
 

G. Longo, E. Moggi.  Cartesian closed categories of enumerations 
and effective type structures.  in: Khan, MacQueen, Plotkin (Eds.), 
Symposium on "Semantics of Data Types", LNCS, vol. 173, 
Springer Verlag, 1984.



CARTESIAN CI.OSEDCATE(]CRIES OF F _ ~ T I C N S  

FCREFFECTIVE TYPE STRUCTLRES 

PART I 

G. LCN33, E. NIDC~I 

UNIVERSITA D I  P ISA 
DiDartimento d i  I n f o r m a t i c a  

Corso Italia 40 
56100 PISA 

ITALIE 

§.0 INTRODUCTION - (to Part I and II) -. By "data type" one usually in- 

tends a set of objects of the same "type" or "kind", suitable for mani- 

pulation by a computer program. Of course, computers actually manipula- 

te formal representations of objects. The purpose of the mathematical 

semantics of programming languages, though, is to characterize data ty- 

pes (and functions on them) in a way which is independent of any speci- 

fic representation mechanism. Thus the objects one deals with are mo- 

stly elements of domains borrowed from Set-Theory, Algebra, Category 

Theory .... whose meaning is well understood within each framework and 

does not depend on the practice of programming. However, by doing so, 

what is lost is the notion of effective computability, which has an in- 

trinsic operational character. This notion may be recovered by a sui- 

table definition of "computable'object" in abstract set-theoretic, al- 

gebraic, category-theoretic ... settings. 

In particular, a more specific motivation for the study of effec- 

tiveness over semantic domains may be suggested by the following analo- 

gY- 

The categories one needs for interpreting high level programming 

languages must possess strong completeness and closure properties so 
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that the existence of objects, which are formally given by general de- 

finitional tools, is "a priori" assured: e.g. we want that cartesian 

products and morphism spaces still belong to the given category, for 

these constructs are commonly used in the design of high level languages. 

Similarly, completeness and closure properties are the key idea 

for defining domains and categories in several areas of Mathematics, 

Banach, Hilbert or Sobolev spaces, say, may be considered as the (metric) 

completion of the possible solutions of a given set of equations. Once 

the solution of the problem studied is found in one such a space, it is 

then time to ask whether it is an "acceptable" solution from the inten- 

ded viewpoint or whether it has been added by the completion technique. 

For example, for a given set of partial differential equations, one may 

(easely) find a solution in the related (Sobolev) space and then check 

whether it is an acceptable (regular) solution, i.e. whether it is dif- 

ferentiable in the ordinary sense. 

Now, acceptable for a computer scientist means computable. It is 

then worth pursuing a general notion of effectiveness over abstract data 

types, since computable elements and maps provide the "regular" inter- 

pretation of programming constructs over semantic ~omains. Preliminary 

investigations on the effectiveness of the semantics of programs may be 

found in Scott (1976), Giannini & Longo (1983), Kanda (1984). 

Unfortunately, the natural numbers, ~, and the partial recursive 

functions, PR, are not sufficient for this investigation, since, in ge- 

neral, typed and type-free languages cannot be directly interpreted over 

PR or ~. PR and ~, though, may be used for defining effectiveness over 

more general data types. The methods are borrowed from higher type Re- 

cursion Theory or computability in abstract structures, nowadays strictly 

interelated topics in view of the work done in the 70's by several au- 

thors (see references). 

This paper is motivated by the study of completeness and closure 

properties of natural categories of effectively given data types. 

Countability, say, is a useful assumption for dealing with effectiveness 

over abstract data types. 

Suppose one is given two countable sets A and B, and two numbe- 

rings (onto maps) e A ~ ~ -~A, e B : ~ -+B. There is then a natural de- 
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finition of computable map between A and B : call g : A 

(effective) morphism iff there exists a recursive function f 

the following diagram commutes: 

, B 

such that 

f 
[0 --+~ 

( 1 ) eA[ I eB 

A +B 

g 

The category of numbered sets (EN) whose objects are pairs such 

as A : (A,e A) and morphisms defined as in (i), has been studied in 

Ershov (1973, 1975). An introduction and some applications may be found 

in Visser (1980) and Bernardi & Sorbi (1983), mainly, or Barendregt & 

Longo (1982). 

The first question one may ask about EN is whether there is na- 

tural way to give, effectively, a numbering to the set EN(A,B), the 

set of morphisms from A to B : (B,eB). In general, there is no 

such a "uniform" and "effective '{ coding of EN(A,B), given A and B. 

As a matter of fact EN is far away from being Cartesian Closed. 

Nonetheless EN has several nice properties. We recall a notion 

and a simple consequence of it, whose relevance should be clear. 

(R is the set of the (total) recursive functions; _~ is (~,id)). 

0.i Definition. A is a precomplete numbered set if 

(2) Vf PR ~]f'eR Vn(f(n) + ~eA(f'(n)) : eA(f(n)) 

(i.e. f' extends f w.r.t. (A,eA)). 

A is complete if 

(2) above holds and :~aeA Vn(f(n)+ ~ eA(f'(n)) : a) 

(a is a special (bottom) element). 

0.2 Generalized Recursion Theorem. Let (A,e A) be precomplete. Then 

(3) YfePR~n(f(n)+ ~ eA(f(n)) = eA(n)). 

The partial recursive functions suggest an obvious notion of partial 

morphism for numbered sets. 

0.3 Definition. A and B be numbered sets. Then feEN (A,B) (f is 
p -- -- 
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= of' a partial morphism) if ~f'{PR foe A e B 

For the purposes of this paper, partial morphisms will be studied 

in a general category-theoretic setting, since partial maps come out 

naturally in computability theory. Note that (3) above is equivalent 

to Vf EN (w,A) ]n(f(n)+ = f(n) = eA(n)) - p -- _ 

Completeness may be related to a Least Fixed Point Theorem (see later). 

Of course, (3) in Theorem 0.2 is a very desirable property for 

handling abstract data types, in view of the recursive definitions. 

But exactly because of this, one may want more; namely the possibility 

of inheriting completeness and other properties at higher types, i.e. 

for the set of morphisms on numbered sets, since functions are among 

the typical data to be mostly defined recursively. This cannot be done 

in general, in view of the lack of the above mentioned closure proper- 

ties for EN. 

There are two reasonable ways to obtain the Cartesian Closure (CC) 

of a Category such as EN: one may restrict the attention to a subcate- 

gory or enlarge the Category itself. The point is that both ways should 

be "natural" and should give interesting categories. 

In Part I we study a direct, elementary characterization of the 

"main" types of a well known sub-CCC of EN, Scott's effectively given 

domains (their computable sub-objects, to be precise). This will be 

done by a type structure over m, based on two simple notions: accepta- 

ble pairing and relative (G~del-)numberings (§.i). 

§.2 and 3 presents CCC's with partial morphisms and partial objects 

and relates domains to EN also by using these notions. 

Part II will introduce the CCC of Generalized Enumerations, whose 

definition is inspired by the notion of relative numbering and will 

relate it, as well as its computability properties, to EN. 

§.i An elementary approach to higher type computability 

Let 0 be the type of w. Then the integer types are defined by 

n+l;=n +n and the pure types by n+l;:n +0. Partial computable func- 

tionals in the integer and pure types may be introduced by using only 

w and PR, with no mention of the category-theoretic and continuity 
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properties of EN and Scott's domains, at first reading. The Heredita- 

ry Partial Effective Functionals were given in Longo (1982) (see Longo 

& Moggi (1983) for a few results and Longo (1984) for a discussion). 

i.i Definition. Let L ° = ~ and fix L c w--~ Define then 

n+l.5 L n L = {~ : ÷Ln+i/~xy.~(x)(y)cL n+l} 

n+2 L n+l +Ln+I/ ~eLn+l'5 foCaL L = {f : ~ n+l.5}. 

The key idea is that (some) functions in L n'5 g~delize L n+l by L n 

(see the notion of relative numberings in 3.2.2). 

There is another way to look at the HPEF, which makes explicit the 

role of the pairing function <,>, implicitely used in the definition 
n+l.5 

of L 

1.2 Definition. Let U be a set and F ~ U---~U. 

is an acceptable pairing w.r.t. F if: 

1) 

2) 

Then <,>:U×U ÷U 

~pl,P2cF Vx,yeU pi(<Xl,X2>) = xi, where Pl and P2 are total 

~f,gcF Xx.<f(x),g(x)>~F. 

Following the polish tradition in constructive mathematics, an in- 

teresting class of (pure) type 2 total functionals on R is defined 

in Rogers (1967; p. 364). Namely, f:R--+ ~ is Banach-Mazur if 

Yg~R ~hcR f(ly.g(<x,y>)) = h(x), where <,>:~x~ ÷ ~ is an effective 

pairing function (an acceptable pairing w.r.t. R, in our terminology). 

This can be generalized and extended athigher types as follows. 

1.3 Definition. (GBM) Let BM ° = ~ and fix BM 1 S~--~ ~. Define then 

n+2 BMn+I-~BM n+l by BM 

feBM n+2 if ~g~BM n+l ~heBM n+l Yx BM n f(ly.g(<x,g>)) = ly.h(<x,y>), 

where <,>:BM b x BM n ÷BM n is an acceptable pairing w.r.t. BMn+I~ 

What remains to verified is that <,> actually exists in any type, 

1 
for a suitable choice of BM . This will be done in §.3. 

It is now e a s y  t o  s e e  t h a t ,  i f  L 1 BM 1 t h e n  V n  L n BM n 

Just notice that 

n+l.5 n+l n 
(3) geL iff ~g'cL Yx,ycL g(x)(y) = g'(<x,y>). 
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n+2 n+l 
Thus, for fcL , fog(x) = f(ly.g'(<x,y>)) and, for some hcL , 

n+2 
fog(x) : ly.h(<x,y>), by the definition of L and (3) applied to 

fog. The rest is obvious. 

It is also a simple exercise to give a variant in the pure types 

of the GBM or the HPEF. Thus these functionals are an easy way to de- 

1 
fine partial computable functions in higher types, by taking L = PR 

1 
or BM = PR. Partial maps turned out to be essential in computability 

theory, mainly because they may be effectively numbered and possess 

universal functions. Moreover, the related type structures yield mo- 

dels of functional languages: namely of typed and type-free l-calculus, 

as it will be mentioned below. 

Interestingly enough the proof that these hierarchies are well de- 

fined (i.e. that <,> exists in any type) goes toghether with the proof 

of their main properties, which heavely rely on category theoretic and 

continuity notions for EN and Scott's domains. One cannot avoid, then, 

some mathematics. Let's first discuss the issue of partiality in a ca- 

tegory-theoretic frame. 

§.2. Partial morphisms and partial objects 

There are at least three different ways to introduce the notion of 

divergence in categories. By using partial morphisms, partial objects 

or both. In this section we consider concrete categories (with partial 

morphisms), i.e. subcategories of Set (Set), and see how these ways re- 
P 

late. 

2.1 Definition. Set is the category whose objects are sets and where 
P 

Set (x,y) = {fl f:X ÷Y (partial)}, for all objects x,y. 
P 

The following notion has been inspired by a talk given in Siena by 

A. Heller. 

2.2 Definition~ C is a concrete category with partial morphisms (pC) 

if: 

l) Every hom-set C(x,y) contains an every-where divergent morphism 

0 s.t. for all objects z,v and any f~C(z,x) and any g cC(y,v) 
x,y 

one has 
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2) 

0 of = 0 and go0 = 0 . 
x/y z,y x,y x,t 

There exists a singleton object t s.t. 

C(t,t) = {0t,t,idt ~ and 

VX,~ Yf,g~C(x,y) (f = g~=~¥h6C(t,x) foh : goh). 

Singleton objects clearly coincide to within isomorphism. Thus 

the category of total morphisms, defined as follows, does not depend on 

the choice of t. 

2.3 Definition. Let C be pC and t a singleton in C. Define 

then C with objects in C and morphisms as follows: 
--T 

CT(X,y) = {feC(x~y)/VheC(t,x)(foh = 0t,y ~ h = 0t,x) }. 

Clearly ENp is pC and (ENp) T = EN. 

A pC may be embedded in Set in the same way as a concrete cate- 
P 

gory may be emebedded in Set. Namely, the embedding functor 

I = CT(t,-):C Set is faithful and I(C(t,x)) = Set (It,Ix). 
p p 

As usual, one may also represent a partial f:x~y by a total map 

f:x ÷y±; where y± is obtained from y by adding a fresh element 

to y. Recall that, in a category C, x 4 y (x is a retract of y) 

if there exists a pair (in, out), with in eC(x,y), out c C(y,x) s.t. 

outoin = id . By this, we may give a notion of partial object, suita- 
x 

bly related to partial morphisms. 

2.4 Definition. Let C be a pC. Define then 

i) -±:C +C T is a bottom functor if C(x,y) ~ Ct(x,yi). 

.i 
2) x is a partial object if x ~ x in C T. 

(Intuition: ~ 4 ~7 )" 

2.5 Remark. Let t be a terminal object (a singleton) in C T. 

i 
t ( x ; moreover, if x is a partial object, then t ~ x. 

Then 

Partial morphisms and partial objects may be more fully related 

within Cartesian Closed Categories. These categories may be defined 

as in the classical case. One has to take care, though, of the beha- 

viour of functors and natural transformations~ which should be preserved 
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on partial morphisms. This may be done using an (implicit) notion of 

domain (see i,ii,iii in 2.6 below). 

2.6 Definition. C is a P q~C if c is pC with the following ad- 

junctions: 

i) a terminal singleton object t for CT; 

2) <A-,-x-,--->:C T +C T x CT, 

a 
any object a, <-xa,- , AI>:CT÷ C, 3) for 

P 
where: 

i) if f6C(x,y) and g(C(x,z), then 

VheCT(t,x) (flg)oh = I 0 if foh = 0 or goh = 0 

[ (f°h)-(goh) otherwise; 

ii) if f6C(x,y) and gEC(x',y'), then 

fxg = (fopl)'(gop2); 

iil) if fcC(x,y~), then 

~0 if foh = 0 

VhcC(t,x) (A-if)°(hxida) = I [A-l(foh) otherwise. 

Observe that the extensions in the adjunctions in 2.6.2 and 3 are uni- 

que. As usual, x y is an object and represents C(y,x). 
P 

2.7 Proposition. Let C be a pCCC, x and y objects in C and t 

a terminal object. Then 

t ~ t 
(i) x x ±, i.e. - is a bottom functor, 

P P 

(ii) x y is a partial object. 
P 

Proof. (i) obvious (ii). We have to prove that x yp ((xY) ±p in C T- 

Let us identify x × t with x and x ± with x t , by (i). Note then 
P 

that the following diagrams commute: 

(xY) ± x t eva< xy 

(Aid) 7 

X y x t 
P 

eval ~ x 
x y x y 
Pl -1 I J 

evalxid A eval i 
Y I i 

xY) ×Y -- ---i ..... ~ xy × ( 
P "(A(A eval)) id P Y 

Y 

eval 
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Finally set in = Aid:xY--+(xY) i and out = h(A-leval):(xY)l---~x y U, 
P P P P 

2.8 Proposition. Let C be a pCCC, C T CCC and x a partial object. 

Then, for any object y, one has: 

(i) x y ~ x y 
P 

(ii) x y 4 x y × t y 
P P 

Proof. (i) x y ( (x ±)Y - (xt) y - x t×y ~ x y, by 2.6 (i). 
P yP P 

xY---+x y by (i); in 2 : out: xY---+t , by t ~ x (see 2.5). 
p ' p P 

out = ---:x y × tY--+x y, by the extended a~junction as defined in 2.6. 
P P 

(ii) in I = out: 

Moreover 

By 2.7 and 2.8, total and partial morphisms, as well as partial 

objects, are nicely related. In particular, when the target object is 

partial, partial morphisms do not change the higher type structure in 

an essential way. In contrast to this, when the target x is not par- 

tial, we only know that x y is a subobject of x y, while nothing can 
P 

be said about higher types. 

We conclude this section by returning to the categories we are in- 

terested in for the purposes of computability in abstract data types: 

domains and numbered sets. 

A presentation of the CCC's of domains and effectively given domains, 

with continuous (and computable) maps as morphisms, may be found in 

Scott (1982) (see also Giannini & Longo (1983)). A constructive domain 

is (isomorphic to) the collection of all computable elements in an ef- 

fectively given domain. 

2.9 Generalized Myhill-Shepherdson Theorem (Ershov (1976)). 

gory of constructive domains is a full sub-CCC of EN. 

Proof. (see Giannini & Longo (1983), say). 

The cate- 

We are now in the position to reword a simple result in Ershov 

(1973/5). A pCC is a partial Cartesian Category in the obvious way. 

2.10 Proposition. EN is a pCC with a bottom functor. 
P 

EN is clearly not a full sub-category of EN . However, one may 
P 
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still naturally relate domains to EN by the following simple variant 
P 

of 2.9. Note also that all now empty domains are partial objects. 

2.11 Theorem. The category of constructive domains with strict maps 

is a full sub-pCCC of EN . 
P 

§.3. Relative numberings and Principal morphisms in EN 

3.1 Definition. Let A,B be objects in EN 3nd f,g:A +B. 

Define then 

f~Ag if JhcEN(A,A) f = g~h 

Note that, if A = B = ~, this is a classical notion of recursion- 

theoretic reducibility. Acceptable GSdel-numberings inspired 3.2.1. 

3.2 Definition. Let A and B be in EN. Define then 

l) fcEN(w,A) is an acceptable numberinq of A : (A,e A) if e < f. 
-- A--~ 

2) f~EN(A,B) is a relative numbering of B w.r.t. A if eB_< foe A 

(i.e. foe A) is an acceptable numbering of B). 

3) feEN(A,B) is a principal morphism if Vh{EN(A,B) h < f. 
-- -- --a 

3.3 Remark. f EN(m,A) and f EN(A,B) in 3.2.1-2 are equivalent to 

f < e and f°eA<_ e B. Principal morphisms may be easely generalized 
-w A 

to arbitrary categories. In CCC's: principal morphisms characterize mo- 

dels of Combinatory Logic, see Longo & Moggi (1983b). 

3.4 Remark. It is easy to prove that, if feEN(A,B) is a relative num- 

bering, then 

(pre-)complete ~ B (pre-)complete, 

see Longo & Moggi (1983). 

3.5 Proposition. Let feEN(A,B) be a relative numbering. Then one has 

(i) for h~B +C, heEN(B,C) iff hof(EN(A,C), 

(ii) if f ~AgCEN(A,B), then also g is relative. 

(Thus, in presence of a relative numbering, any principal morphism is a 

relative numbering too). 
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Proof. 

Thus ~h' R hoe B = ecoh', by the assumtion. 

(ii) e B = foeAof', for some f'eR since f is relative, 

= goloeAof,, for some 16EN(A,A) since f ~Ag, 

= goeAOl'of', for some i'{R. 

(i) ~ : obviuos. ~ : f'e R hoe B : hofoeAof' , for f is relative. 

In view of the strict limit on the number of pages imposed by the 

Publisher, from now on we are forced to skip the proofs. An elementary 

proof (i.e. with no category theory) of 3.11 may be found in Longo & 

Moggi (1983). The authors plan an expanded version of the present pa- 

per. 

Write A ~ B (or A 4 B) for A is a retraction of B in EN (or in -- p . . . . .  p 

EN). 

I 
A and B ~ B . Then one has 3.6 Theorem. Let ~ 4p_ 

(i) ~f6EN(A,B) relative numbering, 

A 
(ii) if one also has A x A 4 A and B-- exists, then ~geEN(A,B) 

principal. 

The following Lemma shows how retractions are inherited at higher 

types. 

3.7 Lemma~ Assume that, for A and B in EN, B ~ exists Then 

(i) ~ 4 B( ~ B) ~ ~ ( B~(4 B ~), p-- -- p-- -- 

B ± B ~ ~ ± (ii) B ~ ~ ~ (B--) , 

(iii) B × B 4 B(~ B) ~ B ~ A ~ × B-- ~ BA( B~). 

The type structure of domains over w in EN may be defined as 

follows. 

3.8 Definition. Let T be the smallest set of finite types symbols 

containing 1 (i.e. lET; a,TeT ~ O×T,O÷T E T.). Define then 
T 

E 1 = ~ ~(~± )~, E OxT = E O x E ~ and E O+T = (E T ) Ec 
c p c c c c c 

2 Of course, {E o T} is the sub-CCC generated by ~p = PR in EN. 

The subscript c recalls that each E O is actually a constructive 
c 
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domain, by 2.8. Thus all the numbered sets in the type structure, are 

actualy partial objects. By 2~4 and the results following it, the to- 

tal maps in each E a÷T may be rightfully considered as partial compu- 
c 

table functionals. 

. VoeT ~pEc° E O 4 (E a )± and E ~ Ea w ' c c c × ~ Eo' for all n > 3.9 nemma 0. 
-- C C 

3.10 
c c 

numbering. 

Proof. By 3.6 (ii), 3.9 and 2.8, EN(EO,E T) contains a principal 
c c 

morphism. Moreover, by 3.6 (i) and 3.9, it also contains a relative 

numbering. By 3.5 (ii) we are done. 

Theorem. Vo, T T ~}~, T EN(EG'ET) principal morphism and relative 

3.11 Remark. By this and by results in Longo & Moggi (1983b), each 

E yields a type-free Combinatory Algebra; actually a model of l-calcu- 
C 

lus. 

In view of all the information we have on numbered sets, we are now 

in the position to give the main theorem in Longo & Moggi (1983) as a 

simple corollary. This proves that the BMn's and the HPEF (see §.i) 

give the integer types in the type structure over w. The pure type 

variant of 3.12 is easely given. 

1 
3.12 Corollary. Let L = PR. Then, for all n > 0, 

n) L n = E n 
c 

n+l.5) L n+l~5 = EN(E n E n+l) 
C C 

Proof. (By induction) 0), l) by definition 

1.5 
1.5) by a simple argument (show that L 

g~del-numberings of PR). 

n+2) EN(En+I,E n+l) ~ L n+2, by definition and n+l.5. 
C C 

n En+l) as in 3.10. Then Conversely, let ~n+I6ZN(Ec ' c 

n+2 EN(En,E n+l) by 
TeL ~ T°¢n+l c 

T{EN(En+I,E n+l) by 
c c 

contains all acceptable 

n+l.5), 

3.5 (i). 

n+2 5) E n+l E n+l n+l 
" c x c ~ Ec , via (<,>,(p0,Pl)), by 3.9. The pairing is 
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clearly acceptable w.r.t. 

hence 

n+2 
E 
c 

, in the sense of definition 1.2; 

n+2.5 
~L ~ g = Xx.~(P0(X))(Pl(X))~En+2 

c 

= ~ = Xx'(XY'g(<x'Y>))cEN(E~ +l'En+2)c 

C o n v e r s e l y ,  

eEN(En+l,E n+2) ~ f '~xy.~(x)(y) EN(E~ +l En+l,E n+l = x ) 
e c c c 

EN E n+l n+l Ln+l .  
Xx'~(P0(X))(PI(X)) = f°(P0APl) ( C 'Ec ) = 

3.13 Remark. The key issue in this part has been the study of partial 

morphisms and objects in EN and the related sub-CCC's. Note that, in 

precomplete numbered sets, partial morphisms may be always extended to 

total ones. As for complete numbered sets one can say more, in view 

of 2.4: with some work, it may be actually shown that complete numbered 

sets and partial objects concide in EN. 

(For references, see end of part II)~ 
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§.l. Introduction. The type structure {L n} studied in §.3 of part 
new 

1 
I (i.e. with L = PR) actually gives the partial computable functionals 

(see Ershov (1975)) in the integer types. The key fact was the possibi- 

lity of enumerating each type n+l by type n, via a principal relative 

1 
numbering. This generalizes the fact that PR, i.e. L , can be effec- 

0 
tively numbered by ~, i.e. L . 

1 
If one takes L = R (the total recursive maps) this is no longer 

possible, i.e. there is no effective numbering of R by w, therefore 

[L n} (with L 1 = R) is not representable in EN. 
n Ew 

As pointed out in §.i of part I, the definition of HPEF is rather 

1 
general, and still works if we take as L a set L of partial maps 

from w to m (instead of PR or R). 

n 1 
We give a characterization of {L }nEw' for L enumeration- 

acceptable (see i.i below), in terms of a concrete CCC (and pCCC) based 

on the notion of numbering: 

I.i Definition. Let L cw--~w, then L is enumeration-acceptable iff: 

i) LoL c L, id e L; 

i') 0 e L (0 is the everywhere divergent function); 

2) VnEW Ix.nEL; 

3) there is an acceptable pairing of ~ w.r.~t. L (see 1.2 of part I); 

4) equality in ~ is decidable w.r.t. L, i.e. 

Vf,geL ~heL h(<x,y,z>) = if (x = y) then fz else gz 
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1.2 Definition. The category of numbered sets on L 

by: 

i) A = (A,e A) ~ EN L iff eA:,~--~A is onto; -- p 
ii) feENL(A,B) iff f:A--~B and ~geL foe A = eBog p -- _ 

Let L be enumeration-acceptable and 1)-4) be the assumptions on 

L in (I.i), then one easely has: 

i) implies that EN L is a category; 
P 

i') implies that EN L has null morphisms; 
P 

2) implies that EN L has a singleton object; 
P 

L 
2) and 3) imply that EN is cartesian. 

P 

(EN L) is defined 
P 

Remark. Note that the notion of enumeration-acceptable class of func- 

tion is also a sound recursion-theoretic generalization of basic pro- 

perties of PR. As a matter of fact, if (~,-~ is a Uniformely Reflexive 

Structure, then (~--+w)= {f:~-~-~/~aE~Vb~w f(b) = a-b} is enumeration 

acceptable EN L is not a pCCC, hence 5he type structure generated from 
P 

does not need to exist in it. 

However every category C may be embedded in the category of pre- 
op 

sheaves on C, Set C (which is a CCC), by a full and faithful functor, 

which preserves products and representations of morphisms (see Scott 

(1980), McLane (1971)). We will define a full sub-CCC (GEN L) of 

E.L,op 
set ( m ) with the following property: 

(ENL) °p 
the embedding functor of EN L in Set 

that of GEN L in Set (ENL)°p (IGEN) 

i .e. : ~I 

(IEN) factorizes through 

EN ~_ __I __GEN L 

I E N ~  I IGEN 

~4S~t(ENL)°P 

1.3 Definition. Let L be enumeration-acceptable, define then the 

category of generalized numbered sets on L by: 

i) X = (XrE)cGEN L iff 
-- x p 
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i) E c= w--+ X, 
X 

2) U {img ele{E } = X, 
X 

3) Ve0, ele Ex 3e(E x ~f0,fl6L s.t. 

X 

e0/:  
/:e\ 

(i.e. E is a directed sets w.r.t. L-reducibility); 
X 

ii) feGENL(x,Y) iff f:X--~Y and 
p -- -- 

~e~Ex ~g~L ~e'CEy foe = e'og, i.e. 

g 

I I , 

e i ",~II e' 
X ........ ->Y 

f 

(Intuition; one cannot g6delize all of R, but one can effectively enu- 

merate it piecewise). 

Notation. EN L and GEN L are the categories of total morphisms. 

Lemma. GEN L has coproducts. 

hint: X ~ Y_ : (X [] Y,{e U e' le E X A e' Ey}), 

where (e ~ e')(<x,y,z>) _= if (x : y) then ez else e'z, i.e. it is 

the sup of e,e' w.r.t. L-reducibility. 

1.4 Theorem. i) GEN L is a CCC and 

ii) GEN L is a pCCC. 
P 

hint: X × Y : (X × Y,{e-e'le E x A e' Ey}); 

fix h_Y> 
X<-- X x y y 

e ~ /  e' 
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use 3) and 4) (in Definition 1.1) for proving that E is directed; 
XxY 

let ~ = (~,{id }) GEN L, then 

i) y_X_ = (GENL(x,y),A (GENL(~ x X,Y))); 

ii) Y~ = (GENL(x,Y),A(GENL(~ x X,Y))) --p p . . . . .  

where A is the curry operator on maps, use 3) and 4) (in i.i) for 

proving that ~ U ~ ~ ~ and (~ x X) U (~ x i)% (~ U ~) × i, then it 

follows easely that EyX is directed. 

Remark. In general, if C is pCCC, it does not follow that C is CCC 
P 

(the problem are objects s.t. Y ~ Y±). 

1.5 Definition. The embedding functor, I, of EN L into GEN L 
P P 

defined by: 

is 

i) I(A,e A) = (A,{eA}) on objects and 

ii) I is the identity on maps 

The properties of I are summarized by theorem 1.7 below. 

1.6 Lemma. Let f:X ,Y, then 

f ~ GENL(x,Y) ~=~foGENL(~,X) £ GENL(w,Y), p -- _ p - _ 

f e ENL(x,Y) ~foENL(z,X ) ~ ENL(~,y) 
p -- _ p -- _ 

1.7 Theorem. i) I is full and faithful, 

ii) I preserves products and representations of total and partial 

morphisms. 

The main reason, for using generalized numbered sets instead of 

presheaves, is that the former are more similar to numbered sets than 

L the latter, thuswe can easely extend meaningful concepts from EN 
L 

to GEN (such as the notion of partial morphism and relative numbering), 

whereas this seems impossible for preshe~ _s. 

§.2 HPEF and generalized numbered sets. 

This section is devoted to the characterization of the generalized 
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HPEF {L n} , in the integer (or pure) types (see §.l of part I), with 
n6~ 

the corresponding type structure in GEN L. For L is an arbitrary 
P 

enumeration-acceptable function set, the full generality of GEN L is 
P 

required. 

The main step is to find the right counterpart to the notion of 

relative numbering given in EN (see 3.2 part I). 

2.1 Definition~ X factorizes Y iff 

GENL(~,Y) = GENL(x,Y) o GENL(m,X) 

or equivalently Ve'eEy ]eEE x ~f GENL(x,Y) s . t .  

'<< e I e' 
I 

X-- -- ~ -~Y 

Remark. Let A,B<EN L, then 

~fcENL~A,B) r e l a t i v e  numbering ,e~ IA f a c t o r i z e s  IB, 

2.2 Proposition. If X factorizes Y and f:Y Z, then 

f E GENL(y,z)~=~ f o GENL(x,y) c GENL(x,z). (see 3.5 part I) 

2.3 Theorem. Let e ~ X and Y ~ Y± the X factorizes Y. r - p . . . . .  

(see 3.6 part I) 

The integer type structure in GEN L is defined as in (3.8 part I)= 
P 

0 {J E 1 ~_~ En+l : EnEL 
2.4 Definition. EL =--' L :--p' L L 

We have that: 

2.5 Lemma~ ~ ~ E n n+l 4 .~n+l n × n n 
-- p L'EL (~L ) 'EL EL ~ EL" 

L L L 
hi~':: use _~ U ~_ ~ ~_ for proving that E l × E 1 ~ E 1 , where 

in 0 in 1 

-'\ ] /- 
'~ I / k ! <f'g/ 

f \: / g 

then it follows by induction that Yn > 0 E L E L L x <~ E 
n n n 
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From (2.5) and (2.3) it follows 

2.6 Theorem. E n factorizes E n+l for n > 0 
L L -- 

2.7 Theorem. Let L be enumeration-acceptable, then {.L n} 
n~ 

defined and for all n > 0: 

n) L n E n n+l 5) L n~l'5 L n n+l 
= L' " = GEN(EL'EL )" 

D 

is 

hint: (see also (3.12) in part I) 

0), i) by definition, 

n+l.5) follows from n) n+l) and E n E n E n 
' L x L ~ L' 

n+2) follows from n+l.5, (2.6) and (2.2) 

n+l.5 
The existence of principal morphisms in L does not follow from 

(2.6) (compare to 3.10 in part I), in fact it requires stronger hypo- 

theses: 

Theorem. Yn~_ 0 there is a principal morphism in Ln+l'5~=~ Yn~0 2.8 

E n representable in EN L (i.e. E n is the image (w.r t. I) of a is 
L L " 

numbered set). 

§.3 Generalized numbered sets and presheaves. 

E Lop 
At last we return of the relations between GEN L and Set ( N ) 

First let us define the embedding functors IEN and IGE N. 

3.1 Definition. i) I = IA.IB.ENL(B,A) is the usual Yoneda embend- 
EN 

ding of EN L in Set (ENL)°p, 

ii) IGE N X.IB GENL(IB,X):GEN L ÷Set (ENL)Op 
= D 

3.2 Theorem. i) IEN and IGE N are full and faithful, 

ii) preserve products and representations of morphisms, 

iii) IEN = IGE N o I 

(2.7) may be restated, using presheaves only, as follows. 

3.3 Theorem. Let L be enumeration-acceptable, then there exist two 

presheaves F and G such that: 
n 

n) L n E n n+l 5) L n+l'5 = E n+l EL 
= L' " L , where E0L = F, ElL = GF and 

E n 
E n+l n L 
L = EL D 
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