in those glances and gestures which organize the real, as well as rich in metaphysical nuance – starting with

Euclid’s line, a limit notion resulting from a dialogue with the Gods. Mathematics is written in natural language, it is

a language and a gaze upon the world, at and from the limit of the world (“mathematics is the science of the infinite”

as Weyl (1932) writes).

However, we only see perspectives, albeit coherent and profound ones; points of view on fragments of the

world, we organize and make accessible small corners of it. And as soon as that small (but oh so important) brick

concerning physico-mathematical genericity and specificity is removed, as happens in the analysis of the living, we

find ourselves in trouble. Yet it is nothing unsurmountable: we just have to work on it with the same freedom and

secular independence of thought, action, construction and exchange proper of the founding fathers of the physico-

mathematical, abandoning the ambition of finding the theoretical or mathematical answer “already there”, written by

God in the language of already-existing mathematized physics.



Referring to Peirce, Zalamea too highlights the progressive constituting of knowledge of the world: 

we see how the ‘world’ consists in a series of data/structures (Peircean firstness), registers/models

(Peircean  secondness)  and  transits/functors  (Peircean  thirdness),  whose  progressive  interlacing

into a web not only allows us to better understand the world, but which constitutes it in its very

emergence. (237)

The important thing is to break out, even in foundational analysis, from “an ‘absolute mathematics’, a mathematics

at rest, in the style of Russell” and proceed towards “a ‘relative mathematics’, a mathematics in motion, in the style

of Grothendieck” (240). The entire work of contemporary mathematics, carefully recounted by Zalamea, aimed at

the production of 

remarkable invariants …  without any need of  being anchored in an absolute ground.  We will

therefore take up a revolutionary conception which has surfaced in contemporary mathematics in a

theorematic  manner:  the  register  of  universals  capable  of  unmooring  themselves  from  any

‘primordial’ absolute, relative universals regulating the flow of knowledge. (242)

Developing  the  theme  of  “relative  universals”,  Zalamea  introduces  Freyd’s “allegories”:  abstract  categories  of

relations,  exposed in  diagrammatic  terms  via representations that  obviously “a  functional,  set-theoretic  reading

would fail to detect” (243). I want to stress that, in general, categorial diagrams are not “equivalent” to the equations

to which they can be formally reduced: the diagrams indeed highlight symmetries that are merely implicit, invisible,

in  the equations;  they need  “extracting”,  just  as  Noether’s theorems extract  symmetries  from the equations of

physics. 

Freyd shows how, starting from pure type theories with certain structural properties (regularity,

coherence,  first-order,  higher-order),  one  can  uniformly  construct,  by  means  of  a  controlled

architectonic  hierarchy, free  categories  that  reflect  the  given  structural  properties  in  an  origin

(regular categories, pre-logoi, logoi, and topoi). (243)

In this way, all the invariants of logico-relational transformations – beyond the particular variants of any specific

logico-mathematical domain – are expressed in a maximally synthetic and abstract way. As usual, the analysis of

transformations, of preserved structural invariants, and of variants (which can however have a “local” sense) is at

the heart of mathematics, and this is confirmed by the logical-foundational spirit of Freyd’s work. Referring to the

latter, and taking his moves from the Yoneda Lemma, Zalamea uses the occasion to explain, as I mentioned above,

that  pre-sheaves  categories  can  be  considered  as  the  general  locus  of  the  “continuity”  wherein  every  discrete

category  can  be  embedded.  Like  Thom,  one  comes  to  the  conclusion  that  the  continuum  “underlies”  (is  an



archetype) for the discrete as well (Thom argues that a discrete set is nothing but a collection of singularities in a

continuum).

Without necessarily according ontological priority to the one or the other, I would like to observe that, in the

natural sciences, the discrete and the continuum organize the world differently, and this can be demonstrated: by

analyzing the different role of symmetries and their breakings, which these mathematical structures, when employed

for theoretical organization or simulation, accentuate and project upon physical and biological processes (see Longo

and Montévil 2014a).

Having passed through a technically pertinent close-up of the reverse mathematics of Friedman and Simpson,

Zalamea demonstrates how the work of Zilber contributed to giving a Grothendieckian understanding of the model

theory of Tarskian tradition (Chang, Keisler): no more “logic + universal algebra” but “algebraic geometry + fields”

(Shelah, Hrushovski, Zilber, Hodges). With Zilber we have “the emergence of ‘groups everywhere’ – invisible at

first,  but  lying  in  the  depths  (‘archetypes’)”  (256).  A kind  of  “renaissance”  and  generalization  of  Erlangen’s

program, as Zalamea rightly notes.

An  analogous  motto  allows  us  to  grasp  a  central  element  of  Gromov’s  contribution  to  geometry:

“‘smoothing’ and ‘globalization’ that are tied to the notion of metrics everywhere” (259). Then Zalamea hints, with

fine synthetic and analytic skill (that is, with great command of language and pertinent mathematical references, as

always),  to the work of  Gromov on “partial  differential  relations,  on “symplectic varieties”,  and on hyperbolic

groups (259) – a work enriched by a certain sensitivity, proper of the French-Russian school, to the play between

geometric  insight,  analytic  virtuosism  and  physical  applicability.  Introducing  pseudoholomorphic  curves  and

seeking the

invariants of those curves, Gromov shows that the spaces modulo the curves are compact, and that

it is therefore possible to work out a natural theory of homology, which leads to the Gromov-

Witten invariants; in the last instance, the new invariants allow us, on the one hand, to distinguish

an entire series of hitherto unclassifiable symplectic varieties, and, on the other, help to model

unexpected aspects of string theory. (262)

Once again, the analysis of the invariants and the transformations preserving them – relativizing the movement

between a structure to another – is at the core of Gromov’s work on Riemaniann manifolds , within a program of

“geometrical group theory” described as the project aiming at “characteriz[ing] finitely generated groups, modulo

quasi-isometries, which is to say, modulo ‘infinitesimal’ deformations of Lipschitz-type distances” (264).

In Chapter 8, Zalamea synthetizes some of the themes touched in the book, in order to propose his own

vision of a “transitory ontology”. It is a relativizing, yet not relativist vision (of either the “weak” or the “anything

goes” variety), an Einstenian vs. Newtonian one, at the center of which lie transformations (passages, transits) and

pertinent  invariants:  “the  transit  of  mathematical  objects  consists  in  finding  suitable  invariants  (no  longer

elementary or classical) behind that transit” (271). And so Zalamea himself sums up the themes he examined more

extensively earlier in the book



motifs [p.144-146], pcf theory [p.201-202], intermediate allegories [p.245-246], Zilber’s extended

alternative [p.257], the h-principle [p.263], etc. […] neither absolute foundations nor fixed objects,

not everything turns out to be comparable or equivalent, and where we can calculate correlative

archeal  structures  –  that  is,  invariants  with  respect  to  a  given  context  and  a  given  series  of

correlations – which, precisely, allow differences to be detected and reintegrated. (272)

Representation  theorems,which  Zalamea  often  mentions  in  his  book,  assign  a  key  role  to  strong  and  diverse

specifications of the notion of group. To emphasise this role, I borrow Zalamea’s own list of topics (specifying, in

square brackets, where each theme has been considered), always examined with a refined informality that manages

to be both complete and informative.  

homology and cohomology groups [p. 142-148, 178-179], Galois groups [p. 150, 155, 225], group

actions  [p.  162-163,  180-181],  Abelian  groups  [p.  165],  homotopy groups  [p.  176],  algebraic

groups [p. 184], the Grothendieck-Teichmüller group [p. 225, 233], Lie groups [p. 223], quantum

groups [p. 223], Zilber groups [p. 255-256], hyperbolic groups [p. 264], etc. (272)

This demonstrates a dynamics of “webs incessantly evolving as they connect with new universes of mathematical

interpretation. […] This just goes to reinforce the position of Cavaillès, who understood mathematics as gesture”

(273).  Such  are  organizational  gestures  of  correlated  mathematical  universes,  correlated  by  a  web  of

transformations, like the hand gesture that organizes space, gathers, delimits, and transfers,  as we can say with

Châtelet. This process assumes an historicity that serves to highlight the sense and the relationship of mathematics

vis-à-vis the real: mathematics works (where it does work) and has meaning because it is constituted through a

human – all too human – praxis. All too human because it is anchored to pre-human invariants, those of our actions

in space and time; universal, for us historical and speaking human beings, precisely because pre-linguistic and pre-

historical,  even  though  language  alone  allowed  the  transformation  of  “practical”  invariants  into  concepts  and

structures.  And, in language, writing, as Husserl (1970) observed, has further contributed to the process of the

stabilization of concepts.

Considering the correlations between groups, symmetries and invariants, in the context of this section on

“groups everywhere, metrics everywhere”, I would like to mention the role of (animal) memory in the constitution

of invariants. Memory is forgetful, that is one of its essential properties: we, as animals, forget irrelevant details of

an action, of a lived experience. Irrelevant, that is, with respect to the protensive – intentional (conscious) or not –

gesture, already done or still to be performed: memory is selective in both its constitution and in its re-activation.

This selective choice allows us to undertake once again a given action in a similar but not identical context, to

operate another protension or prevision, counting on the relative stability of the world, through changing distances,

for example, which we attempt to organize in stable metric evaluations. We do not access memory as we would



access a digital hard drive. The protensive gesture, I say with and beyond Cavaillès, reactivates memory every time:

not in a passive way, but choosing, selecting and constituting new practical invariances, beyond those isolated and

selected by memory in its constituting process. Animal memory is reactivated in a protensive manner, or better, it is

re-lived for a purpose, be it a conscious or non-conscious one, forgetting all that is irrelevant to the present goal:

(Edelman and Tononi 2000) argue that, in the act of memory, he brain puts itself in a lived state..

Meaning derives,  moreover, from the intentionality, even a pre-conscious one, that  inheres in protensive

gestures, particularly in a “perturbative” modality. It is that which  interferes with, and which operates  a friction

upon,  the protensive  action which acquires,  for  us  as  animals,  a  meaning.  And there  is  no protension without

retention. Obviously, then,  a digital  machine with a  perfect  memory cannot do mathematics,  because it  cannot

constitute invariants and its associated transformation groups, because a perfect, non-protensive memory does not

construct meaning, not even mathematical meaning. At most, the machine can help with formal fragments of proofs,

or check,  a  posteriori,  the formalized proof,  or parts of  it  (proof-assistance and proof-checking are burgeoning

fields). Only animal memory and its human meaning allow not only the construction of concepts and structures, but

proof  as  well,  as soon as the latter  requires  us to propose new concepts and structures,  or the employment of

ordering or invariance properties which go beyond the given formal system (well-ordering, say, or the genericity of

infinitary  structures).  It  is  thus  that  recent  results  on  the  concrete  incompleteness  of  formal  systems  can  be

interpreted: meaning demonstrably lurks in the proofs of formally unprovable theorems (see Longo 2010, 2011).

Zalamea’s transitory ontology

Zalamea  insists  on  employing  a  terminology  of  different  forms  of  “ontology”  (local,  regional,  transitory…).

Mathematics, between 1950 and 2000, as he adequately demonstrates, proceeded by an analysis of streams, transits

and deformations of  structures,  and their  limits.  A network was therefore  built,  a  web weaving together  –  via

passages and transits, but also dualities and limits – a bewildering variety of constructions. In such a web even Logic

and Proof Theory find a new structural significance, 

where pivotal statements in logic such as the Loz theorem for ultraproducts, the completeness

theorem for  first-order  logic,  forcing constructions in sets,  and theorems of  type omissions in

fragments of infinitary logic, can all be seen, uniformly, as constructions of generic structures in

appropriate sheaves. (284)

Indeed, sheaves constitute a structure of particular interest, very often mentioned in the text. Born with Leray’s

analysis of indexes and “converings” of differential equations, “sheaves are precisely what help to capture (and glue

together) the continuous variation in the fibers.” (285, n. 345). Moreover they allow movement between the local

and the global. So, thanks to Grothendieck’s generalization (sheaves on a Grothendieck topology), they allow the

integration of “a profound web of correlations in which aspects both analytic and synthetic, both local and global,



and both discrete and continuous are all incorporated” (286). Obviously, the category-theoretical framework is the

most fitting for this organization of mathematics. If in the Category of Sets objects are non-structured and non-

correlated conglomerates of elements, “category theory studies objects through their external, synthetic behavior, in

virtue of the object’s relations with its environment” (288). Avoiding set-theoretic absolutes, in Category Theory the

notion of “universality”, for example, is relativized, becoming a “unicity” relative to given structures, in the given

class of morphisms. We have already observed how the analytic/set-theoretic approach leads, perniciously, to the

description of every categorial diagram in terms of equations. Now the constructions (co-product, adjuctions, pull-

backs…) or the proofs in Category Theory can be based upon, and have a meaning thanks to, symmetries and

dualities  present  in  the  diagrams,  absolutely  invisible  in  the  equations.  I  therefore  once  again  underscore  the

fundamental contribution of Noether’s theorems, which “extract” physical invariants by reading symmetries in the

equations (of motion): in the same way that categorial diagrams “extract” meaning out of mathematical correlations,

which then become visible and comparable symmetries.11

Zalamea’s  work  aims  at  moving  the  web  of  mathematical  structures  that  have  been  introduced  by

contemporary  mathematics  to  the  level  of  epistemological  analysis,  similarly  as  we  saw  the  transfer  the

methodological content of Einstein's  invarintentheorie to a foundational approach. That is  to say, it  aims at  the

construction  of  a  comparative  epistemology,  “a  sort  of  epistemological  sheaf,  sensitive  to  the  inevitable

complementary  dialectic  of  variety  and  unity  that  contemporary  mathematics  demands”  (296).  A mathematical

knowledge some of whose highest peaks Zalamea (296) enumerates (“Grothendieck’s motifs beneath the variations

of cohomologies [p. 144-148] […] Freyd’s classifying topoi beneath the variations of relative categories [p. 245-

246]”), proceeds between conceptual networks and their deformations “by means of series of iterations in correlative

triadic  realms:  differentiation-integration-invariance,  eidos-quidditas-arkhê,  abduction-induction-deduction,

possibility-actuality-necessity, locality-globality-mediation” (297).  The goal is  that  of “a sort  of epistemological

‘sheafification’, where the local differential multiplicity is recomposed into an integral global unity” (299).

Is this a “foundationalist” epistemological analysis? It surely is, in my opinion, since every epistemology is

also  an  analysis  of  a  network  of  correlations  and  an  history,  a  rational  reconstruction  of  a  constitutive  path,

evidencing the network of passages and transits and, in this way, the unity of the construction of knowledge. Of

course,  such an analysis doesn’t propose logical  or ontological  absolute foundations,  since the network is held

together thanks to its own structure, but also thanks to its friction upon the world, thanks to the unity of language,

thanks to its history – through which it constituted itself – and thanks to the windows of intelligibility that it bestoys

upon us. In this sense, to be provocative once again, I would go as far as to say that mathematics helps us to

construct objectivity precisely because it is contingent, the result of the “history” of a real friction with the world. In

11 We should  note  that  the  notions  of  “scheme” from algebraic  geometry, of  “frame of  locale  theory”,  or  of
Grothendieck topos, and their properties, are not captured by an approach in terms of “space = set + topology” (or
“space = set + structure). For example, from the constructivist point of view, important theorems like Heine-Borel’s
do not hold in set-theoretic contexts, while they do in adequate, point-free, topos (see Cederquist and Negri 1996).
Similarly,  constructions  based  on  pull-back,  insofar  as  they  are  eminently  categorial,  allow  to  distinguish  the
obtained structure from the set of points (when it is not an invariant with respect to the “sets of points” in question).
And a pull-back, typically, has a meaning – a visible meaning – only if we can appreciate its symmetries:  the
construction itself is given by a duality (a symmetry) upon diagrams.



this history we need to include that cognitive rooting, all the way back to its pre-human form, at which I hinted

before when considering the role of memory in the constitution of invariants. Zalamea briefly refers to another

interesting and technically deeper “cognitive” analysis, correlated to Gestalt, with which Petitot (2008), and Citti

and Sartri (2013) describe the visual brain, neurogeometry. In the construction of the world (in its friction with it)

the brain, always active and plastic, structures itself in a way that can be grasped geometrically, thanks to complex

symplectic structures. The brain organizes the world through vision by imposing contours, correlating points with

the regularity of minimal forms, relative geodetics, and reading and imposing symmetries.

These kind of analyses,  like those I mentioned above vis-à-vis memory, are not operations of cognitive

“reduction”,  but  rather  tend  to  highlight  the  possible  initial  steps  of  a  constitutive  path  through  which  our

communicating community has assembled conceptual mountains – in a contingent, because historical, way. An alien

friend of mine, from the Sirius system, has no corporeal  symmetry and interacts with her ecosystem thanks to

zuzrbs, and organizes her world on the basis of a fundamental regularity that we cannot appreciate, but that may

nevertheless be singled out, the tzsuxu. It is another gaze, another epistemically efficacious perspective, one perhaps

compatible with ours (or even able to unify microphysics and astrophysics, still, for us, objects of incompatible

descriptions). Another light is thus shone upon the universe, of which we see little more than the humble tick, whose

Umwelt is so adroitly described by Von Uexküll (1934), a tick who has been successfully coping with the universe

for far longer than we have.

Zalamea, instead, insists much on 

the  hypothesis  of  a  continuity  between  the  world  of  phenomena,  the  world  of  mathematical

(quasi-)objects associated with those phenomena, and the world of the knowledge of those objects

–  which  is  to  say, the  hypothesis  of  a  continuity  between the  phenomenal,  the  ontic  and  the

epistemic … From an epistemological point of view, the distinct perspectives are nothing other

than breaks in continuity. (304-5)

I will leave it to the reader to adjudicate whether or not it is possible to move “with continuity” between our two

points  of  view, and  with  mutual  enrichment.  As  for  myself,  I  will  insist,  in  the  next  section,  on  the  “critical

transition” between these worlds, which needs to be analyzed in terms of physical measure, or ways of access to

phenomena.  I  have indeed spoken of  the constitution of  invariants  that  lies at  the heart  of  the construction of

(physico-mathematical) knowledge, in continuity with action upon the world, yet not with the world in itself.

I am in complete agreement with the project of a “geometricization of epistemology […] that would help us

to overcome (or, at least, to complement) the ‘logicization of epistemology’ undertaken throughout the twentieth

century” (307).  The distinction between “principles  of proof” and “principles  of  (conceptual)  construction” (in

Bailly and Longo 2011) and the comparative analysis of the two sets of principles in mathematics and physics first,

and in  biology, is  precisely  aimed at  overcoming (complementing) the  monomaniacal  (if  profound and fertile)

approach  to  Proof  Theory  as  the  only  locus  for  the  foundations  of  mathematics.  And  this  “geometry  of

epistemology” consists,  in  primis,  in  a  Grothendieck-Lawvere-style  geometrization  of  logic  (but  one  that  also



follows from Girard and his geometry of proof [2001, 2007]). A project analogous to the geometrization of physics,

from Poincaré’s geometry of dynamical systems to the enormous work that goes from Riemann to Einstein and Weyl

in  physics  and  from Gromov  and Connes  in  quantum mechanics.  We speak,  therefore,  of  the  construction  of

“mathematico-philosophico-metaphorical” tools which, as Châtelet puts it (paraphrased by Zalamea) in his historical

study of the nineteenth century, 

in this search for a continuous articulation, include ‘dialectical  balances’,  ‘diagrammatic cuts’,

‘screwdrivers’, ‘torsions’, and ‘articulating incisions of the successive and the lateral’, which is to

say,  an  entire  series  of  gestures  attentive  to  movement  and  which  ‘inaugurate  dynasties  of

problems’ and correspond to a certain fluid electrodynamics of knowing. (309)

Merleau-Ponty speaks of a “glissment du savoir”, in both space and time: the epistemological challenge is to

structure and organize such knowledge, to give meaning to the moves of both space and time in an historical and

human sense of knowledge, and consequently fostering the creation of new perspectives, including new scientific

perspectives.

To sum up, consider that in mathematics, in Zalamea’s words

the notion of sheaf, in a very subtle manner, combines the analytic and the synthetic, the local and

the global, the discrete and the continuous, the differential and the integral [p. 285-288]. In this

way, the ‘sheafification’ of the analysis/synthesis polarity generates a new web of epistemological

perspectives. (319)

Zalamea presents  his  Platonism accordingly:  not  static,  but  processual  and methodological,  so that  “the

definitions of mathematics, in reality, define methods; in no way do they define existent things or simple properties

inherent in such things” (330). This outlook mirrors my own stance on the matter, and it is precisely that which

allows us to pose the problem to what extent such methods are to be preserved and to what extent they are to be

enriched or modified, when moving to the interface between mathematics and biology (Longo and Montévil 2014) –

and  to  what  extent  our  attempts  of  theoretical  objectification  of  the  living  can  still  be  inscribed  within  this

framework. The notion of “mobility of the base” to which Zalamea refers, is close to the vision of objectivity and

effectiveness of mathematical construction upon which I insist, insofar as it is the result of a phylogenesis and of a

human history: “as the Platonic mobile base suggests, neither invention nor discovery are absolute; they are always

correlative to a given flow of information, be it formal, natural or cultural” (333). Which “base” changes should be

operated in order to move from the interface between mathematics and physics to that between mathematics and

biology? From the epistemological point of view, but also from that of an original scientific construction, we are not

interested  in  an  ontology  of  the  “transcendence”  of  mathematical  objects,  but  rather  in  their  “transcendental



constitution”, as the phenomenologist would have it – that is, their constituting through (and a “transit” upon) the

praxis of life and knowledge internal to mathematics and often (an in a particularly fecund manner) located in the

interface with other forms of knowledge. 

By posing the question of the relationship between mathematics and biology, therefore, I do not exclude a

certain autonomy of pure mathematics and of its effects on the world. I want to stress, however, that mathematics

has always nourished itself on new interfaces, on new problems to which new theoretical answers needed to be

formulated. Thus, the “fluid electrodynamics of knowing” can take us very far from the original frictions, and an

innovative metaphysics can further fluidify this exchange – just think of the role that the philosophies of Nicola

Cusano and Giordano Bruno, as well as the practices of the painters of Italian perspective, played in helping us to

think  the  mathematical  infinite  and,  in  general,  to  conceive  of  new  symbolic  constructions  of  science  and

mathematics (see Petitot 2004; Longo 2011b; Angelini and Lupacchini 2013). 

Regarding the relationship between culture, arts and mathematics, and their capacity to interact through the

creation of “perspectives” and points of  view, Zalamea borrows Deleuzian themes, and quotes  at  length an art

historian, Francastel. On these themes I want to remember Arasse, a disciple of Francastel and historian of painting,

from whose more refined analysis of the aesthetico-epistemological role of Italian perspective I suggest we draw

precious insights regarding the play between the (local)  detail  and (global)  sense of  a  painting, the interaction

between painting and knowing artistic subject (see Arasse 1999, 2009; S. Longo 2014), as well as the sense of the

(mathematical) infinite in renaissance painting.

The breath of aesthetics permeates mathematical creativity on at least two levels, as detonator and

as  regulator.  Referring  to  the  artistic  imagination,  Valéry  writes  in  his  Cahiers:  ‘Imagination

(arbitrary construction) is  possible only if  it’s not  forced.  Its  true name is  deformation of  the

memory of sensation’ […] We have seen how contemporary mathematics systematically studies

deformations of the representations of concepts. […] The visions of ‘cohomologies everywhere’ in

Grothendieck  [p.  146],  of  ‘groups  everywhere’ in  Zilber  [p.  256],  or  ‘metrics  everywhere’ in

Gromov [p. 259], ultimately answer to a new aesthetic sensibility, open to contemplating the local

variations  of  (quasi-)objects  through  global  environments  of  information  transformation.  The

aesthetic regulation that allows the invasion of cohomologies, groups or metrics be calibrated is

decisive. (372-3)

Number and the Question of Measure

When three stones are lying on the ground and a volcano spits out other two stones, neither the number 3, nor the

number 2, nor the concept of sum are there – there are some stones on the ground, and that’s it. These will be five

stones for the practical action of whatever being decides to cut them apart from their background, as we do (unlike

the tick, for example).



When a lion, in a group of three or four, hears five or six distinct roars in the distance, it prudently changes

course, in order to avoid an uneven conflict – or so the ethologists tell us. The lion “isolates” an invariant of praxis,

a praxis wherein memory helps it to compare different active experiences, from vision, hear and smell. However, the

lion does not possess the concept of number, it merely builds – but this itself is no mean feat – an invariant of action.

When  we  make  the  difficult,  and  very  human,  gesture  of  an  open  hand  with  five  outstretched  fingers

symbolizing a numerical  correspondence,  and we refer  to it  in language,  we are giving ourselves  the concept,

furtther stabilized in writing. Number is not already “inscribed in the world”, not even in the discrete material of the

stones on the ground, not before they are isolated from their background – pragmatically as many animals know

how to, as well as in mythical-theoretical manner, through language, as we have learned how to.

Number is not to be located in the biological rhythms that regulate the time of the living either (Chaline

1999; Longo and Montévil 2014). What is however interesting is the association that Brouwer makes between the

construction of the concept of number and the “two-ness” of temporal discreteness: that moment which passes by

and becomes another (Brouwer 1975) in the discrete succession of a musical rhythm, the rhythm of the living, a

proposal that evokes the Pythagorean intuition of number and music.  This picture is incomplete though: only a

plurality  of  active  experiences  permits  the  constitution  of  an  invariant,  of  that  which  does  not  change  in  the

transformation of one experience into another. The rhythm that organizes time into the discrete, the “small counting”

(the comparing and counting of small quantities) which we share with many animals (see Dehaene 1998), the spatial

ordering of different objects, together with the sense of movement associated with order (Berthoz 1997) – all of

these precede and contribute to the constitution of the (practical and conceptual) invariant, being different active

experiences. The passage, the transit, the transformation of one into the other are necessary in order to produce the

invariant. All Pythagoreanism, holding number as intrinsic in the world,  is misplaced: a brain, embedded in its

preferred ecosystem – the body of a human, historical and dialogical being – is needed, along with a plurality of

praxis from which to distill an invariant in memory and then produce (in language) number, in order to stabilize a

concept resulting from a practical invariance with a long evolutionary history.

Such constituted invariance comes into play even more when it comes to analyzing processes and dynamics,

where one needs to remember that in physics and, a fortiori, in biology there is nothing but dynamics. We need then

to measure this or that observable pertinent of the selected process, a theoretical proposal, also fixing a moment of

measure, and decide a beginning and an end of the process – a far more complex act than that of counting five

stones. So measure necessarily is, because of physical principles, an interval. Thermic and gravitational fluctuations,

as well as quantum non-commutativity, do not allow us to associate a number with their dynamics and with the

pertinent observables, but only approximations, changeable intervals. There is no intrinsic number in no physical

process: it is we, through the difficult gesture of measurement, who associate numbers with certain dynamics, as

couples,  extremes of  rational  intervals,  as  concepts  and as writing, constructed in language.  And then,  with an

eminently mathematical passage to the limit, one which took 2.500 years to be achieved in relative completeness, we

have proposed numbers without jumps nor gaps, the Cantorian continuum, one of many possible continua where the

intervals of measure could converge.

The mediation or interface between mathematics and the world requires the selection of a frame of reference

and measurement, the production of a number which is not in the world but which must be extracted or proposed in



order to organize the world. In some cases a structure, a geometry, can organize the world “without numbers”, so to

speak. That’s precisely what happened in the various facets of the “geometrization of physics”, of which I spoke

above – from Riemann to Poincaré and Einstein, from Weyl to Connes – structures that were somehow derived, as I

said, from the problem of measurement (ruler and compass, rigid body, Heisenberg's non commutative algebras).

This method can also be found, for example, in the symplectic geometrization of the visual cortex (see Petitot 2008;

Citti and Sarti 2013). But like the others, even this organizational proposal, a proposal of intelligibility that justifies

the  co-constitution  of  Gestalt  with and  within the  world,  must  then  allow  us  to  analyze  fluxes,  to  study

functionalities  and  the  dynamics  of  vision,  analogously  to  physical  processes.  And  so  geometry  too  requires

numerical measure, with all the characteristics I mentioned, as does every access to the structures of geometrized

physics – with its difficulties and limits: classical, relativistic and quantum (and in this case, biological). 

The flat (unidimensional) computationalists who see algorithms and numerical calculi as coinciding with the

world should first reply to the provocative question I addressed to the Pythagoreans, (see Longo and Paul 2010 for a

formulation of it) since they seem not to care about the issue of whether the fundamental constants of physics are

computable real numbers. How unfortunate that Planck’s h is not a whole number, with G and c whole multiples of

it! Is that God playing tricks on us? And these “constants” (approximated invariants of measure and theory) are

present in all the significant equations, those that define the alleged “computable functions” of physical processes.

We also suggested to fix h = 1, a legitimate move, modulo some transformation in the metric of energy or time, but

then the computationalists are not able to compute G or  c as exact real numbers, stuck, like everyone else, in the

interval of the new measure. In a global perspective and with “some art” (or artefacts, see Duff et al., 2002), one

may set h, G and c to 1, in their dimensions, but then the problem moves to the dimensionless constants, such as the

constant of matter  a = e2/hc:  its common approximation is 1/137, but … is it?

If I were to go out on a limb, I would bet that the fundamental constants are “random real numbers”  à la

Martin-Löf (see Calude 2002), that is, strongly uncomputable real numbers, since they have a Lebesgue measure of

1 (“probability” 1) in every interval of the reals. It should be said that “randomness”, for real numbers, is a notion

that has a meaning only to the infinite limit: these incomputable reals are therefore an asymptotic jeu de hazard, an

infinitary dice game, available to God alone – and this capable of convincing even Einstein.

I defined the partisans of the “computational world” as “unidimensional”, since the question of dimension is

at the heart of their flattening of knowledge. A first way of being in the world and of constructing the intelligibility

of the world with other disciplines, indeed, is to appreciate its “dimensionality”, in the entire semantic richness of

the word. To begin with, it should be observed that everything changes, in biology but also in physics, with the

Cartesian dimension. From Poisson’s equations of heat, a standout case, to all physical and biological processes, the

spatial dimension within which a process is analyzed is fundamental: its fixing precedes every theoretical analysis –

it functions as its condition of possibility, we should say with Kant. In general, the choice of a Category or of a

Topos and their embedding in a relative universe of Categories, with transits, functors, and “natural” transformations

to move from one to the other, is a fundamental theoretical passage.

Consider the poverty, in speaking about the world, of a Category, that of Sets, as an alleged ultimate universe

of fundamentals of intelligibility, where the set R of the reals is isomorphic with Rn: the dimension being irrelevant

for the analysis. Or, even worse,  the parody of a universe postulated by the computationalists: the Category of



discrete sets and computable functions, where N is isomorphic with Nn. These isomorphisms are essential to the

theories in question: in the first case they allow us to speak of cardinality, in the second they allow the definition of

Universal Machine, one of Turing’s great ideas, which led to the production of compilers and operative systems of

informatics.  Personally,  I  have  found  technical  work  in  this  latter  Category, and  its  Types  (see  Rogers  1967;

Barendregt 1984; Girard et al. 1989; Odifreddi 1989, 1999) very interesting, as explained for example in Longo and

Moggi 1984. The second Category is also well correlated to the first one, once some algebra is added to it (see

Longo 1983). Computability and Types, from Church to Girard, are at the origin of – and are still capable of giving

mathematical sense to – the extraordinary machines we have invented; we need, however, to always try and offer

correspondences between their category and others of different nature (see Asperti and Longo 1991). 

Yet there are still  those who want to analyze the Universe,  the brain,  and the organism (the latter being

codified by the discrete structure of DNA) by remaining within N and its finite,  isomorphic powers.  Now, the

minimal structure one needs to assume in order to correlate mathematics and the world is a topological invariance,

that of dimension. So, if we consider, on R, the so-called “natural” topology, that of intervals, the structure forbids

the absurd isomorphisms mentioned above: an isomorphism between two topologically open sets of two different

spaces  forces  the same dimension  of  these spaces,  which  is  then  a topological  invariant.  This  is  a  simple  but

beautiful correlation between topology and physical measure, since natural topology derives from classical physical

measure, an interval. This allows us to come back to what I mentioned above about measure, and how such a

topological invariance has no meaning upon the discrete, where the access is exact, absolute, and far from any form

of measure and access to physical and biological processes. When we hope to ground the intelligibility of the world

upon one-dimensional, codifiable mathematical universes, as the strings of bits that codify an image on a computer

screen, we break the symmetries that make the world intelligible  (Longo and Montévil 2014; 2014a).

Synthetically, one could say that that which is geometric, and therefore a fortiori categorial, is “sensitive to

coding”: form, structure, the diagrammatic Gestalt, and organicity are not invariants of coding, their entire sense is

lost  by  coding,  as  instead  are  information  or  digital  computation,  where  independence  of  coding  is  their

mathematical strength. It is therefore licit to claim that no physical process computes (Longo 2009). In order to build

one such process, the digital computer, we had to invent the alphabet, modern logic from Boole to Frege, Hilbertian

formalisms, and Turing’s and Gödel’s formidable codings. We thus individuated a new fundamental invariant, the

notion of computable function, independent from the formal system. We had to inscribe these calculations, codify

them in a machine with discrete states, and make the latter stable and insensitive to the codings and fluctuations I

mentioned above, forcing an electromagnetic dynamics into the discrete, channeling it into an exact interface. So

every process in digital machines can be iterated in an identical manner, via the implementation, on structures of

discrete data, of “term-rewriting systems”, i.e. systems of alphabetic writing and rewriting, the most general form of

computability (see Bezem et al. 2003). This is a massive amount of science and engineering, which includes the

Lambda Calculus, with and without types (see Barendregt 1984;  Barendregt  et al. 2013) to which we gave, with

many others,  a  geometrical  significance  in  adequate Topos,  bringing them back  to  bear  upon that  geometrical

organization I insisted upon, far from the monomaniacal obsession with the computable discrete. This has been a

part  of  the network of constructed relations,  the synthetic  movement  of  thought  which lies  at  the heart  of  the

construction of mathematical knowledge, rich in concrete and historical friction with the world.



To sum up, number and its structures are not already in the world, and neither is it “effective computing”,

which is nothing but the formal transformation of the writing of number: it is expressed in systems of re-writing,

transformations of alphanumeric writing, upon which a machine can operate. Phenomena, in physics in particular,

are on the other hand organized by us through non-arbitrary principles of intelligibility, among which conservation

and symmetry principles that have dimensions and pose the problem of access and measure. More precisely, I want

to recall how the conservation of energy and momentum (that are theoretical symmetries) allow us to write the

Hamiltonian,  from which  to  derive,  for  example,  Newton’s equations  –  a  specific  case  but  of  great  historical

importance. From these, indeed, we can proceed deducing the orbits with Keplerian properties.

This backward reading of history (starting with Noether-Weyl's symmetries, and going back to Hamilton,

Newton, and Kepler) makes us appreciate the beauty and unity of this strongly geometric construction of physico-

mathematical knowledge. This holds even if the planets and the Sun are not identifiable with a material point mass,

even if the phenomenal continuum is not made of Cantorian points (see Weyl 1987 on this topic) and thermic and

gravitational fluctuations make physical trajectories different from mathematical ones, especially when there are two

or more planets (Poincaré’s problem). The system, then, is chaotic and unpredictable in modest astronomical time-

frames (see Laskar 1994). And the mathematics of “negative results”, as Poincaré rebutted to Hilbert, makes such

phenomena intelligible. Only on a computer screen does a trajectory made of pixels – even the chaotic one of a

double pendulum – follow exactly the path dictated by the numerical solutions of an equation and can iterate it

exactly – a physical nonsense. The symmetries of a computational model are different from those of the continuum,

as  we  observed  (see  Longo  and Montévil  2014a).  So  the  digital  trajectory  quickly  diverges  from that  of  the

mathematical continuum and from the “real” one. Moreover, restarted with the same digital approximation, on the

same number, it repeats itself again and again, identical to itself, in secula seculorum, something that never happens

in physics  – and even less in biology, a science of  radically  non-reversible and non-iterable onto-phylogenetic

trajectories, cascades of changes of symmetry: a science of correlated variations (Darwin)

Towards Biology: Problems and Conjectures

1- Variation, Continuum

I already talked at some length of the revolutionary role, in contemporary mathematics, of sheaves and pre-sheaves.

These allow, in particular, for the construction of a new outlook on variation, on the continuum and on the relation

between local and global. It is thus possible to break free of the dictatorship of a continuum qua set of points and

“punctual” variables which do not make jumps nor sink into gaps – a beautiful construction we owe to Cantor and

Dedekind, one of the most profound constructions of mathematics, but very far from the continuum of phenomena.

Weyl (1987) has already explained how absurd it is to consider such a mathematical universe as congruent with the

phenomenal  continuum  –  the  temporal  continuum  in  particular,  which  is  certainly  not  made  of  points.  It  is

meaningless, Weyl argued, to isolate in a point a present moment that is not there anymore (as Augustine would

have it), even if he admits that, at the time, he was inevitably subordinated to that exact construction of mathematics.

Today, we can do better, even though  Cantor’s and Dedekind’s construction is still profoundly entrenched into our



mathematical  imagery, and it  is  indeed  the  common sense  of  every  school-educated  person.  Attempts  (that  of

Lawvere-Bell  for  example,  see  Bell  1998)  to  introduce  the  Topos-theoretic  vision  into  university  educational

programs have had, for now, scarce success. 

Perhaps  the  very  general  form of  variation  (or  sheafification,  as  Zalamea  puts  it)  on  a  continuum not

composed of points (and without “enough points”, as morphisms of the terminal object upon the one in question)

can fall back upon the phenomena and help us make intelligible the “continuous variation” considered in biology,

just as complex numbers – imaginary objects of algebra – have helped us to understand microphysics. I said that

variation is  (one  of)  the fundamental  invariant(s)  of  biology, and that  the mesh of  biological  and  ecosystemic

relations channels this variation and forces a permanent determination of the local by the global (and vice versa), in

a permanent critical transition which, for the time being, resists a general and efficacious mathematization. 

It is not obvious how to apply new instruments such as Grothendieck’s in a theoretical-biological field, and I

personally know of no successful attempt to do so. I have not seen, and I do not know how to bring about, a passage

from “set-theoretical punctuality to the actions of non-commutative monoids in Grothendieck topoi” (223–4) as

applied to a satisfactory theory of organisms: it may be a job for a next generation. The first obstacle, following our

approach, is the genericity of the physico-mathematical object and the specificity of its trajectories. The objects and

the transformations in and on the Topos have the physico-mathematical character of genericity and specificity: this

is reversed in biology, as we said, with a duality which represents a major conceptual challenge.

What type of categorial, technical, duality can reflect this theoretical duality and produce a new outlook on

biological phenomena? I would be wary of shortcuts and of the arrogance of anyone who would master such a

beautiful mathematics: the living is an extremely hard subject matter, a difficulty of a different kind than the one

faced by the beautiful  mathematics we have discussed.  We must first  appreciate the richness of  the Theory of

Evolution, the only great theory in biology, as recounted by many great contemporary evolutionists – to observe the

complexity of the embryogenesis of a fly’s leg, or the possible embryogenetic bifurcations of a zebra-fish – in order

to fully understand why the competent and honest experimental biologist is unable to give an answer to 80% of the

questions that the theorist poses to her when visiting the lab. This is not the case in physics.

Perhaps another duality can be more easily grasped through new structures. From Hamilton to Schrödinger

we have become used to understanding energy as an operator (the Hamiltonian, the Lagrange transformation) and

time as a parameter. I hold that this approach, in biology, should be inverted: here time is the fundamental operator,

constitutive of the biological object by way of its phylogenetic and ontogenetic history, while energy is nothing but a

parameter, as it indeed appears in scaling and allometric equations (see Bailly and Longo 2009; Longo and Montévil

2014). If we clear our mind of the classical schemes in which Hamilton’s and Schrödinger’s operators – and Pauli’s

controversial theorem, which partially formalizes the distinct physical role of energy and time, (see Galapon 2002) –

are given, we can perhaps begin to see the whole in a new, dual way, as required by the phenomenality of the living

– by its historicity, in this case.

Another theoretical path that needs a new outlook in terms of continuity, density (as the rational numbers in

the reals) and of analysis of the local vs. the global is that of “extended criticality” (see Bailly and Longo 2011,

Longo and Montévil 2014).  Critical Transition Theory, in physics, is an extremely interesting discipline – born

within the fold of post-War quantum mechanics yet further developed also in a classical form – for analyzing phase



transitions through the application of (quite a bit of) mathematics. The dominant framework, obviously formalized

on Cantor-style real numbers, describes the “transition” as punctual, and this punctuality is essential to the methods

of Renormalization (see Binney et al. 1992; Laguës and Lesne 2003). These deal with a cascade of models which

describe changes of scale and of pertinent objects, with a change of symmetries (both breaking and construction of

new ones) at the punctual limit of the transition, where the local  appears imbricated with the global.  The most

familiar examples are the formation of a crystal or of a snowflake, the para-ferromagnetic phase transition, and

Ising’s transition, all mathematized as punctual transitions.

The criticality of the living, on the other hand, is extended: it is always in a state of “phase transition”, in a

permanent reconstruction of  its  internal  “symmetries” and in correlation with the environment  (see Longo and

Montévil  2014).  Indeed,  in  an  organism every  cellular  reproduction  has  the  characteristics  of  a  critical  phase

transition, for internal reconstruction and of the surrounding tissue. And within the cell itself, molecular cascades

pass through critical values which can similarly be seen as phase transitions. The slight modifications that always

follow it are part of adaptive biology, including ageing (the increase in metabolic instability, oxidative stress). An

organism is somewhat like a snowflake which reconstitutes itself in permanence, partially modifying its symmetries,

jointly to the correlations with the ecosystem. In short, an organism is not merely a process, a dynamics, but is

always in an (extended) state of critical transition, permanently reconstituting local and global “symmetries”. An

interval of criticality can give some idea, as I am trying to convey it, but the density that would be necessary to

describe it  cannot  be the  “point  by point” density  of  a  segment  of  Cantor’s line in  respect  to  every pertinent

parameter – or if it is, it is only so in an inadequate manner. In any case, renormalization methods cannot be applied,

as such, to a classical interval of criticality. A reasonable objective could be that of replacing the Cantorian interval

with the variation in/of a point-less (pre)sheaf, thus giving a representation of density adequate to renormalization,

suitably extended.

2 - Measure  

I have already discussed the crucial role and the theoretical and experimental richness of measure in physics, the

sole form of access we have to the world (including perceptual “measure”), an interface between mathematics and

phenomena. In biology the situation is even more complex. In the first instance, a difference must be drawn between

“in vitro” and “in vivo”, a difference which has no meaning in physics. Moreover, over the last few years we have

seen  the  development  of  refined  techniques  of  three  dimensional  cultures:  cells  or  tissue  fragments  from  an

organism are developed in collagen suspensions from the same organism, giving rise to matrixes or parts of tissues

impossible  to  observe  in  traditional  and  “bidimensional”  Petri  dishes.  Thus  both  observation  and  measure  are

profoundly changed, as if (but not quite as if) we were somewhere in between the “in vivo” and the “in vitro”.

In any case, the duality I examined between generic and specific, between biology and physics, radically

changes the meaning of a measure. The biological object is not an invariant either of experience or of a theory,

unlike  the  mathematical  and  physical  object.  It  is  specific  and  historical  and,  to  a  greater  or  lesser  degree,

individuated. Of course, the individuation of a monocellular organism or of a single cell in a tissue is minimal

compared to that of a primate. And yet a cellular culture is prepared, by biologists, with a full awareness of the



history of cells: cells from a given tissue are labelled, and the descendents are distributed with the utmost care

throughout the world in order to reflect, collectively, on the iterability of an experiment in reference to the history

(i.e. the specificity) of each cell or tissue. The same goes for lab rats, labelled and traced along families as offspring

of a same couple, so that they will have a common, or at least known, phylogenetic history. 

In an ongoing project, between laboratory experience and theory, Mael Montévil is working on a theoretical

analysis of what he calls the “controlled symmetrization” of the biological object factually practiced in laboratories,

in order to deal with its specificity and to make it as “generic” as possible. One of the consequences of biological

specificity is that the Gaussian distribution of a measure does not have the same meaning that it does in physics. For

example in physics, in general, deviations from or situations marginal to the Gaussian can be seen as noise and

decrease, relatively speaking, with the increase of the total number of samples. In biology “deviations” are “specific

cases” that can have great significance for (cellular) differentiation and speciation, and increase as the number of

samples grows: enlarging the samples from one population of cells, or rats (or of humans) to another may radically

change the response (to a therapy, say), a major experimental and theoretical challenge. Only the “control” (the

normal cell, or rat, used as control), an unknown notion in physics, can help us understand the significance of a

variation, which is biological variability. And I want to insist that variability, in biology, is not noise: it is at the

origin of diversity and therefore of the biological resilience of an individual, a population or a species – and that this

takes place even in a population with a small number of individuals: even in a population of a few thousands,

individual diversity contributes to evolutionary stability.

Which mathematical instruments should we use, or create, starting with contemporary mathematics – that is

to say, going beyond mere systems of (at best non-linear) equations, and statistical methods invented at the end of

the 1800s? When Connes proposed non-commutative geometry he stood on the shoulders of early 1900s giants. A

highly refined theoretical work then transferred the problem of quantum measure to Heisenberg’s matrix calculus,

correlated with Weyl’s algebras and Hilbert’s spatial continua, both used by Schrödinger for his equation. As in

relativity theory, or perhaps even more so, the problem of measure had produced an imposing theoretical edifice.

This is  certainly not the case in biology, where practically no theory, as far as I know, accompanies or guides

extremely stringent experimental protocols, whose originality and rigour are truly astounding for the theorist who

happens to visit the laboratory.

In short, I believe that it is necessary to first clarify what “to measure” means before being able to imagine a

process of co-construction of mathematics and biology in a way vaguely comparable to what took place between

mathematics and physics in the last four centuries. The physicalist who denies the existence of a properly biological

problem, or the Pythagorean who claims that  “number is  already there”,  should look elsewhere.  To associate a

number with five stones, six roars or five fingers, i.e. to build an invariant, is a long historical process. To associate

it with a physical or biological process is a task which lies at the heart of experimental work, and represents a major

theoretical challenge, in biology even more than in physics.

Conclusions on Zalamea’s Book and Grothendieck's unifying views

14.3.2. For mathematicians, logical axioms delimit a playground. But



which game are we going to play next?

7.4.1. Desire, and the resistance of the object, are what mathematicians

ordinarily use to distinguish mathematics from logic. 

7.5.1. Grothendieck is rather like the Freud of epistemology.

(Lochak, 2015).

I hope I have managed to give the reader an appreciation of how the immense shadow of Grothendieck dominates

Zalamea’s  book.  A French  mathematician,  the  son  of  internationalist  revolutionaries,  migrating  throughout  all

political  turmoils in Europe between the Russian revolution of  1905 and the Second World War, Grothendieck

comes to France when twelve years old, while the latter war was raging. He first lived with his mother, and then in

hiding. His life is as original as his mathematics (see Lochak 2015). Without going into the – mostly dramatic –

details of the first, it is interesting to note how Grothendieck is the only one of eleven French winners of a Field

Medal, who have had their university studies in France, to have neither studied nor taught at the ENS in Paris, yet

another touch of originality. 

Following  Grothendieck,  Zalamea’s  book  gives  priority  to  the  structures  of  mathematics,  to  their

transformations and deformations, and to the construction of meaningful invariants. Taking this focus on structures,

invariants  and  transformations  as  the  way to  do philosophy of  mathematics  – the  philosophical  sheafication  I

mentioned above – we move away from set theoretical, logicist and formalist absolutes (still grounded on the myth

of the “discrete” and the “finite” as absolutes) programmatically outside of the world.

We should however add that Grothendieck’s work goes beyond these speculations on symmetries, invariants,

and transformations. He had an exquisitely refined sense of the “purity” of a mathematical definition. He was able to

avoid,  arguably  as  no  mathematician  before  him  could,  every  “contingency”  in  the  structures  and  proofs  he

proposed. All his notions intrinsically encapsulate, so to speak, the maximal invariance of a concept, to the extent

that there is no need to prove it, by identifying the adequate transformations: they are intrinsic to the definitions 12.

Grothendieck's approach unifies remote constructions in mathematics, by proposing invariants surprisingly shared

by groups,  topological  spaces,  manifolds of  different  sorts  (differential,  geometric  …),  and by constructing, as

“bridging” notions, new mathematical structures. It  is more than a unification by generality, as the new objects

proposed  have  an  autonomous  and  robust,  profound  mathematical  structuring.  This  allows  to  “circulate”  in

mathematics  and  to  propose  and transfer  common mathematical  meaning  to  apparently unrelated  mathematical

constructions. As Grothendieck observed, sheaves on suitably changing sites allow to circulate between continuous

and discrete structures, beyond the “the founding aporia” of mathematics, to put it in Thom's terms.   

As Zalamea’s book reminds us with regard to physics, yet pushing beyond Zalamea’s arguments, it seems to

me that the fundation of mathematics must take nourishment from the dialogue with the theoretical foundations of

12 A typical example is the notion of “étale topology”. It is defined on a category as a category, whose objects are

morphisms on which schemes act (as morphisms): the topology thus is given in a relational way, which forces

its right level of invariance. The notion of Topos as well is given in a “category-theoretic” way: they are sheaves

on sites (a small category with a covering) .



other disciplines. Not only in the dimension of historical analysis, but also in the positive work of scientific creation,

where epistemology becomes entangled with the analysis of the construction of knowledge. This construction is the

result of a protensive gesture which organizes the world, rich with desire for (knowledge of) the real and constitutive

of the mathematical object through which it can be made intelligible; a real which resists and channels mathematical

invention,  together  with  its  history.  The  analysis  of  this  protensive  gesture,  and  of  its  historicity,  is  part  of

epistemological reflection, qua analysis of a construction in fieri. The wandering of mathematical work beyond any

relation with the natural sciences is yet an essential component of this construction, even more so if it gives rise to

new spaces for creation, new correlations and abstract structures – like Set or a new category of pre-sheaves. The

mistake is to take one of these creations and “put it back”, as ultimate foundation, as a kind of Cantorian paradise

outside the world. In doing so, one loses the meaning of the whole edifice, a network of relations of intelligibility, by

absurdly turning it upside down and making it stand on (perhaps unidimensional) feet of clay. I am not here insisting

on the exigency of “foundations” as locus of certainty, but rather on the necessity of the analysis of conceptual and

cognitive  roots,  of  structures  of  sense  as  correlations,  tracing  their  constitutive  and  historical  path  (broadly

construed, as to include its pre-human dimension).  This project is far from pursuing those “unshakable certainties”

sought by Hilbert in a time of great non-Euclidean uncertainties: on the contrary, there is nothing more uncertain

than the cognitive foundations of mathematics – as uncertain as any biological or pre-human dynamics, as uncertain

as a physical measure. However, drawing upon a plurality of correlations of knowledge, an historical epistemology

of the interface between disciplines construes them as mutually supportive, as epistemological and epistemic webs:

networks of meaning where the meaning of one helps us understand and constitute the other. An epistemology,

moreover, that helps us discern, in an original, critical and ever-renewed way,  the road to be built ahead, which is

what matters most. Grothendieck unifying methodology, within mathematics,  based on the construction of new,

often complex, but deep structures, is a remarkable example also in the foundational analysis and the practice in

other disciplines: reduction, say, rarely applies, while unification by new, difficult theories marked the growth of

science13.  Science is not the progressive occupation of the real by known tools, in a sort of fear of the novelty, but

the difficult construction of new theoretical frames, objects and structures for thought, conceptual bridges or even

enlightening  dualities,  such  the  specificity  of  the  biological  vs.  the  genericity  of  the  inert,  with  its  major

consequences for a close analysis of measurement, as hinted above.

My analysis has been inevitably superficial and incomplete; even Zalamea’s large book is incomplete when it

comes to the richness of contemporary mathematical invention. Zalamea’s style, informal and philosophical, may

irritate some readers, due to what could be considered as frequent flights of rhetorical fancy. Personally, I find it an

extremely efficacious way to express the enthusiasm that such mathematical abundance deserves. As for rigour,

when it comes to those fields in which I can claim some technical competence (Types, Categories and Topos,  …

Girard, Lawvere…) it all seemed to me to be presented in a coherent and pertinent way, within the limits imposed by

13 Newton unified Galilean falling apples and planetary movements, by inventing brand new mathematics and

theories. Similarly, Boltzmann unified mechanics and thermodynamics at the asymptotic limit of the ergodic

hypothesis and the thermodynamic integral. Connes aims at the unification of quantum and relativistic fields by

a reinvention of (differential) geometry.



the  limited  space  dedicated  to  the  numerous  themes  transversally  touched  by  Zalamea,  who  demonstrates  an

outstanding breadth of knowledge.

I  would  like,  finally,  to  commend  the  two  associated  publishing  houses  that  published  this  volume:

Urbanomic  and  Sequence  Press.  In  this  as  in  other  publications  –  as  for  example  the  forthcoming  English

retranslation of Châtelet’s book (an extremely hard work as Cavazzini, who recently translated it in Italian, knows

all too well) – they certainly seem to favour the creation of a critical space, by promoting originality, and offering an

alternative to debates as well-established as they are sclerotized in an oscillation between this or that Scylla and

Charybdis, even when the latter approach would promise immediate success and, therefore, an high Impact Factor –

a factor that is having a very negative impact on science, Longo 2014.
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