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1. Polymorphic λ-calculus. Introduction.  

In typed languages one can formally describe functions at any finite type, namely functions that

take, as input, functions, functionals and so on.  In general, higher types are obtained by type

constructors, such as "→", "×"  or  "+".  Higher order systems allow quantification over

type variables, thus a higher order language must include variables both for individuals and

types.  The use of type variables increases in an essential way the expressiveness of the

language: this is clear from logic and from computations (see [GLT89]). We focus here on

computations, in particular on the behaviour of terms inhabiting the higher order types; indeed,

the analysis of parametricity is the investigation on how "polymorphic" terms, which may take

types as inputs, actually compute.  As the core problem of parametricity and type-dependence

resides in Girard's second order system F, we recall first its basic notions.

The expressions of the language, i.e. terms and types (or formulae), may be defined by

using the expression  Tp,  the intended collection of all types.  We write capital letters to stress

that an expression is a type.   A : Tp  is short for  "A  is a type",  a : A  summarizes that  a  has

type  A  and that  A  is a type.  The base is given by a collection of variables  x, y, z.... X, Y,

Z...  and of atomic types or predicates.

We maintain the usual conventions on variable binders ( λ  and  ∀ ), free variables and

substitution.  A definition, by combined induction, of term and type expressions is first given.

Term expressions:       a := var | a(a) | a(A) | λ(var:A)a | λ(Var:Tp)a 
Type expressions:       A := Var | Atomic | A → A | ∀(Var:Tp)A

Equality  "="  is a congruence relation on terms, whose basic axioms may be given jointly with

the following rules for assigning types to "legal" terms.
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The rules below are given in an intended environment, named E, E'..., when explicitely

mentioned, which assigns types to term variables.

Type and Term Formation and Assignment Rules.  Axioms:

[x : A]  |_  b : B

(→I) _____________ 

λ(x:A)b : A → B

 f : A → B          a :  A 
(→E)           _______________

f(a) : B                     

[X : Tp]  |_   b : B 
(∀I)       __________________ for  X  not free in the type of a free term variable

λ(X : Tp)b : ∀(X : Tp)B 

 f : ∀(X : Tp)B           A : Tp
(∀E)           ____________________ 

f(A) : [A/X]B                     

(→β)    (λ(x:A)b)(a) = [a/x]b ; (→η)      λ(x : A)f(x) = f       x  not free in  f

(∀β)    (λ(X : Tp)b)(A) = [A/X]b ;   (∀η)      λ(X : Tp)f(X) = f       X  not free in  f

We may omit  Tp  in  λ(X : Tp)b  and in  ∀(X : Tp)B.  The usual rules (ρ),  (τ), (µ), (ν), (ξ)
describe "=" as a congruence relation over well typed terms:

      (ρ)         a = a

                    a = b              b = c a = b              a' = b' 
       (τ)      __________________ (µν)    __________________

                               a = c a a' = b b'

a = b a = b
(ξ)     _______________ (ξ∀)        ____________

λ(x:A)a = λ(x:A)b λ(X)a = λ(X)b

The fundamental difference between typed λ-calculi and logical systems of propositions is that
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proofs are coded by terms.  These terms are the programs of core functional languages.

Moreover, as will be pointed out later, by the work of Abadi, Cardelli, Curien, Hasegawa and

Plotkin (and others, see later for references), we also know that the logical expressiveness of

types is affected by the existence of proof-terms.

In the higher order case, beginning with second order, the situation is both rich, in

expressiveness, and challenging, as type variables may appear in terms.  In particular, terms

may be fed with input types, as expressed by the rules  (∀I)  and  (∀E).
Upon first examination, functions which take types as inputs should behave rather freely,

subject to the "obvious" restrictions of definability within our paradigmatic language, system

F.  This system may seem to deal with input terms and types in the same way (just compare the

"→β,η" and "∀β,η" rules).  However, this is not so: second order functions cannot act on

types "as if they were ordinary inputs" and the restrictions are far from obvious.  These

restrictions have been collected under the, a priori, rather meaningless name of "parametricity".

The interest in parametricity has been growing recently; however, we must acknowledge

that both Girard [Gir71] and Reynolds [Rey83] set the early grounds for the investigation of

how terms may depend on types.  The directions proposed by these two authors were

essentially different, as we will try to explain, and the need for a better understanding of the

relations between the various approaches, possibly by a unified categorical environment, is the

main motivation of this paper.  With the aim of a conceptual clarification, we will classify

parametricity in three main classes: relational (§.3), effective (§.4) and uniform (§.5).

  Yet another direction, which goes beyond "parametricity" and motivated by Object Oriented

Programming, has been suggested in [CGL93].  The required expressiveness, though, takes

us away from "pure" λ−calculi, as it will be mentioned in §.6.  

In all the approaches mentioned above, the analogy "types as propositions" goes together

with the understanding of "types as objects" of categories.  Indeed, this "many-ways"

connection, Type Theory - λ-calculus - Category Theory, is at the core of most recent

advances in the broad area of the Theory of Functional Programming Languages, which

largely uses tools from each of these disciplines.  Its applications range from the design of

Edinburgh ML and its dialects, to the current trends in explicitly polymorphic languages and in

functional approaches to Object Oriented Programming.  We will survey the current treatments

of parametricity, as a relevant problem in the area, and focus on the many issues it raises, in a

categorical, but elementary, perspective.  As already mentioned, in this theoretical area, Proof

Theory and Category Theory are strictly linked: proof-theoretic investigations of languages

correspond to categorical developments in their semantics.  Thus, the syntactic presentation in

each of sections 3, 4, 5 and 6, will end with some open problems for the category-theory

oriented reader.

2. Types as invariants and types as sets.  

The seminal paper [Rey83] begins with a fable. Professors Descartes and Bessel present, in

different but parallel classes, the Theory of Complex Numbers by two different systems of

notation: the cartesian and the polar one.  The fable continues by stressing that, in spite of the

notational difference, the two courses could be entirely interchanged.  The moral is that what

really matters in Mathematics, namely notions and theorems, do not depend on coding and

notations.  Indeed, we all know that the relevant results of Number Theory, say, do not
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depend on the "decimal" notation... similarly for the Theory of Complex Numbers.  The point

is that our abstract understanding of Mathematics is invariant w.r.t. specific notations and

structures, even though it must be necessarily given in a specific notation or in an (intended)

structure.  In general, invariants are, technically and methodologically, at the core of

Mathematics and Physics.

In Computer Science, this has been mostly developed within the algebraic approach to data

types, where abstract data types have been widely studied: the type "Complex" denotes an

abstraction that can be realized by a variety of sets or represented by several denotations.  The

current algebraic theory of Abstract Data Types, though, as Reynolds stresses, is not perfectly

suited for higher type or higher order systems and, thus, he proposes a "relational" treatment

of invariance: computations do not depend on types in the sense that they are "invariant" w.r.t.

arbitrary relations on types and between types.  Reynolds's approach set the basis for most of

the current work on parametricity, as we will review below (§.3).  

Some twelve years earlier, Girard had given just a simple hint towards another

understanding of the properties of "computing with types". In [Gir71], it is shown, as a side

remark, that, given a type  Α,  if one defines a term  JΑ  such that, for any type  Β,  JΑΒ
reduces to  1,  if  Α = Β,  and reduces to  0,  if  Α ≠ Β,  then  F + JΑ  does not normalize.  In

particular, then,  JΑ  is not definable in  F.  This remark on how terms may depend on types is

inspired by a view of types which is quite different from Reynolds's.  System  F  was born as

the theory of proofs of second order intuitionistic propositional calculus.  Its main logical

application has been the normalization theorem, that is, the extension of cut-elimination to

second order intuitionistic logic.  As we all know, the "semantic convention" of second order

systems is that second order variables must be interpreted as "sets" of the intended

interpretation.  More precisely, suppose that a model is given where first order variables are

interpreted as "individuals" of a specific (structured) set or algebraic domain.  Then, second

order variables are intended to range over subsets or substructures of the given domain.  In

system  F,  second order variables are type variables: the types-as-propositions analogy

suggests that second order (type) variables have the intended meaning of (possibly) infinite

sets or structures, which may come, as in Set Theory, with their own coding and structure or

"implementation".  Girard's understanding (and ours, by the Genericity Theorem in [LMS93],

see §.4 below) is that intuitionistically sound functions should not be able to compute with

(possibly) infinite inputs, as types have the intended meaning of possibly infinite collections of

individuals.  Thus, the non definability of  JΑ  formalizes an issue which is, a priori, unrelated

to invariance properties as suggested by abstract data types.  Indeed, the present view of types

corresponds to the meaning given to logical or computational theories by Scott's denotational

semantics: types are "predicates or other entities denoting specific subsets of some universe of

values", as acknowledged in [Rey83].  In particular, then, a type denotes a specific (sub-

)structure of the intended domain of interpretation, in contrast to the abstract or invariance

based understanding of types followed by Reynolds.  Again, this more closely follows the

main stream logical treatment of types as propositions.  Of course, one may violate the second

order semantic convention (in [CGL93] it is done so and for good reasons, see §.6), but then

the connection to logic or the logical significance of the system is lost.

There is no methodological priority of either view.  Abstract data types are commonly used

in Computer Science, but the logical paradigm of "types-as-propositions" has also been quite

successful.  Fortunately, we already know of several relevant connections: from the logical

representability of abstract data types by second order existential quantification,
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[MP86,Hase93], to the representation of initial algebras, [BB85, ACC93, Hase93].

However, the two different views above suggested different technical approaches and results,

as well as many open problems.  [Hase93], [ACC93], [PA93] and [LMS93] are some of the

most recent advances in the two directions.

3. Relational (or invariance) Parametricity.  

We owe to Strachey the distinction between "parametric" and "ad hoc" polymorphism,

according to how polymorphic functions depend on their type parameters.  A seminal,

enlightening classification, but labelled by unfortunate names: unfortunate because all functions

depend on their parameters and, thus, the "uniformity" of this dependence, in the case of

second order parameters, is not expressed by the name "parametric".  Moreover, "ad hoc"

polymorphism may be dealt with by non "ad hoc" treatments of relevant constructs (see

[CGL93] and §.7).  However, the names of these two classes of polymorphism are now part

of folklore and can hardly be changed.

Following Reynolds's approach, the core of parametricity is the formalization of the notion

of invariance mentioned above by means of "relations".  The idea is that the independence of

computations w.r.t. (the internal structure of) types is expressed by their invariance w.r.t.

arbitrary relations on types.  The pivotal result is the "abstraction theorem", whose main

consequence is that a polymorphic function takes related input types to related output values.

This approach has been given a categorical presentation in [MaRey92] and further developed,

semantically, in [Hase93].  We briefly survey the syntactic presentation in [ACC93].

The idea is that one has relations between types and relations between terms; thus, a theory

R  of relations is proposed.  Relations may be given between terms of different types and they

may be extended at higher types and higher order.  The environments and judgements of R 

extend those of F.  Environments  E  set the type of free variables and assert that certain

variables are types, as usual; moreover, they include assumptions about relations between

types or between terms.  Thus, environments contain two sorts of assumptions from F and

two additional ones:

X X is a type variable

x:A x is a variable of type A

  

X

Y
W W is a relation variable between type variables X (domain) and Y (codomain)

  

x :  A

y :  B
R the variables x and y have types A and B, respectively, and are related by R 

The judgments generalize those of system F:

    ” E E is a legal environment 
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E 
A

B
” R R   is a relation between types A and B in E

 

    

E 
a :  A

b :  B
” R      R  relates a of type A and b of type B in E.

Note that equality, as a relation between terms in a type, is a definable relation in this approach.

Indeed, a type  A  can be identified with the diagonal relation in  A×A,  and one may consider 

(=)

  

E 
b :  A

A
c :  A

”          corresponding to the F judgment    E b = c :  A” .  

The introduction and elimination rules for  →  are, respectively: 

(→IR)    

    

E ,  
x :  A

x’ :  A’
 

b :  B

b’ :  B’
E 

B

B’

x b’
x’ b

E 
(x : A)b :  A B

(x’: A’)b’ :  A’ B’

R S S

R S

” ” 
� 

� 

” 

λ

λ

→
→

→

    

(→ER)     

    

E 
b :  A B

b’ :  A’ B’
E 

a :  A

a’ :  A’

E 
b(a) :  B

b’(a’) :  B’

” ” 

” 

→
→

→
R S R

S

   

The introduction and elimination rules for ∀ are:

(∀IR)    

    

E ,  
X

X’
 

b :  B

b’ :  B’

X b’, B’,
X’ b, B,

E 
(X)b :  (X)B

(X’)b’ :  (X’)B’

W S
S
S

(W)S

” 
� 

� 

” 

�

�

�

λ

λ

(∀ER)   

    

E 
b :  (X)B

b’ :  (X’)B’
E 

C

C’

E 
b(C) :  B{X C}

b’(C’) :  B’{X’ C’}

” 

�

�

�

” 

” 

(W)S T

S{W T}
←

←
←

Where (∀IR) applies provided that the type and relation variables  X, W, X'  are not free in the

type of any free variable.

These rules generalize the corresponding rules of  F:  one has to take identity relations in

order to recover the rules in §.1.  The connecting assumption is given by the "identity

extension", which implies that, if  a : A  and  a' : A',  then  

74



a = a'  and  A = A'  iff  a  and  a'  are related by  A  

(and  A  is indeed the identity relation on itself); moreover, variable substitutions preserve

identities.  This is a very delicate point, in particular when  A  may contain type or relation

variables and it has been clarified by the evolution of the system in [ACC93].  In short, and in

the system of [ACC93], "identity extension" amounts to say that each provable judgement  E |-

a : A  in F, yields a provable  (=)  judgement, for  b = c = a.

The elimination rule (∀ER) says that if  b  and  b'  are related functions then they take

related input types to related outputs.  Note that the relation  S{W ← T},  between terms  b(C)

and  b'(C'),  is constructed out of the relations,  ∀(W)S  between  b  and  b',  and  T
between types  C  and  C',  by instantiating relational variables by a relation.  By the "identity

extension", if  b = b'  and  B = B',  then  b  and  b'  are related by  ∀(X).B,  the identity

relation on itself, and, consequently,  b(C) = b'(C)  in  B{X ← C}.  Clearly, this is exactly the

usual (∀E) rule of system F.  The elimination rule (∀ER) may be read as the syntactical

counterpart of Reynolds's binary relational parametricity, i.e. the Abstraction Theorem.  More

precisely, it corresponds to the validity of the Abstraction Theorem over all definable elements

of all models, while (∀ER)  rule, jointly to the "identity extension", yields the Abstraction

Theorem over all elements, not just the definable ones (see Open Problems below).  As already

mentioned, the Abstraction Theorem says that related polymorphic terms take related types to

related output terms, by preserving identities.  

Finally, functions themselves can be turned into relations; in a sense, a map  b  in  A → B

relates  A  and  B  (call  <b>  this relation):

  

E 
 

b :  A B
 

E 
 

a :  A
 

E 
a :  A

b
b(a) :  B

” ” 

” ��

→

  

E 
a :  A

b
c :  B

E b :  A B

E 
b(a) :  B

B
c :  B

” �� ” 

” 

→

A consequence of the elimination rule for ∀,  (∀ER),  and of the identity extension is the

following fact:

3.1 Fact.  If  b: ∀ (X)B,  with  X ∉ FV(B)  (i.e.  X  not free in  B),   then  b(C) = b(C') :

B,  for all types  C  and  C'.

The assumption corresponds to taking  B = B' = S  in  (∀ER)  and, thus,  b = b',   by  (=).

The thesis follows by  (=)  again, as  B  does not contain  X  free.  Note that 3.1 says that any

polymorphic term  b,  which outputs all values in the same type (since  X  is not free in  B),  is

a constant function.

The reader may wonder whether the complex formalization of Reynolds's understanding of

parametricity as invariance w.r.t. relations is really worth pursuing, since it takes us apparently

far from the core intuition of "types as propositions" as more closely developed by the

alternative, more "effective" view hinted at by Girard (see also §.4 and 5).  However, the

results below fully justify the relevance of relational invariance as a tool for the investigation of

terms and types.
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It is an old remark in Logic, going back to Russell and Gentzen, that it is possible to define,

in terms of second order universal quantifiers, some other crucial constructs of Logic.  In

particular, one may define weak forms of conjunction (product), disjunction (coproduct), the

absurdum (initial object), generalized singletons (terminal objects) and existential

quantification.  The weakness of the definition is due to the fact that, in categorical terms,

products and coproducts are not universal, as required by the interpretation in categorical logic,

as they miss the unicity of the pairing or co-pairing functions (thus they are only "weakly"

universal).  The same can be said of initial and terminal objects, which are weakly universal

too.  However, in the system  R  of [ACC93] the following properties are provable:

(1) ∀ → → → →(X)(B X) (B’ X) X   is a coproduct of B and B’,

(2) ∀ → → →(X)(B B’ X) X   is a product of B and B’,

(3) ∀(X)X   is initial,

(4) ∀ →(X)X X   is terminal.

In summary, if one considers, in the "types as propositions" analogy, both proofs coded by

terms and the properties of relational parametricity between types and terms, then these

definable constructs of second order Logic possess the required universal properties.  This fact

adds logical (and categorical) significance to λ-calculus and to relational (or invariance)

Parametricity (early work on this matter may be found in [Wad89] and [BFSS90]). 

Even more is shown in [Hase93], where a model theoretic approach to parametricity is

proposed.  In short, Hasegawa calls "parametric" those models of system F that realize a weak

version of (∀ER) for all morphisms, objects and relations in the model.  Also, in that

categorical frame, the definable existential quantifier 

(5) ∃(X).B  ≡ ∀(Y)(∀(X)(B → Y) → Y)

satisfies the intended universal property required in categorical logic; namely, it is the left

adjoint of the diagonal functor, and thus, it symmetrically corresponds to ∀ quantification, in

all models, exactly as required in Proof Theory.  Moreover, as a converse to the results in

[ACC93], Hasegawa proves that the universality of each of these definable constructs implies

the parametricity of their interpretations, as objects, in the model. 

Firther relevant results should be mentioned about the universality of free algebraic types

(see [ACC93] and [Hase93]).  These very relevant facts encourage further investigation into

the understanding of the various approaches to relational parametricity. 

Open problems.  1 -  Any model of the system in [ACC93] should be a model in the sense

of Hasegawa; a proof though requires a precise categorical understanding of the relational

system.  Note, for example, that in Hasegawa's models the definable existential quantifier is

universal; is it also so in the formal system in [ACC93] ?  It does not need to be, as, for

example, the "abstraction theorem" (rule (∀ER) in [ACC93]), say, is given for definable

relations only.    More generally, by a suitable variant of the rules, if needed, is there a two

way correspondence between models of [ACC93] and Hasegawa's ?  A positive answer would

allow to study the equivalence between parametricity and universality of definable types at an

abstract proof-theoretic level.   

2 - In §.5 we will discuss PER models and the interpretation of  ∀  in them.  This is given

by the right adjoint to the (internal) diagonal functor of PER, in a topos theoretic frame.  It is

not yet known how that interpretation is related to the meaning of  ∀  in the parametric models

above, when constructed over PER.
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4. Effective Parametricity and the Genericity Theorem.  

Girard's remark about the term  JΑ  in §.2 suggests the extension of system  F  by the

following simple axiom (called Axiom C, where  C stands for constant).  In view of the

undefinability of  JΑ,  system F cannot effectively discriminate between different types, i.e. it

cannot output "essentially" different values of the same type, such as  0  and  1,  according to

the input types.  We may assume then that a polymorphic term, which outputs all values in the

same type, is a constant function:

Axiom C  If  a : ∀ ( X )Α ,  with  X ∉ FV( Α) ,  then  a( Β)  = a(C):  Α ,  for all types

Β  and   C .

We already observed that Axiom C is a theorem in the relational or invariance approach to

parametricity (Fact 3.1).  It holds then in all models of system  R of §.3 as well as in all

parametric models, in the sense of Hasegawa.  Indeed, Axiom C is a very weak property,

which may be directly assumed, independently of the theory of relations above, and just on the

grounds of our effective, more than invariant, understanding of second order computations, as

discussed in §.2.  Thus, Axiom C is a common property both of invariance and effective

parametricity (see §.5 for its validity in PER models).

Call  Fc  the extension of system  F  with Axiom C.  With no other assumption, in [LMS93]

the following is proved:

4.1 Theorem (Genericity)  

Let  a, b : ∀ (X )Α .  If, for some type  C,  a(C) = Fc  b ( C),  then  a = Fc  b.

Note that the terms  a(C), a(Β),.... in general may live in different types, namely  [C/X]Α,
[Β/X]Α..., as no restriction is made on  A, in particular  X  may occur in it.  The meaning (and

the strength) of the theorem should be clear: if two polymorphic functions of the same type

agree on one input, then they agree on all inputs.  In other words, any type is generic.  In our

understanding, it says that we cannot use the possibly infinite information carried by a type, as

predicate or (structured) set.  Computations deal with types as "black holes": if two terms act

the same on a given black hole, they will act accordingly on all other black holes.  This

suggests the "effective nature" of this approach to parametricity.

There is an analogy between the Genericity Theorem and a lemma, also called "genericity"

in Barendregt's book [Bar84].  That result deals with type-free λ-calculus, thus its statement

and the proof (a rather simple one) are formally unrelated to ours, but its similar "spirit" may

help to understand the Genericity theorem.  Lemma 14.3.24 in [Bar84] says that, given an

unsolvable term  Ω,  if  a(Ω)  has a normal form, then  a(c) = a(Ω) for all terms  c.  The reason

is that one cannot effectively "look inside" the infinite information contained in a diverging,

unsolvable, term.  An immediate consequence is that, if  a(Ω) = b(Ω)  and possess a normal

form, then  a(x) = b(x) = b(Ω),  and thus  a = b,  by extensionality.  In other words,

unsolvable terms, such as  Ω,  are generic.  Theorem 4.1 above says that, in second order

polymorphic λ-calculus, any type is generic.

The proof of the Genericity theorem is far from trivial (see [LMS93]) and suggests some

general considerations (and these considerations may encourage the scholar to read the proof in
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[LMS93] closely).  A classification of (extra) inference rules in formal systems can be given as

follows.  Let  G  be a formal system and  R  and  S  be well-formed formulae in the language

of  G.  Then, for the derivation  R |- S, three basic cases are possible: 

• R |- S  is compatible, that is,  G + (R |- S)  is consistent;

• R |- S  is admissible, that is, if  G |- R,  then  G |- S;

• R |- S  is derivable, that is, any model of  G + R  is also a model of  G + S.

Compatibility should be clear: just one model of  G is needed,  which realizes  S  when  R  is

realized.  Admissibility means that from the proof of  R  in  G,  one can construct a proof of

S  in  G.   Derivability, in proof-theoretic terms, corresponds to the provability of the

implication  R ⇒ S,  within  G;  that is, to the derivability of  S  in  G  just under assumption

R  (formally,  (G + R) |- S,  with no need of a proof of  R  in G).  Clearly, derivability implies

admissibility, which implies compatibility.  

Before getting into the categorical issues that are raised here, let's better understand this

distinction by an example from the type-free λ-calculus.  Consider Curry's Combinatory Logic

(CL, see [Bar84; HS86]) and the rule (ζβ) of "functional extensionality":  

(a(x) = b(x)) |- (a = b),  for  a  and  b  "functional", 

that is, of the following shape:  S, K, Sc, Kc, Scd.  Church's type-free λ-calculus (λβη) is a

syntactic model of  CL + (ζβ),  by the obvious translation of  S  and  K  into λ-terms (for the

basic notions and facts in this example, see [HS86, ch.8-9]).  Thus,  (ζβ)  is compatible with

CL.  It is not admissible, though, as five extra axioms are required in order to derive  a = b

from a derivation of  a(x) = b(x)  (these equational axioms are due to Curry and each fill a line

with  S's  and  K's, [HS86, ch.9]).  In other words, call CLβ the extension of CL by Curry's

five axioms, then one can prove  CLβ |- (a = b)  from a derivation  CLβ |- (a(x) = b(x)).  Thus

(ζβ)  is admissible for CLβ.  However, it is not derivable in CLβ, since there exist models of

CLβ  which may realize the assumption  a(x) = b(x),  but not the consequence  a = b  (see

[HL80], where these distinctions were first made, from the point of view of models: the

experienced reader may take as a model the interpretations of closed terms in Scott's Pω
model).  Finally, as said above,  λβη  is an "extension" of  CL  where  (ζβ)  is just an instance

of the rule  (ζ)  of extensionality.  In summary:

• (ζβ)  is compatible with CL, but not admissible;

• (ζβ)  is admissible for CLβ, but not derivable;

• (ζβ)  is derivable in λβη.

In [LM90] a categorical classification is given of the models of CL, CLβ, λβη (see also

[AL91]).  However, in spite of the clear categorical notions that characterize the three classes

of models, a surprising "historical" remark can still be made: an example of a "proper"

mathematical model of Combinatory Logic, CL, has been given only recently [DiGiHon93],

much later than the models of λβ(η).  That is, a syntax-independent model, different from the

term model (and from the interpretations of closed terms), which interprets CL and which is

not a model of λβ.  In conclusion, even in type-free λ-calculi, the proof-theoretic and

categorical status of rules is a complex one.

We are in a similar, but surely more complex situation here.  Consider Genericity as the

"rule"  ((exists C,  a(C) = b(C)) |- (a = b)),  where  a, b : ∀(X)Α.  Call (Gen) this rule.  Then

the following holds:

4.2 Corollary.

• (Gen)  is compatible with F, but not admissible;
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• (Gen)  is admissible for Fc, but not derivable.

To prove this, recall that there are plenty of models of Fc (see also §.5), thus Fc is thus

consistent.  By the Genericity theorem (4.1), the term model of Fc proves the compatibility of

this rule with F, since the term model of Fc is a model of F such that, when  a(C) = b(C)  is

true (i.e., it is derivable), then  a = b  is true (derivable).  (However, not any model of Fc

needs to interpret  Fc + (Gen) !  See below.)  (gen) is not admissible in F by trivial

counterexample: take  a ≡ λ(X)x(X)  and  b ≡ λ(X)x(C),  for  x : ∀(X)B  with  X  not free in

B,  then  a(C) = b(C)  in  F,  but  a = b  is not derivable in F.

Admissibility for Fc is also given by theorem 4.1.  As a matter of fact, its proof is based on

a proof-theoretic analysis of the derivation  Fc |- (exists C, a(C) = b(C)),  which shows that,

indeed,  Fc |- (a = b).  As for non-derivability, models of Fc may be given that realize  a(C) =

b(C)  but not  a = b.  Instead of giving a specific counterexample, by the Fact below we make a

more general remark: we observe that no model of Genericity, as an implication, can be a

model of system R.  Thus, any model of system R is a model of Fc, but not of  Fc + (Gen).

Therefore relational and "effective" parametricity are two "orthogonal" approaches to

parametricity.

As mentioned in the previous section, all categorical models of the relational system R  or

any parametric model in the sense of Hasegawa, contain initial and terminal objects.  As a

matter of fact,  ∀(X)X  and  ∀(X)(X→X)  denote these objects, respectively.  Consider now

K ≡ λ(X)λ(x:X)λ(y:X)x  and  O ≡ λ(X)λ(x:X)λ(y:X)y  of type  ∀(X)(X→(X→X)).  Then 

K(∀(X)(X→X)), O(∀(X)(X→X)) : (∀(X)(X→X)) → ((∀(X)(X→X)) → (∀(X)(X→X))).  

which is isomorphic to  (∀(X)(X→ X))×(∀(X)(X→ X) → (∀(X)(X→ X)).  Since

∀ (X)(X→ X)  is terminal, then the interpretations of  K(∀ (X)(X→ X))  and of

O(∀(X)(X→X))  coincide.  However,  K  and  O,  the polymorphic first and second

projections (they project any  X×X  to  X,  for any  X), differ in the model.  The same could

be shown by using type  ∀(X)X.  In conclusion, since any model of R  realizes Axiom C, one

has:

4.3 Fact. Any parametric model is a model of Fc but is not a model of 

 Fc + ((exists C, a(C) = b(C))  ⇒  (a = b)).

This fact proves that the understanding of parametricity as "effective" parametricity is

incompatible with parametricity as invariance, even though they both yield Axiom C.

More should be said about models.  We have already tried to convince the reader that the

"types as propositions", "types as sets" analogies strongly suggest that Genericity is a crucial

effectivity property, in the spirit of Intuitionistic Logic.  Thus, in the perspective of the

Genericity Theorem, we claim that there is not yet a fully satisfactory categorical understanding

of the proof-theoretic constructivity expressed by system F.  In other words, system  F is the

theory of terms as proofs of the second order Intuitionistic Propositional Calculus, and, in

spite of the many, very relevant connections we know of between Intuitionistic Proof Theory

and Categories, a close analysis of its deductive power leads to a result which has no

categorical counterpart, up to now.  Indeed, not only is it not the case that any model of  Fc +

(exists C, a(C) = b(C))  is a model of  Fc + (a = b), but we have no categorical model of  Fc +

((exists C, a(C) = b(C)) ⇒ (a = b)),  except, of course, the term model of Fc (and

uninteresting models obtained by erasing all type information.)
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In a sense, this shows that all known models have "too many morphisms" in the objects

which interpret universally quantified types.  Thus, even in the apparently truly constructive

frames provided by the HEO or PER model interpretation (see the Effective Topos, in the

next section) or in Coherent Domains, the interpretation of second order quantification seems

to contain some morphisms which act on types in some "ad hoc" way and violate the intended

impossibility to work with infinite information, that is, a type, as input.  However, this

explanation is still unsatisfactory: as a matter of fact, the counterexamples to genericity are

given by the peculiarity of initial and terminal objects.  Their existence doesn't need to be

essential in the categorical interpretation of constructivity, as just relational parametricity forces

them in (recall that, a priori, models of system F only need to contain weakly initial and

terminal objects).  An interesting project would be the construction of relevant categories that

model the effectiveness of Intuitionistic Logic, up to a sound interpretation of Genericity and

with no forced interpretation of invariance parametricity, a concept which is orthogonal to the

"types as propositions" analogy, as we tried to point out. 

Open problems: 1 - Give a categorical interpretation of impredicative Type Theory, which

suggests a "non-syntactic" model and/or a general categorical meaning for  

Fc + ((exists C, a(C) = b(C)) ⇒ (a = b)).

2 - Construct, at least, some (categorical) models that contain a collection of "generic" types

(objects).  That is, a model  M  where for a collection  A  of objects (types), one has, for

C ∈ A,  M |= (a(C) = b(C)) ⇒  M |= (a = b).  If our intuition about constructivity is correct,

infinite objects in categories of (effective) sets should satisfy this property.

5. Parametricity and the Uniformity Principle in the Effective Topos.  

The model of the Partial Equivalence Relations has already been mentioned in the previous

sections.  It was invented by Girard and Troelstra, on the grounds of Kreisel's work on the

HEO (see [LM84], for references and a connecting theory of higher type functionals).  The

model had an essentially syntactic flavour.  Via more recent ideas of Hyland and Moggi,

though, it has acquired an independent interest as a "small complete" category, within

Hyland's Effective Topos ([Hyl82,Hyl87]).  We will use this model here to discuss a

fundamental aspect of parametricity: the so-called "uniformity" of the definition of polymorphic

terms.  

The objects of the category PER below are equivalence relations on subsets of the

natural numbers or partial equivalence relations (p.e.r.'s).  Morphisms are defined by

Kleene's application:  n.p  is the result of the application of the n-th partial recursive function to

the number p.  By  n.p∈A  we always mean that  n.p  is defined.  < , >  with inverses  pr1,

pr2  is any (effective) and bijective coding of pairs.

(Notation:   Let  A  be a symmetric and transitive relation on  ω.  Set then:

 n A m   iff   n  is related to  m  by  A ,  dom(A) = {n | n A n }, 

{n}A = {m |  m A n} the equivalence class of n  w.r.t.  A,  Q(A) = {{n}A | n ∈
dom(A)})

5.1 Definition:  The category PER has as
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objects:  A ∈ PER  iff  A  is a symmetric and transitive relation on  ω ,

morphisms :   f ∈ PER [A,B]    iff  

f : Q(A) →  Q(B)   and  ∃ n  ∀ p   ( pAp    ⇒   f({p} A ) = {n . p} B ).

Morphisms in PER are "computable" in the sense that they are fully described by partial

recursive functions which are total on the domain of the source relation.
PER models will give a clear understanding of the following "uniformity" of polymorphic

terms.  Write  a[X]  and  Α[X]  in order to stress that  X  may occur in  a  and  Α.  Then the

rule

a[X] : Α[X]
(5.2) _______________

λ(X)a[X] : ∀(X)Α[X]

gives a uniform definition of the family of maps  {a[X]}X  with components  a[X],  as this

definining rule is "uniform" in the parameter  X.  In other words, the computation  a[X]

"does not depend" on the type  X,  or, more precisely, depends uniformly on it.  This will be

explained by reference to the validity, in PER models, of the so called "Uniformity Principle"

(the contrapositive of König's Lemma).

Instead of getting into the complex definition of Hyland's topos Eff, we will develop our

remarks in a category which sits "half way" between Eff and PER, the ω−Set, following

[LM91].  ω−Set  is a full subcategory of Eff, with sufficient closure properties to provide an

expressive frame category.  We will recall that PER is a subcategory and an internal category

of ω−Set.  Notice also that these constructions, Eff, ω−Set and PER, can be built out of any

(partial) combinatory algebra or (partial) model of Combinatory Logic or λ-calculus, even a

very concrete one, with no reference to the syntax of λ-calculus, such as Scott's Pω model,

say, or any reflexive object in a Cartesian Closed Category, [AL91]. 

5.3 Definition:  The category  ω− Set  has as

objects:   ( A , ||-) ∈ ω− Set   iff 

A   is a set and  ||- ⊆ ω× A  ,  i.e.  ||-  is a relation in  ω× A  ,  s.t.  ∀ A ∈ A   ∃ n

(n,A)∈ ||-  

 (write  n ||-A) .  

morphisms :  f ∈ ω− Set [ A , B ]   iff   

f : A → B   and  ∃ n  ∀ A ∈ A   ∀ p ||- A  A ,    n. p ||- B  f(A)    (

n ||- A → B  f  ).

Similarly as in PER, each morphism in ω−Set is "computed" by a partial recursive function,

which is total on   { p |  p ||-A A },  for each  A∈A .  

(Notation: we say that  "p  realizes  A"  iff  p ||-A A  in  (A, ||-) ;  in  ||-A  we may omit  A  if

there is no ambiguity).  

The category PER is isomorphic to a full subcategory of ω-Set.  In fact, for every partial

equivalence relation (p.e.r.)  A,  we can define an ω-set  In(A) = (Q(A), ∈A) , where  Q(A)

are the equivalence classes of  A,  as disjoint subsets of  ω,  and  ∈A  is the usual membership

relation restricted to  ω×Q(A).  Clearly, this defines a realizability relation in the sense of 5.3
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and the embedding is full.  Call M the image of PER in ω-Set via In.

The relevant point though is that PER is also an object of ω−Set.  Just set

Mo = (PER,||-M)∈ω−Set   where   ||-M = ω×PER.

(If there is no ambiguity, we call PER also the set of objects of the category PER).

Indeed, PER is an internal category  M' = (Mo,M1) of ω-Set, whose "object of objects"

is Mo (for the object of morphisms M1 and further details see [LM91, AL91]).  As a matter of

fact, ω-Set has all finite limits and equalizers.  It has then enough structure as to allow a

relevant theory of internal categories.  The product below, or the intersection of p.e.r.'s, is the

object component of an internal product functor (see [AL91], also for references to the many

authors who developed this matter).  Notice that the embedding of the set PER as  (PER,||-M)

into ω−Set is just the canonical embedding of Set into Eff, in [Hyl82].  For our purposes,

this embedding corresponds to the intuition that nothing can be said "effectively" when taking

as inputs possibly infinite p.e.r.'s; indeed, since  ||-M = ω×PER,  realizers cannot help in

distinguishing among p.e.r.'s.  

Without going into internal adjunctions, the product in ω-Set, indexed over any ω-set, can

be elementarily given as follows:

5.4 Definition :  Let  (A, ||- A ) ∈ ω− Set  and  g: A  → ω -Set .  Define then the

ω−set  

([Π A ∈ A g(A)], ||- Π ,g
  )    by

1)   for  f∈ Π A ∈ A g(A) ,   n ||- Π ,g
 f    iff    ∀ A ∈ A   ∀ p ||- A A  ,  n

g(A) f(A) ;

2)   f∈ [ Π A ∈ A g(A)]     iff    f ∈Π A ∈ A g(A)   and   ∃ n ,  n ||- Π ,g
 f  .

Clearly, ([ΠA∈Ag(A)], ||- )  in 5.4 is a well defined object of ω-Set.  In categorical terms,

([Π A ∈ Ag(A)], ||- )  is an indexed product in ω-Set "indexed over" itself.  It is very easy to

prove that, when the range of  g  is restricted to M, the product lives in M:

5.5 Theorem.   Let  (A, ||- A ) ∈ ω− Set  and  g: A  → M  .  

Then    ([Π A ∈ A g(A)], ||- Π ,g  ) ∈ M  .

This is the semantic core of impredicativity.  Suppose that  A = Mo = (PER,||-M)  and that  g :

M o  → M  interprets type  B,  possibly depending on  X.  Then the interpretation of

(∀(X:Tp)B) : Tp,  as the product in 5.5, gives mathematical meaning to the apparent circularity

of impredicative second order types: for the object part of the product one has

([ΠA∈Mo
g(A)], ||-Π,g )∈Mo.  In other words, this meaning is simply obtained by proving

the closure property in 5.5 for a category, PER or M, built out of any applicative structures

with "enough structure" (indeed, the natural numbers with Kleene's application suffice).  Of

course, one needs to check that the internal product is indeed the right adjoint to the internal

diagonal functor, as summarized in [AL91] (this is the "small-completeness" of PER).

Note now that, when  g  is constantly equal to an ω-set  (B, ||-),  say, in particular when  g

interprets a type  B  with no variable  X  freely occuring in it, then  ([ΠA∈Ag(A)], ||-Π,g ) =

ω - S e t [A, B].  Clearly,  (B, ||-)  lives in M, i.e. it is a p.e.r.,  if  B  contains no variables at all

or when an environment has been fixed.  Recall now that the realizability relation in Mo is

"full": that is  ||-M = ω×PER  or any object is realized by any number.  Therefore, any map

that takes the ω-set Mo of all p.e.r.'s (which has just one equivalence class) to a single p.e.r.
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is constant, as it must take equivalence classes (just one) to equivalence classes.  By this,

Axiom C is valid in the model, in the strongest sense, i.e. for all morphisms and types, not just

for definable ones.  In summary, for any  B∈PER ≈ Mo,  one has  ([ΠA∈PERB], ||-Π,g ) =

ω-Set[Mo,B]  and that  ω-Set[Mo,B]  is the set of the constant functions from PER to  B.

That is:

 5.6 Fact.  Axiom C is valid in PER  models.

Let's see now in which way a precise form of "structural uniformity" suggests an

understanding of the syntactic uniformity in 5.2.  In [Gi71] and [Troe73],  ∀(X:Tp)B  is

interpreted by

   (5.7)      n [∀(X:Tp)B]ξ m    iff    for all  C∈PER   n [B]ξ[C/X]m.

That is, by 

n [∀(X:Tp)B]ξ m     iff    n (∩C∈PER[B]ξ[C/X]) m.

The interesting theorem, for our purposes, is that the intersection interpretation of second order

types is isomorphic to their interpretation as products.

5.8 Theorem.  Let  g : PER  → M .  Then

In(∩ A ∈ PER g(A)) ≅  [ Π A ∈ PER  g(A)] ,   in M .

(See [LM91] for the proof).

Theorem 5.8 is the core step in the proof that the intersection interpretation in 5.7 satisfies the

categorical adjunction mentioned above, up to isomorphisms, (indeed, some more work is

needed, see [AL91]).  Thus, it gives a logical meaning to the interpretation of "for all types" as

intersections.  Moreover, it provides the model theoretic understanding of the uniformity in

5.2, that we want to stress next.

In PER, terms are interpreted by equivalence classes of the interpretation of types as p.e.r.

(indeed, the equivalence classes are the elements of a quotient).  Set, for short,  S ≡
∩A∈PERg(A)  (we work up to the isomorphism In).  The isomorphism  G : S →
ΠA∈PERg(A)  in 5.8 is defined by setting

G({n}S)(B) = {n}g(B),  for all  B∈PER.

When  G({n}S)  or  {n}S  interprets the term  λ(X)a[X] : ∀(X)C[X],  for  g(X)  interpreting

C[X],  theorem 5.8 gives the semantic uniformity of the family of maps  {a[X]}X,  by

modeling the behaviour of the second order map  λ(X)a[X]  as follows.  

Note first that the application of  λ(X)a[X]  to a type  B  is interpreted as the "projection"

from  {a[X]}X  to  a[B] : C[B].  Indeed,  G( _ )(B) : ∩A∈PER g(A) →  g(B)  is a

projection, since it is defined by  G({n}S)(B) = {n}g(B)  and, thus, projects  ∩A∈PER g(A)

≅  ΠA∈PER g(A)  into the component  g(B)  of the intersection or product.  Moreover, the

functional application of  G( _ )(B)  to  {n}S  depends on  ΠA∈PER g(A),  similarly as a

cartesian projection  fstA×C  depends on  A×C, not only on  A:  this is why from an

intersection we can reconstruct one of its components.  This projection though is very peculiar,

since  g(B) ⊇ ∩A∈PER g(A)  and, thus, it simply coerces  {n}S  to the larger equivalence

class of  n  itself in  g(B),  namely to  {n}g(B).  In conclusion:

5.9 Remark. In the ω -Set / PER models, the uniformity of the  syntactic definition of

the family  {a[X]}X  is understood by the fact that the same  n   may be taken as a
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representative of all the semantic equivalence classes which interpret the components  a[B] :

C[B],  for all types  B.

This construction is deeply rooted in the logical structure of these categorical models, as part of

the topos theoretic frame provided by Eff.  Indeed, a crucial property of Eff is the validity in it

of the Uniformity Principle (UP).  That is, if  Φ  is a formula of IZF (Intuitionistic Zermelo

Fraenkel set-theory), the following holds:

(UP)     ∀A∈PER  ∃n∈ω   Φ(n,A)    ⇒     ∃n∈ω   ∀A∈PER  Φ(n,A).

The proof of the isomorphism in 5.8 uses (UP) (see [LM91],  for details, or [Roso86] for a

general topos theoretic discussion on constructivity in Eff).  We just observe here that (UP)

corresponds to the contrapositive of König's lemma: "in a brown finitely branching infinite

tree, if for any branch there exists a node where the branch switches to green, then there

exists  a (uniform) level such that any branch is green".  Thus, (UP) is classically (not

intuitionistically) equivalent to König's lemma, a well established principle.  In our case, it

allows to go from  n,  a priori depending on  A  in  {n}g(A),  to the same, uniform,  n  for all

A;  this provides an understanding of the uniformity in 5.2, by a "constructive" model.

Open problems.  1 - We pointed out that PER  is a model of Fc.  Since ∀(X)X  and

∀(X)(X→X)  denote initial and terminal objects, PER is not a model of (Gen), i.e. of

Genericity as an implication.  Is there a class A of generic objects, in the sense of problems 2

at the end of §.4 ?  Can we construct an interesting subcategory, with no trivial objects (initial,

terminal), which is still a model of Fc and realizes (Gen) ?

2 -There is no space here to hint at two more, very relevant understandings of parametricity.

First, the meaning of (polymorphic) terms as "dinatural transformations", proposed in

[BFSS90] and further developed by [GSS91], among others.  Second, the "logic for

parametricity" in [PA93], a stimulating blend of Logical Frames and Logical Relations.

Just note then that the interpretation of second order terms as dinatural transformations may

be actually given over PER models.  However, the interpretation of ∀ is obtained on a slightly

different (sub-)category.  In particular our explanation above of the intended uniformity is lost,

as the object corresponding to ∀ types does not seem to be related to the intersection.  We

wonder whether it may be seen as a subtype, in the sense of [BL90].  Then, since subtype

does not mean subobject, in the categorical sense, is there any other tidy categorical (universal)

meaning to this possible inclusion ?  Does this preserve the understanding of parametricity via

(UP) ?  Can one interpret the logic in [PA93] in either of these models ?

An answer would relate the different ways to describe parametricity: by logical relations, by

uniformity, by dinaturality.  

6. Overloading as Type Dependent Polymorphism.  

By the two main approaches to parametricity mentioned above we understand, in very different

ways, that second order (polymorphic) functions cannot "compute" with input types, i.e. that

their output "value" cannot depend on input types.  In a sense, this justifies the practice of

erasing type information at run-time (in ML, Quest...): only the type, not the result of a

computation may depend on type parameters.
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However, in actual programming languages, types may be coded.  After all, type symbols

are countably many and programmers are not always very concerned by the intended

interpretation of second order variables.  Thus computations depending on types do exist in the

practice of programming.  Usually, though, true type dependency is resolved at compile-time.

For example, the familiar overloaded functions of many imperative languages (or of imperative

features of functional languages) are given different values, according to type information,

before computing.  Typical examples are the "+" or "print" functions in most executable

languages, where their overloaded meaning is decided when checking the type of the inputs, at

compile-time.  Usually these constructions are as untidy as low level code writing.  Moreover,

the early resolution of overloading has little expressiveness and little mathematical relevance.

However, this should not mislead us from this further expressiveness of programming; as

already mentioned, codes for types can be manipulated.  Thus, in an even more constructive

approach to reality, i.e., in actual programming, one may have functions whose output values

depend on input types.  As a matter of fact, "ad hoc" polymorphism is a powerful and useful

feature and a further mathematical challenge.  Too bad that it has been given a name with a

negative connotation by the founding fathers of programming language theory; this name and

their influential role may have diverted or delayed investigation from an important aspect of

computing.

The point is to embed "ad hoc" polymorphism into a sound mathematical frame and turn it

into a general, non ad hoc, programming tool.

We summarize here the proposal for the investigation of a true type dependency, viewed as

overloading, made in [CGL93].  In that paper, a robust use of overloading is proposed in

order to investigate some aspects of Object Oriented Programming in a functional frame.  We

directly borrow from [CGL93] a brief introduction to this typically "ad hoc" polymorphism.

Note that this section is not meant to be a survey nor a discussion on overloading (and

subtying), as we tried to do for parametricity in the previous section.  The author should

consult for this [Rey80], [Rey88] and [Ten89], for example (and [CC90] for a relevant

foundation of subtying).  Our aim is to justify here a "non parametric" calculus, after such a

lengthy analysis of the parametric ones.  Thus, reference to overloading is just because this

commun programming feature is a simple form of "type-dependency".

The motivation in [CGL93] comes from considering overloading as a way to interpret

message-passing in object-oriented programming, where methods are viewed as "global"

functions: they are named "outside" the objects and their (operational) value is specified as

soon as the name of each global function is associated to an object.  This value may change

entirely according to the given object: overloading is not parametric in the sense of system F.

In short, in object-oriented languages, computations evolve on objects.  Objects are

programming items grouped in classes and possess an internal state that is modified by sending

messages to the object.  When an object receives a message it invokes the method (i.e., code or

procedure) associated to that message. The association between methods and messages is

described by the class the object belongs to. In particular, objects are pairs  (internal state ,

class_name).

 The idea then is to consider messages as names of overloaded functions and message

passing as overloaded application: according to the class (or more generally, the type) of the

object that the message is passed to, a different method is chosen (this is similar to

programming in CLOS, for example). Thus, we pass objects to messages, similarly as types

are passed as inputs to the polymorphic functions of system F.  The crucial difference is that
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parametricity is lost by allowing a finitely branching choice of the possible code to be applied.

And this choice will depend on types as inputs (or, more precisely, on the type of the inputs).

In the formalism designed in [CGL93], terms describe overloaded functions by "gluing

together" different "pieces of code". Thus the code of an overloaded function is formed by

several branches of code. The branch to execute is chosen when the function is applied to an

argument, according to a selection rule which uses the type of the argument.

A key feature of this approach is that the branch selection is not performed on the basis of

the type that the argument possesses at compile-time.  As already mentioned this is a

fundamental limitation of overloading as used in imperative languages (early binding).  In the

present approach, the selection is performed each time the overloaded application is evaluated

during computation.  Moreover, the branch selection can be performed only when the

argument is fully evaluated, and depends on its "run-time type" (late binding) which may differ

from the compile-time type.

For example, suppose that  Real  and  Nat  are subtypes of  Complex  and that  add  is

an overloaded  function defined on all of them, and suppose that  x  is a formal parameter of a

function, with type  Complex.  Assume also that the compile-time type of the argument is

used for branch selection (early binding).  Then an overloaded function application (here

denoted  •), such as the following one

λ(x : Complex)(...add • x...),

is always executed using the  add  code for complex numbers; with late binding, each time the

whole function is applied, the code for  add  is chosen only when the parameter  x  has been

bound and evaluated. Thus the appropriate code for  add  is used on the basis of the run-time

type of  x  and according to whether  x  is bound to a real or to a natural number.

In summary, in [CGL93] a simple extension of the typed lambda-calculus is designed,

which is meant to formalize the behavior of overloaded functions with late binding in a type

discipline with subtyping.  The first point to add to ordinary λ-terms, new terms such as

(M1&...&Mn)  that represent the overloaded function composed by the  n  branches  Mi,  for  i

≤ n.  We extend then the ordinary functional application   M(N)  by an operation of overloaded

application  M•N.

The types of the overloaded functions are finite lists of arrow types 

{U1→ V1, ..., Un → Vn
 }  

(denoted by  {Ui → Vi}i∈I  for a suitable set  I),  where every arrow type is the type of a

branch.  Overloaded types, though, must satisfy relevant consistency  conditions, which,

among others, take care, in our view, of the longstanding debate concerning the use of

covariance or contravariance of the arrow type in its left argument.  More precisely, the general

arrow types will be given by contravariant  "→"  in the first argument: this is an essential

feature of (typed) functional programs, where type assignment (type-checking) helps avoiding

run-time errors, and corresponds to the contravariance of the Hom functor in categories.

Instead, the types of overloaded functions are covariant families of arrow types, as explained

later.

The subtyping relation below is a complex, but expressive, feature of the calculus: it allows

multiple choices, as a type may be a subtype of several types and subtyping is used to choose

branches of overloaded terms. The blend of &-terms and subtyping makes this calculus an

expressive and original mathematical formalism which shows, we claim, that "ad hoc"

polymorphism may also have theoretical relevance.  Here is a short survey of some basic ideas

in the calculus and its reduction rules.
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Subtyping on arrow types  U → V  is defined by contravariance w.r.t.  U  and covariance

w.r.t.  V,  as usual and as mentioned above.  On overloaded types, it expresses that a type  T'

= { U'
j → V'

j}j∈J   is smaller than another  T" = {U"
i → V"

i }j∈I,  if the programs in  T'

also type check when given as input an argument meant for programs in  T"  (see the rule  [→
ELIM (≤)]   below):

for all  i∈Ι,  there exists  j∈J  such that  U"
i ≤ U'

j  and  V'
j ≤ V"

i
_____________________________________________________

{ U'
j → V'

j}j∈J ≤ {U"
i → V"

i }i∈I

Well-formed types are defined by using the (pre-)order on them (in case the preorder gives a

set instead of a single element, e.g. the greatest lower bound, we choose a canonical one).  The

definition gives the structure of a family of covariant types to overloaded types (see 3(b)):

1. A∈Types

2. if  V1, V2∈Types, then  V1→ V2∈Types

3. if for all  i, j∈I

(a) (Ui, Vi∈Types) and

      (b) (Ui ≤ Uj ⇒ Vi ≤ Vj) and

   (c) If, when  Ui  and  Uj  have a common lower bound, there is a unique (or

canonical)  h∈I  such that  Uh = inf {Ui, Uj},  then  {Ui →  Vi}i∈I ∈Types

Terms are defined by adding &-terms and overloaded application:

M :: = xv | c | λ(xv)M | M(M) | Μ&vΜ | Μ•Μ

The crucial type-checking rules are the following.  Note the type label over the  &,  in &-terms.

   |− Μ: U→ V    |− Ν: W ≤ U 

[→ ELIM (≤)]            
_______________________

 |− Μ(Ν): V 

       

    |− Μ: W1  ≤ {Ui → Vi}i ≤ (n-1)    
 |− Ν : W2 ≤ Un → Vn

 [{}INTRO]  ______________________________________________

|− (Μ&{Ui→ Vi}i ≤ n N) : {Ui→ Vi}i ≤ n
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 |−Μ: {Ui → Vi}i∈I     |− Ν : U     Uj = mini∈I {Ui | U ≤ Ui}

[{}ELIM] __________________________________________________

 |−Μ•Ν: Vj

The last rule says that the output of an overloaded application lives in a type depending on

the type of the input, namely the type  Vj  corresponding to the least  Ui  which contains the

type of the input  In a sense,  Ui  is the least type which allows the rule  [→ ELIM(≤)]  to be

applied (this is were subtyping blends with overloading in a crucial way).  Indeed, the

reduction rule below says that the value also depends on the type of the input, as the intended

Mj  is chosen inductively by using, again, the type of the input and the type label on the &.

β&)  If  N : U  is closed and in normal form and  Uj = min {Ui 
| U  ≤ Ui }  then 

    ((M1&{Ui→ Vi}i=1..n M2)•N)  >>  "if  j < n  then  M1•N,  else  M2•N  for j = n"

Clearly, the choice performed by the  (β&)  rule may give essentially different output values,

as no restriction is placed on the computation expressed by the terms.  Informally, one obtains

a reduction  (M1&...&Mn)•N >> Mj(N),  for  j ≤ n  depending on the type of the input  N.

The motivations for the conditions on  N  (call by value) are discussed in [CGL93].  (β)

reductions are defined as usual (but  [→ ELIM (≤)]  may let the type decrease during

computations).  

The non-obvious fact of this calculus is that it satisfies Strong Normalization and the

Church-Rosser theorem, see [CGL93].  

We believe that this sets on solid "functional" and non "ad hoc" grounds some aspects of

Object Oriented Programming, when message passing is described as overloading.  More is

said in [CGL93], where further motivations for this proposal for type dependency, or

computations depending on input types, are given.

Semantics and open problems.  The approach above is just a preliminary attempt, as the

goal would be to reach the smoothness and "uniformity" of higher order λ-calculi, in

formalizing features that cannot be expressed in that calculus.  The gluing together of terms

given here is rather heavy.  It takes care of many aspects, beyond type dependency, namely

late binding and flexible subtyping, but it should be turned into an explicitly second order

system, if ever possible.  One should allow, say, notations such as  λ(X)(...&X...)  and still

preserve the effectiveness (normalization?) of the present system (Castagna and Pierce are

exploring this and other directions, in ongoing work).  Then we would really reach an

alternative language to current functional approaches, restricted as they are by the limitations of

parametricity.

However, there may be crucial difficulties there.  The intended meaning of second order

variables as subsets of the domain of interpretation is in contrast to the decidability, within a

programming language, of type equality (or inclusion).  Thus, the restrictions to finitely many

choices, as described above, seems unavoidable.  Alternatively, one should compare, by

inclusion, only atomic or ground types.

Yet another direction, which gives meaning to the system above according to the practice of

programming, is proposed in [CGL93s].  The idea is that types are just (countably many)

symbols, which can be effectively compared by inclusion or equality.  Or types are code, as

anything else in programming languages.  Then the semantic convention of second order logic
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is abandoned and types are interpreted in the same universe as terms.

In short, the model is constructed out of a PER model.  This is built over an applicative

structure which is also an injective topological space, in the category of T0 topological spaces

and continuous maps: namely, any function from a subset of a T0 space to it can be extended

to a representable (continuous) one.  Interpret then the collection of types as a topologically

discrete subspace, by "coding" them into the domain of interpretation, and extend (the meaning

of) any function from types to terms to a morphism in the category.  Clearly, the semantics of

types squeezes them at the same level as terms, thus terms can compute with types.

Can something better be done, while still preserving the intuition inherited from (run-time)

overloading ?   Are there categories with the effective flavor of the ones we mentioned in the

previous sections, that can distinguish different levels of decidability and allow a constructive

type dependency? One should preserve, though, the expressiveness of impredicative

definitions and the second order semantic convention.  This is a non minor categorical

challenge.  Impredicative definitions are interpreted by non trivial closure properties of

categories (small completeness, in our case).  It is not clear whether these may be compatible

with a true type dependency.
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