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Abstract. In this text we will discuss different forms of randomness in
Natural Sciences and present some recent results relating them. In fi-
nite processes, randomness differs in various theoretical context, or, to
put it otherwise, there is no unifying notion of finite time randomness.
In particular, we will introduce, classical (dynamical), quantum and al-
gorithmic randomness. In physics, differing probabilities, as a measure
of randomness, evidentiate the differences between the various notions.
Yet, asymptotically, one is universal: Martin-Löf randomness provides a
clearly defined and robust notion of randomness for infinite sequences
of numbers. And this is based on recursion theory, that is the theory of
effective computability. As a recurring issue, the question will be raised
of what randomenss means in biology, phylogenesis in particular. Finally,
hints will be given towards a thesis, relating finite time randomness and
time irreversibility in physical processes1.

1 Introduction

In classical physical systems (and by this we mean also relativistic ones) random-
ness may be defined as ‘deterministic unpredictability’. That is, since Poincaré’s
results and his invention of the geometry of dynamical systems, deterministic
systems include various forms of chaotic ones, from weak (mixing) systems to
highly sensitive ones to border conditions. Randomness can then be viewed as
a property of trajectories within these systems, namely as unpredictability in
finite time, [3], [15], [7]. Moreover, ergodicity (à la Birkhoff) provides a rele-
vant and purely mahematical way to define randomness asymptotically, that is
for infinite trajectories, still in deterministic systems inspired from physics but
independently of finite time predictability of physical processes, [13].

Also recursion theory gave us a proper form of asymptotic randomness, for
infinite sequences, in terms of Martin-Löf randomness, [31], [36]. This has been
extensively developped by Chaitin, Schnorr, Calude and many others, [10], also
in relation to physics.
1 Invited Lecture, 35th International Conference on: "Current Trends in Theory and
Practice of Computer Science", Spindleruv mlyn (Czech Republic), January 24-30,
2009. Springer LNCS, 2009.



A third form of randomness must be mentioned: the randomness proper to
quantum theories. This randomness is intrinsic to quantum measure and inde-
termination, two principial issues in quantum mechanics, as, according to the
standard interpretation, it cannot be viewed as a form of (hidden or incomplete)
determination, [16], [1]. Technically, it differs from classical randomness in view
of Bell inequalities and their role in probability measures, [5], [7].

It may be shown that these three forms of randomness differ in finite space
and time. Yet, by hinting to some recent results by M. Hoyrup and C. Rojas in the
team of the author and by T. Paul, we will see that they merge, asymptotically.
This poses several open questions as for the correlations in finite time of classical,
quantum and algorithmic radomness, an issue extensively studied by many, as
these asymptotic analyses may propose a new perspective.

The infinity of this sequences is essential, as we shall see. Yet, before jumping
into infinity, let’s see how to randomness differs in the various theoretical frames,
at finite time, in reference also to computer networks and concurrency, [4]. Later,
we will correlate finite time randomness in different frames, by a conjecture on
its relation (equivalence?) to time irreversibility.

Finally, the question will be posed concerning the kind of randomness we
may need of in theories of the living state of matter, where complex interactions
between different levels of organization, in phylogenesis in particular, seem to
give even stronger forms of unpredictability than the ones analyzed by physical
or algorithmic theories.

2 A few structures of physical determination

In physics, the dynamics and “structures of determination” are very rich and
vary from one theory to another (classical, relativistic, quantum, critical state
physics. . .). They propose the theoretical frameworks, the causal relationships
(when the notion of causality is meaningful) or, more generally, the correlations
between objects or even the objects of a theory themselves. A great principle
unifies the various theoretical frameworks: the geodesic principle, a consequence
of the symmetries and of the symmetry breakings at the center of all physical
theories, [17], [6].

As for computability theory, we are all aware of the new and very relevant
role of computing in Natural Sciences. Yet, the reference to computer science
in the analysis of natural phenomena is not neutral; it organizes the world by
analogy to a formidable conceptual and practical tool, the digital machine, of
which the strength resides also (and mainly) in identical iteration. This takes the
form of primitive recursion (Herbrand’s and Gödel’s foundation of computabil-
ity), which is iteration plus “increment a register”. Iteration is at the center of
the reliability and portability of the software: it iterates or it does what it is
expected to, a thousand or a million times, even in computational environments
which differ, logically, a bitï£¡but not too much though. Recursion and portabil-
ity constitute and require iteratability. This is what leads Turing, its inventor,



to say that his “discrete state machine” is Laplacian2, [37] (see also the reflec-
tions in [27], [28]). By the analysis of programs, or by iterating computations,
its evolution can be predicted. Unpredictability is practical, says he; it is not by
principle, whereas it is the interesting principle in the continuous dynamics of the
physics of chaotic determinism (Turing’s other pioneering exploration, [38]) as
well as in quantum mechanics, albeit for other reasons. The situation is radically
changing in computer networks and the related theoretical frames for concur-
rency: the complexity of physical space and time steps in along computations.
And randomness pops out.

3 Randomness

“Random” is not the opposite of “deterministic”, in spite of the opposition of these
concepts that is commonly made in computing and biology. As a matter of fact,
the analysis of randomness is part of the proposal for a structure of determina-
tion of physical processes, in particular in classical dynamics, where randomness
is deterministic unpredictability. But it is so also when it is related the very
precise and specific notion of quantum indetermination and quantum measure
of “deterministic evolutions of the state function” (determined by Schrödinger
equation).

3.1 Classical

What would a dice say if we were to ask it: “Where will you go?” It would an-
swer: “I will follow a geodesic, an optimal trajectory, from my initial conditions; a
course which will minimize the Lagrangian action (energy×time). My trajectory
is perfectly determined by Hamilton’s principle, otherwise known as the princi-
ple of least action. If you are unable to measure exactly my position-momentum
or the boundary conditions, that’s your problem: my unpredictability, this ran-
domness you make into a paradigm, is purely epistemic. As a classical object,
my evolution is totally deterministic”. Now, classical (and relativistic) physical
measurement is an interval, by principle (there is at least thermal fluctuation).
So the processes which, all the while being deterministic, are “sensitive to the
boundary conditions”, hence to perturbations or fluctuations below measure, es-
cape prediction, and give us randomness as deterministic unpredictability, within
deterministic chaotic systems, [24], [15].

The epistemic nature of classical randomness is also given by the co-existence
of two complementary approaches to its analysis. One can understand the prop-
erties of dice throwing or coin tossing also by statistics. And probabilities, as
measure, may be given a priori on the ground, say, of the symmetries of dice or
coins. Thus, the same processes can be analyzed both in terms of deterministic
unpredictability and of probabilities or statistical analyses. This a further reason
to call classical randomness epistemic, one may easily change perspective.

2 That is, (equational or functional) determination implies predictability.



And the phenomenon is rather general. Since Poincaré (1890) we know of the
unpredictibility of one of the simplest or dearest deterministic systems: the frag-
ment of the Solar system made out of three celestial bodies in theri gravitational
field. On a plane, nine equations, Newton-Laplace style, suffice to deermine it,
yet. . . chaos pops out and today we can quantify its unpredictability, in (astro-
nomically short) finite time, [26]. Of course, it is better to analyse coin tossing
in statistical terms (too many equations and rather useless) and the Solar sys-
tem in equational ones (however,... we could bet on whether the Earth will still
be on a “viable” orbit around the Sun in 100 milions years, since this is prov-
ably unpredictable, [26]). Yet, they belong to the same conceptual frame, as for
determination.

3.2 Quantum

And if we asked the same question to a quanton, an elementary component of
Quantum Physics? Firstly, and this is very important, the quanton must be
produced and measured for it to be possible to hear or see its response – it is
necessary to prepare the experiment and to choose a measuring instrument. If,
for example, we were to throw it towards a Young’s double slit and if we were to
place an interferometer behind the slits, the quanton would say that it is a wave
which will pass through the two slits (hence the interference); if we were to rather
place a particle counter behind the slits, it would say that it is a particle which
will randomly select which slit to go through (50-50). Funny trajectory. . . its
evolution is indeed determined by a wave equation, Schrödinger’s equation, but
defined in a Hilbert space, a function space, outside of the world, beyond phys-
ical space-time. The measurement which brings us back to space-time in both
cases, gives us a ‘trajectory’ which is not a trajectory, a paradigm of intrinsic
randomness which is specific to quantum mechanics, [16], [1].

From a mathematical and experimental standpoint, Bell inequalities and As-
pect’s experiment ([5]) demonstrate that this randomness is different than that
of dynamical systems: the phenomena of entanglement give way to probabil-
ity correlations that are incompatible with classical probabilistic “laws”. As a
matter of fact, if two classical bodies (two coins) interact and then separate in
space and time, their evolution is statistically independent. In contrast to this,
the result of the probability measures of two quanta, which first interact and
then travel away in space, are correlated (this is “quantum entanglement”). In
short, if Bob in Paris and Alice in Rome, toss two “entangled quantum coins”
(or measure the spin up-down of entangled quantons) at the same (relativistic)
moment, they always obtain the same, random, result (or, more generally, the
results are correlated). There is no way to act on the result, and thus to trans-
mit instantaneously information, yet. . . something incompatible with classical
(and relativistic) theories happens and this has been extensively checked, by
experiments. Moreover, entanglement is the core idea in quantum computing.

In summary, it is fair to call quantum randomness intrinsic or objective,
in the sense that randomness is intrinsic to the theory (no ontological com-
mitment is necessary!), [7]. In other words, for the standard interpretation (no



hidden variables nor hidden determination), the theory is “complete”: there is
no way to avoid probabilities in measure and entanglement forces non-locality
of phenomena as probability correlations. The difference should be clear w.r. to
classical randomness, where one can both use a deterministic analysis and an
analysis in terms of statistical theories. Once more, in classical physics, in prin-
ciple, the underlying process are fully determined: there are just non-observable
(hidden) fluctuations or perturbations, in border or initial conditions, that may
cause massive (observable) changes in finite time (randomness as deterministic
unpredictability). Classical physics computes (determines) over approximated
measures and produces approximated results. In quantum physics what is de-
termined and computed (by Schrödinger equation), is not what is measured,
an exact but random value, whose probability value is the real projection of a
complex number (a vector).

3.3 Computational

And what would the pixel on your computer screen say, as a discrete image of
a physical trajectory? For it to move, there needs to be a program which de-
scribes a trajectory starting at this pixel’s location. This program could consist
in the discretization of the mathematical representation of the most complex (or
chaotic, § 3.1) of physical evolutions, that of a turbulence, for instance. Once
discretized, this representation (equational, or directly given by an evolution
function) affects a discrete database, within a discrete computational environ-
ment, made up of pixels, 0s or 1s, quite distinguishable from one another. The
natural framework for its geometric description is discrete topology. Within the
machine, the measurement of the initial conditions and that made at the bound-
ary will be exact. That is, contrary to the physical (classical) framework with
its interval-based metric and topology, the measurement of the initial situation
and at the boundary is exact in the case of a digital machine, in the sense that
we access digits, one by one. Moreover, in the isolated machine (not part of a
network), the measurement (the access to the data) is also absolute, in the ab-
soluteness of its time and space. If the trajectory of your dice, well simulated by
means of very realistic images, is reinitialized using the same initial and bound-
ary digital conditions, which can be done exactly, it will be identical, be it twice
or a thousand times. . .

Identical iteration, we insist, is the constitutive principle of the discrete state
machine and of its computer programming. There is no randomness in the
sequential machine: the pseudo-generators of random sequences are just that,
pseudo and, if they are launched again in identical initial conditions (the dis-
crete state machine can do this), they will identically iterate their sequences,
well distributed for statistical measurement. They are random in the sole sense
of having a “good” distribution of 0s and 1s, without regularities. Randomness is
an hardware mistake or, more generally, must be introduced from outside (the
theory).

In networks, instead, with the existence of concurrency (different machines,
distributed in space, “concurrently” allocated to the same calculation), the situ-



ation gets more complicated: the space-time of physics, even relativistic, intro-
duces new challenges; in it, there is randomness, even of human or social origin (a
computer is switched on/of in the net, by a human). So far, the new randomness
which presents itself is manageable and relatively well managed; it is possible
to make networks do, in general, what they were programmed to. So, to iterate:
network software is globally reliable, portable. . . owing to the remarkable efforts
on the part of computer scientists. The fact that the databases remain discrete,
with their well-separated topology, is of course at the basis of these successes.
Yet, we believe, the blend of many forms of randomness in concurrent computer
networks deserves an ad hoc analysisï£¡and major clarification: a plan for future
work (see below).

3.4 Biological

And if we were to ask a species what will be its fate in the next ecosystem, in
one year, in a million years? What “structure of determination” can enable us
to speak of this randomness in a rigorous fashion, if randomness there is? And
concerning the determination of the phenotype on the basis of the genotype, in
ontogenesis? Is it possible to speak about this in the terms of classical physics
or should quantum physics be preferred?

A common characteristic in the various forms of physical randomness is due
to the predetermination of the spaces of possibilities: random results or trajec-
tories are given among already known possibilities (the six sides of a dice, the
spin-up/spin-down of a quanton. . .). In fact, in quantum physics, even in cases
where particles can be “created”, sufficiently broad spaces are provided upstream
(the Fock spaces of which Hilbert spaces are “foliations”), spaces which capture
all the possible states, infinitely many in general. In biology, however, phase or
reference spaces (or spaces of possible evolutions) are far from being predeter-
mined. The possible and proper biological observables, phenotypes and species,
are not pre-given or there is no way to give them, in a sound theory and in
advance. An issue here is that species (and phenotypes) are co-constituted with
their environment. To make an analogy with the reasons for chaos in planetry
systems, some sort of “resonance effect” takes place in this co-consitutive process.
The difference is that in the physical deterministic case, the resonance happens at
one (and conceptually simple) level: the gravitational ineractions between a few
planets, fully determined by Newton-Laplace equations. In evolution (but also in
ontogenesis), the resonance takes place between different levels of organization,
each deserving an analysis on terms of an appropiate structure of detemination.
That is, between species, individuals, physical landscapes, but also organs and
tissues and, very importantly, by two ways interactions between these levels and
molecular activities, starting with DNA expression. Moreover, molecular events
belong to microphysics, thus possibly subject to quantum analysis, thus, quan-
tum probabilities. By this, one would need a theory encompassing both classical
randomness, which may better fit the description of macroscopic interactions,
and quantum randomness, as they may be retroacting one on top of the other.



We are far form having such a theory, even in physics (we will mention a recent
merging, but. . . at infinite time).

While waiting for some sort of “unified” determination and probabilities, in
biology and for this epistemic analysis (there is no ontology in the above: we
are all made just of molecules), it would be good to have a sort of biological
indetermination, comparable to the quantum indetermination of the conjugate
dimensions of position/momentum. That is, to analyse the (in-)determination
at the level of the passage from one reference space (ecosystem), at a particular
moment, to that of the “next” moment. And this passage would “contain” or
express the biological (phylogenetic, ontogenetic) trajectories, which are just
possibilities in a forthcoming, co-constituted ecosystem. For instance, when, over
the course of evolution, a “latent potential” ([22]) manifests in the appearance of
a new organ, an highly unpredictable phenomenon, it is the phenotypes and the
interaction between individuals which change (the biological observables), and
so the whole relevant space of analysis changes. Is this unpredictability to be
analysed within a frame of chaotic determination or is it proper indetermination,
like quantum randomness? A combination of the two?

Once more, like in quantum physics, there is no ontological commitment here:
the reader and the bacteria around/in him/her are all made of molecules and
quanta. Yet, the question is: which theory is a good one for dealing with these
strange bags of molecules we are? Darwin proposed a very relevant theory of
species and organisms, totally disregarding molecules, but looking at the proper
observables. Then, one day, perhaps, we will have a unification: we will be able
to grasp at once molecule and species. So far, the so called “synthetic theory”,
which pretends to understand evolution in molecular terms, has been shown to
be incomplete: no way to understand the phylogenetic drift in terms of random
mutations only, [22], [23]. In short, this is (also) because massive retroactive
effects, from the ecosystem to the phenotype down to the genotype intervene
even at the molecular level (e.g. mutations under stress) or make the expression
even of identical DNA radically differ. A global analysis of some aspects of the
phylogentic drift (its complexification as symmetry breaking) may be found in
[8], by an analysis of “anti-entropy” as biologically organized lowering of disorder.

I insist on the issue of randomness in biology, as it is amazing to observe that
leading biologists, still now and along the lines of Crick and Monod ([32]), con-
trappose determination and randomness according to Laplace’s split: determined
means predictable (in general, as Laplace knew that isolated critical points ex-
ist, where “des nuances insensibles” may lead to unpredictable trajectories), and
radomness is its opposit (non-determination), to be analyzed by statistics and
probabilities (to which Laplace greatly contributed). Along these laplacian lines,
determinism, as it is predictable, yields “programmable”, which leads to the the
idea that the “DNA is a program” (see [18] for an history, [30] for a critique from
the point of view of physics and Theory of Programming). Yet, since Poincaré
(1890), we know that classical randomness is deterministic unpredictability and
that unpredictability pops out almost everywhere in non-linear systems.



In conclusion, determination as necessity in life phenomena, understood in a
laplacian way, is far removed from the frameworks of modern determination in
physics, classical or quantum, even if it is supplemented by a few speckles of ran-
domness. Crick’s “central dogma3” and the “one gene – one enzyme” hypothesis
in Molecular Biology are good example of this. They guided research for decades
and, the first, is still now believed by many, modulo the addition of a few “epi-
genetic factors” and “norms of reaction” (for an alternative view, see [9]; more
discussions and references are in [30]). By their linear causality, these asumptions
are the opposite of the views on the interplay of interactions in XXth century
physics. In these modern physical frames, causes become interactions and these
interactions themselves dynamicaly constitute the fabric of the universe and of
their manifestations; reshaping this fabric modifies the interactions, intervening
upon the interactions appears to reshape the fabric, [6].

3.5 More on randomness in computing

Physics has been able to propose two different notions of randomness in finite
time: classical deterministic unpredictability and quantum randomness. As we
shall mention, they merge in infinite time. Biology badly needs its own notion,
while in search, of course, for unification with physical (molecular?) structures
of determination.

Computing generated its own very robust notion for infinite sequence, Martin-
Löf randomness, our next topic, yet it has no internal notion of randomness at fi-
nite time. Following Kolmogorof, Chaitin, Levin, Calude and many others deeply
analysed sequence incompressiblity and showed that for infinite sequences, under
suitable conditions, the incompressibility of initial segments yields Martin-Löf
randomness. But, unless the physical generating process is spelled out, a finite
sequence whose length coincides with its shortest generating program, is not
random, it is just algorithmically incompressible. In other words, it is pseudo-
random in the strongest wayï£¡and it is impossible to see in it any regularity
what so ever. Yet, if one stays within theory of computation and no physical pro-
cess is mentioned, there is no other way to give/conceive it but by a program, a
formal/linguistic matter, as long as we stay in the finite.

Some may see this as a terminological nuance, yet too much confusion in
computing deserves clarification. Consider, say, a so called “non-deterministic”
Turing Machine. This is just a formal, deterministic device, associating a set of
numbers to a number. Its evolution is determined by an ill-typed input-output
function. Indeed, it is a useful device as it allows to speed up computations by a
form of basic parallelism. Yet, as long a physical process, chosing, at each step,
one or a few of the elements in the output set, is not proposed, one cannot discuss
about “determination” nor “randomness”: is it classical? quantum? Similarly for
a finite sequence. Of course, a physical random sequence is incompressible, in
principle, but the converse is false or ill defined.
3 “Genetic Information” goes one-way, from DNA to RNA to proteins (and to the
phenotype).



Similarly, the very difficult issue of non-determinism in concurrency deserves
a closer attention and comparison with physics. As we said, classical (and rel-
ativistic) frames are deterministic, from our chaotic planetary system to coin
tossing. Often, non determinism in networks is a “do not care” non determin-
ism: the process works anyway, disregarding the specific underlying compu-
tational/determination structure (software and hardware). Other notions are
known, and all handle the very difficult situation where, somewhat like in biol-
ogy, various notions of randomness interact in a network (classical randomness,
‘humans’ whim switching on a computer, as we observed, a quantum experiment
guiding a computer action in a physics laboratory...). A large area of research
deals with these processes by statistical tools, independently of the different
causal structures. This is possible as the issue may be considered epistemic: like
in classical systems, dice throwing and planetary systems may be analyzed also
in purely statistical terms and by probabilities measures, independently of a fine
analysis of determination. Yet, the question remains whether a closer analysis of
randomness in concurrency may lead to a better understanding, in particular in
relation with the rich structures of determination in physics.

3.6 Towards infinity: merging with physics

Dynamical unpredictability is a finite time issue: the mathematical determina-
tion of an intended physical process, by a set of equations or by an evolution
function, does not allow to predict the process beyond a certain finite amount of
time. Today, we can compute the upper bound of predictability for the solar sys-
tem and a lot more. Of course, as for dice or coins, the beginning of randomness,
as unpredictability, is... immediate. Note that this forces to relate pure math-
ematics (the formal determination) and physical processes by the only form of
access we have to them: physical measure. It is approximated measure, a physical
(classical) principle, jointly to the (non-linear typically) structure of mathemat-
ical determination that produce unpredictability: by looking at the equations,
say, one understands that, and sometimes even compute (by using Lyapounov
exponents for example) when fluctuations below measure give diverging evolu-
tions.

However, we can stay within the purely mathematical realm and give a notion
of randomness just by looking at the mathematical determination. The price to
pay is the passage to (actual) infinity: these internal notions of randomness
are necessarely asymptotic. Many forms of deterministic chaos allow different
abstractions of this kind. A weak one, “mixing systems”, is sufficient to define
Birkhoff ergodicity. In short, a trajectory (or, even a point generating it) is
Birkhoff random when, w.r. to any observable (a continuous function taking
values on the points of the trajectory), the temporal mean coincide with the
spatial one. More formally: given a dynamical system (D,T, µ), a point x is
(Birkhoff) random (or typical, in the ergodic sense) if, for any observable f ,

lim
n

1
n

(f(x) + f(T (x)) + . . .+ f(Tn(x))) =
∫
fdµ



That is, the average value of the observable f along the trajectory {x, T (x), T 2(x),
. . . Tn(x), . . .} (its time average) is asymptotically equal to the space average of
f (i.e.

∫
fdµ).

As already announced, also computability theory may generate randomness.
Algorithmic randomness (Martin-Löf, ’65, Chaitin and Schnorr) for infinite se-
quences was originally defined in Cantor SpaceD =: 2N given µ, a measure onD,
an effective statistical test is an (effective) sequence {Un}n, with µ(Un) ≤ 2n.
That is, a statistical test is an infinite decreasing sequence of effective open sets
in Cantor’s space (thus, it is given in recursion theory). By this, one can define x
to be ML-random if, for any statistical test {Un}n, x is not in ∩nUn (x passes
all tests). In short, algorithmically random means not being contained in any
effective intersection or to stay “eventually outside” any effective statistical test
(to pass all tests).

Now, by non obvious work, M. Hoyrup and C. Rojas, in their thesis under
this author’s and S. Galatolo’s supervision, have reconstructed a fully general
frame for computable dynamics. That is, they have given an effective structure
to physically interesting dynamical systmes where Birkhoff ergodicity applies.
By this, they could generalize Martin-Löf randomness to these spaces (under the
weaker form of Schnorr’s randomness) and show that it coincides with ergodicity
(Birkhoff randomness) [19], [20].

Next building, in the same institution, T. Paul recently proved that the pe-
culiar role of “infinite time” is somehow strenghtened by the comparison between
quantum (intrinsic) indeterminism and classical (chaotic but deterministic) un-
predictability [33], [34]. In a very syntethic way, he showed that, at the limit of
small values of the Planck constant (semiclassical limit) and related long time
behaviour, the two notions merge.

If the analogy is not too audacious, these asymptotic unifications have a well-
known predecessor. Boltzmann “unified” thermodynamics and classical physics,
asymptotically. In particular, he derived the second principle of thermodynam-
ics, by an analysis of (or “as if there were”) infinitely many particles in a finite
volume. That is, the “reduction” is performed at the limit, by the (thermody-
namic) integral over infinitely many trajectories. More than a reduction, thus, to
classical physics, it is a matter of unification by the invention of a new unifying
frame. In short, in order to understand the abstract thermodynamic principles
in terms of particles’ trajectories, Boltzmann had to redesign classical trajec-
tories in the novel terms of statistical mechanics, he had to assume molecular
chaos and perform a limit transition, an extremely original step, far away from
Newton’s system.

4 A thesis on randomness and irreversible time

The ‘thesis’ I want to hint here (just a thesis so far, to be enriched by proofs or
arguments we work at) is that finite time randomness is ‘related’ to irreversible
time, in all the main physico-mathematical contexts. That is, one has irreversible
time exactly “in presence” of randomness (and viceversa) in all the theoretical



frames mentioned below (and above). Of course this thesis, yet to be ‘proved’,
is worth per se, as it commits our understanding of randomness, a not so clearly
defined notion in full generality, to irreversibility of time. Let’s hint to a few
arguments for it.

4.1 Classical

In Euler-Lagrange or Newton-Laplace equations, typically, time is reversible. The
same should be said, of course, for Einstein equations. Time appears squared,
so its sign has no influence on the evolution of the intended systems. But also
a linear field (time is not squared) may be reversed: reverse the sign of the field
and the particle goes backwords, in space and time. Reversibility corresponds to
the mathematical invertibility of the function describing the trajectory.

Poincaré, as recalled above, proved for us that non-linear (field) equations
generate chaos, to put in modern terms. Diverging trajectories, whose divergence
may be measured in various way (Lyapounov exponents, entropy growth. . .), im-
ply finite time unpredictability of generic trajectories. That is, arbitrarely close
points may rapidely diverge or fluctuations below observability, thus not know-
able, lead to observably different (unpredictable) evolutions. This is exactly clas-
sical randomness, from dice to the solar system, both determinsitic (see above,
and) chaotic systems, and many others. Of course, the finite time of unpre-
dictability is very different in the two cases: from fractions of seconds to milions
of years. But unpredictability puts an arrow on time: you need a future w.r. to
a present to define it. Mathematically, non-linearity implies non-invertibility of
functions and, thus, of the related trajectories: this is another way to impose a
direction on time.

4.2 Thermodynamics

Thermodynamics is the realm of oriented time: the second principle, for increas-
ing entropy, is the paradigm of time irreversible processes. But, what is entropy
growth in general? It is downgrading of energy, by a diffusion process. And each
diffusion, in physics, is given by random paths. Again then, irreversibility of time
‘goes toghether’ with randomness. Note that the divergence of trajectories in the
non-linear dynamics mentioned above may also be measured in terms of proper
notions of entropy growth.

4.3 Quantum

Schrödinger equation is linear, yet it is ‘reversible’, its own way, by the peculiar
role of the imaginary ‘i’: the inversion of time, −t, yields a −i whose behaviour,
squared, is the same as that of i. Yet, what is computed, the evolution of the
state function by Schrödinger equation, is not what is measured. And measure,
in quantum mechanics is a highly time irreversible process: no way to recon-
struct the proper complex values after their projection over the real numbers



(their modules) is given. Observe finally, that measure is a probability value of a
random process. Once more, than, randomness pops out exactly when one deals
with a time irreversible process.

How can algorithmic randomness help in this? As hinted above, the (algorith-
mic) notion of randomness for finite strings (that is, generated in finite time, in
principle) is purely formal: it is just a (very relevant) matter of algorithmic un-
compressibility. The sentence, in theories of algorithms, “given a random finite se-
quence”, has no contextual meaning, as for the analysis of physico-mathematical
determination, unless a physical agent producing the sequence is provided: will
it be a series of quantum measure? or a series of coin tossing? the result of
networks activity? their randomness differ, as we know.

Yet, computability theory provides a very robust, infinite time, notion of
randomness, which may be unified (asymptotically) to the two forms of physical
randomness mentioned above, both given also in finite time.

Does this prove that “all physical processes are computable” (an extended
Church Thesis), at least as for classical ones? Quite the contrary. Algorithmic
randomness is a form of (strong) undecidability (non recursive enumerability) of
infinite sequences, as an algorithmic random sequence has no infinite recursive
enumerable (sub-)sequence.

Thus, the algorithms/physics correspondence above proves an equivalence of
the negations, in deterministic systems: unpredictable is (asymptotically) equiv-
alent to (strongly) non effective. Thus, algorithmically effective processes corre-
spond, as for the structure of determination, only to physical deterministic and
predictable ones, a few rare processes in Nature (a simple pendulum, a falling
stone. . . with negligible friction).

These digital devices that are changing the world, are a rather extraodinary
invention of ours, comparable to and as important as the invention of the alpha-
bet, an early far from neutral discretization of language and knowledge, [25]; in
particular, the sequential machines are alpha-numeric discrete state divices of
incredible logical and physical stability. And, as for their use in the simulation
of all sorts of physical processes, Turing’s insightful distinction between “model”
and “imitation” helps to understand their effectiveness and pertinence w.r. to
intelligibility of natural processes ([37], [27], [28]).

In [29] further elements are given concerning these final remarks, including
an analysis of the limits of the (classical) computational language in (quan-
tum) physics. The point is not “super-computing”, that is the search for physical
processes which would compute non-Turing-computable functions, but the vary-
ing meaning of equational and functional approaches in very different contexts.
Quantum computing, typically, requires a truely novel insigth.
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