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Summary

Some authors assert that the analysis of huge databases could replace the 
scientific method. On the contrary, we argue that the best way to make 
these  new  technologies  bear  fruits  is  to  frame  them  with  theories 
concerning the phenomena of interest. Such theories hint to the observable 
that  should be taken into account and the mathematical  structures  that 
may link them. In biology, we argue that the community urgently needs an 
overarching theory of organisms that would provide a precise framework to 
understand lifecycles. Among other benefits, such a theory should make 
explicit what we can and cannot predict in principle.

1. Introduction

Biology is  a domain where variation has a fundamental theoretical role. 
Biological  variation  is  profound and qualitative,  and  we have  defended 
elsewhere  the  idea  that  variation  justifies  that  biology  requires  its  own 
epistemology. Notably, this variation is the basis of the historicity and the 
contextual nature of living things (G. LONGO AND M. MONTÉVIL 2014; M. 
MONTÉVIL et al. 2016) and it is at the core of the adaptivity and diversity of 
life. Variation is, in part, due to random phenomena at diferent levels of 
organization, and to the many forms of interaction between these levels 
(bio-resonance,  see  M.  BUIATTI and  G.  LONGO 2013),  yet  it  is  always 
canalized by constraints and contexts and may be induced by the context 
to an extent (M-J. WEST-EBERHARD 2003; MONTÉVIL et al. 2016; G. LONGO 

2017). In our perspective, variation is thus an integral component, but not 
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the only component, of diversity and adaptation, both in phylogenesis and 
ontogenesis, up to having a crucial role in the etiology of cancer (A. SOTO, 
G.  LONGO and D.  NOBLE,  2016).  It  finally  leads  to  a  peculiar  form of 
unpredictability, proper to biological dynamics, since variation is largely 
based on random phenomena, at all levels of organization (M. BUIATTI and 
G. LONGO, 2013). As for this issue, note that randomness is not an absolute 
notion,  but  it  means  “unpredictability  w.r.  to  the  intended  theory”  (C. 
CALUDE and G.  LONGO, 2016b). And biological randomness deserves its 
proper  treatment  as  related  to  the  changing phase  space  (the  pertinent 
observables and parameters or the space of all possible dynamics) and to 
the role of rare events, in particular along evolution (MONTÉVIL et al. 2016; 
G. LONGO, 2016).

Biologists  are  thus  confronted  with  the  evolutionary  diversity  and 
adaptivity  of  the  living.  Moreover,  organisms  possess  an  internal 
heterogeneity which corresponds to their diferent organs (and organites, 
in the case of cells): “correlated variations” in the terms used by Darwin, 
depends both  on  the internal  coherence  of  each  organisms  and on the 
changing  eco-systemic  conditions..  Faced  with  these  two  dimension  of 
biological complexity, the human mind sometimes seems disarmed. In this 
context,  the  contemporary  possibility  of  developing  immense  digital 
databases in collaborative frameworks is regarded as a major opportunity. 
But this opportunity is not without peril – and analyses lacking biological 
meaning is not the least of these perils.

All  fields  of  biological  sciences  are  not  equally  equipped  to  use  these 
growing databases. Some fields build on robust theoretical thinking.  For 
example, phylogenetic analyses rely on the conceptual framework of the 
theory of evolution, extensively enriched in the XXth century. Tis theory 
frames the production of knowledge on the basis of data by relying on non-
trivial  theoretical  structures,  in  particular  Darwin's  principles  (“descent 
with  modification”  and  “selection”). By  contrast,  there  is  no  well-
established, unified theory to understand organisms, their physiology and 
their  development,  in  spite  of  recent  advances  (see  A.  MINELLI and  T. 
PRADEU, 2014; A. SOTO, G. LONGO, and D. NOBLE, 2016). Despite decades 
of  informal  use,  the  traditional  notion  of  a  genetic  program has  never 
acquired a real theoretical status, for a lack of both biological pertinence 
and of referenrence to a rigorous actual scientific notions (PA. MIQUEL; G. 
LONGO, 2012). Tis lasting tradition leads to a causal priority assigned to 
the molecular level, a priority that is embodied in the nature of the data 
obtained  by  high  throughput  techniques. By  contrast,  many  relevant 
quantities are neglected by the use of Big Data in biology. For example, the 
modeling of an organ like the heart requires taking simultaneously into 
account several levels of organization (D.  NOBLE 2006). Similarly, many 
physicists and biologists emphasize the importance of physical quantities 
in  the determination of  biological  phenomena.  Here  physical  quantities 



refer informally to the forces and fields of classical mechanics. For example, 
the  stifness  of  a  tissue  or  the  forces  exerted  by  cells  are  fundamental 
determinant of a tissue. However, these quantities are not associated with 
high  throughput  experimental  methods.  For  example,  the  interplay  of 
forces in a morphogenetic dynamics is neither measured in genomics, nor 
proteomics or metabolomics. As a result, we can see that the choice of a 
theoretical  framework  impacts  directly  the  quantities  that  should  be 
measured and analyzed.

Beyond  the  choice  of  the  quantities  relevant  to  understand  a  given 
phenomenon, theoretical frameworks also matter for the analysis of data. 
Statistical analyses are based on mathematical hypotheses that, in general, 
correspond  to  theoretical  hypotheses,  albeit  the  latter  are  sometimes 
informal or even implicit. Te capacity of databases to contribute to the 
comprehension of phenomena depends on the theoretical view that frames 
the  use  of  these  data  and confers  meaning  to  them,  as  well  as  on  the 
pertinence of these data in relation to a theoretical frame. In short, there is 
always a choice, sometimes considered to be “obvious” if not unique, of 
observables  to  be  measured,  of  a  metric,  of  criteria  of  numerical 
approximation: this choice needs to be made and explicitly so.

Te application  of  Big  Data  to  cancer,  for  example,  is  developed  in  a 
particular theoretical frame, the somatic mutation theory, where the process 
of carcinogenesis is conceived as the appearance of cancerous cells by the 
accumulation of somatic, genetic mutations: “Te story of cancer is a story 
of how the body’s complex coding systems go awry through the creation of 
self-perpetuating errors in cellular replication and growth” (A.R. SHAIKH et 
al. 2014). However,  this  theoretical  point  of  view  encounters  major 
conceptual and empirical difculties. Tese difculties manifest themselves 
in  translational  researches  and explain  the limited medical  outcomes  of 
cancer biology despite significant investments. For example, changes in the 
proportion of deaths due to cancer are not large except in cases which can 
be interpreted in terms of prevention (R.L.  SIEGEL, K.D  MILLER and A. 
JEMAL 2015).   One  of  the  most  infuential  advocates  of  the  somatic 
mutation  theory  of  carcinogenesis  acknowledges  the  difculties  of  this 
genocentric approach and stresses that we are once again faced with the 
“endless complexity” of these phenomena (R.A. WEINBERG 2014).

Several scholars analyze the situation as the manifestation of a theoretical 
problem  and  propose  alternative  viewpoints  about  the  nature  of 
carcinogenesis (C. SONNENSCHEIN and A.M. SOTO 1999; 2011; S.G. BAKER 
2011).  Tese  theoretical  viewpoints  also  come  with  diferent  research 
strategies, consider diferent levels of organization and relevant quantities 
(BERTOLASO M.  2016).  However,  most  of  the  community  stick  to  the 
somatic mutation theory. From their perspective, it  is  then appealing to 
consider Big Data analysis as a solution permitting the treatment of cancer 



while keeping the focus on molecular and more specifically genomic data. 
Tis  technological  solution  is  called  personalized  medicine  or  precision 
medicine.  Precision  oncology  is  advocated  by  groups  such  as  the 
Personalized Medicine Coalition and is supported by the US government 
through the Precision Medecine Initiative program.

More  generally,  the  absence  of  a  theoretical  framework  for  organisms 
makes particularly seductive a certain rhetoric that goes beyond – if not 
against  –  the  rational  use  of  data. The  omnipotence  and  autonomy of 
database analysis is at  the center of a contemporary myth. For a decade, 
several  successful  articles,  including  one  by  Chris  Anderson  (2008), 
maintain that the figures speak for themselves: “We can throw the numbers 
into  the  biggest  computing  clusters  the  world  has  ever  seen  and  let 
statistical  algorithms  find  patterns  where  science  cannot  ...  Correlation 
supersedes  causation,  and  science  can  advance  even  without  coherent 
models, unified theories … No semantic or causal analysis is required.” Te 
idea  is  that “data  miners”  are  capable  of  detecting  correlations  and 
orienting decisions without having to perform any theoretical discussion. 
So it is no longer a matter of enriching the “obsolete” scientific method but 
instead of replacing it, in particular by bypassing theoretical thinking. Tis 
point of view is associated with the slogan that the larger the database, the 
easier it is to find relations on the basis of which to act.

2. Immense databases, prediction, and chance

Te rhetoric that defend the replacement of the scientific method by the 
analysis  of  big  databases  can  be  assessed  by  the  use  of  Mathematics. 
Teorems enable us to demonstrate the limits of these purely algorithmic 
methods by showing the impossibility of replacing the scientific quest for 
meaning by pure  “data mining”. Teorems at  the crossroads of  ergodic 
theory and Ramsey’s Teory, a combinatory theory of numbers born in the 
1920s and well-developed since then, permit to contradict this use of Big 
Data (C. CALUDE and G. LONGO 2016; H. HOSNI and A. VULPIANI 2017).

2.1. The deluge of spurious correlations
Let us first consider “Ramsey-type” theorems, used in CALUDE and LONGO 
(2016). Tese theorems show that for any correlation between numbers in a 
database,  there  exists  a  number  (let  us  say  m)  such  that  any  database 
having at least m elements contains the demanded correlation. Terefore, it 
is just a matter of size, and it is possible to compute a threshold beyond 
which all databases (sequence of numbers) will contain a regularity with 
the stipulated characteristics. In other words,  be as  precise as  you wish 
about the criterion for correlating pairs, triplets, etc., as well as the minimal 
number of times that you want to observe them, in what space and over 
what duration and the manner in which you will divide up your database 



(for example, by correlating proximate values, even iterated … according 
to the preferred criterion). Ten the theorems mentioned will tell you how 
many data to gather in order to achieve those criteria, that is to find some 
correlation realizing them. More precisely, a regularity in an ensemble of 
numbers  may  be  established  by  fixing  three  parameters,  or  even  more 
(“arity” of the relation, cardinality of the threshold of interest – how many 
you wish to have,  and the partition of the database...). On the basis of 
these  parameters,  we  can  then  calculate  a  number  m,  such  that  any 
ensemble of numbers  A that contains at least  m elements will satisfy the 
required regularity.

We should observe that A is any ensemble and that the only requirement is 
that  A must be “sufciently large”, enormous in fact, since  m is growing 
very rapidly as a function of the given parameters. But being arbitrary,  A 
may be engendered by … dice throwing,  measurements of an electron’s 
spin-up/spin-down,  a  random  quantum  phenomenon,  or  random 
phenomena  of  any  kind  (physical,  biological,  social)… Te  bigger  the 
database the better, the credulous propagandists of Big Data tell us. Is this 
number  m too big  to  be encountered in our Universe  for  a  correlation 
between a sufcient number of elements? Ten not all sets of numbers of a 
cardinality  below  the  Ramsey  threshold  need  to  contain  the  pre-given 
regularity, yet … lots of them will.

In summary, these results tell us that any A that is sufciently big contains 
arbitrary,  thus  potentially  “spurious”  correlations;  moreover,  if  we  ask 
merely that these correlations appear in a high percentage, but lower than 
100% of the ensembles, that is “only” in a reasonably high percentage of 
ensembles,  then we would obtain an  m attainable  by our databases. In 
short, this hazard in the huge quantities of numbers is by no means rare. 
Let us explain.

A  finite  ensemble  of  numbers  may  be  considered  (algorithmically) 
“random” when it  cannot be engendered by a program smaller than its 
number of elements. Tis is a notion of “incompressibility” for sequences 
of numbers, that may be extended to matrices or other organizations of 
data in finite dimension. It does not correspond exactly to randomness, yet 
it is a good “symptom” of randomness: that is an incompressible sequence 
has a high chance to be random; moreover, asymptotically (for sequences 
tending to infinite length), it does yield a robust notion of randomness for 
infinite sequences (C. CALUDE and G. LONGO 2016b). Now, the percentage 
of ensembles of random numbers  in this  weak sense (incompressibility) 
tends toward 100 % (measure 1, to be more precise) when their cardinality 
grows toward infinity. Infinity is big, even for “data miners” who are the 
richest in data, yet as soon as we are dealing with ensembles of numbers 
that are expressed with 2000 bits, for example – which is not out of reach – 
we  approach  80 %  of  incompressible  ensembles  (CALUDE and  LONGO 



2016). So good luck making any kind of  use  in  terms of  prediction or 
action of data that may derive from chance! In every case where chance 
dominates, it is out of the question for the regularities found by clever data-
exploration programs to be of any help at predicting if not acting, precisely 
because  they  are  the  fruit  of  chance,  and  they,  therefore,  may  not  be 
reproduced in time and in space, or derived from any causal relation. Tus, 
it is due to chance that one finds spurious correlations as illustrated in the 
eponymous book by T. VIGEN (2015, see also the associated website http://
www.tylervigen.com/spurious-correlations).  Picturesque examples  include 
the correlation between the US spending on science, space and technology 
which  correlates  with  the  suicides  by  hanging,  strangulation  and 
sufocation  (r=00.99,  from  1999  to  2009)  or  the  number  of  Japanese 
passenger  cars  sold  in  the  US  which  correlates  with  the  suicides  by 
crashing of motor vehicle (r=00.93, from 1999 to 2009). We leave the causal 
relevance of these correlations to the reader’s appreciation. In (C. Calude 
and G. Longo 2016), we gave the mathematical arguments that justify these 
spurious correlations and their high chances to appear. 

2.2. Data, prediction and dynamical systems
Te analysis of prediction is a central question in meteorology. HOSNI and 
VULPIANI (2017) present  an  introductory  survey  of  the  problems 
encountered in this scientific area written by two insiders. Te first point is 
that too many data may kill  information and forecasting. Te issue was 
understood by von Neumann and Charney since the 1950s. For example, it 
follows from the nature of hydrodynamic (and thermodynamics) equations 
that knowledge and description of data concerning waves of too high or 
too low frequencies may distort the analysis. So data, possibly implicit in 
the data bases, concerning nonpertinent phenomena, may incorrectly afect 
the  forecast.  Moreover,  the  larger  the  database,  the  larger  the  physical 
space  required  to  organize  them;  that  is,  the  data  may  belong  to 
description spaces (the spaces of the pertinent observables and parameters) 
of large or even huge dimension. If the dynamics happens to generate some 
“attractors” (a precise mathematical  notion5),  then the dimension of the 
attractors  also  matters,  since  the  relative  unpredictability  of  future 
evolutions of the intended dynamical system grows exponentially with both 
the phase space and attractors’ dimensions (F. CECCONI et al. 2012).

Finally, CECCONI et al. (2012) give a further mathematical argument against 
the  abuses  of  Big  Data  rhetoric.  In  linear  and  non-linear  dynamics,  in 
bounded  phase  spaces,  regularities  may  appear  under  the  form  of 

5 An attractor describes the asymptotic behavior of a dynamical system, that is to 
say its behavior after the disappearance of short terms behaviors. For example, the 
attractor  of  a  dynamics  which  converge  to  a  single  state  is  this  state.  More 
complex situations include limit cycles for dynamics which converge towards an 
oscillatory behavior and strange attractors in the case of chaotic dynamics.  



“recurring phenomena”. Tat is, patterns of the dynamics such as series of 
observable  values  that  go  very  close  to  already  traveled  paths,  may  be 
proven to recur. Tat is to say they may – and actually will – appear again, 
a famous theorem by Poincaré, 1892. Yet, as later intuited by Boltzmann 
and proved by  KAC (1947),  the recurrence times are  immense.  If  the a-
critical Big Data proponents claim that they do have sufciently large sets 
of  numbers  to  accommodate  recurrence  and  thus  “predict”,  then  they 
surely fall under the case analyzed in section 2.1. Tat is, their database 
must  be  so  huge  as  to  exceed  the  cardinality  limits  given  by  Ramsey 
theorems, beyond which one finds a “deluge of spurious correlations” in 
any database. Te conditions necessary to use Big Data strategies for these 
dynamics are exactly the ones which lead to the appearance of spurious 
correlations. As a result, their use for prediction and action is not a valid 
strategy: a correlation does not need to recur (i.e to continue in time) nor 
to  be due to any “causal”  structure  – beyond certain  large sizes,  today 
accessible to Big Data, they are “meaningless” or due only to the size of the 
database. 

3. A few remarks on biological unpredictability

In the introduction, we hinted to the idea that biological variation plays a 
fundamental theoretical role in biology. Te principle of variation that we 
have  proposed  entails  that  biological  objects  cannot  be  defined 
theoretically like in physics (MONTÉVIL et al 2016).

In physics, objects are assumed to follow stable equations which can be 
found  on  the  basis  of  quantitative  transformations  (symmetries)  and 
invariants under these transformations. Tese transformations define the 
space of possibilities. Changes are then quantitative changes of state in this 
predefined state space. By contrast, in biology, we defend the notion that 
changes  also  impact  these  invariants  and  symmetries  (LONGO and 
MONTÉVIL 2014). As a result, variation is also a variation of the relevant 
equations and a biological object cannot be defined by its invariants and 
symmetries.  Accordingly,  the  space  of  possibilities  is  not  a  biological 
invariant,  instead  it  can  change  over  time.  Methodologically,  it  is  not 
possible  to  assume the existence  of  an invariant  mathematical  structure 
underlying the biological object of interest and to probe this mathematical 
structure by experiments.

Nevertheless,  there  are  elements  endowed  with  a  restricted  stability  in 
biological  objects.  We  call  “constraints”  these  relatively  stable  elements 
which play a causal role on the processes that they constrain. Constraints 
are only stable for a limited time and can only be used as invariants at a 
given  time  scale.  In  an  organism,  constraints  mutually  stabilize  and 
reconstruct each other so that the organism can maintain itself over time. 
With M. Mossio, we call this idea closure of constraints (M. MONTE ́VIL AND 



M. MOSSIO 2015) and we have proposed the principle of organization which 
states that closure of constraints is a hallmark of biological organisms (M. 

MOSSIO,  M.  MONTE ́VIL and  G.  LONGO 2016).  In line with previous work of 
Rosen,  Varela,  Kaufman, etc.,  the principle of organization is  a  way to 
understand  the  mutual  dependencies  in  an  organism  and  to  interpret 
biological functions. A constraint is a part of the closure of an organism 
when  it  is  maintained  by  a  process  under  another  constraint  of  the 
organism and at the same time contributes  to maintain at least  another 
constraint of the organism, thus contributing to maintaining the whole and 
ultimately itself through the whole.

Let us now discuss a few consequences of this framework when considering 
Big Data approaches. Following the principle of organization, the relations 
between the parts of the individual is a fundamental notion. Following the 
principle  of  variation,  the  set  of  relevant  constraints  and  their  mutual 
dependencies  may  undergo  variations.  Te  ubiquity  of  variations  is 
precisely why we can talk of an individual and not of generic organisms 
which would all have exactly the same organizations. In this context, data 
analysis cannot unravel a stable structure that would be instantiated in all 
the  data  points  corresponding  to  diferent  individuals.  Instead,  these 
diferent  data  points  correspond  to  individuals  that  are  diferent  to  an 
extent: the constraints involved and their relations are slightly diferent for 
diferent individuals. Of course, data analysis may still help when focusing 
on  a  few  constraints  that  are  stable  enough  among  the  individuals 
considered.  However,  analyzing  jointly  the  organization  of  many 
individuals  leads  to  mixing  diferent  organization together  and leveling 
down their specificity.

4. Conclusion

Te results cited in section 2 are technical: they belong to the combinatory 
theory of numbers and to the theory of algorithms or involve non-trivial 
aspects of dynamical systems theory and ergodic theory. Te defenders of 
what  we  define here  as  “Big  Data  without  Teory”  and of  data-mining 
algorithms  without  analyses  of  meaning  aim  to  disregard  questions 
pertaining to theoretical frameworks. Another way to look at their aim is to 
say that they defend the idea of a generic theoretical framework that would 
apply  in  all  kinds  of  empirical  contexts  without  the  need  of  a  specific 
elaboration of meaning, from physics to social sciences. 

In this context, recall that the Teory of Computability was invented in the 
1930s  by  Gödel,  Church and Turing in  order  to  prove the existence  of 
undecidable propositions and incomputable functions. More particularly, 
in  our  case,  variants  of  results  of  Ramsey’s  Teory  are  situated  in  the 
difcult space of “what is computable” (the set of decidable propositions 



and computable  functions),  but  such  that  its  “computability  cannot  be 
proven”  within  formal  number  theory.  Tat  is,  they  allow  defining 
functions  that  are  computable  but  cannot  be  proven to  be  computable 
within  the  proper  Teory  of  Computability  (Arithmetic)   (G.  LONGO 
2011)  –  one  needs  to  step  outside  this  theory  and  use  infinitary  or 
geometric  tools  in  the  proofs.  Tese  methods  and  objects  are  totally 
extraneous to efective computability and discrete Data Types. Tus, as a 
non obvious consequence of these results, even checking that a correlation 
is spurious is highly undecidable for a machine. Instead, it happens that we 
can generally detect the spurious correlations as in the examples above, 
whenever we have reasonably good, meaningful theories of many aspects of 
the world: one can give good reasons why the relation between the number 
of Japanese passenger cars sold in the US and the number of suicides by 
crashing of motor vehicle are spurious, in principle (or if it applies, search 
for a meaningful correlation...).

Mathematical theories such as computability demonstrate their own limits 
in the possibilities of computations and prediction by “negative results” 
that are present at the origin of scientific knowledge and characterize it. 
Once we have grasped the importance of the limits of the myths that “all is 
algorithmic” or “all  is  computable”,  we may make a better use of these 
immense quantities of data that computer networks make available, which 
is a great chance for science in every domain, including biology. Once we 
clarify  the hypotheses  that  make us choose certain  observables  and not 
others, and choose measures suitable to the objectives of the knowledge 
that  we  are  adopting,  then  digital  information  can  help  conjecture  or 
corroborate a theory or a sketch of it, even produce new understanding. 
Whether it precedes or is propelled by data analysis, it seems urgent and 
necessary to develop theoretical frameworks for understanding organisms. 
In this  context,  we  are  engaged in  a  collaborative  and interdisciplinary 
efort  whose latest  results  are  contained in a  special  issue of  Progress  in 
Biophysics and Molecular Biology: From the century of the genome to the century of  
the  organism:  New  theoretical  approaches (G.  LONGO,  A.M.  SOTO and  D. 
NOBLE 2016).
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