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ABSTRACT
We present a framework for addressing several problems
on weighted planar graphs and graphs of bounded genus.
With that framework, we derive polynomial-time approxi-
mation schemes for the following problems in planar graphs
or graphs of bounded genus: edge-weighted tree cover and
tour cover; vertex-weighted connected dominating set, max-
weight-leaf spanning tree, and connected vertex cover. In ad-
dition, we obtain a polynomial-time approximation scheme
for feedback vertex set in planar graphs. These are the first
polynomial-time approximation schemes for all those prob-
lems in weighted embedded graphs. (For unweighted versions
of some of these problems, polynomial-time approximation
schemes were previously using bidimensionality.)

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical algorithms and problems—Computations
on discrete structures; Geometrical problems and computa-
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tions; G.2.2 [Discrete Mathematics]: Graph theory—
Graph algorithms; Network problems.

General Terms
Algorithms, Theory

Keywords
Approximation algorithm, polynomial-time approximation
scheme, graph, bounded genus, planar graph, connected dom-
inating set, feedback vertex set

1. INTRODUCTION
An approximation scheme for an optimization problem is

an algorithm that, for any given ε > 0, outputs a solution
whose value is within a 1 + ε factor of optimal. The asymp-
totic running time is stated assuming ε is a constant. It is
called a polynomial-time approximation scheme (PTAS) if
the running time is polynomial. It is called a quasi-PTAS if
the running time is exponential in a polylogarithm.

For many fundamental NP-hard optimization problems in
graphs, there are no polynomial-time approximation schemes
unless P=NP. However, it has turned out that polynomial-
time approximation schemes often do exist when the graph
is required to be planar or, more generally, bounded-genus.

1.1 Previous Frameworks
There is a rather long history of research on approxima-

tion schemes for planar graphs, going back to 1977. Three
approaches jointly yield most polynomial-time approxima-
tion schemes known for planar graphs: Baker’s method [4],
approximation via bidimensionality (Demaine and Hajia-
ghayi) [17], and a framework of Klein [36, 37].

Each of these methods has its limitations. Baker’s method
only addresses problems that are local in character, e.g.,
min-weight vertex cover and dominating set. Bidimension-
ality is only defined for problems without weights, and this
approach only yields approximation schemes for such prob-
lems, though it does address very nonlocal problems such
as feedback vertex set and connected dominating set. The
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framework of [36, 37] has been used for a variety of weighted,
nonlocal problems; it has yielded, for example, a linear-time
approximation scheme for traveling salesman, near-linear-
time approximation schemes for Steiner tree and generaliza-
tions, and polynomial-time approximation schemes for cut
problems such as multiway cut and graph bisection. How-
ever, for each problem addressed, it requires a kind of spar-
sification that approximately preserves optimality; for some
problems, obtaining such a sparsification seems difficult.

1.2 Our Framework: Ubiquity
In this paper, we present a new approach that yields

polynomial-time approximation schemes (PTASs) for some
weighted, nonlocal problems for which no PTAS was previ-
ously known: feedback vertex set, connected dominating set,
connected vertex cover, tree cover, tour cover, spanning tree
maximizing the weight of leaves, and others. Our approach
works for planar graphs, or more generally for graphs of
bounded genus (drawable without crossings on a fixed surface
such as a torus or more complicated topological surfaces).

For these problems, a solution consists either of a sub-
graph or of a set of edges and/or vertices. In the latter case,
the solution can be equivalently expressed by the subgraph
induced by that set. The value of the solution is always the
weight of the subgraph.

For the unweighted versions of these problems, bidimen-
sionality gives polynomial-time approximation schemes. Bidi-
mensionality applies to a problem only if a solution is nec-
essarily dense in the graph; in particular if for grid graphs
a solution necessarily uses a constant fraction of the edges.
Recall that bidimensionality applies only when every ele-
ment (vertex/edge) has the same weight. Thus density is
measured in terms of the value of the optimum.

Similarly, the first step of an algorithm employing the
framework of [36, 37] is to thin the graph (using deletions
or contractions) so that the total weight of the graph is a
small factor times the value of the optimum. Thus again the
key is ensuring that the optimum value is a large fraction
of the weight of the graph. It remains unknown for many
optimization problems whether such a thinning step can be
carried out in polynomial time.

We therefore want to identify a property of problems for
which no thinning step is needed, like bidimensionality, but
we want our property to work for problems with weights,
unlike bidimensionality. The key idea is to define the prop-
erty in terms of graph structure rather than solely in terms
of the optimum value. Intuitively, rather than require that a
solution include a constant fraction of the edges of a graph,
we require that the edges not belonging to a solution form
a subgraph with a simple structure. As is often the case
in recent research in graph algorithms, “simple structure” is
formalized as small treewidth1 or, equivalently, small branch-
width.2 Frequently these algorithms use the fact that many
NP-hard graph problems can be solved quickly on graphs
of small treewidth. However, in our framework it wouldn’t
help to solve the problem in the subgraph of edges not in a
solution. We make a different use of the small treewidth of
the graph of edges not in the solution; it enables us to prove
the existence of a certain kind of separator structure for the
entire graph.

1This is a a well-known concept in graph theory. See, e.g.,
[19] for the definition.
2Defined in Section 4.

Definition 1.1. Let t be an integer. We say a graph prob-
lem is t-ubiquitous (or simply ubiquitous) if, for every input
graph G and every feasible solution S, S is connected and
G/S has treewidth at most t.

Planar graphs, bounded-genus graphs, and, more gener-
ally, members of a minor-closed graph family excluding some
apex graph all have the diameter-treewidth property [22]:
the treewidth of such a graph is upper-bounded by some
function of its unweighted diameter. When referring to un-
weighted distance in a graph, we use the term hops to dis-
tinguish this from measuring distance according to edge- or
vertex-weights.

Observation 1.2. Suppose a graph problem restricts the
input graphs to have bounded genus. Suppose also that for
some integer t, for every input graph G and for every feasible
solution S, S is connected and every vertex of G is within t
hops of S. Then the graph problem is O(t)-ubiquitous.

By the observation, for a problem on bounded-genus graphs
to be considered ubiquitous, it is enough that every solution
be “everywhere” in the sense that every vertex is close to
the solution in terms of number of hops.3 Let g be a posi-
tive integer, considered a constant for the purpose of stating
running times in our main theorem, which is as follows:

Theorem 1.3. Let P be a minimization problem on edge-
or vertex-weighted graphs with genus at most g, such that
contracting an edge of an input graph can only reduce the
optimal value, and
1. O(1)-approximation of ubiquitous problem: For some

constant t, P is t-ubiquitous, and there is a polynomial-
time algorithm that, given an input G for P , outputs an
α-approximation4 for P , for some constant α.

2. Dynamic program: There is an 2O(b)poly(n) algorithm to
find an optimal or 1+ε-approximate solution to instances
of P with branchwidth at most b.

3. Lifting: There is a constant β and a polynomial-time al-
gorithm that, given a graph G and a subgraph K, and
given a solution S to problem P for input G/K, outputs
a solution for G of weight at most w(S) + β · w(K).

Then there is a polynomial-time approximation scheme for
P .

This theorem is a consequence of a slightly more general
version in which Condition 1 is replaced with:
Condition 1′. There are constants α ≥ 1 and t and a
polynomial-time algorithm that, given an inputG for P , out-
puts a connected subgraph B such that B has weight at most
α times the optimal value for G, and G/B has treewidth at
most t.

The key ingredient to prove Theorem 1.3 is the following
result.

Theorem 1.4 (Branchwidth Reduction Theorem). Let ε >
0 and b, g be two integers. There is a polynomial-time algo-
rithm for the following:

Input: Graph G0 of genus at most g with edge weights
and/or vertex weights, connected subgraph H0 of G0 such
that G0/H0 has branchwidth at most b− 1.

3In fact, it is sufficient even if we measure number of hops
in the face-vertex incidence graph (a.k.a. the radial graph).
4This is a variation to what Demaine and Hajiaghayi call a
“backbone” in the bidimensional approach [17].
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Output: Subgraph K of H0 such that the total weight of the
edges and vertices of K is at most ε times the total weight
of the edges and vertices of H0, and G0/K has branchwidth
O(logn), where n is the number of vertices of G0.

The branchwidth depends linearly on b and ε−1, and poly-
nomially on g.

Proof of Theorem 1.3. Here is the algorithm.

Algorithm 1 Meta-Algorithm for Ubiquitous Problems

1: Input: A graph G = (V,E) of genus g with nonnegative
vertex and edge weights.

2: H ← an α-approximation for the problem in G.
3: K ← BranchwidthReduction(G,H). By Theorem

1.4, S1 has total weight at most ε · α · OPT and G/K
has branchwidth O(t/ε) · logn.

4: Y ← an optimal solution for the problem in G/K.
5: Output: S3 ← a solution for G based on Y and K.

For the analysis, combining the three assumptions and
Theorem 1.4, the running time of the algorithm is poly-
nomial. The solution obtained has cost w(S2) + β · w(S1),
combining the three assumptions and Theorem 1.4, the total
cost is (1 + α · β · ε)OPT.

1.3 Our Concrete Results
We can apply our framework to several concrete prob-

lems, where we obtain the first polynomial-time approxima-
tion schemes for bounded-genus graphs; a summary of the
results is given in Table 1. (Previously such approximation
schemes were known only for the unweighted versions of the
problems.) In Section 5, we formally define these problems,
summarize previous work, and show how to obtain our con-
crete results.

We draw the reader’s attention to two problems in par-
ticular: (undirected) feedback vertex set and connected dom-
inating set. As Demaine and Hajiagayi state [17], these are
“important problems that have been studied extensively in
the literature.” Feedback vertex set was one of the 21 origi-
nal problems shown NP-complete by Karp [35]. Connected
dominating set arises, e.g., in virtual backbone-based rout-
ing in ad hoc wireless networks (e.g. [54]). Feedback vertex
set does not fit into the framework of Theorem 1.3 but we
show how to reduce the problem in planar graphs to con-
nected dominating set.

For vertex-weighted connected dominating set, in order to
satisfy Property 1, we use a constant-factor approximation
for bounded-genus graphs. None was previously known (De-
maine and Hajiaghayi give one for the unweighted version
of the problem) so we supply one.

1.4 Algorithmic Ingredients
In Section 4, we prove the Branchwidth Reduction Theo-

rem (Theorem 1.4) by recursively invoking a separator theo-
rem. Planar separators were used in the first approximation
scheme for planar graphs, due to Lipton and Tarjan [41], and
again used by Grigni, Koutsoupias and Papadimitriou [30] in
an approximation scheme for the unweighted traveling sales-
man problem in planar graphs, and one by Arora, Grigni,
Karger, Klein, and Woloszyn [2] for the weighted problem.
We provide a new separator result, which shows how to find
a closed curve that travels along some edges but also jumps

Figure 1: On the left is a fragment of an embedded
graph G. On the right is the corresponding fragment
of G̃, where we have added vertices and edges of the
face-vertex incidence graph of G.

across faces. We bound both the weight of the edges tra-
versed and the number of jumps. A similar separator result
formed the basis of the weighted TSP PTAS [2] but that sep-
arator result was based on the weight of the entire graph,
whereas we need one based on the weight of only the back-
bone. Our separator result is stated and proven in Section 2.

In order to handle bounded-genus graphs, we also need a
low-weight planarization result; in Section 3, we show that
there is a low-weight subgraph whose removal renders the
graph planar; the subgraph consists of a small number of
connected components.

1.5 Preliminaries and Notations
Throughout the article, we consider graphs G = (V,E)

that are undirected multigraphs, possibly with loops. We
consider weights on edges and vertices.

For any graph G and subset of edges S, we use G/S to
denote the graph resulting from the contraction of the edges
of S in G.

Unless otherwise specified, all surfaces are implicitly as-
sumed to be connected, orientable, and without boundary.
An embedding of G on a surface S is a drawing of G on S
with no crossing. Namely, the images of the vertices of G
in S are pairwise distinct and the image of an edge u, v is a
path on S which starts and ends at u and v and does not
intersect any other path or vertex. We say that an embed-
ding E of a graph G extends an embedding E ′ of a subgraph
G′ of G if the images of the vertices and edges of G′ by E ′
are the same in E .

An embedding is called cellular if every face is homeomor-
phic to an open disk. Every graph of genus g has a cellular
embedding on a surface of genus g. In this paper, we con-
sider only such cellular embeddings. A graph of genus 0 is
a planar graph.

The following definitions are illustrated in Figure 1. Given
a connected graph G = (V,E) cellularly embedded on a
surface, the radial graph (a.k.a. the face-vertex incidence
graph) of G is the embedded graph whose vertex set includes
the vertices of G and also a vertex vf for each face f of G;
it contains an edge between v and vf if v is a vertex of G

that is incident to the face f of G. We define G̃ = (Ṽ , Ẽ) to

be the union of G and its radial graph. That is, G̃ contains
the vertices of the radial graph and the edges of G and of
the radial graph.

In a walk in a graph G, a spur is the occurence of a single
edge used twice consecutively in oppposite directions.

A branch decomposition [53] of a graph is a maximal non-
crossing collection of subsets of edges of the graph, equiva-
lently a rooted binary tree in which each node corresponds
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Table 1: Summary of our results. All the problems are APX-hard in general graphs and the approximation ra-
tios of the Weighted Dominating Set, the Vertex-Weighted Connected Vertex Cover and the Vertex-Weighted
Connected Dominating Set problems are Ω(log(n)) for general graphs assuming P 6= NP. All the problems are
NP-hard in planar graphs. Previous to our work, polynomial-time approximation schemes were known [17] for
the unweighted versions of these problems in planar graphs, and “almost-PTASs” were known for bounded-
genus graphs. For each of the weighted versions, the best approximation known before our work was the
approximation for general graphs. We obtain PTASs for bounded-genus weighted graphs, except for feedback
vertex set, where the algorithm is restricted to weighted planar graphs.

Problem General Weights
Prev. (for general graphs) New

(Edge-weights) Tree Cover 2 [46] 1 + ε
(Edge-weights) Tour Cover 3 [39] 1 + ε
(Vertex-weights) Connected Dominating Set O(log(n)) [32] 1 + ε
(Vertex-weights) Maximum Leaf Spanning Tree O(log(n)) [32] 1 + ε
(Vertex-weights) Connected Vertex Cover O(log(n)) [27] 1 + ε
(Vertex-weights) Feedback Vertex Set 2 [3] 1 + ε

to a subset of edges, and the two children of an internal node
correspond to disjoint subsets whose union corresponds to
the parent. Each subset of edges in a branch decomposition
induces a subgraph of the graph, which we call a cluster
of the branch decomposition. The boundary of a cluster is
the set of vertices that are incident both to edges belonging
to the cluster and edges not belonging to the cluster. The
width of a cluster is the number of boundary vertices, and
the width of a branch decomposition is the maximum cluster
width. The branchwidth of a graph is the minimum width of
a branch decomposition. The branchwidth w and treewidth
t of a graph are related by

w − 1 ≤ t ≤ b3
2
wc − 1.

For fixed w, there is a linear-time algorithm [10] to determine
if a graph has branchwidth at most w and, if so, construct
a branch decomposition of width at most w. There is a
polynomial-time algorithm [53] to find an optimal branch
decomposition of a planar graph.

A noose of an embedded graph is a Jordan curve that
intersects only vertices of the graph and not edges.

Consider a planar embedded graph G. A sphere-cut de-
composition [19] of a planar graph G is a branch decom-
position in which for each cluster there is a noose that en-
closes exactly the edges in the cluster. The vertices that
the noose intersects are exactly the boundary of the cluster.
The nooses can be assumed to be mutually noncrossing.

Building on work of Seymour and Thomas [53], Dorn et
al. [19] show that every planar embedded graph has a sphere-
cut decomposition whose width equals the graphs’ branch-
width.

Lemma 1.5. If G is a planar graph G of branchwidth at
most w then G̃, the union of G with the radial graph, has
branchwidth at most 2w.

Proof. Since G has branchwidth at most w, there exists
a sphere-cut decomposition T of width at most w. Con-
sider a cluster C of T and the noose N that encloses the
edges of that cluster. The noose can be represented as a
cycle in G̃ that uses only edges of the radial graph. The
noose passes through at most w vertices, so the cycle passes
through at most 2w vertices of G̃. Let these vertices be
v1, v2, . . . , v2k in the order in which they appear on the cy-

v1 v2

v3

v5

v4

v6

v7

v8

v10

v9

· · ·

Figure 2: This figure illustrates the proof of
Lemma 1.5. The first diagram shows a cluster in the
original branch decomposition. Original vertices of
G are represented by solid circles, and vertices of G̃
that represent faces of G are represented by open
circles. The remaining diagrams show some new
clusters added to form the branch decomposition of
G̃.

cle, where v1, v3, . . . , u2k−1 are original vertices of G and
v2, v4, . . . , v2k are the vertices of G̃ representing faces of
G. To form the branch decomposition of G̃, we replace
the cluster C with 2k + 1 clusters C0, C1, . . . , C2k, where
Ci is obtained from C by modifying it to include the edges
v1v2, v2v3, . . . , vi−1vi. The new cluster with the largest boun-
dary is C2k, which has a boundary of size 2k. In addition,
we add the singleton clusters {v1v2}, {v2v3}, . . . , {v2k−1v2k}.

2. A SEPARATOR THEOREM
In this section, we prove the following separator theorem

for planar graphs. The balance is with respect to a given
mass function that assigns a nonnegative number to each
face, called the mass of that face.

Theorem 2.1 (Separator Theorem). Let b and k be inte-
gers. Let G = (V,E) be a planar graph, and H denote a
connected subgraph of G such that G/H has branchwidth at
most b− 1. Let wV and wE be functions assigning nonneg-
ative weights to, respectively, the vertices and the edges of
G.
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Let G̃ = (Ṽ , Ẽ) be the union of G and its face-vertex inci-

dence graph. Suppose the vertices and faces of G̃ have been
assigned nonnegative masses, summing to M , with no face
or vertex having mass more than M/2.

Then G̃ has a cycle C, which may repeat vertices and edges
but does not cross itself and has no spurs, such that:
• C is a balanced separator: the mass of the vertices of G

strictly inside (resp., strictly outside) C is at most 3M/4;
• C is mostly a light piece of H: there exists a set V ′ of
O(bk) vertices of G̃, and a set E′ of O(bk) edges of G̃,
such that C−(E′∪V ′) is a subgraph of H and wV (V (C)−
V ′)+wE(E(C)−E′) ≤W/k, where W is the total weight
of the vertices and edges in H.

Moreover, C, V ′, and E′ can be computed in time O(k2n).

This theorem is used recursively, with H an O(1)-approxi-
mation of the ubiquitous problem we consider, to prove The-
orem 1.4 (see Section 4). We note that in the problems
described in this paper, b is a small constant.

Algorithm 2 Balanced Separator Algorithm for Planar
Graphs

1: Input: A planar graph G = (V,E) and a subgraph H
such that G/H has branchwidth at most b−1. Nonneg-
ative weights on vertices and edges of H. Masses on the
faces of G̃ summing to M , each at most M/2.

2: w1 ← new edge weights on H derived from Lemma 2.2
to represent both edge and vertex weights.

3: w′E ← edge weights on G̃ defined in Proposition 2.3
4: G̃1 ← ShortFacesSubgraph(G̃,H,w′E) as per Proposi-

tion 2.5.
5: if there exists a face f of G̃1 with mass at least M/2

then
6: return C ← fundamental cycle separator of f in G̃

as per Proposition 2.6.
7: else
8: return C ← cycle separator in G̃1 as per Proposition

2.7.
9: end if

10: Output: A cycle separator C, fulfilling the require-
ments of Theorem 2.1.

2.1 Reduction to a Simpler Problem with no
Vertex Weights

Lemma 2.2. Without loss of generality we may assume that
all vertices have weight zero.

Proof. Recall that H is connected; let H ′ be a spanning tree
of H. A cycle satisfying the conclusion of the theorem with
H ′ instead of H also satisfies the conclusion of the original
theorem. This is because W can only decrease by this oper-
ation, and the branchwidth of G/H ′ equals the branchwidth
of G/H (indeed, G/H ′ can be obtained from G/H by adding
loop edges). Henceforth we assume that H is a tree.

The algorithm for Theorem 2.1 proceeds as follows. Select
an arbitrary vertex r of H to be the root, direct the edges
of H toward r, and for each edge uv of H (directed from u
to v), define ŵE(uv) = wE(uv) + wV (u). For every vertex
u, define ŵV (u) = 0 for every vertex u. Assume that The-
orem 2.1 holds when vertex weights are zero, and apply it
with the weight functions ŵE and ŵV . Let C be the result-
ing cycle, and let E′ be the resulting edge subset, i.e. such

that ŵE(E(C)−E′) ≤W/k where W is the sum of weights.
We prove below that C is also a solution for the weights wV

and wE , for the same subset E′ of edges and for a suitable
subset V ′ of vertices.

Since |E′| = O(bk), we have that C ∩H is made of O(bk)
paths of H. Let P be such a path. The path’s weight ŵE(P )
includes the weight wE(e) for every edge e in P . Moreover,
for every vertex v of P , since the weight wV (v) of a vertex v
is transferred to the parent edge, wV (v) is also included in
ŵE(P ) except if (i) v is equal to the root r of H, or (ii) v has
no outgoing edge in P . Since every vertex of H has at most
one outgoing edge, and P has no spur, every vertex of P
has at most one outgoing edge. So, when walking along P
(oriented arbitrarily), we first encounter an arbitrary non-
negative number of forward edges, and then an arbitrary
nonnegative number of backward edges. It follows that at
most one vertex of P , let us call it vP , has no outgoing edge
in P . Let V ′ consist of the root r together with the vertex
vP for each path P comprising C ∩H. Then |V ′| = O(bk)
and the weight of C − (V ′ ∪E′) with respect to wV and wE

is at most the weight of C − E′ with respect to ŵE , which
is at most W/k.

Let c be a a constant c ≥ 4 to be determined.

Proposition 2.3. Finding a balanced separator satisfying
the Separator Theorem (Theorem 2.1) can be reduced to find-

ing a balanced separator cycle in G̃ that has weight at most
W/k with respect to the edge-weight assignment

w′E(e) =

{
min{wE(e),W/(cbk2)} if e ∈ E(H)
W/(cbk2) otherwise

(1)

Proof. By Lemma 2.2, we can assume that there are no ver-
tex weights. Assume that we find a cycle C as above. Let E′

be the set of edges e used by C such that w′E(e) = W/(cbk2).
Since C has weight at most W/k, we have |E′| ≤ cbk. For
each edge e ∈ C −E′, we have w′E(e) = wE(e). Since C has
weight at most W/k, we have wE(C − E′) ≤W/k.

2.2 Adding Edges to Reduce the Weight of Face
Boundaries

The algorithm described in Proposition 2.3 first selects
edges to add to H so as to ensure that each face of the
resulting graph has small weight.

Let ` = W/ck2. Every edge has weight at most `/b.

Lemma 2.4. Let H̃ be a subgraph of G̃ containing H. Let
f be a face of H̃ with boundary weight at least (12+ 3

b
)` with

respect to w′E. Then there are two vertices u and v of G̃ on
the boundary of f , and a path p in G̃ lying in f (possibly
touching its boundary), such that:
• each of the two paths between u and v on the boundary

of f has weight at least 3`;
• p has at most 2b edges.
Moreover, p can be computed in time linear in the complexity
of the subgraph of G̃ inside f .

Proof. Let ∂f be the closed walk that is the boundary of f .
We write ∂f as the concatenation of four paths N,W,S,E
in this order, such that each of these paths has weight at
least 3`. (To prove that this is possible, first take N , W ,
and S with weight between 3` and (3 + 1

b
)`, which is always

possible since each edge has weight at most `/b; then the
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remaining part E has weight at least 3`, since the boundary
of ∂f has weight at least (12 + 3

b
)`.)

Let G̃′ be the part of G̃ inside or on the boundary of f .
Similarly, let G′ := G ∩ G̃′. Since G/H has branchwidth
at most b − 1, G′/∂f has branchwidth at most b − 1. By

Lemma 1.5, it follows that G̃′/∂f has branchwidth at most
2b− 2.

Observe that the distance from any vertex of N to any
vertex of S along ∂f is at least 3`. Assume that there is
no path p as stated in the lemma. Then every path in G̃′

connecting N to S has at least 2b + 2 vertices. This im-
plies that any vertex cut separating W and E has at least
2b vertices. (Indeed, any vertex cut of size j in G̃′ separat-
ing W and E corresponds to a closed curve separating W
and E in the plane, intersecting j vertices of G̃′; since G̃′ is
a triangulation, except for the outer face, the part of that
curve inside f can be pushed to G̃′, leading to a path of
hop-length j.) Menger’s theorem now implies that there are
at least 2b vertex-disjoint paths between W and E.

Similarly, there are at least 2b vertex-disjoint paths be-
tween N and S. This implies the existence of a grid minor of
size 2b×2b in G̃′ (similar arguments were used elsewhere [9,
p. 88], [13, Proof of Theorem 3.1], and seem to originate
from Robertson, Seymour, and Thomas [50]), hence a grid

minor of size 2b×2b in G̃′/∂f , which contradicts the fact that

G̃′/∂f has branchwidth at most 2b− 2. So there exists such
a path p. Computing such a path takes linear time using two
shortest path computations in the planar graph G̃′ [34].

Proposition 2.5. There is an O(k2n) algorithm that com-

putes a subgraph H̃ of G̃ containing H such that:
• H̃ has weight at most 2W , and
• every face boundary of H̃ has weight at most (12+ 3

b
)W/ck2

(w.r.t. w′E).

Proof. Initially, let H̃ := H. We iteratively apply Lemma 2.4
by adding edges of the path p in H̃, until every face bound-
ary of H̃ has weight less than (12 + 3

b
)`. The path p has

weight at most 2`. This operation splits the face f into at
least two faces, among which some number m have boundary
length at least (12 + 3

b
)`.

We claim that the value of ϕ :=
∑

f (w′E(∂f)− 3`), where

the sum is over all faces f of weight at least (12 + 3
b
)`,

decreases by at least ` when adding p. Indeed, this is clear
if m = 0; if m = 1, the new face f ′ with length at least
(12+ 3

b
)` satisfies w′E(∂f ′) ≤ w′E(∂f)+2`−3` = w′E(∂f)−`;

and if m ≥ 2, the contribution of the m new subfaces to ϕ
is at most w′E(∂f) + 2 · 2`− 3m`.

Thus the total number of iterations is at most 2W/` =
2k2. At each step, we add at most 2b edges, each of weight
W/(cbk2), so the total weight of the added edges is at most

4W/c. Since c ≥ 4, the total weight of H̃ is at most 2W .
The time complexity follows from the fact that there are
O(k2) iterations.

The algorithm of Proposition 2.5 produces a subgraph H̃
of weight W̃ ≤ 2W .

2.3 A Balanced Cycle Separator for Weighted
Planar Graphs with Light Faces

Recall that the faces and vertices of G̃ have been assigned
nonnegative masses, that M is the sum of masses, and that
no single mass exceeds M/2. Our goal is to give a separator

algorithm for the subgraph H̃ whose existence is guaranteed
by Proposition 2.5. Recall that the total weight W̃ of H̃ is
at most 2W

Note that each face of H̃ is (essentially) the union of a

collection of faces and vertices and edges of G̃. We define
the mass of a face of H̃ to be the sum of the masses of the
corresponding faces and vertices of G̃.

There are two cases: when a face of H̃ has mass greater
than M/2 and when no such face does. In the first case, we
use a simple construction based on sphere-cut decomposi-
tion.

Proposition 2.6. Suppose H̃ has a face f whose mass is
greater than M/2. Then there is a cycle C, which may re-
peat vertices and edges but does not cross itself and has no
spur, of weight 4W̃/k2, such that the mass of the faces in-
side (resp., outside) C is at most 3M/4. Moreover, C can
be computed in linear time.

Proof of Proposition 2.6. Let G̃f be the subgraph of G̃ con-
sisting of the interior and boundary of f . Since f has mass
greater than M/2, every face of G̃f that is not part of f has

mass less than M/2. Let L be the graph obtained from G̃f

by contracting all but one of the edges of the boundary of f .
Since G̃/H has branchwidth at most 2b−2, so does L. Since
f has mass greater than M = 2, the face of L corresponding
to the part of G̃ not in f has mass at most M/2. Thus each
face of L has mass at most M/2.

Consider a sphere-cut decomposition of L. It defines a
rooted binary tree in which each node corresponds to a noose
and a cluster consisting of the edges enclosed by the noose.
Define the mass of a node of the binary tree to be the mass of
the faces fully enclosed by, or intersecting, the corresponding
noose. Let v be a deepest node in the binary tree such that
v’s mass is greater than M/2. Among v’s two children let v1
be the child with the greater weight. The sum of the masses
of v’s two children is greater than or equal to the mass of v,
thus the mass of v1 is at least M/4.

Let C1 be the Jordan curve corresponding to v1. The total
mass of the faces stricly enclosed by C1 is at most the mass
of v1, which is at most M/2. The total mass of the faces
strictly outside C1 equals M minus the mass of v1, which is
at most M −M/4 = 3M/4.

We construct a cycle C2 in L from C1 by pushing each
part of the curve which passes through a face onto part of
the face’s boundary. We sequentially choose the direction
in which to push faces: each face is added to the currently
lighter side. As the mass of each face is at most M/2, the
new cycle is 3/4 balanced. As L has maximum face degree
3, the curve C1 passes through each face at most once, so
the resulting cycle C2 is non-self-crossing. If any spurs are
formed in C2, we (iteratively) remove them. Removing a
spur does not affect the balance at all, and can only reduce
the weight of the cycle.

Since L has branchwidth at most 2b− 2, the curve corre-
sponding to v passes through at most 2b − 2 vertices, and
thus at most 2b−2 faces. Since each face has degree at most
3, each path through a face is pushed to at most 2 edges.
Thus C2 contains at most 4b edges. Since each edge has
weight at most W/(cbk2), C2 has weight at most 4W/ck2.

C1 can by lifted to a cycle C in G̃ with the same balance
by adding to it some (possibly empty) part of the boundary
of f . Since the total weight of the boundary of each face
in H̃ is at most (12 + 3

b
)`, C has weight at most W/k for
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an appropriate choice of the constant c. Each step of the
algorithm implied in the proof can be implemented in linear
time.

If no face is massive, we use a variation of Miller’s simple
cycle separator theorem [44]. The main differences are that
we do not require 2-connectivity, and that the edges are
weighted. The proof is adapted from the simplified proof of
Miller’s theorem in [38].

Proposition 2.7. Suppose that no face of H̃ has mass larger
than M/2. Then there is a cycle C, which may repeat ver-
tices and edges but does not cross itself and has no spur,
of weight O(W̃/k), such that the mass of the faces inside
(resp., outside) C is at most 3M/4. Moreover, C can be
computed in linear time.

Before proving this proposition, we show why it, together
with Proposition 2.6, implies Theorem 2.1:

Proof of the Separator Theorem (Theorem 2.1). Let H̃ be the
graph obtained after applying Proposition 2.5. By Proposi-
tion 2.3, it is sufficient to show that there exists a balanced
cycle separator C of total weight W/k in G̃ (with respect

to w′E). If one of the faces of H̃ has mass at greater than
M/2, applying Proposition 2.6 yields such a cycle. Other-

wise, since H̃ is a subgraph of G̃, it suffices to find such a C
in H̃. The advantage is that the total weight W̃ of H̃ is
linear in W , the weight of H, while each face boundary has
weight O(Ŵ/k2). So applying Proposition 2.7 gives a cycle
of weight W/k, as needed.

Proof of Proposition 2.7. Let T be a breadth-first search in
the face-vertex incidence graph J of H̃, rooted at an ar-
bitrary face f ; for clarity of exposition below, we assume
that f is the outer face of H̃ in the planar drawing that we
consider (thus the notions of “inside” and “outside” are well
defined). We define the level of f to be zero, and the levels

of the other vertices and faces of H̃ by induction: The level
of a vertex of H̃ is equal to one plus the level of the parent
face in T , and the level of a face of H̃ is equal to the level
of the parent vertex in T .

Define a mass function on vertices of J in which vertices
corresponding to faces of H̃ have mass equal to the mass of
the corresponding faces, and those corresponding to vertices
of H̃ have mass zero. There exists a simple cycle C̃ in J
consisting of a path in T and an edge e not in T such that
the mass on either side of the cycle is at most 2M/3 [40].
Such a cycle is called a fundamental cycle.

Let i be an integer. The set of faces of H̃ of level at
least i can be partitioned into regions, by declaring that two
such faces are in the same component if they share an edge,
and extending this relation by transitivity. A component of
level i is the topological closure of such a region.

We claim that the boundary ∂K of such a component K
is a simple cycle in H̃. Since K is the closure of a union
of faces, ∂K is a subgraph of H̃ with each vertex of even
degree. If some vertex v has degree at least four in ∂K,
then v has level i, and its incident faces all have level i
and i − 1. Because v has degree at least four, there are
two faces f ′ and f ′′ of H̃ with level i that are separated by
faces of level i − 1 in the cyclic ordering around v. Since
f ′ and f ′′ are in K, there is a simple topological cycle γ
passing through f ′, v, and f ′′, in this order, entirely lying

in the interior of K (except at v). But then all vertices and
faces inside γ must have level at least i, which contradicts
the assumption. So ∂K is the disjoint union of cycles. Two
such cycles cannot be nested, for a similar reason, and they
cannot be separated as well, because their interiors would
not be connected to each other. So ∂K is a single simple
cycle in H̃. This proves the claim.

Since C̃ is a fundamental cycle in J , the levels of its
vertices and faces are increasing and then decreasing when
walking along C̃ starting from the common ancestor in T
of the endpoints of e. Therefore, C̃ enters the interior of at
most one component at a given level i.

Let imin − 1 and imax be the minimum and maximum
levels faces in C̃; for each i, imin ≤ i ≤ imax, let Ki be the
(unique) component at level i penetrated by C̃. Moreover,

let Kimin−1 = F (H̃) and Kimax+1 = ∅. The Ki’s are nested,
and the boundaries ∂Ki of the Ki’s, for imin ≤ i ≤ imax,
form disjoint simple cycles. Indeed, by construction, a ver-
tex on ∂Ki is incident with some faces of level i − 1, some
faces of level i, and no face of other levels.

Let imed be such that imin − 1 ≤ imed ≤ imax, and the
mass of the faces of H̃ inside Kimed+1 or outside Kimed

is at most 3M/4. (For this purpose, one can let imed be

as large as possible such that the mass of the faces of H̃
outside Kimed is at most 3M/4.) Let i− be the largest level
smaller or equal to imed such that ∂Ki− has weight at most
W1/8k. Similarly, let i+ be the smallest level larger or equal
to imed+1 such that ∂Ki+ has weight at most W1/8k. Then
the total weight of ∂Ki+ ∪ ∂Ki− is at most 2W1/8k, which
is at most W/2k.

Since Ki−+1,Ki−+2, . . . ,Ki+−1 each have weight larger
than W1/8k, there can be at most 8k such levels, so we have
i+ − i− ≤ 8k + 1.

We now consider the part of C̃ inside Ki− but outside
Ki+ , which consists of two paths in J . We push each of

these two paths into H̃: Each time such a path traverses
a face of H̃, we push the corresponding part onto one of
the face boundaries. We sequentially choose the direction
in which to push faces: each face is added to the currently
lighter side. Since the mass of each face is at most M/2, the

new cycle is 3/4 balanced. Further, as C̃ enters each face
at most once, the resulting cycle is non-self-crossing. If any
spurs are formed, we (iteratively) remove them. Removing
a spur does not affect the balance at all, and can only reduce
the weight of the paths. Let P1 and P2 be the resulting two
paths. Each of them has weight at most (8k + 1) · (12 +
3
b
)W/ck2 since the corresponding part of C̃ we pushed was

traversing at most 8k+1 faces of H̃, each of boundary weight
at most (12 + 3

b
)W/ck2. By choice of c, we can ensure that

the weight of these two paths is at most W/2k.
Let S := P1 ∪ P2 ∪ ∂Ki+ ∪ ∂Ki− . By construction, S has

weight at most W/k. S separates J into four pieces (some
of which can be empty or disconnected):

• the part of J strictly outside Ki− ;
• the part of J strictly inside Ki+ ;
• the part of J strictly inside Ki− , strictly outside Ki+ , and

strictly inside C̃;
• the part of J strictly inside Ki− , strictly outside Ki+ , and

strictly outside C̃.

By construction, each such piece encloses faces of mass at
most 3M/4. The three smallest pieces together have face
mass at most 3M/4, and the largest one at most 3M/4.
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Thus, we can take for separator the subset of S that bounds
the larger of these pieces; this is indeed a balanced separator,
and a non-self-crossing cycle without spur in H̃. Each step
of the algorithm implied in the proof can be implemented in
linear time.

3. PLANARIZATION THEOREM
In this section, we show the following theorem.

Theorem 3.1. Let b > 1 be a constant. There exists a
polynomial-time algorithm for the following: The algorithm
is given a positive integer parameter k, an edge-weighted
graph G that is cellularly embedded on a surface of genus
g, and a connected subgraph H of G such that G/H has
branchwidth at most b− 1.

The algorithm outputs a subgraph S of G̃ such that G−S
is planar, S contains at most O(g2 + k) edges not in H, S
has at most O(g2 + k) connected components, and the total

weight of S is at most gO(1)W/k where W is the total weight
of H.

Using the argument of Section 2.1 (which does not use
planarity), we can assume that all vertex weights are zero.

As in Proposition 2.3, the algorithm for Theorem 3.1 as-
signs edge-weights to G̃ according to Equation 1. Edges
not in H have weight W/cbk2. The algorithm then finds a
subgraph S whose weight is O(W/k) with respect to this
edge-weight assignment. As a consequence, the number of
edges in S that are not in H is O(g2 + k).

The next lemma follows from [49, Theorem 4.1].

Lemma 3.2. Consider a graph G that is cellularly embedded
on a surface of genus g and a subgraph H of G such that
G/H has treewidth at most t. Let f be a face of H of genus
at least one and Gf be the subgraph of G induced by f and

its interior. There exists a non-separating cycle in G̃f that
intersects at most O(t) vertices of Gf .

Proposition 3.3. Consider a graph G0 with r connected
components embedded on a surface of genus g. Then the
number of faces of G0 that are not disks is O(r+ g). More-
over, the total number of boundary components of all non-
disk faces is at most O(r + g).

Proof. For any graph G, let ϕ(G) denote the sum, over all
non-disk faces f of G, of the number of boundary compo-
nents of f . We will prove that ϕ(G0) = O(g + r).

First, we define a graph G1 obtained from G0 by adding
r− 1 edges, so that G1 is connected. Observe that ϕ(G0) ≤
ϕ(G1) + O(r): indeed, consider the addition of an edge e
in some face f , during the transformation of G0 into G1.
Edge e connects two distinct boundary components of f , so
it does not separate f . Moreover, the number of boundary
components of f decreases by at most one.

Second, we define a graph G2 obtained from G1 by con-
tracting the edges of a spanning tree of G1; the graph G2

has a single vertex, and we have ϕ(G1) = ϕ(G2).
Third, we iteratively apply the following operation to G2:

While there is a disk of G2 bounded by a single loop, we
remove that loop, and similarly while there is a disk of G2

bounded by exactly two loops, we remove one of the loops.
The non-disk faces of this new graph, G3, have the same
topology as those in G2, so ϕ(G2) = ϕ(G3).

Under these conditions, it is known [12, Lemma 2.1] that
the number of loops in G3 is O(g); in particular, ϕ(G3) =

O(g), which by the above equalities implies ϕ(G0) = O(r +
g).

That immediately implies that the number of faces of G0

that are not disks is O(r + g), hence the proposition holds.

We can now prove the following lemma.

Lemma 3.4. Let H̃ be a subgraph of G̃ containing H. Let
f be a face of H̃. Assume f has a boundary component f0
with weight at least (12 + 3

b
)`. Then there exist two vertices

u and v of G̃ on the boundary of f , and a path p in G̃ with
at most 2b edges and lying in f , such that:
• if u and v are both in f0, then each of the two paths be-

tween u and v in f0 has weight at least 3`;
• otherwise, u and v belong to different boundary compo-

nents of f , and the path p intersects the boundary of f
only at u and v.

Moreover, p can be computed in time linear in the complexity
of the subgraph of G̃ inside f .

Proof. The proof is similar to the proof of Lemma 2.4. We
explain how to adapt its proof. Observe that by Proposi-
tion 3.3, the number of boundary components is at most
O(g2). Thus, the graph Gf which consists of the interior of
f where each boundary component is contracted to a vertex
has branchwidth O(g2)+b. Indeed, the graph corresponding
to the interior of f where all the boundary components are
contracted into a single vertex has branchwidth at most b.
Form a width-b branch decomposition of this graph. When
each boundary component is represented by a single vertex,
the width increases by at most the number of such vertices.

Now, we apply the argument of Lemma 2.4. If the short
path that is found does not intersect any vertex resulting
from the contractions, we just return the path and it sat-
isfies the conditions of the lemma. Otherwise, consider a
short path from u to v intersecting at least one vertex re-
sulting from the contractions, and return a shortest subpath
connecting a vertex u′ in f0 with a contracted vertex v′.
This path connects two different boundary components of f ,
without intersecting the boundary of f except at its end-
points, thus satisfying the conditions of the lemma.

We can derive the following proposition whose proof re-
sembles that of Proposition 3.5.

Proposition 3.5. Let H̃ be a subgraph of G̃ containing H.
There exists an algorithm to compute a subgraph H̃1 of G̃
containing H̃ such that:
• H̃1 has O(b(k2 + g)) edges not in H̃;

• every boundary component of every face f of G̃1 has weight
at most (12 + 3

b
)W/ck2.

The running time of the algorithm is O((k2 + g)n).

Theorem 3.6. Let k be an integer. Consider a graph G
with positive edge weights that is cellularly embedded on a
surface S of Euler genus g and such that every face is a
disk. Let W denote its total weight, and assume that every
face has boundary weight at most W/k2. There exists a sub-
graph G′ of G, such that cutting S along G′ gives a surface
with genus zero (possibly with several boundary components),
with the following properties: G′ has weight O(

√
gW/k), and

has at most g connected components. Furthermore, G′ can
be computed in linear time.
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G′ is called a planarizing subgraph of G.

Proof. The proof is a refinement on a result by Eppstein [23];
see also [24]. Let J be the face-vertex incidence graph of G.
Let r be an arbitrary vertex of G, and let T be a breadth-
first search tree in J rooted at r. We define the level `(u)
of a face or vertex u of G to be the number of edges of the
path in T from r to u.

Let E be the set of edges of J . For each edge uv ∈ E,
let L(uv) be the loop rooted at r that is the concatenation
of the path from r to u in T , edge uv, and the path from
v to r in T . Loop L(uv) has `(uv) = `(u) + `(v) + 1 edges.
Let C be the primal edges of a maximum spanning tree
of (E − T )∗, where the weight of an edge (uv)∗ ∈ E∗ equals
`(uv). Finally, let X := E − (T ∪ C).

Euler’s formula implies that |X| = g. It is known from [25,
Section 3.4]) (and not hard to see) that

⋃
uv∈X L(uv) cuts S

into a topological disk, and that an alternative greedy way
to compute X is to iteratively add to X the edge u′v′ with
smallest value of `(u′v′) such that

⋃
uv∈X L(uv) ∪ L(u′v′)

does not disconnect the surface.
Let M := 2

⌈
k/(2
√
g)
⌉
. Recall that W denotes the total

weight. We choose an even i ∈ {0, . . . ,M − 1} such that the
subgraph G1 of G induced by the vertices of level equal to i
modulo M has weight O(

√
gW/k).

For each edge uv ∈ X, we consider the smallest level
iuv ≥ max(`(u), `(v)) − M that is equal to i modulo M .
Define L′(uv) to be the part of L(uv) of level at least iuv.
Since L′(uv) traverses O(k/

√
g) faces of G, each of bound-

ary weight O(W/k2), we can “push”L′(uv) to a walk L′p(uv)
of G, of weight O(W/(k

√
g)).

Let G2 be the union of the subgraph G1 and of the walks
L′p(uv), for uv ∈ X. By construction, and since |X| = g,
the weight of G2 is O(

√
gW/k). We will now (i) prove that

cutting S along G2 results in a genus zero surface (possibly
with several boundary components), and then (ii) extract
from G2 a subgraph still having that property, but having
O(g) connected components.

For (i), let i′ be equal to i modulo M . It suffices to prove
that the part of the surface S that is the closure of the union
of the faces of levels between i′+1 and i′+M−1, minus G2,
has genus zero; or, equivalently, minus G1 union the L′(uv)
for uv ∈ X. Actually, that latter surface is contained in the
closure of the faces of G at level at most i′+M−1 minus the
union of the loops L(uv) with iuv ≤ i′ +M , so it suffices to
prove that this latter surface, S′ has genus zero. To simplify
the discussion, we attach a disk to each boundary of S′. The
restriction of T to S′ is also breadth-first search tree of the
restriction of J to S′. If S′ has positive genus, then it has
a non-separating loop based at r that has the form L(u′v′)
for some edge u′v′ [11, Lemma 5]; that loop is also non-
separating in S minus the loops L(uv) with iuv ≤ i′ + M .
But this contradicts the greedy algorithm mentioned above
(which should have inserted u′v′ in X, since `(u′v′) ≤ i′ +
M). This contradiction proves (i).

For (ii), we consider an inclusionwise maximal subgraphG3

of G2 such that cutting S along G3 results in a connected
surface (which therefore has genus zero as well); computing
G3 can be done in linear time, by computing a spanning tree
of the“dual”graph of G2 and keeping the primal edges of the
complement. Finally, let G′ be obtained from G3 by remov-
ing any connected component of G3 that is a tree. Cutting S
along G′ still results in a genus zero surface, so G′ is planar.

Moreover, G′ has at most g cycles, because otherwise the
complement of G′ would be disconnected (by definition of
the genus). Since each connected component of G′ contains
a cycle, G′ has at most g connected components.

Finally, G′ can be computed in linear time.

We can now prove the theorem.

Proof of Theorem 3.1. We consider the following algorithm
to construct S.

1. S ← ∅
2. While there is a face with positive genus: apply Lemma

3.2 to H in order to obtain a graph H ′ where each face
has genus 0.

3. While there exists a face whose boundary has large weight:
apply Lemma 3.4. Obtain a subgraph H ′′ with O(g) con-
nected components, that contains H, and of maximum
face weight at most O(g2W/k2).

4. For each face f of H ′′, if f is not a disk, then add the
entire boundary of f to S and remove f . Obtain H ′′′.

5. Apply Theorem 3.6 to each connected component of H ′′′

to obtain a planarizing subgraph S′, and add it to S.
6. Return S

We prove that the subgraph S satisfies the conditions of
Theorem 3.1.

We first argue that iteratively applying Lemma 3.2 yields
a graph H ′ of total weight at most O(g2W/k). Since for
each face we add a non-separating cycle, the total genus of
all the faces decreases by one at each iteration. By Lemma
3.2, the path added is short and so, the total weight of H ′

is bounded by O(g2W/k) and each face of H ′ has genus 0.
By applying Lemma 3.4 we either decrease the number

of connected components of the boundary of a face or we
reduce the weight of the face. By Proposition 3.3, the total
number of connected components of all the faces is at most
O(g2), thus the total weight of H ′′ is at most O(g4W/k).

We now turn to the analysis of the cost incurred by Step
4. By Proposition 3.3, there are at most O(g) such faces.
Again since the face weight of H ′′ is at most O(W/k2), the
total weight added to S at step 4 is at most O(gW/k2).

Finally, observe that in the remaining graph, by Step 4
each face of H ′′′ is a disk and contains a subgraph of G of
genus 0. Moreover by Step 3, the maximum face weight is
at most O(W/k2). It is thus possible to apply Theorem 3.6
in order to obtain a subgraph S′ of H ′′′ of total weight at
most O(

√
gW/k) and such that H ′′′−S′ is planar. The total

number of connected components of S′ is at most O(k).
Since the number of connected components added at Step

4 is O(g2), the total number of connected components of S
is thus O(g2 + k).

4. BRANCHWIDTH REDUCTION
In this section we prove Theorem 1.4: we show that, for

constants g, b, ε, there is a polynomial-time algorithm that,
given a genus-g edge/vertex-weighted graph G0 and a con-
nected subgraph H0 such that G0/H0 has branchwidth at
most b − 1, outputs a subgraph K of H0 of weight at most
ε times the weight of H0 such that G0/K has branchwidth
O(logn), where n is the number of vertices of G0. We give
a procedure that returns a branch decomposition of G0/K.

First we assume the graph is planar. At the end of this
section, we discuss the case of positive genus.
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An overview: The algorithm of Theorem 1.4 uses the al-
gorithm of Theorem 2.1 to recursively find separators and
uses them to decompose the graph into clusters of a branch
decomposition. The boundaries of these clusters are subsets
of the vertex sets of the separators. The boundaries might
be large but, after contraction of the edges of H in the sepa-
rator, the size of the boundary becomes small. Because the
separators are balanced, the recursion depth is logarithmic.

In order to ensure the boundaries in the contracted graph
remain small, the algorithm uses a variant of a strategy
of [26]. The variant is described, e.g., [38] (and used else-
where previously); occasionally, instead of ensuring the sep-
arator is balanced with respect to the size of the subgraphs,
the algorithm ensures that the separator is balanced with
respect to the number of vertices appearing on boundaries.

More details: We describe a recursive procedure to select
edges to contract and find a branch decomposition for the
contracted graph. The procedure is given a planar embed-
ded graph G and a subgraph H such that G/H has branch-
width at most b. The procedure is also given a subset S of
vertices of G, which we call boundary vertices.

Algorithm 3 BranchDecomp(G,H, S)

1: Input: a planar graph G, a subset H of edges, and a
set S of vertices

2: if G has at most c1 vertices then return a branch de-
composition of G of width ≤ c1

3: else
4: if |S| > c2ε

−1 logn then
5: assign mass 1 to vertices of S and zero to other

vertices
6: else
7: assign mass 1 to all vertices of G
8: end if
9: find a cycle separator C as per Theorem 2.1 using
k = c3ε

−1 logn
10: G′ ← G/edges of C ∩H
11: C′ ← noose corresponding to C in G′

12: S′ ← vertices of G′ on C′

13: (E1, E2)← C′-induced bipartition of edges of G′

14: (S1, S2) ← C′-induced bipartition of vertices of G′

not in C′

15: Bi ←BranchDecomp(G′[Ei], H ∩ Ei, Si ∪ S′) for
i = 1, 2

16: return B1 ∪B2 ∪ (
⋃
B1 ∪B2)

17: end if

The initial invocation is BranchDecomp(G0, H0, ∅) be
the initial invocation. In any nonterminal invocation
BranchDecomp(G,H, S), the two recursive calls in Line 15
operate on disjoint subsets of H. Therefore, for every level of
recursion the invocations operate on disjoint subsets of H0,
so the total weight of these subgraphs is at most the weight
of H0. We will see that the recursion depth is O(logn).
Therefore the total weight of all subgraphs H passed to all
invocations is O(logn) times the weight of H0.

In Line 16, the procedure takes branch decompositions
returned by the recursive calls and adds one additional clus-
ter, the cluster consisting of all the edges in the two branch
decompositions. Therefore the procedure returns a branch
decomposition of the graph induced on all those edges. Thus
the inital invocation returns a branch decomposition of the

graph obtained from G0 by contracting all edges ever con-
tracted during recursive invocations of the procedure.

In any nonterminal invocation BranchDecomp(G,H, S),
in Line 9 the procedure finds a cycle separator C using the
parameter value k = c3ε

−1 logn. The weight of edges of H
in C is at most the weight of H divided by k. It follows
that, for an appropriate choice of the constant c3, the total
weight of edges in all cycle separators found is at most ε
times the weight of H0. This bounds the weight of all edges
contracted in Line 10 throughout all invocations.

When the edges of C ∩ H are contracted, C becomes a
noose C′ in the contracted graph G′. The noose C′ par-
titions G′ into two edge-induced subgraphs, and also par-
titions the boundary vertices S. In each of the two re-
cursive calls, the vertices on C′ are included as boundary
vertices. This implies the invariant that, for any invocation
BranchDecomp(G,H, S), any vertex of G0 that is incident
to an edge in G and an edge not in G is a member of S.

By Theorem 2.1, the number of vertices on the noose C′

is O(bε−1k), which is O(bε−1 logn). Because of Line 5, one
can choose the constant c2 in Line 4 so that there is a con-
stant c4 such that the number of boundary vertices passed
to the procedure never exceeds c4bε

−1 logn, and that no two
consecutive recursive invocations execute Line 5. As a con-
sequence of the first statement, every branch decomposition
returned has width at most c4bε

−1 logn. As a consequence
of the second statement, the recursion depth is O(logn) as
promised.

Finally, consider the case in which the input graph has
genus g > 0. In this case, the algorithm first applies The-
orem 3.1’s algorithm to the input graph G and obtain a
subgraph S. For each piece L of G − S that is planar, the
algorithm recursively applies the planar separator theorem
and obtains a set of edges S′L such that L/S′ has bounded
branchwidth.

We now argue that the branchwidth of G/(S ∪
⋃

L SL) is
bounded. For each planar piece L of G−S we take a branch
decomposition of L/SL of small width.

Since by Theorem 3.1, S contains at most O(g2 + k)
connected components, these branch decompositions can be
merged to form a branch decomposition of G/(S ∪ ∪LSL),
increasing the width by O(g2 + k).

5. ALGORITHMIC IMPLICATIONS
A fairly large class of problems to which our metatheorem

applies mix structure requirements and domination require-
ments, and can have several kinds of weights. More specif-
ically, we consider problems that take as input a bounded-
genus graph with weights on vertices, edges or faces; a solu-
tion must usually be connected, have a connected induced
subgraph, or be a tour; and it must dominate all vertices,
edges or faces of the graph. To derive PTASs for those prob-
lems, we rely on Algorithm 1 and appeal to Theorem 1.3.
To have a subgraph H of total weight O(OPT) such that
G/H has bounded treewidth, it is sufficient to take an O(1)
approximate solution, either available from previous work
or obtained by designing O(1)-approximation when needed
(for example for weighted connected dominating set).

In [51], the authors introduce a new tree-decomposition
for graphs embedded on surface, called surface cut decom-
position. All the problems listed in Table 1 are packing-
encodable according to the definition in [51]. Even though
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this theorem is designed for unweighted versions of the prob-
lems, it is straightforward to extend it to weighted versions.

Theorem 5.1. [51, Theorem 3.2] Every connected packing-
encodable problem whose input graph G is embedded in a
surface of genus g, and has branchwidth at most b, can be
solved in time gO(b+g)bO(g)nO(1).

5.1 Weighted Connected Dominating Set, Max
Weighted Leaf Spanning Tree

Consider the Vertex-Weighted Connected Dominating Set
problem defined as follows.

Definition 5.1. Weighted Connected Dominating Set.
Given a graph G = (V,E) with vertex weights w : V → R+,
a connected dominating set is a set of vertices S such that
G[S] is connected and such that every vertex of V is in S
or adjacent to S. The objective is to find a connected dom-
inating set of minimum weight.

Garey and Johnson’s book [28] showed that the problem
is NP-Hard, even for bounded degree planar graphs. Guha
and Keller [31] obtained a log ∆ approximation where ∆ is
the maximum degree of the graph and that no polynomial
time algorithm can do better in general graph unless NP
⊆ DTIME[nO(log logn)]. The vertex-weighted version of the
problem received a lot of attention as it has applications
in network testing problems (see [47]) and wireless commu-
nication problems (see [15]). For the unweighted version
of the problem in graphs of bounded genus, a PTAS was
obtained through the framework arising from the bidimen-
sionality theory in [17]. A linear kernel was found for planar
graphs in [42]. The FPT version of the problem was ad-
dressed in [16].

The vertex-weighted version of the problem was also con-
sidered by Guha and Keller in a later paper [32] who ob-
tained a (1.35 + ε) logn approximation for general graphs
and which remained the best approximation ratio until this
work. Using Theorem 1.3, we obtain the following result for
the connected dominating set problem.

Theorem 5.2. Let 0 < ε ≤ 1/2 and let g be a fixed inte-
ger. There exists an algorithm, based on Algorithm 1, that
computes a 1 + ε-approximation to the weighted connected
dominating set problem in graphs of genus bounded by g. Its
running time is nO(f(ε,g)).

Clearly, any solution in the original graph remains a so-
lution in the contracted graph, and its cost can only be re-
duced. We show that each of the three conditions of Theo-
rem 1.3 hold, implying Theorem 5.2.

Condition 2. The second condition is ensured by Theo-
rem 5.1.

Condition 3. To prove that the last condition holds, we
show that given a graph G, a subgraph G1 = (V1, E1) and a
solution S for G/G1, there exists an Algorithm Lift which
computes a solution forG of total cost at most w(S)+w(G1):
Since each vertex resulting from the contraction of G1 has
to be dominated, at least one of its neighbor belongs to
S. Therefore, we can add all the vertices of G1 to S and
the solution remains connected. Furthermore, since each
vertex is dominated in G/G1 by S and since we add the all
the vertices of G1 to S, all the vertices of G are dominated
by S ∪ V1. The total cost of the new solution S ∪ V1 is
w(S) + w(G1).

Condition 1. To show the first condition, we provide the
first known constant factor approximation. Indeed, since for
each feasible solution S each vertex of the graph is domi-
nated by G[S], each vertex of G/G[S] is at distance at most
1 from the vertex resulting from the contraction of G[S].
Therefore G/G[S] has diameter at most 2. It follows that
the branchwidth of G/G[S] is O(1). Therefore, any O(1)-
approximation for the problem is a connected subgraph H
of G such that G/H has branchwidth O(1). We show the
following lemma which is immediately subsumed by the Ap-
proximation Scheme result (Theorem 5.2).

Lemma 5.3. There exists an O(1)-approximation algorithm
for the Vertex-Weighted Connected Dominating Set problem
for graphs of genus at most g.

For any graph G of genus at most g, we first define a ball
of radius i around a vertex v to be the set of points that are
at edge distance at most i from v. We prove the correctness
of Algorithm 4.

Algorithm 4 Constant factor approximation algorithm
for weighted connected dominating set in bounded genus
graphs.

1: Input: A graph G = (V,E) of genus at most g, a weight
function w : V → R+.

2: B ← set of disjoint balls of radius 1 that is maximal
under inclusion.

3: V0 ← ∅
4: for all ball b ∈ B do
5: V0 ← V0 ∪ { an element of b of minimum weight }
6: end for
7: V1 ← constant-approximation solution to the Vertex-

Weighted Steiner Tree problem on G with terminals V0.
8: G1 ←G/G[V1], G1 has bounded branchwidth by Lemma

5.6.
9: V2 ← an optimal solution to the problem on G1 using

Algorithm from Theorem 5.1 for bounded branchwidth
graphs.

10: Output: V2 ∪ V1

Lemma 5.4. Consider the set of vertices V0 after step 6
of Algorithm 4. There exists a solution S of value at most
2OPT such that V0 ⊆ S.

Proof. Consider an optimal feasible solution SOPT and a ball
b ∈ B. Since SOPT is feasible, argminv∈bw(v) is in SOPT

or at least one of its neighbors is in SOPT. Hence S =
SOPT ∪ {v | ∃b ∈ B s.t v = argminv∈bw(v)} is connected.
We now argue that the cost of S is at most twice the cost
of SOPT. Again, since SOPT is feasible, either the center of
b belongs to SOPT or at least one of its neighbors belongs to
SOPT It follows that the sum of the weights of the vertices
in SOPT ∩ b is at least minv∈b w(v) and thus, the sum of
the weights of the vertices in S ∩ b is at least 2 minv∈b w(v).
Therefore, since the balls are disjoint, the total cost of S is
at most twice the total cost of SOPT.

Line 7 of the Algorithm is achieved thanks to the following
theorem. See also [6].

Theorem 5.5 ([18, Theorem 1]). There exists a polynomial-
time constant-factor approximation algorithm for the vertex-
weighted Steiner tree problem.
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Lemma 5.6. Consider the set V1 at step 8 of the algorithm.
G/G[V1] has bounded branchwidth.

Proof. Note that by the maximality condition of Step 1 of
Algorithm 4, we have that each vertex of the graph is at
distance at most 1 from some ball b and so, at distance at
most 3 from all the vertices of some ball b.

Because G[V1] is connected, the contraction of G[V1] in
G/G[V1] results in a single vertex which is at distance at
most 3 from all the other vertices of G/G[V1]. Hence, the
diameter of G/G[V1] is constant and so, the branchwidth of
G/G[V1] is constant.

Proof of Lemma 5.3. Lemma 5.4 and Theorem 5.5 ensure
that cost(S1) ≤ 12 · OPT. Moreover, Lemma 5.6 and The-
orem 5.1 ensure that cost(S2) ≤ OPT. The running time
of the algorithm follows directly from Theorems 5.5 and
5.1.

The weighted connected dominating set problem is also
related to the maximum weighted leaf spanning tree defined
as follows.

Definition 5.2. Maximum Weighted Leaf Spanning
Tree. Given a graph G = (V,E) with vertex weights w :
V → R+, a weighted leaf spanning tree is a spanning tree
of G whose cost is defined as the sum of the weights of
its leaves. The objective is to find a leaf spanning tree of
maximum weight.

The unweighted version of the problem has been studied
in a series of results (see for example [8, 43]). The FPT
version of the problem has also been extensively studied, for
example in [21, 7].

Using an observation from [20] for the unweighted case,
we derive the analogous observation for the weighted case,
Lemma 5.8. Using Lemma 5.8, it is easy to derive Theorem
5.7 from the proof of Theorem 5.2.

Theorem 5.7. Let 0 < ε ≤ 1/2 and g be a fixed integer.
There exists an algorithm, based on Algorithm 1, that com-
putes a 1 + ε-approximation to the maximum weighted leaf
spanning tree problem in graphs of genus bounded by g. Its
running time is nO(f(ε,g)).

This lemma is standard and was proven in previous results
on maximum weight leaf spanning tree.

Lemma 5.8. Let G = (V,E) be a graph with vertex weights
w : V → R+. Let W denote the sum of the weights of the
vertices of G. The sum of the value of the optimal maximum
weighted leaf spanning tree and the value of the optimal con-
nected dominating set is equal to W .

5.2 Tour Cover and Tree Cover

Definition 5.3. Tree cover. Given a graph G = (V,E)
with edge weights w : E → R+, a tree cover is a set of
edges S such that G[S] is connected and such that for each
(u, v) ∈ E, ∃e ∈ S such that e shares an endpoint with (u, v).
The tree cover problem asks for a tree cover of minimum
weight.

In the tour cover problem, the solution is required to form
a tour instead of a tree. The Tour and Tree cover were

introduced by Arkin et al. in [1] who obtained the first
constant factor approximation and a proof of MAX-SNP
hardness in general graphs. An approximation ratio of 3
was later obtained in [39] for both problems and to 2 for
tree cover in [46]. The parameterized version of the problem
was addressed in [33, 45].

Theorem 5.9. Let 0 < ε ≤ 1/2 and let g be a fixed non-
negative integer. There exist algorithms, based on Algo-
rithm 1, that compute a 1 + ε-approximation to the tour
cover problem and to the tree cover problem in graphs of
genus bounded by g. Their running times are nO(f(ε,g)).

Proof of Theorem 5.9. We show that the three conditions of
Theorem 1.3 are met.

Condition 1 This condition is fulfilled by an O(1) ap-
proximation algorithm, see for example [46]. Consider a
graph G and any feasible solution S. Since S is connected,
any vertex of G/S is at distance at most 1 of the vertex re-
sulting from the contraction of S and so, G/S has constant
diameter and therefore constant branchwidth.

Condition 2 This condition is obtained by Theorem 5.1.
Condition 3 We show how to derive a Lift procedure.

Note that each vertex resulting from the contraction of an
edge (or more generally a path) has a loop in the contracted
graph. Since the solution for the contracted graph has to
cover all the edges of the graph, this vertex has to belong
to the optimal solution. Therefore it is possible to add the
contracted edges to the solution while preserving connectiv-
ity. For Tree Cover, the solution in G is simply S∪K, while
for tour cover, some edges must be taken twice to form a
tour. In either case, the weight of the solution is bounded
by w(S) + 2w(K).

5.3 Weighted Connected Vertex Cover
Definition 5.4. Weighted Connected Vertex Cover.
Given a graph G = (V,E) with vertex weights w : V → R+,
a connected vertex cover is a set of vertices S such that G[S]
is connected and such that for each (u, v) ∈ E, u ∈ S or
v ∈ S. The weighted connected vertex cover problem asks
for a connected vertex cover of minimum weight.

Savage [52] gave a 2 approximation algorithm which re-
mains the best approximation algorithm for general graphs.
There are PTASs for the unweighted case in restricted classes
of graphs (see [55, 17]). The weighted connected vertex cover
problem is very related to the tree cover problem. The dif-
ference is that the weights are on the vertices and not the
edges. Fujito shows in [27] that, whereas the tree cover
problem can be approximated within a constant factor in
general graphs, the weighted vertex cover problem cannot
be approximated within a factor better than logn in gen-
eral graphs unless NP ⊆ DTIME[nO(log logn)] and provides
an O(logn) approximation algorithm for the problem. See
[33, 45] for results in the parameterized case.

Theorem 5.10. Let 0 < ε ≤ 1/2 and let g be a fixed non-
negative integer. There exists an algorithm, based on Algo-
rithm 1, that computes a 1 + ε-approximation to the vertex-
weighted connected vertex cover problem in graphs of genus
bounded by g. Its running time is nO(f(ε,g)).

Proof of Theorem 5.10. We show that the conditions of The-
orem 1.3 hold.
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Condition 1’. Here we use the more general version of
the first condition, where the backbone is not required to be
a solution: Observe that the value of any optimal solution
to the weighted connected dominating set problem is a lower
bound on the value of the optimal solution for the weighted
connected vertex cover problem. Therefore, it is possible to
compute a subgraph H of the input graph G of total weight
at most O(OPT) such that G/H has treewidth at most O(1)
using Lemma 5.3.

Condition 2 is ensured by Theorem 5.1.
Condition 3 is attained by letting the solution on G be

S ∪ K. Since every contracted vertex is either in S or ad-
jacent to S, S ∪K is connected. As S is a vertex cover in
G/H, every edge in G has an endpoint in either S or K.

5.4 Weighted Feedback Vertex Set
There has been much research on feedback vertex set. Here

we only mention a few representative results. The first
constant-factor approximation algorithm for the unweighted
case was achieved in [5]. It was later improved to a fac-
tor 2 for both weighted and unweighted in [3]. Primal-dual
approximation algorithms for these and more general prob-
lems were given in [29] The parameterized problem was ad-
dressed in [14] and [48]. An approximation scheme for the
unweighted version was given in [17].

Theorem 5.11. There is a PTAS for weighted feedback
vertex set in undirected planar graphs.

We provide a reduction from weighted feedback vertex set
to vertex-weighted connected dominating set.

Given a planar graph G = (V,E) and a vertex-weight
function w(·), we construct an instance for connected domi-

nating set (CDS): the graph G̃ = (Ṽ , Ẽ); weights of vertices

of G in G̃ are preserved; others receive a weight of 0. It
suffices to show that every FVS in G corresponds to a CDS
in G̃ of the same weight, and vice versa.

Let S be a FVS in G. Let Vf := Ṽ −V be the vertices in G̃

inside faces of G, and let S̃ := S ∪ Vf . Thus w(S) = w(S̃).

As S̃ contains every vertex in Vf , S̃ is a FVS of G̃. Note

that G̃ is triangulated, and in a triangulated planar graph,
every minimal vertex cut is a simple cycle. Therefore S̃ hits
every vertex cut in G̃, i.e., induces a connected graph. S̃
contains Vf , which dominates G̃. Therefore S̃ is a connected

dominating set in G̃.
Now let S̃ be a CDS in G̃. Then S̃′ := S′ ∪ Vf is a

CDS in G̃ with the same weight. Thus S̃′ hits every cycle
in G̃ that strictly separates any two vertices in S̃′. Every
cycle in G separates some two faces of G, and therefore the
corresponding vertices in Vf . Thus S̃′ hits every cycle in G.

Thus S := S̃′ ∩ V = S̃ ∩ V hits every cycle in G, i.e., is a
feedback vertex set, and w(S) = w(S̃).
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