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Motivations	and	themes	

In this short text no empirical or direct comparisons will be made between the "brain" and "digital 
computers", or it will be done a very little, but it will reflect above all on the fundamental issues of 
mathematics and knowledge. There are many reasons for doing this. In the first place, computer 
science and artificial intelligence, in their traditional or "strong" form, come directly from the 
paradigms of Mathematical Logic, as specified from the end of the nineteenth century onwards, in 
as an analysis of the foundations of mathematics and of the ways related to it to understand 
human reason. Furthermore, the philosophy of knowledge is closely related to that of 
mathematics, since the earliest reflections of the Greeks, and, with great continuity, also 
computers, mathematical machines were placed at the centre of cognitive analysis in the 
twentieth century. Finally, and in general, the comparison between scientific paradigms, proposals 
for knowledge or, even, for the construction of machines, should, if possible, always refer to, and 
make explicit, underlying epistemological projects: only in this way is a dialogue possible. Starting 
then from the crisis of the Euclidean intelligibility of space, we will mention the "logico-linguistic 
turning point ", to formalism and its happy marriage with mechanicism, in the 30’s, to get to the 
point of a proposal, an ongoing scientific project, which returns to enrich the language and logic 
of the problems of our relationship to space, physical and the living. We should then understand 
how the abandonment, for over a hundred years and for good reasons, of this component of our 
forms of knowledge, has contributed to impair the analyses and has allowed the growth of an 
incomplete, completely resistible vision. 
	

	

	

	

	

	

																																																													

1	Extensively	revised	version	of	a	lesson	held	in	Florence,	11/5/99,	Institute	of	Philosophical	Studies,	
Gabinetto	Vieusseux,	Palazzo	Strozzi	and	first	appeared	in	Italian	in	"L’Uomo	e	le	Macchine",	edited	by	M.	
Bresciani	Califano,	Leo	S.	Olschki,	Florence,	2002.	
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1.	Spaces	of	rationality	and	curved	rays	

Already	in	the	third	decade	of	the	nineteenth	century,	the	director	of	the	Gottingen	Astronomical	Observatory,	Carl	

Friederich	Gauss	was	convinced	of	the	possibility	of	a	geometry	different	from	that	of	Euclid.	To	be	exact,	Gauss		

thought	that	an	"intrinsic	geometry	of	surfaces	"	should	be	able	to	be	developed,	regardless	of	any	immersion	in		

Euclidean	ambient	spaces.	A	geometry	of	curved	surfaces	or	rather	with	"non-zero	curvature"	(to	use	a		

term	pointed	out	later).	Perhaps,	but	only	an	historian	should	confirm	it,	there	was		

forming	a	transgressive	cultural	sensitivity	that	characterises	romanticism,	especially	in	the	way	of	"seeing"	space:		

think	of	the	troubled	skies	of	the	painters	Turner	and	Constable,	the	tormented	and	swirling	storms	on	the	horizon,		

which	break	the	Cartesian	(and	Euclidean)	regularities	of	Renaissance	and	neoclassical	painting,	the	perfect		

geometry	of	their	spaces.		

But	then,	if	the	universe	could	be	curved,	the	sum	of	the	internal	angles	of	a	triangle	could	be	different	from	180	°	...			

Gauss	climbed	three	German	hills,	all	in	sight	of	one	another,	to	measure	these	angles,	therefore	assuming	a		

curvature	of	the	light	rays,	as	geodesics	(minimum	distance	lines)	of	a	space	with	non-zero	curvature.	It	has	a		

measurement	remarkably	close	to	180	°	and	only	a	few	consequences;	but	we,	today,	well	know	how	much	these		

measurements,	certainly	not	made	between	peaks	of	hills,	but	from	rays	from	distant	stars,	hidden	behind	a	solar		

eclipse	will	confirm	a	radical	change	in	the	geometry	of	physical	space,	one	hundred	years	later.		

Gauss,	despite	his	soon	achieved	status	as	a	great	mathematician,	did	not	dare	draw	the	necessary	conclusions	from		

his	reflection:	the	fact	that	the	denial	of	Euclid's	fifth	axiom	(on	a	surface,	given	a	straight	line	and	a	point	outside	of	

it,	one	can	trace	one,	and	only	one,	parallel	line	to	the	line	given)	can	be	an	interesting	mathematically	adventure		

(and	not	contradictory).	Or	perhaps,	he	observed	it,	but	historians	say,	based	on	correspondence,	he	did	not	dare		

break	the	millennial	myth	of	the	Euclidean	perfection	of	the	world.		

Indeed,	for	two	thousand	years,	the	Euclidean	organisation	of	space	has	been	an	absolute	of	thought.	Euclidean		

space	coincides	with	sensible	space,	which,	in	turn,	is	exactly	physical	space.	

Euclidean	axiomatics	is	"a	priori",	it	synthesises	"the	pure	intuition	of	space	itself",	anticipating	experience,	as		

Kant	will	summarize.	Not	only	that,	but	the	rational	rigor	is	geometric:	the	mathematic	proof,	logic,	the	reasoning		

itself	is	certain	when	it	is	conducted	"more	geometrico".	A	common	thread	links	Greek	thought	to	that	of		

Descartes	up	to	Kant:	the	cogito	is	geometric,	or	rather	a	sort	of	"I	move	in	thought	as	I	move	in	space"	is	at	the		

heart	of	the	reflection	of	those	three	great	moments	of	human	thought;	Euclidean	organization	first,	then	that	of		

Cartesian	"coordinates"	in	Euclidean	Newtonian	spaces,	dominate	rationality.	That	a	little	more	than	the	thirty	year		

old	director	of	the	Gottingen	observatory	could	oppose	all	this,	if	not	some	unreliable	measurements	and	his		

mathematical	genius?	
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2.	The	non-Euclidean	break	

However,	the	romantic	transgression	continues:	Lobachevskij	and	Bolyai	developed	a	geometry	entirely	based	on		

one	of	the	two	possible	negations	of	Euclid's	fifth	axiom	(...	yes,	they	can	draw	many	-	therefore	an	infinity	-	of	lines		

parallel	to	the	line	given).	Even	they	do	not	play	a	mere	axiomatic	game,	like	the	formalist	caricature	would	have	us		

believe,	but	they	make	explicit,	it	seems	without	knowing	it,	the	Gaussian	analysis	of	curved	spaces	and	its		

connection	to	the	Euclidean	axiomatics.	That	is,	they	do	not	play	with	the	negation	of	formal	axioms	either,	but	they		

propose	a	reorganization	of	space	(see	[Lobachevskij,	1855]).	So	much	so	that	they	do	not	ask	the	problem	of	the		

"coherence"	(not	contradictory)	of	the	proposed	axiomatic:	who	thinks	of	axioms	as	sequences	of	symbols	to	be		

manipulated	regardless	of	their	meaning	(spatial	in	this	case)	has,	as	the	only	reference	of	certainty,	a	coherence		

test.	Instead	the	mathematicians	of	that	turn	of	the	XIX	century	are	reinventing	the	relationship	between	us	and		

physical	space:	coherence,	if	it	arises,	is	in	the	possibility	of	an	interpretation	of	the	axiomatic	variant	in	sensible		

space.	

The	operation,	as	Gauss	had	guessed,	was	shocking.	In	so	doing,	the	pillars	of	those	certainties	fell,	those	pillars	that		

had	supported	rationality	for	millennia,	that	thinking	self	being	in	Euclidean	space	(and	time).	We		

can	hardly	imagine	the	disturbance	in	the	very	restricted	world	of	mathematicians	and	philosophers	aware	of	the		

turning	point	that	was	proposed.	

But	something	even	stronger	happens	with	Riemann.	Partly	a	pupil	of	Gauss	(he	wrote	his	thesis	under	Gauss’s		

direction,	in	1854,	in	Gottingen),	he	developed	a	general	theory	of	curved	spaces,	based	on	the	notion	of	"variety"		

(Riemannian).	Through	him	differential	geometry,	initiated	by	Gauss,	reached	maturity:	the	geometric	analysis	of		

space	enriched	the	tools	of	differential	calculus.	It	clearly	distinguishes	between	"local"	and	"global"		

analysis	of	space:	at	a	local	level,	"micro"	to	say,	space	can	be	considered	Euclidean	(at	an	"infinitesimal"	level,	very		

close	to	the	tangent	plane,	the	Pythagorean	theorem:	dz2	=	dx2	+	dy2),	but	globally	it	can	have	a	different	structure		

(a	different	curvature,	or	variations	of	curvatures);	or	vice	versa.	Riemann	analyses	a	positive	curvature	in	particular		

spaces,	where	the	sum	of	the	internal	angles	of	a	triangle	is	more	than	180	°.	He	thinks	that	this	is	physically		

interesting		especially	at	the	level	of	the	infinitely	small	and	manages	to	make	an	incredible	conjecture,	already	in		

the	qualification	paper:	

	"But	it	seems	that	the	empirical	concepts	on	which	the	spatial	definitions	of	the	physical		

universe	are	based,	the	concept	of	rigid	body	and	of	a	light	ray,	are	no	longer	are	in	the	infinitely	small.	Thus,	it	is		

permissible	to	think	that	physical	relations	in	space	in	the	infinitely	small	and	do	not	correspond	to	the	axiom	of		

[euclidean]	geometry.		and,	in	fact,	this	should	be	allowed	if	this	would	lead	to	a	simpler	explanation	of	the		
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phenomena.	

...	in	a	continuous	manifold	the	metric	relations	must	be	introduced	on	different	grounds	(a	linear	element	does	not		

need	to	be	represented	as	the	square	root	of	a	second	order	differential	form).	...	Thus,	either	the	real	elements	...		

form	a	discrete	manifold	or	the	foundation	of	metric	relations	must	be	found	elsewhere,	in	cohesive	forces	that	act		

on	it.	"	

And	soon	the	insults	start	to	arrive.	Herr	Dühring,	a	powerful	academic	philosopher	well	known	to	Engels,	in	a	

text,	dated	1872,	awarded	as	an	essay	on	geometry	by	the	philosophy	faculty	of	Gottingen	(!),	

writes:	

«Thus,	the	late	Gottingen	mathematics	professor,	Riemann,	who	-	with	his	lack	of	

independence	except	for	Gaussian	self-mystification	-	was	led	astray	even	by	Herbart's	

philosophistry	....	It	is	not	surprising	that	the	somewhat	unclearly	philosophising	

physiological	professor	of	physics,	H.	Helmholtz,	commented	on	this	absurdity	in	a	

favourable	sense.	"	

The	enthusiastic	applause	to	Dühring	suggests	that	perhaps	Gauss	was	right	to	be	cautious	in	spreading	his	ideas	...		

40	years	ago.	Riemann,	therefore,	like	his	predecessors	and	great	geometers,	posed	the	problem	of	restructuring		

physical	space,	but	with	even	greater	scientific	and	philosophical	clarity.	

Larger,	because	he	explicitly	raised	the	problem	of	the	non-arbitrariness	of	the	construction	geometric	proposal.		

Under	the	influence	of	Herbart,	he	tried	not	to	throw	away	the	relationship	between	the	knowing	subject	and	the		

World:	He	investigated	the	regularities	of	space	which,	according	to	him,	are	underlying	any	geometric	proposal.	In		

short,	he	believed	that	geometry	must	remain	significant,	a	privileged	place	for	reasoning	and	knowledge.		

However,		he	was	aware	that	this	place	cannot	be	described	by	axiomatic	choices	“valide	a	priori”,	but	is	the	result	of		

A	human	proposal,	rooted	in	some	of	the	properties	in	the	interface	between	us	and	the	world:	connectivity,	

for	example,	the	“continuità”	(the	global	topological	structure)	and	the	isotropy	of	space.	Also,	the	geometric		

variant	that	states	that	the	further	we	go	from	the	Euclidean	intuition,	the	generalization	to	many	dimensions	or		

topological	or	metric	manifolds.	(Rimannian,	we	say),	refers	to	these	"regularities"	of	phenomenal	space.	

	

3.	The	logicist	response	and	the	turning	point	"in	language".	Arithmetic.	

Riemann's	daring	philosophical	attempts	(and	others,	including,	later,	Helmholtz)	to	save	the	geometric	intuition,		

however,	were	too	embryonic,	too	weak	in	the	face	of	the	enormity	of	the	catastrophe	of	Euclidean	certainty.	A		

high-level	response,	not	based	on	"reactionary"	insults,	but,	in	its	turn	original	and	profound,	it	soon	prepared,	built		

with	completely	different	tools.	

Frege	arrived	in	Gottingen	a	few	years	after	Riemann's	death	(who	died	at	the	age	of	40,	in	1866).	Aware	of	the		

profoundly	serious	crisis	in	which	the	foundations	of	mathematics	(and	of	knowledge)	were,	Kantian	recognized	the		

"intuitive"	value	of	geometry	[Frege,	1873],	but	precisely	for	this	reason,	contrary	to	Kant,	he	wanted	to	exclude	his		
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founding	role	(we	see,	among	the	many,	[Tappenden,	1995],	from	which	the	quotations	of	Dühring	and	Frege,	1873		

and	1874,	come	from	reported	here).	In	fact,	the	geometric	generalization	soon	detached	itself	from	intuition	e	

became	logical-conceptual:	

"The	wildest	visions	of	delirium	...	remain	so	long	as	they	remain	intuitable,	subject	to	the	

axioms	of	geometry.	Conceptual	thought	alone	can	after	a	fashion	shake	off	this	joke,	

when	it	assumes,	say,	a	space	of	four	dimensions	or	positive	cubature.	To	study	such	

conceptions	is	not	useless	by	any	means;	but	it	leaves	the	ground	of	intuition	entirely	

behind	[Frege,	1884;	§.	14]	"	

The	intuition	can	only	be	Euclidean,	and	it	is	lost	in	the	modern	generalization,	which	is	only	symbolic.		

Frege	does	not	speak	of	Riemann,	perhaps	he	did	not	dare	(he	was	the	true	successor	of	the	princeps	

mathematicorum,	Gauss),	but	gets	angry	with	Herbart,	Riemann's	philosophical	interlocutor,	and	with	

Stuart-Mill:	once	the	Euclidean	framework	is	broken,	the	reference	to	the	intuitive	properties	of	space	does	not		

justify,	even	less	found,	the	delirium	visions	by	which	axioms	can	be	interpreted	geometrically.	It	must	be		

recognized	that,	with	great	philosophical	rigor,	Frege	certainly	makes	a	clean	sweep	of	"psychologism"	and		

"physicalist	empiricism"	in	fashion	at	the	time:	mathematical	experience	is	not	subjective	nor	empirical,	but	it	is		

rather	«objective	because	it	follows	a	law,	expressible	in	a	few	words	»,	it	is	independent	of	our	sensations	and		

representations	[Frege,	1884;	§.	26];	proof	of	a	theorem	"does	not	depend	on	the	level	of	phosphorus	in	the	brain"		

[Frege,	1884;	Introd.].	

In	conclusion,	certainty	is	only	in	the	concept	of	number,	like	size	(magnitude);	in	number,	again,	as	a	"concept",		

expression,	in	language,	of	the	law	of	thought:	

"A	concept	as	comprehensive	and	as	abstract	as	the	concept	of	magnitude	cannot	be	

intuition.	There	is	accordingly	a	noteworthy	difference	between	geometry	and	arithmetic.	

...	The	elements	of	all	geometric	constructions	are	intuitions,	and	geometry	refers	to	

intuition	as	a	source	of	its	axioms.	Since	the	object	of	arithmetic	does	not	have	an	intuitive	

character,	its	fundamental	propositions	cannot	stem	from	intuition	either	...	we	do	not	find	

the	concept	of	magnitude	in	intuition	but	create	it	ourselves.	"	[Frege,	1874;	p.	56-57]	...	

"The	laws	of	arithmetic	govern	all	that	is	numerable.	This	is	the	widest	domain	of	all;	for	to	

it	belongs	not	only	the	actual,	not	only	the	intuitable	but	everything	thinkable.	"	[Frege,	

1884;	§.	14]	«...	existence	is	analogous	to	number.	Stating	existence	is	nothing	else,	but	

denying	the	number	0.	"	[Frege,	1884;	§.	53]	

The	concept	of	number	is	more	fundamental	and	certain	than	the	geometric	ones.	It	even	contributes	to	

found	geometry,	which	needs	to	talk	about	quantities	and	relationships.	

"Every	proposition	which	states	a	relation	between	lengths	...	follows	from	the	foundation	

of	analytic	geometry	and	can	be	derived	analytically	[Frege,	1873;	p.	9-10]	".	

«...	Euclid,	in	order	to	define	the	identity	of	two	ratios	between	length,	makes	use	of	the	
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concept	of	equimultitudes,	and	equimultitudes	bring	us	back	once	again	to	numerical	

identity.	...	the	numbers	that	give	the	answer	to	the	question	"How	many?"	can	answer	

among	other	things	how	many	units	are	contained	in	a	length.	[Frege,	1884;	§.	19]	"											

And	this	is	a	crucial	point.	Frege	does	not	seem	to	want	to	leave	the	Euclidean	framework:	only	in	it	the	

(numerical)	ratios	between	lengths	and	angles	are	invariant	and	can	"establish"	geometry.	

In	fact,	only	Euclidean	geometry	contains	homothetic	(transformations	that	preserve	relationships)	

between	their	automorphisms	(Euclidean	properties	do	not	change	by	enlarging	and	

shrinking	the	figures	at	will,	but	we	will	come	back	to	this).	In	this	sense	it	can	be	said	that	

the	"science	of	rigid	figures",	Greek	geometry,	is	based	on	number,	on	"how	many	units	are	

contained	in	a	length	",	crucial	invariant	of	non-curved	spaces.	

Numeric	invariants	also	exist	in	other	geometries,	but	they	depend	on	specification	

geometry	(from	its	group	of	transformations)	and	are	far	from	having	a	"founding"	role.	

In	fact,	with	the	Riemannian	turning	point	and	the	works	of	Klein	(1872)	the	perspective	changes	radically.	

Geometry	is	based	on	the	notion	of	"transformation"	of	space	itself	(or	"deformation"	

of	space):	continuous,	differentiable,	or	other.	This	inheritance	will	be	collected	from	the	Theory	of	

Categories,	a	theory	of	algebraic-geometric	structures,	which	(re-)	constructs	mathematics	

around	the	notions	of	morphism,	functor,	natural	transformation	...	in	an	approach	

“essentially	geometrical"	to	mathematics	and	its	foundations.	

For	Frege,	on	the	other	hand,	it	is	the	arithmetic	laws	that	are	laws	of	thought,	also	the	foundation	

of	geometry,	like	the	laws	of	the	relationships	between	lengths	(and	angles).	Or	rather,	arithmetic	is	

part	(central)	of	logic,	due	to	the	"logical	nature	of	arithmetical	mode	of	inference".	

The	paradigm	of	this	identification	is	arithmetic	induction:	logical	law	and	principle	of	arithmetic	proof.	

	

4.	Hilbert	and	certainty	in	"mechanics".		

Frege	revives	with	great	originality	Leibniz's	idea	of	a	"universal	symbolic	language	of	thought",	by	putting	the	
calculus	ratiocinator	in	a	specific	logical	calculus	(of	the	quantification).	For	the	first	time	since	Leibniz	(and	Boole),	
both	universal	("for	every...")	and	existential	("there	is	...")	quantifiers,	key	features	to	manage	variables	(in	Maths),	
have	been	put	under	rigorous	scrutiny	by	Frege,	paving	the	way	for	the	birth	of	Mathematical	Logic.	However,	
afterwards,	Dedekind	and	Peano	place	induction	at	the	core	of	mathematical	reasoning,	as	a	key	statements-proving	
tool	in	Arithmetic.	Being	identifiable	through	logical	principles,	universalia	of	human	rationality,	reasoning	can	
indeed	be	“signified”,	because	for	Frege,	both	logical	constructions	and	the	concept	of	number	represent	an	
"ontology",	something	"existing"	outside	mankind	and	its	psychological,	empirical	interaction	with	the	world.	
However,	Hilbert’s	perspective	at	the	turn	of	the	century	is	a	different	one.	Similarly	to	Frege,	he	gives	language	a	
central	role	(bear	in	mind	that	Wittgenstein,	"the"	philosopher	of	language	analysis,	at	least	in	his	first	phase,	
explicitly	considers	himself	as	being	indebted	to	him),	highlighting	the	importance	of	its	“forms”.	Let	me	explain.	
Hilbert	introduces	the	formalist	analysis	of	fundamentals	(in	mathematics,	even	though	frequently	referring	to	
"thought”,	in	general),	or	the	study	of	the	formal	structure	of	language,	but	also	of	reasoning	as	deduction.	
Moreover,	he	takes	into	account	the	independence	of	axioms	and	formal	deduction	from	meaning,	both	"spatial"	
and	logic.	Following	his	extensive	experience	in	different	fields	of	Mathematics	that	led	him	to	solve	problems	of	
"existence"	through	the	non-constructive	proof,	Hilbert	puts	forward	this	proposal.	Basically,	he	proved	that	
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solutions	of	systems	of	differential	equations	exist,	answering	an	important	open	question:	the	existence	of	a	finite	
base	point	for	the	space	of	invariants	and	covariants	of	n-ary	algebraic	structures.	In	both	cases,	by	"constructively	
providing"	the	function	or	algebraic	base	point	in	question,	he	had	already	achieved	a	proof	of	existence,	indicating	
that	it	is	absurd	to	assume	non-existence.	Nonetheless,	many	would	claim	that	this	is	theology,	not	mathematics.	As	
might	be	expected,	Frege	almost	insults	him	in	a	letter,	suggesting	that	he	could	prove	the	existence	of	God…	
However,	this	is	not	the	meaning	of	Hilbert's	revolutionary	theory.	For	him,	existence,	in	mathematics,	does	not	
refer	to	"entities"	or	ideas	located	somewhere	in	the	empyrean,	but	to	a	proof	of	consistency	of	said	theory.	
Therefore,	he	proposes	a	non-ontological	and	profoundly	original	definition	of	“mathematical	existence”:	is	this	a	
way	to	prove	that	a	certain	mathematical	object	exists?	Well,	then	we	must	rigorously	employ	the	same	axiomatic	
system	through	which	the	proof	of	existence	was	conducted	to	test	in	any	case	and	ad	absurdum	its	consistency.	So,	
this	is	existence	in	mathematics	and	nothing	else	(from	here,	Frege,	not	grasping	the	originality	of	Hilbert's	idea,	
offers	him	a	short	axiomatic	theory	about	God-	omnipotent	being	etc	...	–	suggesting	him	to	prove	its	consistency).	
Despite	some	misunderstandings	in	the	early	stages,	the	proposal	is	very	popular.	As	might	be	expected,	it	clears	
away	two	millenniums	of	metaphysics	(but	where	are	these	mathematical	objects?	triangles,	perfect	circles	and	...	
functions	of	a	complex	variable,	all	of	them	housed,	in	secula	seculorum,	forever,	in	the	mind	of	God	...).	For	the	
analysis	to	stand,	we	need	to:	-	create	a	formal	axiomatic	system	of	all	(the	main)	mathematical	theories,	starting	
obviously	from	Arithmetics,	now	the	focus	of	attention,	until	we	reach	geometry	(Hilbert,	1899),	the	root	of	so	much	
turmoil;	-	check	that	meaning,	referred	to	entities,	ideas	or	intuition	(for	example	space-time),	has	not	in	any	way	
used	these	axioms	mathematically	or	minimally	interfered	with	deduction;	-	demonstrate	the	consistency	of	the	
theories	in	question	(starting	with	Arithmetics).	Certainty	lies	in	the	provable	consistency	and	mechanics	of	
deduction.	Nevertheless,	its	main	issues	are	constituted	by	references	to	meaning,	commonly	associated	with	
metaphysics	(mathematical	entities),	and,	even	worse,	to	intuition	and	to	its	ambiguities.	Therefore,	to	be	
generalized,	mathematical	reasoning	must	be	"as	Kroneker	says,	independent	of	the	existence	of	God;	for	Poincaré	
instead,	free	from	special	cases	of	intuition	and	anchored	to	arithmetic	induction,	but	also	from	each	"actual,	
contentual	assumption".	Therefore,	Hilbert	puts	forward	a	“potential	mechanisation"	of	deduction.	For	example,	if	a	
mathematician	uses	the	rule:	A	A	implies	B	-------------------	(the	classical	modus	ponens)	B	its	application	should	only	
depend	on	the	"literal"	structure	of	formulas.	If	the	first	A	is	identical	(or	syntactically	unifiable,	as	it	is	nowadays	
called	in	automatic	proving)	to	the	second	A	and	A	and	B	are	separated	by	an	“arrow”,	then	write	(formally	deduce)	
B.	This	way,	deduction	is	potentially	mechanisable,	devoid	of	meaning	and	finitary.	In	a	nutshell,	formulas	can	well	
refer	to	infinite	objects	like	the	set	of	all	real	and	even	integer	numbers.	However,	this	does	not	concern	deduction,	
which	operates	on	finite	strings	and	abides	by	rules	of	finite	strings.	Hence,	certainty	is	guaranteed	by	their	
finiteness	and	purely	syntactic	nature.	Here	we	go,	the	thinking	machine	begins	to	fall	into	place.	In	the	first	decade	
of	the	20th	century,	Poincaré,	and	from	1918	on,	Hermann	Weyl,	the	most	famous	of	Hilbert's	pupils,	protest,	but	
with	no	avail.	As	Weyl	says,	when	referring	to	Husserl,	mathematics	is	"contentual	“(rich	in	content)	and	deduction	
can	be	signified,	thus	rooted	in	"facts	of	experience”.	For	this	reason,	Hilbert's	formalist	proposal	is	a	winning	one.	
Among	the	many	on	the	list,	proposed	in	Paris	in	1900,	his	open	problem	about	the	need	of	a	formal,	finitist	proof	of	
arithmetic	consistency	is	the	focus	of	attention.	As	I	said,	his	proposal	suggests	a	"final	solution"	to	the	problem	of	
foundations,	thereby	removing	metaphysics	and	any	need	of	intuition	....	At	the	same	time,	it	is	robust	and	precise,	
and	the	conjecture	has	a	clear	mathematical	nature.	For	this,	mathematicians	will	take	care	of	the	problems	of	
foundations,	passed	on	by	what	Hilbert	invented,	namely	the	metamathematics,	which	involves	a	mathematical	
study	of	mathematical	demonstration.	This	way,	a	finitary	“mathematical	proof	“of	arithmetic	consistency	can	easily	
be	obtained	by	manipulating	only	finite	strings	of	symbols	(and,	of	main	mathematical	theories,	once	axiomatized).	
As	long	as	the	theory	that	talks	about	it	(the	formal	set	theory,	as	it	will	be	called	in	the	future)	is	finitary	or	defined	
by	finitely	generated	axioms,	as	well	as	by	finite	rules,	mathematicians	will	be	able	to	smoothly	work	with	"ideal	
objects"	like	complex	numbers	or	infinite	entities.	As	a	result,	infinity	is	indeed	necessary.	Infinitesimal	calculus,	for	
example,	uses	it	even	in	the	analysis	of	the	finite,	where	both	velocity	and	acceleration	of	the	bodies	around	us	
require	limits	or	better	the	actual	infinity	(derivatives	and	integrals).	The	infinitesimals,	for	Leibniz,	metaphysical	
monads	and	for	Cantor,	an	infinite	with	theological	significance,	are	technically	necessary	and	to	be	justified	or	
formally	founded,	they	do	not	need	neither	additional	metaphysics	nor	theology.	Therefore,	it	is	sufficient	to	use	
finitary	or	potentially	mechanizable	calculus	to	prove	the	consistency	of	their	rigorous	formalization	and	
independence	from	meaning.	I	totally	disagree	with	this	project	not	for	metaphysical	but	for	scientific	reasons	(the	
role	of	meaning,	which	I	will	mention	later).	However,	we	must	acknowledge	the	intensity	and	extreme	boldness	of	
Hilbert's	first	program,	without	doubt,	a	great	project	for	mathematics	and	knowledge.	A	few	years	later,	instead,	he	
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goes	beyond,	by	adding	a	positivist	"drift"	to	this	amazingly	original	proposal,	rich	of	finitist	epistemology	and	of	
considerable	interest.	Without	even	realizing	it,	he	resumes	Laplace’s	completeness	property	for	differential	
equation	systems	as	opposed	to	the	physical	world.	The	future	is	perfectly	decidable,	save	for	approximations	that	
“retain,	overtime,	the	same	order	of	magnitude."	Unless	unavoidable	physical	measurement	errors	occur	in	this	
context,	Laplace	considers	mathematical	(physical)	assertions	decidable.	As	both	Hilbert	and	Laplace	say,	
"ignorabimus"(we	do	not	know)	does	not	exist.	Obviously,	Hilbert	applies	the	program	to	his	formal	theories,	above	
all	to	Arithmetics.	Axioms	allow	you	to	consider	each	syntactically	well-formed	assertion	true	or	false.	Oftentimes,	
we	speak	in	a	unified	way	about	"Hilbert’s	program",	combining	two	moments	of	thought	of	the	great	
mathematician,	probably	because	Gödel's	incompleteness	theorems	could	make	a	clean	sweep	of	both	in	one	go.	In	
my	opinion,	however,	the	two	proposals	have	a	very	different	philosophical	and	epistemological	"density":	the	first	is	
revolutionary,	the	second	merely	a	triviality	that	every	positivist	(or	pre-post-positivist)	scientist	attributes	to	his	
favourite	theory:	the	fact	that	it	could	say	everything	about	the	world.	Above	all,	this	thought	evokes	a	closed,	
predetermined	world,	a	Laplacian	hypothesis,	already	beaten	by	physics	and	oddly	enough,	by	Poincaré’s	three-body	
theorem	[Poincaré,	1892].	Conversely,	if	we	move	from	formal	to	historical	languages,	we	can	observe	that	having	
experience	with	bilingualism	is	enough	to	ascertain	at	least	a	million	times	that	in	each	language	pair,	some	
expressions	are	easily	and	literally	translatable,	although	the	expressiveness	in	the	first	can	sometimes	be	missed	by	
the	second.	Therefore,	languages	are"	relatively	"	and	“absolutely”	incomplete,	with	fragments	of	the	world,	
grasped,	learnt	or	spoken	that	slip	away	from	a	language	to	another.	In	other	words,	every	time	you	choose	a	plan,	a	
level,	in	order	to	represent	knowledge,	even	as	rich	as	our	historical	languages,	this	contains	signified	content	(in	this	
case,	even	emotions,	preferences,	sensations	...)	that	is	missed,	because	rich	in	determinations	that	stem	from	a	
variety	of	different	historical,	conceptual	and	linguist	experiences.	For	instance,	mathematics	is	a	small	snippet,	"sui	
generis”(distinct),	of	a	man’s	attempt	to	describe	the	world	(as	H.	Weyl	says,	it	forms	part	of	our	“historical	
endeavour	towards	knowledge")	and	a	tool,	a	crown	jewel,	among	others,	to	organize	and	understand	the	world.	
Moreover,	it	is	an	open	system	(see	[Cellucci,	1998])	and	repeatedly	carries,	like	languages,	great	significance,	in	
resonance	with	human	practices,	which	include	various	forms	of	presence,	not	always	reducible	to	a	single	level	of	
representation.	In	particular,	“crushing”	knowledge	and	putting	it	on	a	single	representational	plane,	namely	“formal	
language”,	constitutes	the	crucial	mistake	of	linguistic	formalism,	as	opposed	to	methodological	reductionism,	partly	
inevitable	in	science,	thereby	excluding	the	meaning,	which	epitomizes	the	point	where	various	practical	and	
conceptual	activities	come	together	and	integrate	different	forms	of	human	knowledge	(among	others,	logically	
signifying	reasoning	and	physical	space	organization).	In	fact,	although	this	integration	is	fulfilled	throughout	history,	
it	begins	and	has	repercussions	during	ontogenesis,	both	in	nature	and	in	traces	left	in	our	brain,	which	in	turn	
"integrates”	information	and	a	great	variety	of	acts.	In	the	past,	conversations	among	beings	fitted	with	a	brain	
consisted	in	permanently	integrating	facts	of	experience	and	mental	constructs,	both	in	the	"private	sphere	of	our	
minds"	and	in	intersubjectivity.	Even	so,	we	could	describe	and	understand	it	“sufficiently	“,	only	by	considering	the	
variety	of	all	the	possible	modalities	of	knowledge,	but,	in	any	case,	we	will	touch	on	it	later.	

	
	
5.	Paradoxical	Interlude	
	
The	vast	majority	of	mathematicians	interested	in	foundational	problems	and	provided	with	Frege’s	and	Hilbert’s	
new	approach,	boldly	worked	at	a	proof	of	consistency	and	completeness	in	formal	Arithmetic.	Instead,	H.	Weyl,	the	
Lone	Wolf,	as	he	will	later	call	himself,	observes	that	full	mechanizability,	even	of	a	theory	that	considers	Arithmetic	
a	"simple	structure"	(like	that	of	integer	numbers),	is	unsatisfactory.	What	is	more,	according	to	him,	some	
assertions	might	be	eluding	the	Hilbert’s	style	deduction	system,	a	conjecture	of	incompleteness	(some	stunning	
passages	from	the	book	on	continuum	written	in	1918).	Although	it	remains	a	privilege	for	a	mathematician	with	
deep	philosophical	intuition,	his	phenomenological	analysis	of	space-time	continuum	keeps	being	a	beacon	
(particularly,	for	authors	past	and	present).		
	
No	matter	how	illustrious,	others	will	mostly	succumb	to	formalism	or	to	the	application	of	formal	tools	in	
foundational	analysis	(Bernays,	Ackermann...	then	Post,	von	Neuman,	Kleene,	Church,	Curry,	Turing	...),	provoking	
countless	negative	effects.	Yet,	I	shall	refer	only	to	one,	historical	analysis,	before	talking	about	the	birth	of	
Computer	Science,	which	I	consider	a	huge	positive	impact	of	the	debate	of	that	time.	As	for	the	history	of	the	
“foundational	crisis”,	starting	on	those	years,	but	also	nowadays,	the	history	of	the	"foundational	crisis"	is	being	
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rewritten,	other	than	being	put	at	the	centre	through	some	formal-logical	games.	Forgetting	that,		suddenly,	some	
had	argued	against	Euclid,	Descartes,	Newton	and	Kant,	claiming	that	the	universe	is	curved,	that	light	can	“follow	
the	Geodesic	curvature",	that	the	notion	of	the	rigid	body,	crucial	for	Greek	geometric	shapes,	is	inadequate	to	the	
new	physical	spaces,	they	also	failed	to	mention	that	these	"paradoxical"	proposals	change	the	phenomenal	reality	
on	which	we	represent	mathematics,	innovate	physics,	revolutionize	geometry	and	knowledge	in	its	entirety.	For	
decades,	some	mathematicians	have	been	telling	each	other	funny	puns	about	(ordered)	sets	in	(ordered)	sets	that	
they	would	have	never	even	considered.	However,	there	is	worse	things,	like	the	stories	told	at	the	barbershop	on	
Sunday	morning,	about	barbers	shaving	everyone	and	only	those	who	cannot	shave	by	themselves.	Mark	me,	
although	Cantor’s	and	Frege’s	set	theory,	where	those	paradoxes	were	generated,	is	extraordinary,	it	needed	to	be	
reviewed	and	this	can	very	well	happen	in	the	search	of	expressiveness	and	new	theories	as	it	did	with	the	lambda-
calculus	introduced	by	Church	in	the	1930s	and	Martin-Löf	Type	Theory	from	the	1970s:	cannot	an	expressive	theory	
be	inconsistent	in	the	first	place,	just	because	it	has	much	to	convey?	Conversely,	when	did	mathematicians	work	
using	the	set	of	all	sets	or	"with	no	types”	(no	one	had	ever	dreamed	of	"sets	containing	themselves")?	Naturally,	
there	are	problems	to	develop	a	new	approach	in	the	language	that	need	to	be	reviewed	and	proved,	corrected	by	
restricting	in	different	contexts,	the	axiom	of	comprehension,	which	allows	you	to	"separate"	or	define,	sets,	or	
structure	of	sets	of	functions.	
	
It	is	funny	to	think	that	a	simple	“oversight”	can	become	a	"foundational	crisis	“of	such	a	robust	and	serious	
discipline	as	mathematics,	in	a	form	that	"tells	us	about	the	world".	However,	if	this	is	not	the	case,	then	the	
occurrence	should	prompt	us	to	reflect	on	problems	inherent	to	the	“self-referential”	perspective	of	language	that	
was	devised	in	those	years,	where	language	differs	from	the	world,	but	at	the	same	time	“preaches”	about	it.	Then	
again,	that	vision	does	not	stem	from	logicism,	but	more	from	formalism	and	from	that	distinction	between	“syntax	
and	semantics”,	which	is	proper	to	it	and	ostensibly	technical.		Free	formal	assertions	imply	objective,	pre-existing	
external	realities.	In	addition,	predicates,	syntactic	data	or	variables,	as	well	as	formal	grammars	(perhaps,	innate,	
sic)	collect	sets	of	blue	pencils,	electrons,	positrons	or	unicorns.	Basically,	objects	that	were	“already	there”.	As	a	
result,	language	does	not	aim	to	be	co-constitutive,	but	to	diverge	from	meaning.	Nevertheless,	the	philosophical	
commotion	bequeathed	to	the	century,	and	sequentially,	the	internal	paradoxes	to	the	"linguistic	turn"	do	not	have	
to	be	considered	relevant	in	terms	of	"foundational	crisis	of	mathematics",	but	as	the	first	deep	fractures	in	a	
predicative-referential	notion	of	language	already	suggested	by	Frege.		
	
Moments	later,	Poincaré,	alone,	has	a	very	harsh	reaction:	"la	logistique	n'est	pas	stérile:	elle	a	engendré	les	
paradoxes"	(logic	is	not	useless,	it	has	caused	paradoxes).	After	the	works	of	Gauss,	Riemann,	Mach,	Helmholtz	and	
Clifford,	and	at	the	same	time	of	Lorentz	and	Einstein,	Poincaré	was	inventing	a	geometry	where	the	local	structure	
of	space	is	given	by	field	equations	(and,	therefore,	as	Riemann	predicted,	by	the	presence	of	bodies	...	whose	
cohesive	forces	are	related	to	the	metric	structure	of	space).	In	other	words,	the	world	he	was	envisioning	combined	
the	foundations	of	geometry	with	physical	meaning,	considered	geometry	the	key	to	understand	physics	and	
fostered	Einstein’s	scientific	revolution.	Another	time,	in	this	hypothetical	world,	rigid	bodies,	as	well	as	the	structure	
of	matter	and	light,	display	astounding	mathematical	(geometric-cognitive)	paradoxes,	but	also	entirely	
contemporary	scientific	challenges	in	relativity,	but	even	more,	nowadays,	in	quantum	physics.	Nonetheless,	some	
paradoxes	are	external	to	the	new	logical-formal	proposals,	to	puns	and	games	between	words,	rapidly	surpassed	by	
references	to	mathematical	practices.		
	
Take	heed,	linguistic	paradoxes	are	very	meaningful,	as	in	the	liar’s	paradox	that	states:	“this	sentence	is	false."	Here	
is	a	glimpse	of	what	the	early	philosophers	in	ancient	Greece	thought	about	the	problem	of	meaning,	related	with	all	
likelihood	to	the	invention	and	to	the	amelioration	of	phonetic	writing,	a	cognitive	turn	for	mankind.	For	instance,	
both	an	ideogram	and	a	hieroglyph	can	directly	be	signifying.	As	a	result,	though	abstract,	their	meaning	"is	there”,	
in	the	drawing.	Still,	a	mere	phoneme,	meaningless	in	nature,	can	raise	dramatic	issues	for	humans,	prompting	them	
to	ask	themselves	"what	am	I	saying?"	How	can	these	"(archeo-)symbols",	phonemes,	be	signifying?	What	is	this	
phrase,	this	set	of	phonemes,	this	example	of	a	first	set	of	symbols?	Such	a	paradox	is	indeed	unimaginable,	without	
phonetic	writing	knowledge.	My	historical	conjecture	is	utterly	arbitrary	and	may	be	based	on	little	evidence,	but	
there	are	no	similar	paradoxes	in	ideogrammatic	languages:	their	paradoxes	refer	to	opposing	meanings.	As	might	
be	expected,	self-reference	represents	a	potential	affinity	with	the	barber	paradox,	with	a	bird’s	eye	view	on	both.	
However,	in	the	liar	paradox,	it	neglects	the	correlation	to	meaning	(and	to	the	historical	context)	and	only	shows	
the	"form"	of	this	Greek	paradox,	that	can	be	placed	next	to	the	one	Greeks,	yet	again,	associate	with	yet	another	
mankind’s	reflection	on	knowledge,	namely	Zeno's	paradoxes.		



10	
	

Even	in	this	latter	paradox,	the	significance	of	the	issue	is	evident:	how	does	my	representation	affect	segments	and	
points	in	the	space	or	division,	a	conceptual	operation	applied	to	time	and	motion?	What	about	physical	space-time,	
that	I	am	explaining	through	geometry	and	arithmetic	measures?		
	
In	both	of	these	classic	examples,	the	linguistic	problem	is	completely	analogous	to	that	of	the	geometric	
representation	of	sensitive	space.	During	the	second	half	of	the	nineteenth	century,	while	geometry	was	disrupting		
	
	
the	world	of	mathematics	and	physics,	some	logicians	created	word	games	about	small	formalization	mistakes	in	
mathematics,	even	unfamiliar	to	the	discipline	itself.	Nevertheless,	for	decades,	logicians	and	formalists	have	been	
confirming	us	that	that	was	the	foundational	crisis,	failing	to	remember,	erasing,	as	a	psychoanalyst	would	say,	the	
problem	and	the	tension,	of	space	and	of	its	geometrical	intelligibility.	I	am	aware	that	my	overly	polemic	attitude	in	
my	observations	on	set	theory	and	on	its	internal	crisis,	which	inspired	much	mathematical	beauty,	may	sound	
paradoxical.	Perhaps,	after	having	finished	the	unilateral	logical-linguistic	analysis	of	knowledge,	we	will	have	found	
some	balance	to	better	locate	both	Burali-Forti’s	(on	ordinal	numbers)	and	Russell’s	paradox	(on	self-containing	
sets),	which	I	mentioned	before.	Indeed,	these	intuitions	about	formalizations,	under	way	then	in	mathematics,	were	
remarkably	interesting.	As	noted	above,	at	the	time,	the	most	prominent	logicians	and	formalists	were	also	great	
mathematicians.	Nonetheless,	the	conundrum	is	not	mathematical,	but	rather	more	philosophical	and	historical	and	
in	this	case,	the	latter,	which	hinders,	at	the	turn	of	the	two	centuries,	an	analysis	on	the	foundations	and	excludes	
the	"crisis"	between	local	and	global	that,	from	Riemann	to	Einstein,	will	revolutionize	the	geometric	intelligibility	of	
space.	In	addition,	Helmholtz	and	Poincaré’s	studies	reflections	on	the	living	and	its	action	in	space	constitute	a	
unique	approach	on	the	concepts	of	vision	and	motion.		
For	this	reason,	presently,	you	may	demand	to	be	intentionally	provocative	(and	paradoxical),	even	towards	
theorists	(for	example,	Russell’s	Type	Theories)	that,	thanks	to	the	Computability	Theory	(see	below),	have	for	long	
allowed	me	to	make	a	living	(see	the	author’s	web	page).	Moreover,	the	latter	mathematical	theories	are	very	
appealing	and	full	of	practical	applications.	Yet,	if	we	succeeded	to	overcome	the	philosophical	monomanias	deriving	
from	logicism	and	formalism,	we	could,	as	I	said,	more	consistently	highlight	all	the	aspects	of	the	“foundational	
crisis”,	including	logical-linguistic	paradoxes,	important	enough	to	represent	an	early	rupture	in	the	aforementioned	
self-referential	view	of	language.	At	the	beginning	of	the	20th	century,	Zermelo’s	solution	continues	to	dominate	the	
Formal	Set	Theory,	which	restricts	the	ability	of	freely	writing	predicates	to	define	sets	of	mathematical	"objects".	
Furthermore,	a	well-formed	formal	predicate	is	not	enough	to	isolate	or	define	a	set,	it	needs	an	"already	given"	
construct,	within	a	semantic	universe,	even	solely	created	from	an	empty	set.	As	a	result,	the	latter	needs	to	include	
meaning	in	constructive	linguistics,	although	the	formalists	keep	making	attempts	to	constrain	it	to	a	minimal	
"ontological	hypothesis"(as	it	will	later	be	called!),		that	is	the	"existence”	of	empty	sets.	
	
6. Thinking machines 
 
The formal theories, under way at the turn of the century, were so well-devised that they allowed, 
in the 1930s, to rigorously explain "artificial thought". In reality, it is well-known that Curry, in 1929, with 
his Combinatory Logic, studied and worked on Hilbert’s program either to confirm it or negate it (among 
other things, on the proof of consistency, of decidability and of completeness in Arithmetic), followed by 
Herbrand and Gödel, and all of them proposed languages for effective, "mechanical" deduction. 
Furthermore, both the computation of functions (the first three) and the systems of equations (Kleene) 
contribute to make Hilbert's intuition on formalist deduction rigorous. As a result, the new discipline, the 
mathematics of computation or Computability Theory, intended as mathematical formalization of 
mathematical reasoning, was invented and this had to be used in different systems, each provided with their 
own field of application.  
 
In 1931, Gödel introduced the notion of computable function, with which he defined metatheory in 
Arithmetic. In addition, thanks to his extraordinary technical and conceptual expertise, he managed to code 
deduction, a metatheoretical concept in formal theory, that is the axiomatization of Arithmetic conjectured 
by Peano and Dedekind, to which Hilbert referred in his program. Subsequently, the liar paradox is rewritten 
in mathematical language as "this sentence is not provable" (notice the difference) and in Hilbert’s 
hypothesis that "truth" and “formal provability” concur (axiom of completeness). In other words, with the 
supposition that Arithmetic is consistent, he effortlessly demonstrates that “this sentence is not provable”, 
thereby encoding it as an arithmetical assertion is unprovable in Mathematics, together with its negation. 
Hence, this gives an assertion, the latter, that is undecided, thus Arithmetic is incomplete.  
Furthermore, in a second theory, he shows that “this sentence is not provable”, but detectable in Arithmetic 
itself, equivalent to (the sentence that encodes) arithmetical consistency, which, if that was the case, could 
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not be demonstrable through finalist formal methods, codable in Arithmetic. According to the two aspects 
that I previously “philosophically” discerned, it almost looked like the conclusion of Hilbert’s program. 
However, while commenting his theorem, Gödel promptly noticed that something was missing. In fact, the 
computable functions he contextually defined need not always denote effective deduction in all its forms.  
 
In 1936, the problem was eventually overcome, when Turing and Kleene validated the equivalence of 
several computing systems, including the one proposed by Gödel to prove his theory. This resulted in the 
encoding of any metatheoretical deduction form in Arithmetic and therefore, incompleteness is “absolute”. 
Or better it is an invariant of all formal (Hilbertian) systems containing Arithmetic. 
 
The above-mentioned result marked the end of Hilbert’s Laplacian Dream. Nevertheless, his philosophy 
inspired the beginning of a new scientific adventure, Computer Science. inspired by that philosophy. Indeed, 
those years are the start and, perhaps, those scientifically happier than the marriage between formalism and 
mechanism that changed the century. 
 
So, while intending to rigorously define deductive calculus, Turing invents the distinction between hardware 
and software and introduces a precise notion of program (a set of formal rules or instructions), which 
considerably differs from the "machine" that has to do it. The programming of machines that can be 
materialised in any way began: electrical, mechanical, hydraulic, electronic ... neuronal; if they allow you to 
implement a Turing-complete programming language, that is, with the level of expressiveness of the various 
just proved equivalent systems, then they can "formally reason", simulating human deductive reasoning. 
Rationality, for almost all the mathematicians involved with the problem, is exactly in the "if ... then ... 
otherwise" logical-formal so well described by nascent programming. The schizophrenic operation reaches 
its completion: the limits that Gödel, with the incompleteness theories, posed that formal deduction is the 
same for a machine and for man. Human rationality is mechanizable or it is not. The intellect moves outside 
man: rational certainty is in the machine 
 
As already stated, the dismay, engendered by the collapse of Euclidean certitudes (and Frege is very clear 
about the causal link between his proposal and the crisis of geometry), caused a break in the relation to 
space, which substantially contributed, along with other evident elements of crisis, to conjecture a theory, 
whose purpose is to impair “human” knowledge and to place it in the machine.  Nevertheless, in the 1930s, 
Husserl regarded the crisis of knowledge (and of human relations: especially in Nazi Germany), as a "loss of 
meaning", built by all individuals in the course of history and in various contexts of life. In the "Origin of 
Geometry", the relation to space is put at the centre of the epistemological analysis, as a study of 
“conceptual genesis”: « geometry... is generated in our space of humanity from a human activity » [Husserl, 
1936]. On the negative side, the impairment of one of the three pillars of mathematics, among others logic, 
formal calculus and the principles of geometric construction (symmetry, connectivity ...) has aided to 
eradicate the constitutive aspects of meaning; in particular, the one that is mostly anchored in human 
practices (as the aforementioned moving through thought like through space).  
As foreseen in the 1930s, Artificial Intelligence (Strong A.I. as we say today, the by-product of linguistic 
formalism in mathematics, would be launched with a paper written by Turing in 1950. Before, we pointed 
out that this was achieved because knowledge changed its nature and stopped being a dialogue between 
humans and the world, encompassing, in mathematics, geometry, logic and calculus (all of which coexist for 
proof theory), but also an attempt, while developing and using these tools, to understand both space and 
language; and finally formal sign calculus, independent of meaning, in particular spatial and logical. As 
might be expected, in the long run, this results in a precise, finitary, and mechanical manipulation, albeit not 
yet “signifying”.  
We are aware of the enormous positive consequences following this schizophrenic operation. Far from 
replacing humans in cognitive tasks, machines help them, far beyond what had been expected, by enriching 
both action and thought with their extraordinary speed, unfaltering iteration skills through huge 
communication networks and databases, but also with their flawless "logic", unrelated to contexts and 
meanings. What is more, some interactive systems also manage to participate in the mathematical proof. For 
instance, when you hand them a well-formalized lemma, provided with a well-ordered induction (a 
previously well-chosen induction load), and its demonstration requires hideous computations; the technical 
instrument, the computer, is brilliant. Undeniably, these experiences make us realise that mathematical 
abstraction is different from formalization, a huge fallacy in Hilbertism (rather than Hilbert's) and that 
"intelligence" is not “independent of encoding", to which we will get back later. In sums, mathematics is not 
only formal, but also abstract. It manipulates signifying symbolic objects, which are not purely formal, that 
is they are not merely intended as “strings of symbols” and “objects of manipulation” Mathematics is 
normative, yet its norm, is not the “formal” rule, absolutely certain and devoid of meaning. 
 
Consequently, mathematics focuses and is based on conceptual invariants, although every single conceptual 
construction cannot be considered "invariant", regarding “everything" (to “implementation”). Therefore, 
only the mathematician has the last word on the identification of the proper level of invariance. For instance, 
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it depends on what is done during the proof, on the hypotheses formulated; it is independent of these and its 
invariance lies in here and not there. In like manner, human intelligence operates through encoding or 
representation, to which it may be unrelated. Anyhow, I will endeavour to confirm (during this ongoing 
project), that both the substrate and the technique of knowledge representation, as well as their own spatial 
organization, contain vital information. 
	
 
7. Portability and Metempsychosis 
 
We have already mentioned that the distinction between "program" and "machine"(purely mathematical, 
because in 1936, these were merely rigorous clarifications of the meaning of mechanizability of deduction), 
made by Turing, paved the way for the birth of Computer Science as a scientific discipline. In the same 
years, through methods that define them, namely programming language and machine (finitist) 
computations, it was possible to demonstrate the independence of the class of functions from the specific 
choice of formalism (programs and machines). Not only, but Turing using the notion of Gödelization, that is 
Gödel's representation of metatheory in the theory, He constructed a "universal machine". As an archetype 
of the modern compiler, the machine takes a number as input and encodes a sequence of numbers as a 
program, which is later evaluated on that particular argument. The independence of programming, of 
computer languages and of expressiveness from specific implementation and from the physical machine is 
really a key concept in Computer Science, And it is also for the theories of "functionalist" knowledge that 
are derived from it: what is interesting is the "function", that of the brain, to think, to deduce .... Once well 
described formally, this function can be transferred to any other machine, even different from the biological 
one we have in our skull. 
In Computer Science, "software portability" is the practical aspect of functional independence, which is 
unavoidable, if one wants to approach this discipline in a sufficiently general (and scientific) way.  What is 
more, programs, languages, compilers, databases ... must be defined, regardless of the machines with which 
they are implemented (the software used by Microsoft often makes an exception to this, mainly due to trade 
monopoly). Also, if your personal computer "is dying" of old age or from aches, and pains, you can transfer 
everything, including your data and programs, as well as its compiler… and operating system to another 
computer. In fact, "metempsychosis” is an essential part of the technical and scientific application of 
Computer Science. While impressively easy from a technological point of view, this is a poor notion, if 
shifted with the metaphor "the brain is a digital computer”, to the scrutiny of human cognition for those who 
are not Hindu. 
Nevertheless, this is a vital challenge for all those who want to examine human cognition in a materialist and 
monist perspective, without being mechanistic, but paying particular attention to avoid the neo-dualistic 
approach, put forward by functionalism: how can our mind, at the same time, be a place of remarkably 
general and stable conceptual constructions, if it is inhabited by hardware and software, a single biological 
matter entity, comfortable only in the braincase of an alive person, existing throughout history? 
The answer, as stated by the succession of logicism, formalism and even functionalism, is schematically 
summarized here: identify universal laws of thought, Boolean algebra, induction or Fregean quantifiers; 
write them in finite sequences of symbols, ultimately codable as 0 and 1, and propose formal manipulation 
rules, independent of ambiguities linked to meaning, of references to space or to other places of incertitude; 
redraft all this in formal language, namely programming, and you will obtain the rational human being 
replicated in the machine.  
Unfortunately, though, even for arithmetic, automatic theorem proving, other than being a point of 
mechanization, stops when faced with the fairly non-trivial issue of selecting an induction load, and concrete 
incompleteness results acknowledge meaning, including that of infinity, but also order and tree structures, 
like geometric notions, essential for mathematical proof (see [Longo, 1999a]).Not to speak about those 
robots of classical AI, who walked in the garden of the Carnegie Mellon University, solving differential 
equations with extraordinary speed, with 0 and 1 following each other in nanoseconds. However, every so 
often they stopped along the path… in the shadow of a tree. The new AI, a connectionist approach, which 
works in a completely different way, by stabilizing invariants of images or sound. This is obtained by 
interpolating and filtering them through layers of networks of formal neurons. The approach performs 
immensely better that the previous logicist parody of human action – typically it would make a difference 
between a tree and the shadow of a tree, a remarkable performance for a machine. The change is dramatic, in 
particular since the observation that the old two-dimensional nets of points invented by Rosenblatt in the 
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‘50s, could be placed in layers, thus in three dimensions (Deep Learning). Of course, the paradigm does not 
change, software is split from hardware, the machine is an input-output one … Our brain instead is an 
always active dynamics of connections and of electric and chemical flows, constrained by the interface with 
the environment mediated by a material body - a totally different paradigm. If this constrained is lowered, 
one goes crazy by the uncontrolled super activity of the brain, not by a passive lack of input. This crucial 
difference, joined to the fact that we do not act on the grounds of “recognized pictures” of the environment, 
liked self-driving cars, but by “preceding all that moves”, anticipating by eye jerks, like when we hunt or 
drive, a totally different way of being in the world. Some new AI people, in view of the limits of their 
approach as well as trying to extend it by enriching it with some reference to the previous, old AI, logicist-
formalist approach, at the origin of computing. If going back to mathematical logic may add some further 
features to machine intelligence, we need to welcome this extension. Yet, how to resume, for the analysis of 
human knowledge, the themes eliminated from the conceptual path described here, while retaining the 
richness of an experience of great mathematical depth? In fact, Mathematical Logic was one of the most 
profound mathematical sectors and originals of the century, and among the least sterile, being the mother of 
a discipline of great importance, computer science: the foundational analysis it proposes should be enriched, 
not forgotten. The paradoxes of knowledge, posed by geometry and its relationship to physical space, can be 
a first starting point. 
	

8. The geometric structuration of information 
 
So, let us look at two first examples, which in my opinion are paradigmatic, in which show that a geometric 
organization of “information” is unavoidable. In 1877, Cantor laid the foundations of the set theory, by 
demonstrating that you can “encode" the Cartesian plane, and therefore, any finite-dimensional space, with a 
straight line. Even though, nowadays, for us, the technique looks easy, its theory, a new "paradox" in the 
geometry of space, shocked the author: in the long run, does it destroy the Cartesian notion of dimension? 
I can determine a point on the plane or on the space with a single coordinate, likely written as a sequence of 
0 and 1... Notwithstanding, Dedekind sent him a reassuring letter, claiming that its bijective correspondence 
is everywhere discontinuous: we will later define that dimension a topological invariant (that is, only 
preserved by isomorphisms of topological spaces). The intelligibility of space is lost by Cantor's “coding". 
In other words, the straight line and the plane have no mathematical sense without their topological or 
metric structure or even that of vector spaces, where the "isomorphism" is absolutely false (the continuous 
curve or Peano curve, containing the square [0,1] is not bijective). Yet, this result continues to linger “in the 
back of the mind" of many, a sort of archetype of today’s so common attitude... as “in the meantime" 
everything" can be encoded through sequences of 0 and 1". As a result, the latter does not only appear in 
functionalist "simulations "of human vision, but also in a 1993 paper by Jonhson-Laird: we could start 
encoding each pixel of the image with a camera... 
In another example, this is exemplified by the relation between different types of geometry, Euclidean and 
non-Euclidean, which can be “algebraically” unifiable. In that event, each of them becomes the set of 
invariant properties, as compared to other transformation groups. Differently from others, at a glance, 
Euclidean geometry is the only one, whose group of automorphisms contains homotheties (i.e. solely 
Euclidean properties do not vary in case of arbitrary reducing and enlargement of geometric structures). In 
Physics, the lack of this property is acceptable and to this day, it does not claim or fail to unify microphysics 
(quantum physics) with astrophysics (namely relativity, although huge progress is being made, 
geometrically), by using, when and where appropriate, even non-Euclidean geometries: we do not demand 
or know how to pass through homotheties, from extremely small to extremely large. Much before the end of 
the 19th century, while working on a unifying algebraic framework, Beltrami and Klein demonstrated how 
you can immerse (give a relative interpretation of) one kind of geometry in another. At the same time, with 
two-dimensions, we can obtain an intuitively effective representation (such as the Riemann sphere). 
However, with multiple dimensions, of which three really matter, it is possible to lose the "physical sense" 
of the different geometries. To put it differently, this way, the equicoherence demonstrated is one of the 
weakest forms of equivalence, as it entails the loss of "information that matters", namely the geometrical 
structuration of a physical space at the origin of  Riemann’s choice. Therefore, if you immerse, or "encode", 
a Riemannian space into a Euclidean one, its translation will easily deprive it of ... "physics" (Relativity). As 
has been noted, the physical problem, already raised by Gauss and Riemann, was addressed during the 
development of the theory of curved surfaces, which are not, “per se”, immersed in varieties of Euclidean 
space.  
 
Nowadays, a similar phenomenon, still under scrutiny, can be found in Computer Science. In addition, the 
problems of concurrent, distributed and asynchronous processes (basically, computer “networks ") are also 
space/time problems: for example, the distribution of machines that concur with the same process, in space, 
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incurs over time in  synchronization problems. At present, there have been interesting attempts to translate 
and encode some concurrent systems into essentially sequential theories (among others, Robin Milner's 
Calculus for Concurrent Systems, CCS, in lambda-calculus), that is to “translate” the CCS into one of the 
fundamental computability theories of the 1930s. Nevertheless, when and if possible, it is necessary to make 
a "passage through the quotient", to impose equivalence relations that seem to elude what matters: i.e. the 
Computer Science of concurrent calculus. Hence, there is an open problem of crucial interest, as, even in 
this case, the possible encodings, which set aside, among other things, the role of space, do not seem to be 
transparent at all. Once again, the "intelligence "of the system can be found in its space/time structure, but if 
the element of "sense”, present in spatial structuring ,was lost in one of its translations, then it would not be 
possible to retain the pertinent invariants. 
 
At this point, we cannot fail to mention an approach to representation and automatic knowledge processing, 
as well as an alternative to digital computing, nowadays in rapid development. In the 1940s, in parallel with 
the infancy of digital computers, McCullogh, Pitts and, independently, Hebb, put forward the notion of 
"formal neural networks". Although inspired, in different ways, by the structure of  the "neural nets" located 
in the brain, they mathematically drew machines, whose events were encoded by those geometric dynamics, 
deriving from networks of binary threshold elements (i.e. neurons "discharge" signal, when their “stimulus" 
overcomes a specific threshold). In fact, with a theoretical, but certainly brilliant idea, Hebb thought that the 
information is stored and processed in the brain, thanks to changes in interneuronal connections. 
Particularly, the strengthening and weakening of synaptic connections could constitute the physical place, 
where mental processing occurs: in this case, information storage could also depend on the stabilization 
(strengthening) of a neural circuit.  
 
The approach is radically different from the one adopted by "Turing”, namely, geometry of the connections. 
This difference was further accentuated, primarily because of the way "connectionist" cognitive theories 
(that is how they are defined) developed. Instead of encoding strings of 0 and 1 as "universal laws of 
thought" like Boole, Frege, Hilbert ...,  (through a "top-down" approach to knowledge), the mathematics of 
neural networks attempts to describe the formation of "bottom-up” intelligence: the automaton interacts with 
the world (movement, minimal signals ...) in a very basic way and rebuilds “from the bottom-up" fragments 
of representations that will be dynamically processed. Both statistical physics and mathematics of dynamical 
systems (see [Hertz et al., 1991]) have substantially contributed to the evolution of connectionism, certainly 
with a much closer approach to the one observed here (role of time and space in knowledge representation). 
Nonetheless, two problems arise: even though the theory of neural networks will someday give us 
exceptional machines, the "intentionality “of representation in the living, mentioned at the end of this paper, 
can, among other things, elude it. Moreover, at present, no actual "neural machines" exist: for the 
implementation of mathematical networks, our colleagues are obliged to shift their beautiful geometry of 
dynamic systems to binary codes, a very difficult programming exercise, a real bottleneck and a complete 
change in their approach. 
 
Besides, the reason why the many approaches to analog computing, from Wiener’s ideas to formal neural 
networks, have been overwhelmed by digital computers is a story yet to be told. Mainly owing to 
compelling technological reasons, digital processing and broadcasting are by far the most prevalent. 
Concerning broadcasting, there is no doubt: nowadays both music and voice are transmitted on digital 
channels, with such efficiency and reliability, so far unachieved by the analog system (in fact, our voice, our 
brain, produced analogically, sound so unreliable, so slow ... yet so emotive and intelligent...).  Indeed, on 
the subject of processing, the above-mentioned hegemony of vision on the foundations of mathematics (and 
knowledge), along with technological superiority, has fulfilled an important role.	And is now providing new 
machines, far away from Turing Logical 
Computing Machines (even though, in the end, we are forced to implement ourmathematics of continuous 
network deformations into them). Therefore, it is necessary to review it, not only for a better understanding 
of the living and the thinking, but also to build better-quality machines. 
 
 
 
9. From the intelligibility of physical space to the space of living beings 
 
Previously, we have discussed the problem of physical space, at the core of the long mentioned “crisis”, 
which mostly stems from Relativity Theory and its mathematical aspects. Nevertheless, Quantum Physics 
seems to pose a major challenge. Recently, a number of proposals, concerning noncommutative structures, 
have provided new insights on the potential geometrical organizations of microphysics ([Connes, 1990]). 
Indeed, the analysis conducted in connection with strings and superstrings is even more mind-blowing and 
difficult (still inexplicable for those who write): in that event, the attempt to merge Relativity and Quanta 
resembles a reunification of all those geometries under review (in these areas, we talk about non-localities of 
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phenomena or ubiquity of particles, solved, in the broad sense, by considering, instead of points, strings’ 
segments basic elements of space: in a nutshell, massive intellectual challenges imposed by the geometric 
intelligibility of nowadays’ physical experiences).  
 
Then again, the problems posed by the "geometry of the living" are of a similar, yet partially or radically 
different nature. It is worth specifying that these issues have only recently been clarified, especially when 
compared to... Zeno’s paradoxes or to the geometry of Riemannian spaces. For this reason, and for space 
limits (I mean, page limits), see the bibliography.  
 
Succinctly, in the first place, Biology made it possible to establish significant differences and connections 
between “external and internal" spaces and the living being. For example, visual spaces represent a 
continuous game between the two: permanent reconstructions of visual clues, explorations of a “feeling by 
gaze", characterized by extreme complexity (see [Ninio, 1989], [Maffei, Fiorentini, 1995], [Berthoz, 1997] 
and numerous others, already mentioned). Therefore, whilst continuously recreated through our active 
presence, image and space are far from being passively "absorbed".  
 
Envisioned as "visual gestalt", mathematical analysis of vision is making extraordinary progress (see 
[Morel, Solimini, 1995]). Hence, without reconstructing an underlying unit, without interpreting and 
projecting an inner space, there can be no visual image. Philosophically speaking, the difference between 
sensation and mental construction is becoming increasingly problematic. Other than being rich in 
phylogenetic, human and ontogenetic history, the interplay between the two, is at the core of our activity as 
living beings. Thanks to the modern studies of motion and vision, we are moving from a geometry of figures 
(Euclid), towards one of space (from Descartes to Riemann), of motion and action (Poincaré and, see the 
more recent [Petit, 1997] and the quoted project "Géométrie et Cognition" on the web).  
 
Nonetheless, the analysis of the geometric perspective on genetics continues to be enriched by additional 
subtler elements and currently, the linear “encoding” of the ontogenetic development is non-existent. This is 
why the space-time organization of information is crucial. Symmetries and succession of growth overtime, 
in different spatial directions, contribute to the determination of an individual ([Prochiantz, 1997]). For 
instance, both ecosystem geometry and interaction with the ambient space store vital information. According 
to Prochiantz, the “genetic program”, essential for ontogenesis, is contained in the interaction between 
humans and the ecosystem, which takes place in space and time. 
 
Dwelling for a while on the nervous system, the hundred billion neurons in our brain are connected to each 
other with about ten thousand synapses each and their relative geometries undergo permanent 
reorganization. Among other things, in fact, synapses continuously change position and contact points. On 
top of that, information is encoded by the finest structures of intersynaptic communication and it is carried 
by exchanged proteins, also depending on their three-dimensional biochemical structure. Nevertheless, with 
the same components, interaction between enzymes, a key process in living beings, is accomplished. As well 
as being conceptually wrong, it is exceedingly difficult to think of encoding only two types of brain 
functions structuring into strings of 0 and 1, even neglecting geometry of interaction. Erroneously, but 
promptly, Cantor hypothesized that the real line could "encode" the Cartesian plane: basically, an 
information contained in the geometric structuring, which is similar to the topology in the Cartesian 
dimension of the plane. In both cases, “what matters” is left out of the linear encoding. 
 
In fact, geometric structuring of information, in the brain, is a key element of its processing, both at local 
(geometrical dynamics such as protein structure and synaptic plasticity) and global level, as in the case of 
"neuronal assemblies" (see [Edelman, 1992]). 
 
While briefly discussing the problem of vision and action, we can quote the example of an object in motion, 
about to be picked, whose projected image on the retina is two-dimensional. Velocity and acceleration are 
represented in the eye as extension and variation of said extension. In addition, the image is transmitted 
through a relay, from the lateral geniculate body or nucleus to the primary visual cortex (V1), involving 
binary thresholding and digital encodings and the aforementioned geometric subtle structures that form 
synaptic connections. 
 
In the first place, the image leaves a “trace” of its edges in the primary cortex. What is more, recent, 
astounding experiences show the "analog" activation of V1 neurons, precisely along contour lines, later 
deformed by the fovea (the "focus” centre, in the retina), tasked with focusing image details. Afterwards, the 
three-dimensional nature of the image is reconstructed. Thanks to the signals emitted by saccades, by eye or 
body movements, cortical thickness is involved in the analysis of depth and motion: primary cortex seems to 
be organized into "fibrations", in terms of geometry/ categories (see [Tondut, Petitot, 1998]). This results in 
a mathematical way of three-dimensionally/analogically structuring information that permits to recreate the 
three-dimensionality of space (thereby allowing/ suggesting us to consider it three-dimensional).  
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Let us move on and grab the object. For this, it is necessary to set up a new coordinate system, an angular 
one, which takes into account the configuration of the arm, measured in muscle thresholds (see [Berthoz, 
1997]). If needed, this could constitute another analogue reproduction or even a dual representation of the 
motion of the object. Consequently, the brain integrates the plurality of coordinate systems and, in 
synchronizing the action, changes from one to the other. As a result, it is not possible to centrally reproduce 
the world in a system of Cartesian axis with pixel-decomposed images. On the other hand, it can be 
built/rebuilt with the purpose of incorporating a plurality of dynamically- managed coordinate systems. In 
other words, the brain does not behave like a digital database, it works with the geometric structuralization 
of information, coupled with its mathematical, geometric analysis, which must become indispensable for the 
study of human intelligence. 
 
Against functionalism, we could claim that (almost) all the intelligence put in the single gesture of grabbing 
an object is shown through codings and representations. Therefore, it is anything but independent from 
coding. In this case, then, intelligence may be in the phase, when the simulation of the event, starting from 
the retina and ending in the arm, takes place through several intermediate, analog / digital / biochemical 
codings... , or perhaps "only" in the (geometric) coding of the physical phenomenon “in the living being”, 
because that's the whole point.  
 
The person who wants to grab the object has a large amount of intentionality and this makes a difference 
even in the choice of the analogy. Hence, this is how the structure of representation operates. Unlike the 
extremely ”faithful " pixel by pixel digital representation, typical of electronic computers, the analog one 
can be considered an intentional, pre-conscious choice, taking place in the living beings, on a cell and in the 
body system. In fact, the analogy "decides" to represent/ encode what matters (the contours, the relative 
speed or depth variation ...). 
 
After mentioning intentionality and its thousands of levels, including the hugely controversial and 
problematic preconscious and conscious, I would like to close this very hasty section. I hope that the reader 
feels motivated to go beyond all those shortcuts that claim to encode human intelligence in strings of 0 and 
1, and tend to forget, in the first place, the essential incompleteness of these representations, also caused by 
the limited aims of the foundation of mathematics. The space time analysis of intentional contexts becomes 
unavoidable, if you want to mention more than the complete and specific conceptualizations, such as 
mathematics and all the other forms of intelligence embodied by a human being and immersed in the 
network of intersubjectivity, but also in history. This remarkably important interdisciplinary challenge can 
happen, only if modern mathematics and the reflection on its foundations influence and support the 
disciplines that study humans as living beings, living in history. 
	

	


