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8 0. Introduction 

This paper grew out of the authors’ attempts to understand the w-rule and ex- 
tensionality in models of the I-calculus. One problem we found was that, in contrast 
to combinators, for hequality an explicit definition of model did not exist. 

More precisely, there seems to be, firstly an assumption in the literature that the 
definition is too obvious to need stating, and secondly a disagreement about what the 
definition should be. For example, when DANA SCOTT constructed his models, e.g. in 
[18], i t  is clear from his work that he had in mind zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa definition more or less equivalent 
to the one in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA§ 3 below. But he did not state any definition in print.l) I n  contrast, 
BARENDREGT et al. in [4, Part 1111 seemed to assume that the concept of I-model 
was a t  the least very similar to that of combinatory model.2) And in BARENDREGT’S 

thesis [l], when the topic of models comes up, he carefully restricts himself to com- 
binatory models (chapter 111). Finally, in BARENDREGT’s [5 ] ,  which came to the present 
authors’ notice during the preparation of this paper, an explicit definition is a t  last 
given. But it is different from both those above.a) So, which definition should one 
use? Now that some variety of models has been constructed, it seems a good time to 
try to develop a general model-theory; but such a theory will not get very far without 
a definition of model! 

In  this paper we shall try to do four things : (i) to clarify the basic concepts involved, 
(ii) to give an acceptable and natural definition of I-model, (iii) to explore extensionality 
and various forms of the w-rule, and (iv), to set out clearly the relation between I-mod- 
els and combinatory models. All these goals are interdependent, and the key concept 
will turn out to be the relation of “extensional equivalence”, 

a N b o y d a d  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAbd.  

The reader will be assumed to know a little about the three main kinds of model 
that have appeared in the literature so far. These are : (i) term models, which are merely 
sets of I-terms modulo a syntactically-defined equivalence, (see for example [l]) ; 
(ii) SCOTT’S zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD, and its relatives, which are inverse limits of lattices, (see [16], [17], [20]); 
(iii) the PLOTKM-SCOTT model .Ym and its variants, ([12], [18], [14], [15]). 

I)  After 0 3 below was written, SCOTT showed the authors some unpublished notes of 1976 con- 
taining a definition exactly equivalent to the one in § 3 (although formally different from it). See 3.6. 

*) This identification is stated explicitly in MILNER [ll], but MTLNER is only interested in ex- 
tensional models, and for these it turns out that all the different possible definitions coincide, as 
will be seen below. 

$) In fact the definition (1.14, [5, p. 10991) can easily be proved equivalent to the definition in 
5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 below easily be proved equivalent to the definition in 8 2 below of “pseudo-mode1 of A/?”, but 
3v.e. I-algebras (1.15, p. 1099) do not coincide with “models of A/?’’ of J 3 below (see footnotes 1 
and 2 on p. 293). 
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The present paper will only be concerned with type-free systems. But most of its 

comments will apply also to models of typed systems, with some obvious changes. 

We are very grateful to several people who have read and criticized earlier drafts of 
this paper and suggested improvements, especially DANA SCOTT, HENK BARENDREGT, 
GERARD BERRY and GORDON PLOTKIN. The present version incorporates some of their 
suggestions, which will be acknowledged a t  the places where they are used; respon- 
sibility for any errors remaining is entirely our own. 

We also thank the Consiglio Nazionale delle Ricerche of Italy, for the generous 
financial support which made the authors’ collaboration possible. 

8 1. Syntax 

Before defining “model of the A-calculus”, we must first define “A-calculus”, or 
rather, “A-calculi”. The notation will all be from CURRY and FEYS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[7] Chapters 3 and 4, 
or HINDLEY, LERCHER, SELDIN [9], Chapters 1 and 2. 

1.1. Def in i t ion.  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAThe formal theory zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAp. 
A-terms: variables, ( M N ) ,  (1x.M). 

Formulae: equations X zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAY for terms X ,  Y .  

Axioms: three infinite sets of axioms, namely all the instances of the following three 

(e) M = M ;  

(a )  1x.M = ily.[y/x] M (y not free in M ) ;  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
( p )  
Deduction-rules : symmetry, transitivity, and 

axiom-schemes, for particular terms M ,  N and variables z, y: 

(Ax.M) N = [ N / z ]  M .  

Y ,  = Y ,  x, = X ,  M = X  - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
( A  X Y ,  = X Y ,  ( y )  X,Y = X,Y (‘) 2x.M = 2re.N ’ 

1.2. Def in i t ion.  The theory is the result of adding to AP the following infinite 
set of axioms: 

( r )  Ax.Mx = M (x not free in M ) .  

1.3. Notat ion.  Provability in Ap, A& will be denoted by “A! zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI-”, “Apq k ” .  The 
set of all A-terms will be called Terms, and that of the variables Vars. A term without 
free variables will be called closed. The set of free variables of a term M will be called 
FV(M). A sequence zl, . . . , zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2, will sometimes be called “ 2 ” .  

6 2. Pseudo-models 

We shall define “model” by first defining a concept of “A-structure”, and then 
choosing those structures which are to be models. There is some latitude in the defini- 
tion of structure, and in this section we shall follow the method which seems the most 
naive and straightforward. 
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2.1. Def in i t ion.  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPseudo-A-structures. For any set D, an environment or valuation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
of the variables is any map o zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA: Bars -+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD. A valuation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAternis is any map from Terms 
into D. A pseudo-(A-) structure is a triple 9 = {D,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0, [ 1) where D is a set with a t  
least two members, o is a map from D2 into D, and [[I is a map which associates to 
each valuation 0 of the variables a valuation [ 1, of all the terms, such that 

(i) [xi,, = 

(ii) [I:x.ynu = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA([xu 0 c[I:ynu), 

(iii) ([Ax.MBU) o d = [M],uZd, for all x, M and all d ED, 

(iv) if a(x) = t(x) for all x free in M ,  then [&Inu = [ilf]r, 

(v) [ Lx .M] ,  = [I:Ay.[y/xf MIu if zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy $ PV(N).  
2.2. Notat ion.  o,d is the map which is the same as o except that x i4 given the 

value d.  Sometimes [I: I,, will be called ”[ ]o” to simplify printing, and often the ‘‘0’’ 

will be omitted altogether. 

2.3. Remark.  Condition (iii) implies that for each o, 41, x there is a member f of D 
such that 

‘ d d E D . f o d =  [ M I ( & .  

And one such f is chosen to be called [Ax.M]u. The definition does not insist that f 
be unique; D might be generous, and offer many such f .  If this happens, then [I:] is 
essentially a choice-operator, picking out one f for each 0, x, M ;  and each possible set 
of choices determines a different pseudo-structure (as long as it satisfies (iii) and (iv)). 
Note, by the way, that (iii) does not say that 9 satisfies (B) (see 2.9, 2.8). 

Condition (iv) is included simply to prevent “crazy” pseudo-structures. If (r and t 
differed only on a finite set of variables, and 9 mas a pseudo-model (see below). then 
(iv) would follow from the other clauses. But if G and z differ on an infinite set, then 
(iv) seems to be independent. Given (iv), each closed term M defines a fixed member 
[ M I  of D, independently of o. 

Condition (v) corresponds to (a) of the formal A-ca1culus.l) 

2.4. Def in i t ion.  The interior domain, no, of a pseudo-qtructurc 9 is the set of all 
[ M ]  for all closed terms M ;  its members are said to be A-definable. (For more about Do, 
see 8 6.) 

2.5. Defini t ion.  An equation X = Y is satisfied in 9 by 0 (or true in 9 for o) iff 
[XI, is the same as [I:YjU. It is satisfied by 9 or true in 9 iff i t  is true for all o. (For 
short, 3 1 X = Y.)  

2.6. Def in i t ion.  A pseudo-model of A/? or A& or of any other formal system is a 
pseudo-structure which satisfies a11 the equations provable in the system. 

This concept of model is very natural, if one views A@ merely as a set of equations 
And i t  is a close analogue of the concept for combinatory equality. (See 8 8.) Some of 
the properties of combinatory models apply here without change, for example the 
interior of a pseudo-model also forms a pseudo-model, as one would expect (Lemma 6.2) 

I )  In a previous version of this paper, (v) was omitted, and its inclusion is due to GBRARD BERRY, 
who pointed out that without it, the proof of Proposition 3.5 was incomplete. 
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2.7. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBALemma. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAEvery pseudo-1-structure has the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfollowiihg properties for substitution zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof 
varinbles for variables: 

(1) For all u, x, y ,  M with y not free in M, 

w zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= ~ ( y )  => zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw4, = ~ w i  q,, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
{vi 5 nd(xL) = ~ ( Y J )  a [Mn, = ucm Mil. 

(2) For a21 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAb, z, A’!, if FV(M) = (xl, . . .. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx,,] and y l ,  . . . , y,, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 F V ( M ) ,  then 

Proof. For (1) :  assume u(z) = o(y )  = d .  Then 

[M I ,  = [MI] (4) = [A.z..M] o d by o(x )  = d and 2.1 (iii) 

= C ~ ~ . W I  Ma 0 d by 2.1 (v) 

= C W ~ I  Mn (0;) by 2.1 (iii) 

= w z i  Mnd since ~ ( y )  = d.  

For (2): let ~ ( x , )  = z(y,) = d, for i = 1, . . . , n. Then 

by 2.1 (iv) [Mn, = [Mn ( ~ $ 1  
= [ [g /? ]  (6;) by (1) repeated 

= [T[WI Ma, by 2.1 (iv). 

2.8. Lemma. A pseudo-structure satisfies the axioms (8) iff it has the following p-operty 
for substitution of arbitrary terms for variables : 

(3) [“/XI MIo = EM] (&), where n = “1,. 
Proof .  First note that C(1x.M) N ] ,  = ([Ax.M]i,) o n = [MI (t$) by Definition 

2.1 (iii). Then, to get (@) a (3), evaluate the left-hand side of this by (p ) .  And to get 
the converse, evaluate the right-hand side by (3). 

2.9. Remark.  Property (3) is a generalization of (2). It might seem that, (3) could 
be proved by induction on M in all pseudo-structures. And indeed it would be, if M 
was restricted to terms not containing 1. But for general M ,  i t  is not. However, in 
Remark 8.18 i t  will be proved that any pseudo-structure can be changed into one 
satisfying (8) and hence (3), by a systematic alteration of the [ ]-map. 

2.10. Conclusion. Despite the good points mentioned in 2.6, pseudo-models are 
too weak. Consider the rule 

(0 M = N I- 1x.M = 2a.N 

It is possible t o  imagine a pseudo-model of 1/3 in which an equation M = N is true 
for all values of x ,  but not A@-provable. And for such an equation, Ax.lM = ?x .N  need 
not be true. How can it fail? Well, for any G, [Ax.M], is an f E D  such that for all 
d E D ,  

f 0 d = [Mn (0:) 

= [ N ]  ( ~ 2 )  if M = N is true. 

And [1x.N], is a g E D such that for all d E D ,  g o d = [ N ]  (G:). So f o d = g o d for 
d E 1). But this does not imply f = g. 
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So t’his “failure” of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(6) in pseudo-models is possible, even though all the equations 
that follow from (6) in 2,9 may be true. This means that not every fimt-order formal 
deduction will be valid for each individual valuation in each pseudo-model. For example, 
suppose one wished to check that a pseudo-model of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAp was a pseudo-model of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAApq. 
One could not do this simply by checking all instances of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(11) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA; one would also have to 
check a.11 the consequences deducible from (q) by rule (6). And in fact an example 
will be given in 5 7 of a pseudo-model which satisfies (q), but does not satisfy the 
simple consequence 

Axy.xy = 2x.x. 

Therefore a stronger definition of model is needed. Despite this, pseudo-structures 
do have some interesting properties: for example they correspond exactly to com- 
binatory models (see $ S).l) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Q zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3. Models 

3.1. Defini t ion.  A (A-) structure is a pseudo-A-structure (D, 0, f 1) which satisfies 
the rule (6) in the following sense: 

(Z) for all b, x, M ,  N 

{vd E D .  pq (6;) = p-j (0;)) ~ A ~ . N ~ ,  = pZ.~-j , .z) 

3.2. Defini t ion.  A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmodel of A@ (or 2@q, etc.) is a ?,-structure in which all the equa- 

3.3. Remark.  A pseudo-structure 9 is a model of 2,9 in the above sense just when 

formulne: equations between 2-terms, also QI zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 y,  ~ Q I ,  V X Q I ;  

tions provable in the formal system are true. 

i t  is a model, in the usual Tarski sense, of the following first-order form of @I: 

’) I n  fact BARENDREGT, in [5]  Definition 1.14, takes pseudo-models (or rather, a definition which 
turns out equivalent to them) as his basic definition of r2-calculus model. He also discusses the role 
of (S), and calls models satisfying (S)  “weakly extensional”. But his definition of satisfaction of ( E )  
is rather weak: it does not allow a formal deduction to be carried through in the model for one 
particular valuation of the variables (see Footnote 2 below). Also his definition of model mixes 
syntactical and semantical structure in what seems to the present authors to be a slightly less natural 
way than the approach above. 

By the way, [51 and the present paper are completely independent, despite similarities in places, 
including giving the same counterexamples as in 7 below. The similarities just show that the 
concepts involved are the natural ones to select. 

2, It is possible to  interpret “satisfies (Q ” in another sense; namely, for all x, X, N ,  if [“], = [ N ] .  
for all 0, then [Ax.M].= [AzN],, for all u. This is weaker than (0 above; in fact, if zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATJ,, . . ., v, are 
the free variables of MN. then the Definition 3.1 sense corresponds to 

vc, . . . Ol,((VT M = N )  2 kZ.Ll1 = Ax.N) ,  

and the second sense corresponds to 

(VU, . . . V, VS M = N )  3 VV, . . . ?v,L(Ax.fM = 1.x.X). 

The second sense is not the meaning usually intended by deduction rules containing free variables 
in logic, as such variables are commonly regarded as “parameters”; see for example the discussion 
in KLEENE “Introduction to Metamathematics” 5 22, pp. 149 - 150. Recently however, G. PLOTKIN 
and G .  BERRY have suggested (in correspondence) an interpretation of the weaker sense in terms 
of trhe A-definable functions over D. This will be discussed in the Appendix. 
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deduction-rub: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthe usual logical rules for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 , i ,  V, with obvious modifications in 

the V-rules to tske accounk of bound variables in terms (see for example BARENDREGT 

azionzs: logical axioms ; reflexivity, symmetry and transitivity of equality; (a), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(p )  ; 
[2], pp. 210-211); 

also 
l(axy.x = axy.y), 
vz, y1, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy2(y1 = yz zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA.3. “y1 = xy2 I% y1” = yzz), 

vv, ,  . . . )  w,((Vx(&! 3 N ) )  2 AL-.H = la“ 

and finally, for each zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx, M ,  N an axiom 

(4) 
diere ‘ t i 1 ,  . . ., are the free variables of M N  other than z.l) 

For 1.pq only one axiom lias to be added (cf. Lemma 4.3), namely 

Vy(Ar.yX. = y). 

3.4. Lemma. (G. BERRY) Let 9 be a pseii.~o-li-struct.ure; then 9 satisfies ( f )  iff 9 
satisfies the followisig generalization of ( E )  : 
( E ) ‘  for all G ,  z, x, y. M ,  N 

(vd E D . p q  (6:) = pq  (g)} ta:c.nqn = [Eny . i qZ .  
Proof.  That (0’ implies (5 ; )  is obvious. For (z) => ([)’, let (ul, . . . , zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAuII} = FV(M) - (z} 

and ~ . . . , v,,,) = FV(N) - (y}, and choose distinct new variables 

t ,  21, . . ., % I >  W1r . ‘ ., Will 

not in FV(MNxy).  Define an environment p by setting 

e(z i )  = @ ( ? h i )  for i = 1,  . . . ?  n .  

p(wi) = z(v i )  for i = 1: . . ., rn. 

[M’] (ef)  = [EM] (@:) 

= I N ]  (z:) 

= [ N ’ ]  (& 

Define N’ = [ t /x,  2/21 &I, N‘ = [ t / y .  $ /a ]  N .  Then for all d E D  one has 

by Lemma 2.7 (2 )  

by hypothesis of (t)‘ 
by 2.7 (2). 

So by ( 5 )  one can deduce 

[At.H’jQ = [At.”], . 

I )  By the way, the following ways of expressing (t) will not work: 

( i )  

(ii) an axiom 

(iii) a n  axiom 

(iv) an infinity of axioms Vv, . . . ~ 1 , ~  Vx(M = N 3 1,x.M = i z . N )  

Axioms (i) and (iii) fail because terms containing z free cannot be substituted for u and v ;  (ii) fails 
because the equation Ax.x = Az.(ly.y) N could not be deduced; and (iv) fails because i t  would imply 
for example fI = gI  =, Ax.fx = Ax.gx. 

Speaking about (iv), it is precisely because (2) cannot, be expressed as a universally-quantified 
iniplicat.ion between equations that, thc class of all models of Ag is not. as simple as for combinatory 
logic. (See 0 8.) 

a single axiom V u  Vtl(Vx(?& = v) .D .  Ax.u =  AX.^); 

V u  Vr(Vx(uz = or )  .I. iix.uz = i i . r . z ~ )  ; 

V u  Vv(u = v . D .  Ax.1~ = 1.x.o); 
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Hence 
[ 1 ~ . n / r I ] ~  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[At.[t/x] MI], by 2.1 (v) 

= [rit.Mq, by 2.7 (2) 

= [At.N’I], by above 

= [ny.Nnr by 2.7 (2) and 2.1 (v). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3.5. Proposi t ion.  Every A-structure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi s  a model of 1g 

Proof.  Let 2 be a 1-structure. Then (<) holds in 9, and hence also zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(5)’  by Lemma 3.4. 
By induction on the structure of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM ,  a straightforward proof gives 

(3) [ [ N / x ]  = [MI] (a:) where 72 = I N I D .  

Typical case: M = ily.P, y + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx, y 4 FV(N) : for all d zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD, by the induction hypo- 
theGs one has [ [ N / x ]  PI (u:) = [P]  (0;;). Hence by Lemma 3.4 (4)’ applied to 0 

and a:, 

Since [ N / x ]  (Ay.P) = Ay.[N/x] P, one has (3). 

After (3) is proved, all the @-provable equations follow: (B) comes by Lemma 2.8, 
(a)  is Definition 2.1 (v), and the rules of Ap all obviously lead from true equations to 
true equations. 

3.6. Discussion. What are structures like? Firstly, for any pseudo-structure 9 
define extemsional equivalence ( -  ) by a - b c> Vd E D. a o d = b o d .  

This relation partitions D into disjoint non-empty equivalence-classes; for each d E D  
let [ d ]  be the class containing d .  

Each function p: D -+ D has a set (which might be empty) of representatives in D, 
namely 

If thiH set is not empty, it is an extensional-equivalence-class. Conversely, each ex- 
tensional-equivalence-class determines a representable function, and this correspondence 
between equivalence-classes and representable functions is one-to-one. 

Now, in any pseudo-structure B, each triple M ,  x, a determines a function, call it 

pa, = py.q (a:). 

(a,  b E D .) 

{ f :  f E D  and Vd E D. f o d = p(d)). 

y ~ r ~ ~ ,  by the rule 

And this ylvzu has a representative in D, namely [h.M], , ,  

to imply 

(4) Vd D. Yl/&) = [MI (03 .  

If D is a structure, then by Lemma 3.4, 9 satisfies (c)‘, which can easily be seen 

(5 )  p.q, - py.qr =. [nX.Mn, = [ n y . q r .  
I n  other words, if ill, x ,  u and N ,  y, t both determine the same function over D, that 
is if ynlTa = yl\yr, then [Ax.M]u = [Ay.NJZ. Thus in a I-structure the value of [1x.M], 
does not depend on the formal construction of M at  all, nor on x or u, but only on the 
function y.lITo they generate. I n  terms of extensional-equivalence-classes, (5 )  says that 
in each extensional-equivalence-class C D there is one member, call i t  f c ,  such that 

(6) V M ,  Ic, .{pX.Mllu c = = f c } .  
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An equivalent way of looking a t  I-structures has been suggested by DANA SCOTT 

(unpublished notes, 1976, and correspondence, 1978 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA; cf. also zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAVOLKEN [19], Defini- 
tion 34). Let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(D ,  F, 0) be a two-sorted structure, D being a set, P zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 D, and o being 
a map: D2 -+ D. Define 

P , = D ,  F , =  F, P , + , = ( f : f ~ F , , a n d V d ~ D . f o d ~ P , , ) .  

( “ f  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE F,,” is read as “ f  represents an n-place function”.) Then (D, F ,  0 )  is said to 
satisfy Bcott’s conditions iff the following hold: 

(SI) 

(82)  

(S3) 

Vf ,  9 E F{(Vd E D.f o d = g o d )  + f = g}; 

3k E F,.Vd, d‘ E D.(k o d )  o d‘ = d ;  

38 E F,.Vd, d‘, d” E D.((s zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAo d )  o d’)  o d“ = (d o d ” )  o (d’ o d” ) .  

Given a I-structure ( D ,  0, [[ I), if one defines 

F = ([ilZ.M],,: M E Terms, z E V W ~ ,  0: V U T ~  3 D} , 

then ( D ,  F, 0) can easily be seen, using (4) or (6), to satisfy Scott’s conditions. 

Conversely, any ( D ,  F, 0) satisfying Scott’s conditions gives rise, in a natural way, 
to a I-structure. (Theorems 31 and 35 of [19].) I n  both directions, (Sl) corresponds 

3.7. Nota t ion .  When discussing I-structure&, we shall sometimes use an informal 
I-notution. If ‘p: D -+ D is a function defined in the metatheory by some expression 

to (0‘. 

‘p(d) = . . . d . . ., 
and rp is representable in D, then the representatives of q in D form an extensional- 
equivalence-class C(p) : 

C(’p) = (f: f E D  and Vd E D.f o d = rpfd)). 

I n  this class by 3.6 above, the structure (D, 0 ,  [ 1) determines a choice of one member 
fccQ) to be the value of [Ix.M],, for all M ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx, 0 such that y‘lvfx, = rp (and such M ,  x, u 
always exist if q~ is representable; for any e E C(’p), one has fC( rp )  = [I~.yx]l (0;)). 

This fc(@) is a “canonical” representative of p, and will be called Id. . . . d . . . , 
where . . . d . .  . is the expression defining ‘p. Thus for example one can say 
fc(Q, = Id.eod, for e as above. (A similar notation is also used in SCOTT [18].) 

This notation has the replacement property; if A(d) and B(d) are two meta-language 
expressions which define representable functions, then 

(Vd E D.A(d) = B(d)) Id.A(d) = Id.B(d). 

3.8. Conclusion. From the above, it seems that Definitions 3.1 and 3.2 give the 
natural definition of model for I-calculi, and this coincides with the classical predicate- 
logic notion when I-calculi are formulated as in Remark 3.3. Also, all the “models” 
of Ip mentioned in the Introduction satisfy Definition 3.2. (For term models, this 
depends on the fact that single variables are terms; see 3 7 for further discussion.) 
However, the class of all the models given by Definition 3.2 is not as simple as one 
would wish. (See Corollary 6.6.) 

will be compared with combinatory models, but first we shall 
explore extensionality and the o-rule, because they shed more light on the basic con- 
cepts involved. 

I n  $ 8, models of 
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Q zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4. Extensionality zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
f ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg E D ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwhen f zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 d zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= g 0 d for all d E D  then f = g.  

4.1. Definit ion. A pseudo-structure 9 = ( D ,  0, [[ 1) is extensional iff, for all 

This is equivalent to saying that 9 satisfies the axiom of extensionality, 

(ext) 

or that every extensional-equivalence-class in D is a singleton, or that for each rc- 
presentable function from D into D there is only one possible choice of index. 

In the earliest careful study of extensionality, BARENDREGT’S [l], the following rule 
was taken its an expression of the concept in formal systems: 

Vx Vy(Vz(xz = yz) .3 .  x = y), 

M X  = N X  
M = N  

( x  not free in M N ) .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(5 )  

Clearly a pseudo-structure 9 is extensional in the sense of Def. 4.1 iff 9 satisfies (5 ‘ )  
in the sense that for all M ,  N ,  G, if [M I ,  o d = [Nib o d for all d E D, then [MI,, = [N ] , , .  

Let ;zB[ be the formal system obtained by adding ([) to @. 

4.2. Lemma. A pseudo-model 9 of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAt3 satisfies all equations of form 

(q)  Ax.Mx = M ( x  not free in M )  

iff it satisfies the one equation 

(7) Av.uv = u.  

(8) 1 = I (1 = iluv.uv, I = AU.U). 

And a structure is a model of @q iff it satisfies the following equation between closed terms : 

Proof. Let 93 satisfy h . u v  = u (u + v ) ;  we deduce (q). By (a ) ,  9 satisfies Ix.ux = u 
for all x + u. Now let M not contain x free; then 93 satisfies Ax.Mx = M ,  because 

[ E A ~ . M ~ J ,  = [pqu] (lx.ux)j,, 

= [[lx.ux] (a,”) by (B) and Lemma 2.8 ( m  = [fll],,) 

= [u] zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(a,”) 

= m = [MI,,. 

by AX.UX = u 

The converse is trivial. Finally, if 9 is a structure, then (8) is equivalent to (7) by (t) ;  
and every structure is a model of AP, so (8) is equivalent to $?q by above. 

4.3. Proposit ion. (i) For pseudo-models (p.m.) of At9 the following implications ?hold: 

extensional p m .  of @? c> p.m. of &!? satisfying rule (5‘) 
U 

u 
p.m. of AbC o p.m. of A& c> p.m. of A@ satisfying 1 = I 

p.m. of A,!? satisfying (q). 

(ii) For structures all the above six properties are equivalent (and the “pseudo’s” can 
be omitted). 
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Proof.  (i) First, it is well known that the equations provable in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA,!?q are the 

same as those provable in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA@[. The rest of (i) follows from Lemma 4.2 or else is 
obvious. 

(ii) For structures, the only extra step is to prove that satisfying zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(71) implies ex- 
tensionality. Let a structure satisfy (q) and hence ( 7 ) ;  so 1d.e zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAo d zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= e for all e E D .  
But Ad.e 0 d is a member f e  of the extensional-equivalence-class [e l ,  and by definition 
of structure, f c  is the same for all members of this class. But zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf e  = e; hence [el mu t 
be a singleton, so zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9 is extensional. 

4.4. Warning. For pseudo-models in general, both the one-way implications 
in 4.3 are irreversible. In  particular for A p t  and rule (c ) ,  the snag is the same as 
for ( 5 ) ;  a pseudo-structure can satisfy all the equations provable in A,!?[ without 
satisfying rule ( 5 )  itself. (One could have 9 k Mx = N x  for an equation not pro- 
vable in Ab[, and this need not imply 2 k M = N ;  a concrete example will be given 
in 5 7).  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

4.5. Comparison wi th  (6). Note that extensionality is much stronger than rule (6): 
(6) says that [ I  chooses one member out of each extensional-equivalence-class of a 
structure, but (ext) says further that each such class only contains one member. This 
gives : 

4.6. Propos i t  ion. Every  extensional pseudo-structure is a structure. 

By this proposition, for extensional models one need not \\orry much about the 
definition of “model”; none of the problems discussed here will arise. 

4.7. Remark .  DANA SCOTT has preferred to view (6) as a principle of extensionality 
rather than (i) ([le], p. 164). Because, referring to Scott’s conditions in 5 3.6, (6) is 
equivalent to (S 1) which says that if the members of F are viewed as functions, then 
these “functions ” behave extensionally : 

‘ d f ,  Y E F ( f  - 9 * f = 9 ) .  

V f , g E D ( f  - g = > f  = 9 ) .  

In contrast, (ext) says that all the members of D behave extensionally. 

We prefer to give the name “extensionality” to (ext) rather than ( E ) ,  following 
BARENDRECT [ 11 and the well-established usage in typed A-calculus, for example 
CHURCH [6]. BARENDREGT calls ( f )  “weak extensionality”. 

8 5. Models of the w-rule 

A formal rule related very closely to the concept of extensionality is Bareizdregt’s 
(1)-rule, which has an infinity of premises and says: 

M P  = N P  for all closed P 

It only expresses extensionality when every member of D is the value of a closed term. 
But it is an interesting rule in its own right (see BARENDREGT [3]), and some of its 
properties help to illuminate points made earlier about structures, so i t  is worth look- 
ing a t  for a page or two here. 
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First, notice that according to  the definition in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[3 ]  the M and N in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(0)) may be any 

terms, even variables. But in the informal introduction of [3], the co-rule was said to 
express extensionality of the interior of a structure, and this suggests that the author 
was thinking of M and N zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas bcing closed terms only. Thus the following form of (co) 
is worth looking a t  as well: 

IMP zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= N P  for all closed P 
M = N  

( M ,  N closed). (COO) 

A pseudo-structure satisfies zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(coo) iff its interior is extensional. 

play a key technical role in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 6: 
Finally, a very weak form of (coo), already mentioned in [2, p. 218: rule (tr)], will 

M P  = N P  for all closed P 
M X  = N X  

( M ,  N closed). (o-)  

5.1. Def in i t ion,  Lgco, A/?wo, A,Yco- are the formal systems obtained by adding 
rules (Q), (LO'), (co-) respectively to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAB. 

It is well known (c) is provable in L/?Lo, so every model of I,9w is extensional. But 
the converse is false, by PLOTKIN'S counterexample [13]; this example shows that the 
term model of A/?: cannot be a model of LPco or A ~ L o ' .  

5.2. Lemma. The provable equations of A / h 0  are exactly the same zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas those of @?to. 

Proof.  It is enough to derive (LO) in L,~Lo".  To do this, let M ,  N be terms with vari- 
ables v l ,  . . ., v , ~  ( n  > 0 )  free in M N .  (Some v i  might be free in only one of M ,  N . )  
Define 1M' E Iv, . . . v,, .M, N' = Lv, . . . v,.N. Suppose that M P  = N P  is provable 
in A,!?w" for all closed P .  Then Agwo !- M ' q . .  . v,,P = M P  = N P  = N ' v , .  . . v,,P. 
Now for all 5, Y.  v, Q .  an easy induction on proofs shows that 

(9) 

Hence, for all closed &, , . . . , Q,, , P ,  

ABw" k X = Y =$ A P L o O  t [Q/v] X = [Q/v] Y (Q closed). 

A@w0 t M'Q, . . . Q,P = N'Q, . . . Qt,P. 

Therefore, by rule (co") n, + 1 times, A,9coo t- M' = N', and so finally, 

A@w" I- M = M ' Y ~ .  . , V, = N'v, . .  . v,, = N .  

5.3. Defini t ion.  Let 9 = (0, 0 ,  [I} be a pseudo-structure: 

{VP closed [ [MP] ,  = ENPI],} =S [MI]s = [N ] , ;  

(vP closed [[NPI],, = [NPI],} =- [ M ] ,  = IN], , ;  

(vP closed [MP],, = [NP] , )  + [M],, - ["]lb.l) 

(i) 9 satisfies (w)  iff for all G, M ,  N ,  

(ii) 9 satisfies (0') iff for all u and all closed M ,  N ,  

(iii) 9 satisfies (LO-) iff for all u and all closed M and N ,  

l )  The definition of satisfaction of a rule given here is the same as that used for ([) in 3.1 and 
for ( 5 )  in the remarks before 4.2. However, just as for ( 5 ) ,  a weaker way of defining satisfaction 
is possible. Such a definition does not seem to us so natural as the one above, but it is worth in- 
vestigating and will be discussed in the Appendix. 
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5.4. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBADefini t ion.  An zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAo-structure (w-pseudo-structure, w-model) is a structure (pseudo- 
structure, etc.) 9 such that for all zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm ,  n E D ,  

(10) 

(Cf. Barendregt's o-models.) We shall call a 9 an wO-structure (etc.) iff (10) holds for 
all zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm, n in Do, not necessarily throughout zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD. 

(Vd zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE D".m o d zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= n o d )  nz = n .  

5.5. Lemma. Let 23 be a pseudo-structure; then 

(i) 9 satisfies (co) o zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 is an w-pseudo-structure 

(ii) 9 satisfies (wo) o 9 i s  an wo-pseudo-structure 

o 9 i s  an co-structure. 

e- D" is  extensional. 

Proof.  (i) Let 53 satisfy (w) .  To prove (lo), let m 0 d = n o d for all d E Do. I n  ( w ) ,  
take M = u, N = v ,  and u such that o(u) = m ,  u(u) = n ;  then = [vPju for 
all closed P,  and hence by (w) ,  luau = [ vJ0 .  That is m = n ,  so 23 is an o-pseudo- 
structure. The converse implication is obvious. For the second equivalence : every 
pseudo-structure satisfying (10) is extensional, so by Proposition 4.6 i t  is a structure. 

(ii) Like (i). 

5.6. Proposi t ion.  For structures the following implications hold: 

Satisfies (w )  e w-structure 

u 

(11) u 

(12) u 

satisfies (w ' )  .e coo-structure e- interior is eztensional 

model of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA@ha o model of 3,Bto 

extensional model of Ap. 

For pseudo-structures all the implications hold except possibly (1 1) a d  (12). 

Proof. By the previous lemmas. 

3.7. Corollary. Every structure with an  extensional interior is  extensional. 

5.8. Remark.  The one-way implications in 5.6 are unlikely to be reversible in 
general. 

To reverse the first implication, one could try to carry out the proof of Lemma 5.2 
in an arbitrary structure, for a particular valuation b, but the attempt would fail 
a t  (9). The most one could prove would be that ( w )  is true in the weak sense discussed 
in thc Appendix; namely that if = [NPnn for all u and all closed P ,  then 

Regarding the second implication: a model of APcoO need not satisfy (coo), because 
if equations M P  = N P  were true in the model but not provable i n  A,!?w". then Jf = N 
would not be demanded in a model of A,!?w0 (the same as for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(0: 5 4 and 9 7). 

The third implication is irreversible. by PLOTKIN'S counterexample. However, using 
((I)-) we can easily get the following partial converse. 

[ M ] , ,  = [ N j U  for all 6. 
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5.9. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACorollary. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBALet 9 be a structure; then 9 satisfies zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(ma) iff zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 is extensional and 
satisfies (w-). 

5.10. Note  o n  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(w- ) .  From Definition zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6.3, it can be seen that a pseudo-structure 9 
satisfies (w-) iff for all m, n E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBADo, when m o d zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= n o d for all d E Do then m 0 d = n 0 d 
for all d ED. 

Suppose a relation N O  (extensional equivalence relative to Do)  is defined in D" by 

?n N o n - V d E D o . m o d  = n o d  ( m , n E D o ) .  

And for m E Do let [m]' be the - "-equivalence-class containing m : [m]' = (n  E D": 
?i - O m>. Then for all m, n E Do 

nz zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN n rn N O  n,  

so [m]' 2 [m] n Do. Then (0-) can be characterized as follows: 9 satisfies (w-)  iff 

Vm,n,ED".rn ~ ' n - = - m  N n ,  

or in other words, [m]' = [m] n Do. 

Moreover, the failure of (w-) in a pseudo-structure 9 may be seen as a "largeness'' 
property of D - Do: the members of D - Do play a non-trivial role in distinguishing 
between functions. Therefore we shall call 9 large (for want of a better word) iff 9 
does not satisfy (w-). 

5.11. Defini t ion.  We end this section with a couple of special kinds of model that 
have appeared in the literature. A hard pseudo-structure 9 is one for which Do = D, 
i.e. whose members are all A-definable. A sensible pseudo-structure 9 is one for which 
[Mau = [NnU for all unsolvable terms M ,  N (and all 6). 

I n  sensible pseudo-structures, terms are distinguished only by their activities as 
functions; all the "passive" terms are identified. 

In  hard pseudo-structures, (w-) is always satisfied ; also extensionality and satisfac- 
tion of (w) and (coo) coincide. 

5.12. Proposi t ion.  Any  sensible structure satisfying (0-) also satisfies (coo). 

Proof.  Let 9 be the sensible structure. Then 9 k h . M z  = M for all closed M .  
This is obvious if M is unsolvable, because then ,?x.Mx is also unsolvable. And for 
solvable closed M one has by Wadsworth's result, 

Ap k M = AX,  . . . x ~ .  z , M , .  . . Mj 

for some x l ,  . . ., xrL ,  M , ,  . . ., Mj .  Then 

Ap t 2 x . M ~  = Lxx,. . . x , ~ .  r L M l . .  . Mj = M .  

Next, let m E Do;  then for some closed M ,  m = [ ] = [Lx.Mx] = Ad.[M] o d = 
= 2d.m o d ,  in the informal L-notation. Thus if, for some m, n E Do, m o d = n o d for 
all d E D " ,  then by (w-) one would have m 0 d = n 0 d for all d E D ,  and so since 9 
is a structure, m = 2d.m zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAo d = 1 d . n  0 d = n.  

5.13. Corol lary.  Every sensible structure satisfying (w-) is extensional; in (particular, 
every sensible hard structure is  extensional. 
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8 6. Interiors of models zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(D, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 ,  [ fa)  be a pseudo-structure, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBADo he the set, of all its A-definable 

members as usual. On this set, i t  is possible to define a pseudo-struct,ure &O,  as fo1low.s. 

6.1. Defini t ion.  The interior, go, of a pseudo-structure 9 is ( D O ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAoo, [[ 1") where 0' 

is the restriction of 0 to Do, and [[ ]" is the restriction of [f ] to maps u' into Do;  t1ia.t 
is, for all G :  Vars --f Do, 

[xn: = [Ixn,. 
(In future we omit the superscript O from oo and [I ]" whenevey no confusion is likely). 

6.2. Lemma. For all pseudo-structures 9, 9' i s  indeed a pseudo-structure, and sat- 
isfies all equations satisfied by %'. Hence if 9 i s  a pseudo-model of @, etc., then so zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis 9'. 

Proof .  First, Do must be proved to be closed under 0'. Let f ,  g E Do. Then f = [[PI],, 
and g = [GI r  for some closed F ,  G and some G ,  t. Since F and G are closed, by Defini- 
tion 2.1 (iv) we can assume CT = t. Hence f o g = [FG],, E Do. 

E Do for all G :  Vars -+ Do. If 9 satisfies (/I), th is  
comes from Lemma 2.8. But if not, we argue as follows. Let M' E Awl . . . w,, . M where 
w,, . . . ,  v , ~  are the free variabIes of M ,  and let g i  = b(vi).  Then fM'],,, g,, . . ., gn are 
all in Do, and 

Next we must show that 

uMnu = cq :::::I 
= (([IM'J,,) o g,) o . . .) o g,, by 2.1 (iii) 
E D O .  

Finally, 9' satisfies Definition 2.1 (i)-(v) because 9 does and because oo and [f Jo  
are restrictions of o and [f 1. And for the same reason, 9' satisfies all equations that 9 
does. 

6.3. Lemma. For all pseudo-structures 23, go is hard; i.e. 9'' = 9. 

Proof.  For closed M ,  [fM]: = [IM],. 

6.4. Remark.  Lemma 6.2 shows that the class of pseudo-models of A@ is closed 
under the operation of forming the interior, just as one would expect for an equational 
theory. 

But what s h u t  the class of models, whose definition includcs zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( c )?  'Unfortunately, 
if 23 is a model of Ap, then 3' need not satisfy ( E ) ,  as will now be shown. 

6.5. Proposi t ion.  Let 9 be a pseudo-structure: 

(i) if 23 i s  large ( i . e .  i t  does n,ot satisfy ((OF)), then 9' i s  not a, structwe; 

(ii) if 9 i s  a structure, th.en 3 satisfies (0-) i f f  9' i s  a structure. 

Proof.  (i) We shall show that if 9' is a structure, then 9 satisfies ( ( I ) - ) ,  or in other 
words, m - O 'n - m - 'n for all ni, n, E Do. Let na, ?a E Do with m. = IM-1 and n = [ N ]  
for closed M and N ,  and let m - O 'n. Then for any G :  Vars --f Do, 

p.iwzj, = pz.Mxj: 
= Aod.m 0 d 
= 2"d.n o d since m n 
= [IAz.Nz],, similarly. 

using informal ,?-notation A" in Do (d E; Do) 
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Hence for all zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd in D ,  not just in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBADo, 

m zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAo d zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= [ M z ]  (6:) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA([Ax.Mx],) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 d by Definition 2.1 (iii) 
= ([AzNx],,) o d by above 
= n o d  similarly. 

(ii) By (i), i t  is enough to show that if B satisfies (0-) then 8" satisfies zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( l ) .  Let 
[MI] zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(d) = [NI] (a:) for all d E Do; then by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2.1 (iii) and (w-), [MI] (G:) = [ N ]  (0:) 
for all d ED. Hence, since 9 is a structure, [Ax.M], = [Ax.N],. 

6.6. Corol lary.  T h e  interiors of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9 w  and of the term model of A,8q are not structures, 
even though they are pseudo-models of A,8. 

Proof.  90 and the term model of Apq are large; see 5 7 for proof. 

6.7. Remark .  Is something wrong perhaps with our definition of "interior"? Could 
a change in the definition of [ 4" make the interior of a structure always a structure? 
No, it could not. Whatever way [ ]" is defined, provided i t  has the property 

[M] "  = [ M ]  for all closed M ,  

the proof of 6.5 (i) will go through, as can easily be checked. 

6.8. Sensible s t ruc tu res .  Recall that sensibleness meant that all unsolvable 
terms were identified. Now for non-closed terms M, i t  can be shown that M is un- 
solvable iff 12, . . . x,. M is unsolvable, where the sequence xl, . . . , x, includes all 
free variables in M ; also, for pseudo-models of A,8, if 9 1 Ax, . . . z,. M = Ax, . . . x,, . N, 
then 9 b M = N .  Hence for pseudo-models of A/?, 9 is sensible iff 9' is sensible. 

6.9. Lemma. Let 9 be a sensible pseudo-structure: 

(i) if 9 i s  a structure, then go  satisfies (7); 

(ii) If 9' i s  a structure, then go satisfies (LO) .  

such that [y], = [ M ] o .  By the proof of 5.12, [Az.Mx], = [MI],,. Hence 
Proof.  (i) Given any 6 :  Vurs + Do and any variahle y, there exists a closed term ill 

[ ~ ~ . ~ ~ j ;  = px.Yx]o 
= I d .  ([y],) o d noting that 9 is a structure 

= A d . ( [ r q , )  a 
= p x . M x j o  

= 4Y). 

= wnu 

So 9" satisfies (q)  by Lemma 4.2. 

(ii) go is a hard sensible structure; hence by 5.13 it is extensional, i.e. i t  satis- 
fies (w). 

6.10. Remark.  I n  Case (i) of the lemma one cannot say 9' is extensional: in fact, 
if 3 is large, then 3' will certainly not be extensional. So if a large structure 9' can 
be found which is a model of A@[ (or in which all unsolvables are identical), then 9" 
will be an example of a pseudo-model of Ap[ which is not extensional. (See 4.4 and 
next 5) .  
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§ 7. Two Counterexamples zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPo = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(Pw, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0, [ ]) be the model of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAp defined in SCOTT zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[HI. This P w  is a struc- 
ture (SCOTT [18], pp. 530), and is sensible (HYLAND [lo], p. 370). But i t  is not ex- 
tensional; using Scott's notation, if d is a finite non-empty element of Po, then d and 
graph(fun(d)) are extensionally equivalent elements of Po, but are not equal. 
(SCOTT [18], p. 526.) Hence the following 

7.1. Fact .  By Corollary 5.13, Bw i s  large. 

7.2. Fact .  9oo, the interior of Po, i s  not a structure (by (6.5 (i)), and hence is not 

7.3. Fact .  B y  Lemma 6.9 (i), Po" k (q ) ;  in particular 9'0" k Ax.yx = :y. 

From the last fact, Po" is contained in the set FUN of SCOTT [18], p. 531. But it 
is not extensional. In fact, Po" does not even satisfy all the equations of Apq (i.e. it 
is only a pseudo-model of $3, not of @q), despite satisfying those of AD together with (7). 
(Cf. Remark 2.9.) What fail are some of the (&consequences of (q), for example: 

extensional. 

7.4. Fact .  Not Po" zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk 1 = I. 

(Proof. If 1 = I was true in Pwo, then i t  would be true in 9'o, since 1 and I are 
closed, and so .Po would be extensional, by 4.3 (ii)). 

7.5. Remark .  Let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm = [l] = Ade.d o e ,  and i = [I] = A d d .  Then nz, i provide a 
concrete example to show that Poo is large. I n  fact, for all d E Po" and 0 .  Vars + Po", 

m o d = [Ay.xy] (b:) by 2.1 (iii) 
by (q )  in 9%" = Ex] (62) 

= d .  

And i o d = d for all d E Po; so m 
for all finite d E P'o. 

i .  But m - i ;  in fact as we noticed m o d $: i 0 d 

Putting i t  another way, [m]' = [i]" but [m] n [ i ]  = 0: or again, i f  p and p are the 
functions defined by 

y(d) = m o d ,  y ( d )  = d (d E Po), 
then ip and y have different indices in 90); but in Poo, if P'o" were a structure, they 
would both be forced to have the same index, which is impossible since the indices 
are chosen by [r ] which is the same in 9'0" as in 9'o. 

From Boo, we now turn to another example. 

7.6. Defini t ion.  A!(Apq) is the term model of A/?q in the sense of BARENDREGT [I], 
namely the set of all equivalence-classes of A-terms with respect to the relation 
APT !- X = Y ,  with [ ] defined by letting [M]llr be the class containing [T,/w,, . . . , 
T1,/v,7] X ,  where v l ,  . . ., w,, are the free variables of M and T ,  is any member of ~ ( v , ) .  

7.7. Lemma. d(ADq) is  a structure. 

Proof.  The only non-routine property to check is (6). Let [ U ]  (6:) = [V ]  (0:) be 
true in A"(A&) for all d,  and let wl, . . ., v,, be the variables free in U V  other than IC, 

and T, .  . . ., T,, be members of o(vl), . . ., ~ ( v , , )  respectively. Then for all terms P, 

APq 1 [Pix,  Tl/v,, . . . , Tl , /~ l l~ l  u = [Pix. Tl/?ll, . . . , Tll/v171 V .  
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Taking in particular P zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy ,  a new variable, and applying zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(6) in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA& gives zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Agq t AY-CYlZ, T I l V l ,  - *I u = Ay.Cylx, T,lv,, * * .I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv ,  
which is equivalent to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Abq [Tl/vl, * * -1 (ay.[y/sl u, = [T l /v, ,  * * -3 (&*[y/x] v), 
which by (a) implies that [Ax. Und = [Ax. TJO. 

(By the way, putting P = y is the key to this proof; if P was restricted to closed terms, 
the proof would be trying to show d ( A / ? q ) O  is a structure, which it is not (see below).) 

7.8. Remark.  The interior of A'(@q) is another example of a pseudo-model which 
is not a model. Because by PLOTK~")S counterexample [13] &(APT) is large, and hence 
by 6.5 (i), &(A&)' is not a structure, but only a pseudo-model of @q. 

A ( A P q ) O  has slightly different properties from zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA90" ; like 90' i t  is not extensional 
(because if it was, it would be a structure), but unlike 9w" it satisfies all the provable 
equations of APC, including 1 = I. So d ( A & ) '  and Bm" together show that the one- 
way implications in Proposition 4.3 (i) are irreversible. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

7.9. Remark .  I n  contrast to the above, with the splendid model D, everything 
goes perfectly smoothly; it is a structure, satisfies (w-) and (w), and hence it possesses 
an  extensional interior which must therefore also be a structure. 

Q 8. Combinatory models 

How do A-models and their complications connect up with models of combinators? 
Models of combinatory logic look very similar t.0 models of the A-calculus, and yet 
t,hey are much simpler to define; how can this be? 

Well, in fact i t  cannot be; and we shall show why in this section. 

8.1. Defini t ion.  The thwry CLw of weak combinatory equality is a first-order theory 

combinatory terms: S, K variables, ( X Y ) ;  
formulae: X = Y ,  p, 3 y, ~ p , ,  Vxp,; 

logical axioms and rules : as usual; 

non-logical axioms: VxVy'Yyx(Sxyz = xz(yz)) ,  

with equality in the usual predicate-logic sense (cf. Remark 3.3) : 

VxVy(Kxy  = x), i ( 8  = K ) .  

(The relation CLw I- X = Y can be shown to  be the same as weak equality as i t  is 
commonly defined; cf. BARENDREGT [2] Theorem 2.12.) 

8.2. Defini t ion.  The theory CLj of combinatory /?-equality is obtained by adding to 
CLw the extra axioms [R], [S ] ,  [SKI, [SI] of [7, p. 2031. 

8.3. Defini t ion.  The theory CLPq of combinatory pq-equality is obtained by adding 
to CLP the extra axiom [Il] of [7, p. 2031. 

8.4. Def in i t ion.  A model of CLw (or CLP or CLj3q) is a quadruple '32 = ( C ,  0, s, k) 
where C is a set, o maps C2 into C, and s, k E C, such that '32 satisfies CLw (or CLP or 
CL,9q) in the usual Tarski sense of first-order logic. For each combinatory term X and 
each valuation 6 of the variables, ((X)), is the interpretation of X defined by u in 
the obvious way. 

20 Ztschr. f .  math. Logik 
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8.5. Comment.  The zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApq axioms contain no free variables, and their purpose is 

to replace rules zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( E )  and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(0. For example, consider zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACLPq zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA; in [7] 5 6C, i t  was proved that 

(13) 
Thus rule (5)  is admissible in CLpq; that is, if (c) were added to  CL& no new provable 
equations would result. But on the other hand, (5)  is not directZg dwivable in CL&: 
that is, as 8.13 will prove, one does not have in CLpq 

if CLBq t Ux = V x  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(x not in UV) ,  then CLBq t U = V .  

u x =  V x k U =  v 
for x not in UV; equivalently, not CLPq zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI- ((Vz.Ux = VIC)  3 U = V ) .  Similarly with 
(5 ) :  for none of Curry’s definitions of [XI does one have X = Y t. ([x].X = [x].Y), 
although rule ( 5 )  is admissible. Consequently, a model V of CLPq need not satisfy 
(5 )  or (5 )  (in the sense of 3.1 or4.1). This means that deductions using ( 5 )  or (0 cannot 
be carried out in arbitrary models, so combinatory models certainly do not do the 
same job as I-models when it comes to deductions. They correspond in fact to  pseudo- 
I-models as will be shown. 

For CLB the position is the same as for t3q; the axioms give admissibility, but not 
direct derivability. Of course for CL,4 rule (5 )  is not admissible in its full strength ; all 
one gets is rule (c) of [7] p. 201, namely 

(14) if CLP t Ux = Vx and x is not in U V  and U ,  V are 0,-obu (i.e. they weakly 

reduce to terms of form S X Y ,  S X ,  8, K X  or K ) ,  then CLB t U = V.  

8.6. T h e  I- and H-t rans forms.  Recall that for combinatory terms the analogue 
of Ax is [XI, which can be defined recursively by any of several algorithms ([7] 8 6A),  
and which has the property 

(15) 

Each algorithm for [x] determines a map M I+ M H  from A-termfi to combinatorg 
terms; and there is a natural map X c+ X ,  in the opposite direction ([7], p. 212). In 
what follows, [z] will be assumed to be defined by algorithm (abf), namely 

(a) [x].U = K U  if x not in U ,  
(b) [z].x = I (= SKK) ,  
(f) r.1.uv = fwxl U )  ([XI v, 
(where “z’’ denotes identity of terms). This choice of algorithm is due to BAREN- 
DREGT [l], who has pointed out that i t  is particulary convenient for comparing p-equal- 
ities. (In contrast, for comparing reductions other algorithms have more advantages ; 
see [8], for example.) This algorithm has the property 

(16) 

(17) 

CLW I- ([XI U )  V = [ V / X ]  U .  

(“/XI W I T  = “,/XI MI, > 

and hence by (15), 

CLW b ( ( I S M )  N ) H  = (“/XI M),y .  
From these properties one gets by straightforward inductions : 

(18) 
(19) 
(20) 
(21) 

Ip  k M = N * CLp I- MH = Ni l ,  
CLp I- x = Y e- Ip I- x, = Y,, 
CLp k X*H = x, 
I$ t. MI[, = M .  
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8.7. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBADefini t ion.  For each model zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACLw, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA‘ifA is the pseudo-A-structure whose 
domain is C and whose valuation-map is defined by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[MIa zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= ( ( L V ~ ~ ) ) ~ .  

8.8. Defini t ion.  For each pseudo-A-structure 9, gB is the model of CLw whose 
domain is D,  s = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[Azyz.xz(yz)], k = [Axg.x]I and whose valuation-map is defined by 

It is easy to check that VA and Sll are indeed pseudo-A-structures and models of 
CLw (respectively). Incidentally, to prove that PIf satisfies the axioms for S and K ,  
one does not need (t) ,  but only 2.1 (iii). 

Now let Models (CLP) be the class of all models of CLB, and P-models (AD) be the 
class of all pseudo-models of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA/?, and similarly for the other formal systems. 

8.9. Propos i t ion  (BARENDREGT). The mappings V H %?A and 2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI+ 9~ are mutual 
inverses, and give a one-to-one correspondence between Models (CLP) and P-models zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(A@. 

Proof.  If V is a model of CLP, then ‘XA is a pseudo-model of &4, by (18) and the 
definition of %A. Conversely, if 93 E P-models (18) then gIJ E MocleZs (CLB) by (19). 
Also, by (20) and (21) i t  follows that 

((x>>m = I [ xAIo  ‘ 

(22) ‘XAH = 9, B I J A  = 9. 

Hence the mappings form a one-to-one correspondence. 

8.10. Remark.  Note that the above mappings, which are “natural” in an intuitive 
sense, relate models of CLP with pseudo-models of AP, not models. And since there 
are pseudo-models of @ which are not models, there are models of CL#l which do not 
correspond to any model of Ab. (Take gf1, for any 9 which is a pseudo-model but 
not a model of AP.) 

8.11. Proposi t ion.  The mappings V? H gA and 9 t+ gH give a one-to-one corre- 
spondence between Models (CLPq) and P-models (A&). 

Proof. Since Models (CLPq) is a subclass of Models (CLP), and similarly for A, by 
8.9 it is enough to prove that %? E Nodels (CLPq) implies E P-models (APq)  and vice- 
versa. But these results follow from the analogues of (18) and (19) for 8.1, which are 
easy to prove. 

8.12. Remark.  The next proposition will emphasize yet again the contrast between 
combinators and R ; although in A-models (7) implies extensionality, in combinatory 
models CLPq is strictly weaker than extensionality. This is because, as wits mentioned 
in 8.5, the &-axioms only give admissibility of rule (5)  not derivability, and i t  cor- 
responds to the fact that for A, a pseudo-structure may satisfy (q) without being ex- 
tensional. 

8.13. Proposi t ion.  The term model of CLPq is extensional, but there is  a model of 
CLPq which i s  not extensional. 

Proof.  The term model of CLBq is extensional because if CLPq t UZ = VZ for 
all Z, then in particular for a variable x not in U V ,  CL& k Ux = Vx, and so 
CLPq I- U = V by (13). 

For the second part, take the interior of the term model; this is not extensional by 
PLOTKIN’S counterexample 1131 (see also Q 7). 

8.14. Remark.  By the preceding results, for the and j3q systems there is an exact 
correspondence between combinatory and pseudo-A-models. Now it only remains to  
deal with weak equality; but unfortunately here the correspondence is not so neat. 

20* 
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It can be made a bit tidier by changing the [XI-algorithm in the definition of H (for 
example to algorithm (abcf)), but then the correspondence for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA/3 is lost. So we shall 
keep to algorithm (ahf). 

The first task is to define a formal system of A-equality which corresponds to the 
formal theory of combinatory weak equality. This has in fact already been done, by 
W. HOWARD in an (unpublished!) work in proof-theory, and his definition is equivalent 
to the following ([8], p. 172). 

8.15. Defini t ion.  Howard’s weak A-equality (Aw) is the theory defined by axioms zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(a), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( p ) .  (e) and the ruIes of symmetry. transitivity and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

$1 = N 
(23’ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[M IX ]  P = [N IX ]  P * 

8.16. Proposi t ion.  (i) For pseudo-structures, 9 satisfies (a )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand (/?) iff 9 is a pseudo- 
model of Aw. (ii) If V is a model of CLw, then %>. is a pseudo-model of Izw; conversely if 9 
i s  a pseudo-model of AIL), then 9,[ is a model of CLw. 

Proof. (i) Let 5’2 satisfy (a)  a.nd (/I). It is enough to show that 9 satisfies rule (23). 
By lemma 2.8, (3) in 2.8 holds; so if [[iWJjU = [ N ] c  for some u, t.hen [“Mlz] Pau = 
= [PI (d:) = [ [ N / x ]  P ] u ,  where m = [N ju  = [ N l O .  The viceversa part is obvious 
(see Def. 2.6). (ii) By [S], pp. 171-172, 

C L w t . X =  Y =. i i w t - x A =  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAYA. 
Conversely, a st,raightforward induction (cf. (19)) shows t,ha,t 

AW t. M = N CLW k JIj, = N i l .  

Then (ii) follows from these by definitions 8.7 and 8.8. 

8.17. Remark.  Proposition 8.16 (i) shows that satisfying (B) does not imply being 
a pseudo-model of Ap: in fact, if y occurs free in M or N ,  not Aw k Ay.((Ix.nil) N )  = 

= Ay . ( [N /z ]M) ,  since (23) is stronger than (p)  and ( Y )  but not than (6). Moreover, 
the proof of 8.16 (i) incidentally points out that pseudo-models of I w  are “models” 
of Lw in the usual Tarski sense (as in 3.3): the only non-routine rule of inference, (23), 
is always satisfied in the stronger sense. 

8.18. Remark.  Incidentally, an arbitrary pseudo-A-structure 9 can always be made 
into a pseudo-model of Aw by changing the valuation-map [I: ; namely by taking gHA 
instead of 9 (i.e. taking 5 1’: [MI :  = 1MHA],). (9[, is a model of CLw by the sentence 
just after 8.8, and then gfrn is a pseudo-model of 3,w by 8.16 (ii).) I n  general gJrA + 9, 
of course. 

8.19. Conclusion. Combinatory models seem to correspond most naturally, not to 
models of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI., but to pseudo-models. For /? and ,911 t.he “natural” correspondence is 
one-to-one, but for weak equalities it is not. 

This correspondence has influenced us a bit, in our choice of which class, pseudo- 
models or models, to adopt as the “real” models of 2-calculi. Both classes seem inter- 
esting but the study of pseudo-models can proba.bly be most efficiently carried out by 
considering them as models of combinatory logics, leaving the study of models to be 
done through &calculi. 

One last point : for extensional structures, all the different concepts of model coincide ; 
more precisely, the three kinds of combinatory model (models of CLw, of CLP, and 
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of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACLpy) coincide, and for 2 all six kinds coincide (pseudo-models of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAw, models of dw, 
etc.), and the H-transform is a one-to-one correspondence between extensional com- 
binatory and extensional 1-models. 

Appendix. The weaker sense of satisfaction 

In footnote 2 on p. 293 an alternative, weaker, way of &fining “ D  satisfies zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(6)” 
was described. This appendix will look a t  t,his weak sense of satisfaction for the three 
rules zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(E), ([) and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(w). For (0, we shall show that in structures the weaker and st.ronger 
senses coincide. For zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA((I)), the weak sense will turn out equivaleiit to (w”). For ( E ) ,  we 
shall give an explanation of the weak sense in terms of the d-definable functions of 
the model, due to GORDON PLOTKIN (in correspondence). 

A l .  Defini t ion.  A pseudo-structure 9 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAweakly satisfies ( c )  iff for all M ,  iV and all zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
z zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 F V ( M N ) ,  (V6. [Mx] ,  = [N.x]n> 3 {Vo.[MI], = [ N j U ) .  Equivalently, 

(24) {vo.[Mn, - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp q U }  => p~ .pq ,  = pv],}. 
A2. Defini t ion.  A pseudo-structure 9 weakly satisfies (w )  iff for all iM, N .  

{VG V P  closed [MP],, = [ N P ] , }  3 {Vo.[H], = EN], ) .  

{ v ~ . p q ,  = [ I INJJ => { v G . p . q u  = [rjlZ.Nlju). 

A3. Defini t ion.  A pseudo-st.ructure 9 weakly satisfies (5) i f f for all M ,  N ,  

A4. Remark .  The corresponding strong senses of satisfaction were defined. respec- 
t,ively, just after Definition 4.1, in Defiiikion 5.3, and in Definition 3.1. For (5 )  and (w )  
the strong and weak senses coincide when M N  contains no variables. (Hence, in part- 
icular, for (10’) the two senses would always coincide.) For ( E ) ,  the two senses coincide 
when M N  contains only x free. 

A5. Proposi t ion.  For structures or lmrd pseudo-structures, weak satisfaction of ( 5 )  
is equivalent to stronger satisfactiosr, i.e. to e.ztensiona1ity. 

Proof.  Obviously the stronger sense implies the weaker. For the converse; if P is 
hard, then i f  sn - n there exist closed terms M ,  N such that = WL and [ N ] ,  = n 
for all 5, so we ca,n apply (24) to get r t z  = n. On the other hand if 9 is a structure, 
then 9 is extensional iff 9 is a model of Apt, by Proposition 4.3. But if 2 weakly 
satisfies (0, induction on 1,!l<-proofs shows that 9 is a model of &I[. 

A6. Note. For non-hard non-sttructure pseudo-st,ructures there seems to be no 
reason why weak ( 5 )  should coincide with ordinary ( 5 ) .  

AT. Proposi t ion.  Let 9 be any pseudo-model of A@; then 53 weakly satisfies (uj )  iff 
9 satisfies (w’). 

Proof.  For “a”, use Definition 43. For “e”, translate the proof of Lemma 5.2 
into 9, as suggested in Remark 5.8. 

A8. Discussion of weak ( E ) .  In the aut,hors’ opinion, current logical pract,ice 
leads most naturally to the stronger sense (cf. also [18], p, 523); but GORDON PLOTXIN 
and G ~ R A R D  BERRY have pointed out in correspondence that there exist constructions 
interesting from the computer-science point of view, which give pseudo-structures 
satisfying (6) only in the weak sense. So the weak sense seems worth studying, too. 
(B+4RENDREGT in 151 used the weak sense, but says that he would now prefer the 
strongcr .) 
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Weak zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 5 )  is best interpreted not in termh of the objecth in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD, but the I-definable 
functions over D zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( G .  PLOTKIN, correspondence). Let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( D ,  0 ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 1) he a pseudo-I-structure 
and let F,, (n = 0, 1,  . . .) he the set of a11 A-definable functions from D" into D. That 
is, F ,  = L)" & D, and for 11 2 1. 

+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
p EP,,  e p: D" -+ D and 3M.Vd l ,  . . ., d,, ~ D . y ( d )  = "All1 ( ~ $ 1 ,  

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx,, . . . , zlz are the first n variables in some standard list of variables and they 
include all the free variables of A[.  Then the [ ]-map determincs for each p E F,,,, 
a set A,,(y)  F,  as follows: if V d l ,  . . ., d, l .  e E D. y (d ,  e) = [M I  (0';;. k;;9a+l), then 
define yIr by yw(d)  = [ A X , ~ + ~ . M ~  (6:) and put this y z f  into A,,(q). 

Weak ( 5 )  says that if M and N both A-define the same function p, then Y l r  = y ,  . 
In other words, B satisfies weak ( 5 )  if and only if for each n and each rp E F, ,+ l .  &(y)  
has exactly one member. 
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