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1 Introduction

1.1 Background on Tutte’s barycenter theorem

In this paper, we will use basic graph theory terminology, see for example [6].
Let G = (V, E) be a planar graph. A mapping Γ of G into the plane is a
function Γ : V ∪ E → P(R2) which maps a vertex v ∈ V to a point in R

2

and an edge e = uv ∈ E to the straight line segment joining Γ(u) and Γ(v).
A mapping is an embedding if distinct vertices are mapped to distinct points,
and the open segment of each edge does not intersect any other open segment
of an edge or a vertex.

In 1963, Tutte [40] gave a way to build embeddings of any planar, 3-connected
graph G = (V, E). Let C be a cycle whose vertices are the vertices of a face of
G in some (not necessarily straight-line) embedding of G. Let Γ be a mapping
of G into the plane, satisfying the conditions:

• the set Ve of the vertices of the cycle C is mapped to the vertices of a strictly
convex polygon Q, in such a way that the order of the points is respected;

• each vertex in Vi = V \ Ve is a barycenter with positive coefficients of its
adjacent vertices (Tutte assumed all coefficients to be equal to 1, but the
proof extends without changes to this case). In other words, the images v of
the vertices v under Γ are obtained by solving a linear system (S): for each
u ∈ Vi,

∑
v|uv∈E λuv(u − v) = 0, where the λuv are positive reals. It can be

shown that the system (S) admits a unique solution, see Appendix A.

Theorem 1 (Tutte’s Theorem) Γ is an embedding of G into the plane, with
strictly convex interior faces.

In his paper [40], in addition to showing Theorem 1, Tutte simultaneously
proves again Kuratowski’s planarity criterion [28] of 1930: a graph is planar
unless it contains a subdivision of one of the two Kuratowski graphs K5 and
K3,3. The proofs of both results are entangled together in Tutte’s paper; the
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consequence is that proving Theorem 1 by his method is long and involves quite
a lot of graph theory terminology. Later, short proofs of Kuratowski’s criterion
were given by Thomassen [38], making Tutte’s graph-theoretic viewpoint less
attractive for the proof of Theorem 1.

Other proofs of this theorem exist in the literature, using a more geometric
viewpoint. Becker and Hotz [1] use the notion of “quasi-planarity” as the limit
case of a planar situation, which yields complicated notations and tedious
case analyses; the structure of their paper is non-obvious and the proof is
really long. Y. Colin de Verdière [14] shows the result, only for triangulated
graphs, on arbitrary surfaces of non-positive curvature using the Gauss-Bonnet
formula. More recently, in 1996, Richter-Gebert [32, Section 12.2] has given a
simple and transparent proof of this theorem. 1

The history of graph embeddings began early. Fáry [19], Stein [37] and Wag-
ner [42] independantly showed that any planar graph admits a (straight-line)
embedding. Now, the literature on this subject is abundant; a survey on graph
drawing is [15]. See also the books by Ziegler [45] and Richter-Gebert [32] for
the important connection between graphs and polytopes by Steinitz’ theo-
rem (any 3-connected, planar graph can be realized as the 1-skeleton of a 3D
polytope).

Embeddings are not the only way to represent graphs; among others, an alter-
native approach is to represent the graph with a set of non-overlapping disks
in the plane, one for each vertex, so that two vertices are adjacent if and only
if the corresponding disks are tangent. This approach is called circle packing
[33,7].

Recent works also focus on finding embeddings of graphs so that the coor-
dinates of the vertices are integers with absolute value as small as possible;
there is a linear algorithm [12] to embed graphs with n + 2 vertices on the
(n × n)-grid with convex faces. Tutte’s method with unit coefficients is not a
valuable method for this purpose, since it can yield embeddings with expo-
nential area if all coordinates are integers [16]. Any 3-connected planar graph
with n + 1 faces can be embedded on the (n × n)-grid [20]. Other criteria are
also interesting, such as controlling the shapes of the faces and/or minimizing
the area of the embedding if a minimum distance between two vertices, or
between a vertex and a non-incident edge, is imposed [11]. Another topic of
interest is also to have an effective version of Steinitz’ theorem. This can be
done on the cubic grid of size 213n2

, where n is the number of vertices of the

1 We have independantly discovered in 2000 a proof of Tutte’s theorem, very
similar to Richter-Gebert’s proof, without being aware of its existence. This
proof is available in the electronic proceedings of the 13th Canadian Conference
on Computational Geometry at http://compgeo.math.uwaterloo.ca/~cccg01/

proceedings/long/colin-41348.ps.gz.
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graph [32, p. 143].

Tutte’s method is the cornerstone of Floater’s parameterization technique [21]
for surface parameterization in computer graphics, used in multiresolution
problems [17], texture mapping [29], and morphing [27,22,24].

1.2 Our work

1.2.1 Isotopies

Tutte’s theorem yields a method, described by Floater and Gotsman [22] and
Gotsman and Surazhsky [24], to morph two triangulations, the boundary being
the same convex polygon in both embeddings. One can compute coefficients
λuv > 0, for each interior vertex u and each neighbor v of u, so that u is the
barycenter with coefficients (λuv)v of its neighbors in the initial embedding.
Doing the same for the final embedding and interpolating linearly the coeffi-
cients yields an isotopy (a continuous family of embeddings) by Tutte’s theo-
rem. This method leaves some freedom for the computation of the barycentric
coefficients of the vertices in both embeddings. Hence, we study the following
natural question: is it possible to apply the same technique, with the addi-
tional restriction that the coefficients are symmetric (λuv = λvu)? The interest
is that this has a clear and appealing physical interpretation: fix the exterior
vertices and edges and replace each interior edge joining two vertices u and v

by a spring with rigidity λuv; then the equilibrium state of this physical system
is the solution of the system (S). The problem of computing such symmetric
coefficients is solved with Maxwell–Cremona’s theorem from rigidity theory.
The drawback of our method is that these coefficients are not always positive,
hence Tutte’s theorem does not apply in all cases. After small experiments
(with 20 vertices or so), we thought that our method always yielded an iso-
topy, even if some weights were negative. This is not the case, and we have
small examples refuting this conjecture. However, our method gives positive
coefficients if both embeddings are in the rather general class of regular trian-
gulations (recall that a regular subdivision is the projection of the lower faces
of a polytope generated by a family of points). This idea of replacing edges of
a graph by springs has been used in several other contexts: in mechanics [43],
for graph connectivity computation [30], in an algorithmic study of operations
on polyhedra [26]. Force-directed algorithms (see [15]) are an important class
of graph drawing methods that use springs (with, additionally, electric and/or
magnetic forces). In [23] is described a tool for the visualization of evolving
embeddings of graphs.
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1.2.2 Generalization to 3D space

The other main part of this paper is devoted to the study of the extension
of Tutte’s theorem to three dimensions. It presents an overview of the proof
that there exist two triangulations of a tetrahedron which are combinatorially
equivalent but for which there is yet no linear isotopy from one to the other, a
fact which is specific to spaces of dimension ≥ 3. This result has been stated by
Starbird in [34]; we give an outline of the proof and explain parts of the proof
not written in his paper and required to show this theorem. Then we show that
the natural generalization of Tutte’s barycentric embedding theorem is false
in 3D. The translation of Tutte’s hypotheses (in the triangulated case) from
2D to 3D is as follows: consider an embedding of a simplicial 3-complex K into
R

3, the boundary being a convex polyhedron. If a mapping of K into R
3, with

the same boundary, is so that each interior vertex is barycenter with positive
coefficients of its neighbors, then we would expect that it is an embedding. It
turns out that this fact is false. To our knowledge, this attempt of generalizing
Tutte’s theorem for 3D complexes is new, and our refutation of this extension
raises interesting open questions, in the context of isotopies as well as in view
of embedding 3-complexes.

2 Isotopies in the plane

Now, we detail the construction of the isotopy outlined in the introduction.
Let G = (V, E) be a 3-connected planar graph, and let Γ0 and Γ1 be two
embeddings of G into the plane. We look for an isotopy between Γ0 and Γ1,
restricting ourselves to the following situation: the boundary cycle C of the
exterior face of Γ0 is a convex polygon, it bounds also the exterior face of Γ1,
and the corresponding vertices of C are at the same location in Γ0 and Γ1.
During the isotopy, the vertices of C have to remain at the same position. In
addition, we will require the graph G to be triangulated. See Figure 1.

Fig. 1. An isotopy Γt (t ∈ [0, 1]) in our framework: here Γ0, Γ1/2 and Γ1 are depicted.

A natural idea arising to solve this problem is the following: try to deform
Γ0 into Γ1 by keeping the exterior vertices at the same place and moving the
interior vertices linearly. That is, Γt(v) = (1− t)Γ0(v) + tΓ1(v) for an interior
vertex v and t in [0, 1]. It turns out that this approach does not always yield
an isotopy, as Figure 2 demonstrates. Bing and Starbird [3], generalizing a
result by Cairns [9], showed the existence of an isotopy in the context de-
scribed above; if the cells are strictly convex, one can ensure that they remain
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Fig. 2. An example showing that the naive approach does not work. The figure
shows Γ0 (left) and Γ1 (right). The two inner squares are “twisted” to the left (resp.
right) under Γ0 (resp. Γ1), and the innermost square must rotate by an angle of π
in the whole motion. With the linear motion, the vertices of the inner square would
collapse at t = 1/2, as shown in the picture in the middle. Therefore, this motion
does not yield an isotopy.

strictly convex during the deformation [39]. A series of more mathematical pa-
pers study the topological space of embeddings of a given triangulation (with
boundary fixed), also called the set of homeomorphisms of a (2D) simplicial
complex K that are affine linear on each simplex of K and are the identity on
the boundary of K: in [4], it is proved that (if the outer boundary is convex)
it is homeomorphic to R

2k where k is the number of interior vertices. See also
the references in that paper for further reading on this topic.

However, these papers do not provide an algorithmic solution to this problem.
As explained in the introduction, Gotsman et al. [22,24] gave a method, based
on Tutte’s theorem, to solve this isotopy problem, representing a vertex as
barycenter of its neighbors. We will use the following definitions in order to
study the case where the barycentric coefficients are symmetric. Let Ei be the
set of (undirected) interior edges (the edges for which at least one incident
vertex is in Vi). A weight function on Γ, or stress, is a map ω : Ei → R;
hence ωuv = ωvu. ω is positive if ωuv > 0 for each interior edge uv. If ω and
the positions of each v ∈ Ve are fixed, the equilibrium state is defined by the
system: for each u ∈ Vi,

∑
v|uv∈E ωuv(u − v) = 0. In these conditions, ω is an

equilibrium stress for Γ.

Here is a summary of our approach: compute equilibrium stresses ω0 (resp. ω1)
of embeddings Γ0 (resp. Γ1); then, for t ∈ [0, 1], compute the equilibrium state
of ωt = (1 − t)ω0 + tω1. The difficulty resides in computing an equilibrium
stress for a given embedding Γ: our method relies on Maxwell–Cremona’s
correspondence, a theorem well-known in rigidity theory (see Hopcroft and
Kahn [26] for details on this theorem, and [25] for a general introduction to
rigidity theory). Think of Γ as being in the plane z = 0 of R

3. Take any lift
of Γ, by adding to each vertex v̄ = pv = (xv, yv, 0) of Γ a third coordinate,
leading to qv = (xv, yv, zv). Consider the polyhedral terrain whose vertices are
the qi’s and which has the same incidence structure as Γ (Figure 3). Now, let
ij be an interior edge of Γ; let l and r be the left and right neighbor of the
(oriented) edge ij (Figure 4) and ϕL

ij (resp. ϕR
ij) the affine form which takes

the value zi, zj, zl (resp. zr) at points pi, pj, pl (resp. pr). We will define an
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Fig. 3. A lift of an embedding.PSfrag replacements

pi
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pl

pr

Fig. 4. The notations for the computation of ωij.

equilibrium stress for Γ determined by this lift.

If a0, . . . , ak are k + 1 points of R
k, written as column vectors, we introduce

the multi-affine bracket operator [a0, . . . , ak], defined by

[a0, . . . , ak] =
a0 a1 . . . ak

1 1 . . . 1

(this quantity being proportional to the signed volume of the convex hull of
the ai’s).

Lemma 2 For each interior edge ij and any p ∈ R
2,

ϕL
ij(p) − ϕR

ij(p) =
[pi, pj, p]

[pi, pj, pl]
(ϕL

ij(pl) − ϕR
ij(pl)).

Proof. It is a consequence of Cramer’s formula. Let ϕ be an affine form on R
k

and a0, . . . , ak be k + 1 affinely independent points, a ∈ R
k. Let α0, . . . , αk be

the barycentric coordinates of a with respect to the ai’s, that is, by definition:

α0a0 + . . . + αkak = a

α0 + . . . + αk = 1.

Cramer’s formula now implies:

αi =
[a0, . . . , ai−1, a, ai+1, . . . , ak]

[a0, . . . , ak]
.
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So (if k = 2, and because ϕ is an affine form):

ϕ(a) =
[a, a1, a2]

[a0, a1, a2]
ϕ(a0) +

[a0, a, a2]

[a0, a1, a2]
ϕ(a1) +

[a0, a1, a]

[a0, a1, a2]
ϕ(a2).

It is now easy to conclude. 2

Define, for any interior edge ij and for a point p not on the line (pipj):

ωij =
ϕL

ij(p) − ϕR
ij(p)

[pi, pj, p]
.

This definition does not depend on the point p, by Lemma 2. Furthermore,
ωij = ωji. In practice, there is an intrinsic formula (recall that the qi’s are the
lifts of the points pi’s, which are the images of the vertices under Γ):

Lemma 3 ωij =
[qi, qj, ql, qr]

[pi, pj, pl][pi, pj, pr]
.

Proof. By definition of ωij:

ωij[pi, pj, pl][pi, pj, pr] = (zl − ϕR
ij(pl))[pi, pj, pr]. (1)

By Cramer’s formula, as in the proof of Lemma 2:

ϕR
ij(pl)[pi, pj, pr] = zi[pl, pj, pr] + zj[pi, pl, pr] + zr[pi, pj, pl].

Thus the left member of Equation (1) equals

zl[pi, pj, pr] − zi[pl, pj, pr] − zj[pi, pl, pr] − zr[pi, pj, pl],

which equals [qi, qj, ql, qr] (by developping this determinant with respect to the
third line). 2

Theorem 4 ω is an equilibrium stress for Γ.

Proof. For any point p in the plane, i ∈ Vi, we have:

∑

j|ij∈E

ωij[pi, pj, p] =
∑

j|ij∈E

(ϕL
ij(p) − ϕR

ij(p)) = 0,
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because the affine form ϕ corresponding to a face incident to pi appears twice
in this sum, once counted positively, once negatively. As [pi, pj, p] = det(pj −
pi, p − pi), this implies

det(
∑

j|ij∈E

ωij(pi − pj), p − pi) = 0,

for each point p in R
2. Therefore

∑

j|ij∈E

ωij(pi − pj) = 0.

2

Thus, each lift of the embedding Γ determines an equilibrium stress on Γ.
Conversely, it is possible to show that an equilibrium stress determines a
unique lift of Γ, up to the choice of an affine form of R

2 (Maxwell’s theorem,
shown for example in [26] in a slightly different context).

If we have positive equilibrium stresses ω0 and ω1 of Γ0 and Γ1 respectively,
we have a method to compute an isotopy between Γ0 and Γ1: by Tutte’s
theorem, because ωt = (1−t)ω0 +tω1 is a positive stress for each t ∈ [0, 1], the
corresponding mapping Γt is an embedding, and (Γt)t∈[0,1] is clearly continuous
(the map which associates to each invertible matrix its inverse, is continuous),
hence an isotopy. Furthermore, it is easy to characterize the set of embeddings
which admit a positive equilibrium stress: an edge ij has a positive weight if
and only if the line qiqj (with the notations above) is under the line qlqr. Recall
that a regular triangulation is a triangulation which is the projection of the
lower faces of a polytope generated by a family of points, see [45]. Hence an
embedding has a positive stress if and only if it is a regular triangulation.
Therefore, we have:

Theorem 5 If Γ0 and Γ1 are regular triangulations, then we can compute an
isotopy between Γ0 and Γ1.

Testing whether Γ is a regular subdivision, and, if so, computing a positive
lift, can be done easily using linear programming; indeed, we have a convex
lift for Γ if and only if, for each interior edge ij and with the notations above,
[qi, qj, ql, qr] < 0, which is a linear inequality in the zk’s. Not all triangulations
are regular subdivisions, as shown in Figure 5 (see [45, p. 132]), but a large class
of embeddings are regular subdivisions, including Delaunay triangulations for
example (because the Delaunay triangulation of a set of points is the projection
of the edges of the convex hull of the points lifted on the standard paraboloid,
see [5, p. 437] or [18, p. 303]); this remark might be useful because of the wide
use of these triangulations in computational geometry.
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Fig. 5. An embedding which is not a regular subdivision. Indeed, assuming it is
possible to lift it to a lower convex hull, we can suppose, by adding a suitable affine
form to all the zi’s, that z4 = z5 = z6 = 0. If this graph were a regular subdivision,
we would have z1 > z2 > z3 > z1, which is impossible.

Remark. We only studied triangulated graphs in this section because it
is probably easier to deal with them than with general planar 3-connected
graphs. However, the same theory applies if the graph is only 3-connected.
The definition of a lift must be adapted: all the vertices belonging to the same
face must be lifted on a common plane in 3D space (it also corresponds to tri-
angulating the graph and putting a weight equal to zero on these new edges);
testing whether we have a regular subdivision is also a linear programming
problem.

In practice, we tried to build an isotopy between a random triangulated em-
bedding and the “canonical” embedding of the same graph (that is, the em-
bedding obtained by Tutte’s method when all weights equal 1). We lift Γ0 to
the standard paraboloid z = x2 + y2, compute the equilibrium stress ω0, and
use linear interpolation between ω0 and the unit weights ω1. Although the ini-
tial stress is not necessarily positive, it turns out that, in many (not too big)
cases, this method yields an isotopy; long experiments have been necessary
to find a small counterexample like Figure 6. See Appendix B for numerical
coordinates. Our smallest counterexample uses 4 outer vertices and 2 inner
vertices, but the failure is very hard to see on the screen and can only be
proved by computation. Lifting on the paraboloid may give an isotopy even if
the considered triangulation is non-regular, like in Figure 2, but can also fail
with regular triangulations (the initial and final triangulations in Figure 6 are
regular). This method has been programmed in C++ using Numerical Recipes
and the LEDA library, and also in Mathematica for exact computations.

Several other approaches could be done in the same spirit to try to find a
method which would work for a larger class of embeddings than the regular
subdivisions. One could attempt to study the space of stresses which yield
an embedding (thus an isotopy corresponds to a path in this space). If we
restrict ourselves to the linear interpolation between the weights, an important
question is: are there two embeddings Γ0 and Γ1 so that, for any lifts of Γ0

and Γ1, the interpolation ωt = (1 − t)ω0 + tω1 of the corresponding weights
does not yield an isotopy? If it is not the case, how to compute the lifts?

We have seen that using linear interpolation from the weights of a lift on the
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Fig. 6. An example of non-planarity with the linear interpolation between the
weights of a lift on the standard paraboloid, and unit weights.

standard paraboloid to unit weights does not always yield an isotopy. Never-
theless, we have the following conjecture (checked during all our experiments):
during this interpolation, the matrix involved in the computation of the posi-
tions of the points is symmetric positive definite.

If it is the case, it has the following interesting consequence. If ω is a stress
on G, let us denote by Mω the matrix involved in the inversion of System (S).
It can be shown (see the proofs of Lemma 9) that Mω is symmetric positive
definite if ω is positive; moreover, ω 7→ Mω is linear. If Mω0 and Mω1 are sym-
metric positive definite, so is M(1−t)ω0+tω1 = (1−t)Mω0 +tMω1 , and uniqueness
of the positions of the vertices is guaranteed during the motion (which may
fail to be an isotopy). Similarly, if Mω0 is symmetric positive definite and ω1 is
a positive stress, since multiplying ω1 by a positive number does not affect the
equilibrium state, we can assume ω1 ≥ ω0 (this notation simply means that for
each interior edge ij, ω1

ij ≥ ω0
ij). Each nondecreasing family ωt of stresses from

ω0 to ω1 yields a family Mωt of symmetric positive definite matrices; indeed,
Mωt = Mω0 + Mωt−ω0 ; the first matrix of the right term is symmetric positive
definite, the second one is positive because the corresponding stress is non-
negative on each interior edge. Thus, if this conjecture is true, the positions
of the vertices are uniquely determined for many choices of the interpolation
between the weights.

3 Generalization to 3D space

We explain here why the analogue of Tutte’s theorem is false in 3D space,
thus making it difficult to build isotopies in 3D. Here, it is convenient to use
combinatorial simplicial complexes (all simplicial complexes considered here
are combinatorial, not geometric; see for example [41]).

11



We introduce some other definitions, generalizing those in 2D. A mapping
f from a simplicial complex C into R

d is a map from all the simplexes of
C into P(Rd) satisfying: if {v1, . . . , vp} is a simplex of C, f({v1, . . . , vp}) =
Conv{f(v1), . . . , f(vp)}. An embedding of C into R

d is a mapping so that, for
any two simplexes σ, τ ∈ C, f(σ ∩ τ) = f(σ) ∩ f(τ). As usual, an isotopy
(h(t)) (t ∈ [0, 1]) of C into R

d is a continuous family of embeddings of C into
R

d. Finally, the image of a simplicial complex C by a mapping f is the union
of the sets f(τ), over all simplexes τ of C.

In this section, we will often manipulate complexes whose embeddings have
to be fixed on the “boundary” of these complexes. A 3-complex with tetrahe-
dral boundary (C, B, b) is a simplicial 3-complex C with a subcomplex B ⊂ C

so that B is simplicially equivalent to the boundary of a 3-simplex, together
with an embedding b of B into R

3. An embedding f of (C, B, b) into R
3 is an

embedding of C so that f |B = b and the image of f is exactly the tetrahe-
dron bounded by the image of b. An isotopy of a 3-complex with tetrahedral
boundary is a continuous family of embeddings.

The goal of this section is to show:

Theorem 6 There exist a complex with tetrahedral boundary (C, B, b), and
two mappings f and j of (C, B, b) into R

3, such that:

(1) f is an embedding,
(2) j|B = f |B,
(3) each vertex in C \ B is, under j, barycenter with positive coefficients of

its neighbors,
(4) but j is not an embedding.

This theorem is a counterexample to the analogue of Tutte’s theorem in three
dimensions: the first condition is the analogue of planarity, the second con-
dition fixes the images of the exterior vertices by j and the third one is the
condition for the interior vertices.

The cornerstone for the proof of Theorem 6 is the description by Starbird [34]
of a graph C1, embedded into R

3 in two different ways f1 and g1, so that it is
impossible to deform one embedding to the other without bending the edges.
Yet, if bending the edges is allowed, such a deformation becomes possible.
These embeddings are depicted in Figure 7, copied from his paper. We found
coordinates for the vertices of these embeddings, available in Appendix C. In
the lemma below, we rephrase the properties stated by Starbird.

Lemma 7 (1) There are a 3-complex with tetrahedral boundary (C, B, b), so
that C contains C1, and two embeddings f and g of (C, B, b) extending
respectively f1 and g1.

(2) If C, f and g satisfy the preceding condition, there is no isotopy of

12



Fig. 7. Starbird’s embeddings f1 and g1 of C1.

(C, B, b) taking f to g.

The first part of Lemma 7 expresses the fact that f and g are combinatorially
equivalent triangulations (tetrahedralizations for purists) of a tetrahedron,
with the same boundary. Despite this, as stated in the second part, there is
no isotopy from f to g. It is to be noted that the analogue of this lemma is
false in 2D by Tutte’s theorem.

The proof of the second part of this lemma is given in detail in Starbird’s
paper, we shall not explain the argument here. Shortly said, the author uses
properties of piecewise linear curves embedded in 3D space to show that the
embeddings f1 and g1 cannot be deformed from one to the other while keeping
the edges of C1 straight, for otherwise at some stage of the isotopy there would
be a degeneracy which would prevent to have an embedding. Then, because
f (resp. g) extends f1 (resp. g1), there cannot be any isotopy between those
embeddings as well.

We will give a detailed summary of the proof of the first part of Lemma 7,
because it is stated in Starbird’s paper but not all details of the proof are
supplied. The key ingredient for the proof is the following “fundamental ex-
tension lemma” enabling to extend an isotopy of a complex to an isotopy of a
complex with tetrahedral boundary containing this complex. It is proved in [3,
Theorem 3.3]; we rephrase it here for convenience in our framework (it holds
in fact in arbitrary dimension):

Lemma 8 Let C be a simplicial 3-complex and (h(t)) be an isotopy of C into
R

3. Then there are a 3-complex with tetrahedral boundary (C̃, B̃, b̃) so that C̃

contains C and an isotopy (h̃(t)) of (C̃, B̃, b̃) into R
3 extending (h(t)).

We shall not give the proof here. The two key ingredients are that slightly
perturbing an embedding still yields an embedding, and the use of refinements
of triangulations in R

3.

Proof of Lemma 7, first part. We first express the fact that it is possible

13



PSfrag replacements

v

v0

v1

v2

v3

a0

a1

a2

a3

b0

b1

b2

b3

c0

c1

c2

c3

Fig. 8. How an edge vw of C1 (in bold) is protected by a skinny flexible tube. The
vertices v0, . . . , vn are spread uniformly on the edge of C1 which is considered, to
make the edge flexible during the isotopy. An equilateral triangle aibici is drawn
around vi, and the vertices of these triangles are linked as shown in the figure. Note
the special treatment at the end of the edge (vertex v). The space between the
triangles aibici is also triangulated (not all edges are shown in the figure). Thus, a
3-dimensional simplicial complex protects each edge of C1.

to deform f(C1) to g(C1) if bending the edges is allowed: there is a refinement
C2 of C1 (by adding vertices on the edges of C1) and an isotopy (h(t)) of C2

into R
3 taking f2 to g2. Here, f2 is to be understood in the following manner

(and similarly for g2): if v is a vertex in C1, then f2(v) = f1(v); and if an
edge e = vw of C1 is subdivided with vertices v0, . . . , vn inserted on e, then
f2(v0), . . . , f2(vn) are spread uniformly on f1(v)f1(w). It is easy to see that
this fact is true, as written in the paper, if you build a model of f2(C2) with
strings (or small bars) and deform it to g2(C2).

No argument apart from the fact that such a deformation is possible is given
in Starbird’s paper to complete the proof. We thus suggest the following: In
fact, we extend a bit more C2 by protecting each edge of C1 (split in C2) by a
3-complex looking like a skinny tube (Figure 8). Define f2 and g2 naturally on
these tubular protections; the images of f2 and g2 are just thickened versions
of the images of f1 and g1. By Lemma 8, extend C2 to a 3-complex with
tetrahedral boundary (C3, B3, b3), extending the isotopy (h(t)) to an isotopy
(h̃(t)) of (C3, B3, b3). Now, considering h̃(0) and h̃(1), the complex (C3, B3, b3)
nearly satisfies the conditions required in the first part of Lemma 7, except that
C3 does not contain exactly C1 because the edges of C1 have been subdivided.

Thus, in f3 and g3, the only thing we have to do is to retriangulate compatibly
the tubular protections of each (split) edge vw of C1, removing the vertices
v0, . . . , vn splitting this edge and restoring the initial edge vw. Since the tubu-
lar protections of vw look alike under f3 and g3 (the vi’s are on a line, and
similarly for the ai’s, bi’s and ci’s), this retriangulation is easy: the compati-
bility will be automatically satisfied. See [2, p. 4–6] for similar retriangulation
problems: first retriangulate the 2D region which is the convex hull of v, w,
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and the ai’s by removing the vi’s and linking each of the ai’s to v. Do the same
with the bi’s and the ci’s. Now, we have to retriangulate three thirds of the
tubular protection of edge vw. To retriangulate the region which is the convex
hull of v, w, the ai’s and the bi’s, simply insert a new vertex p in the interior
of this region; since its boundary is still triangulated, it is sufficient to insert
in the complex the simplexes which are on the boundary of this region with p

adjoined (“coning” the boundary of this region from p). Do the same for the
other thirds. The resulting complex (C, B, b) and embeddings f and g satisfy
the hypotheses. 2

Proof of Theorem 6. First notice that, under f and g, all interior vertices
are barycenter with positive coefficients of their adjacent vertices. For other-
wise a vertex i would be on a face of the polytope generated by the neighbors
of i, hence i would have no neighbor on a half-space whose boundary passes
through the image of i; this contradicts the fact that i is a vertex interior to
the triangulation. Let i be an interior vertex, and let λ

f
ij (resp. λ

g
ij) be the

barycentric coefficients of i with respect to its neighbors j in the embedding
f (resp. g). Note that the coefficients may be non-symmetric: we follow the
approach of [22] to ensure we have positive coefficients. Then, for t ∈ [0, 1],
consider λt

ij = (1 − t)λf
ij + tλ

g
ij > 0. Fix the positions pi of the vertices i ∈ B,

and look for the positions of the other vertices i satisfying the equations:∑
j|ij∈E λt

ij(pj − pi) = 0, where E is the set of edges of C. This system ad-
mits a unique solution for each t ∈ [0, 1] (exactly the same proof holds as in
Appendix A). Let us call the resulting family of mappings (h̄(t)). By Lemma
7, second part, (h̄(t)) cannot be an isotopy: there is a t0 ∈ [0, 1] such that
h̄(t0) = j is not an embedding. (C, B, b), f , and j satisfy the conditions of
Theorem 6. 2

This theorem is a counterexample to the generalization of Tutte’s theorem
in 3D, described in introduction. In fact, the result is slightly stronger: j is
not an embedding, but even the restriction of j to the 1-skeleton of C is
not an embedding (two edges must cross). This also implies that constructing
isotopies of complexes in 3D is much more difficult than in 2D. Starbird [35,36]
showed the following theorem which might be a clue to find a solution: if there
are two embeddings f and g of a complex K with tetrahedral boundary into R

3

(or more generally if the boundary is a convex polyhedron), then there might
be no isotopy from f to g, but there is always a suitable refinement K ′ of the
complex K for which there is an isotopy between f and g. The problem is now
to realize algorithmically the refinement and the isotopy; unfortunately, it is
unclear how to proceed. Another track would be to try to find more restrictive
conditions under which a barycentric method would work; for example, if
some subcomplexes are forbidden, or if the complex is sufficiently refined,
does Tutte’s barycentric method always yield an embedding?
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4 Note added in proof

Recently, other counter-examples for the analogue of Tutte’s theorem in 3D
were found by Ó Dúnlaing (Proc. Europ. Workshop. Comput. Geom 2002 75–
79) and Floater and Pham-Trong (Internat. Conf. Curves and Surfaces 2002).
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A Invertibility of System (S)

Lemma 9 If the coefficients λij are positive, System (S) admits a unique
solution.

Before showing this lemma, we must explicitely compute the entries of the
matrix involved in System (S). For convenience, note v1, . . . , vm the interior
vertices and vm+1, . . . , vn the exterior ones. The matrix involved in System
(S) is square, of size m, and defined, if 1 ≤ i, j ≤ m and with the convention
λij = 0 if ij is not an edge, by:

mij = −λij, if i 6= j;

mii =
n∑

k=1

λik.

Several proofs of this lemma exist in the literature. We first give the most
straightforward proof in the general case. It uses the well-known “diagonal
dominant property” of matrices and can be found in [21, p. 237].

Proof. We show that the kernel of M is {0}. If M · y = 0 for a column
vector y with m entries, then: for each i ∈ {1, . . . , m},

∑n
j=1 λij(yi − yj) = 0,

where yj = 0 if j > m by definition. Consider an index i such that |yi| is
maximal. As λ is positive, the preceding equation yields yj = yi for every j

neighbor of i. Because G is connected, and because yj = 0 if j > m, we get
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yi = 0. Therefore, M is invertible. (In fact, the same argument shows that M

is symmetric definite positive, for it cannot have a nonpositive eigenvalue.) 2

We now prove Lemma 9 in the special case where the coefficients are symmet-
ric, using the physical interpretation with the springs. Ei denotes the set of
interior edges.

Proof. The energy of the system made of the springs is defined by E =
1
2

∑
ij∈Ei

λij|pj − pi|
2. Consider that the positions of the exterior vertices are

fixed; E(p1, . . . , pm) is a polynomial function of degree two. If at least one
interior vertex pi goes to infinity, E tends to +∞ by connectivity of G and
positivity of the coefficients. Thus, the homogeneous polynomial of degree two
in the coordinates p1, . . . , pm of E is a quadratic form which is symmetric def-
inite positive. But the matrix of this quadratic form is exactly the matrix M ,
as it can be checked easily using the fact that the coefficients are symmetric.
Thus M is symmetric definite positive and (S) admits a unique solution. 2

Finally, we indicate that Lemma 9 is a consequence of the matrix tree theorem
(see Brualdi and Ryser [8, p. 324], Chaiken [10], Orlin [31] or Zeilberger [44]),
a theorem interpreting combinatorially the determinant of certain matrices in
terms of arborescences of graphs.

Proof. Let (nij)1≤i6=j≤m+1 be real numbers. Consider the complete directed
graph (without loops) Ḡ with m + 1 vertices, each edge (ij) having, by defi-
nition, weight nij. Let P be the square matrix of size m + 1 defined by:

pij = −nij, if i 6= j;

pii =
m+1∑

k=1

nik.

The matrix P is called the Laplacian matrix of Ḡ. A spanning arborescence
of Ḡ rooted at i is a subgraph of Ḡ covering all vertices of Ḡ so that it has no
directed cycle and all vertices j 6= i have, in Ḡ, outdegree equal to one. The
matrix tree theorem asserts that the cofactor of the ith diagonal element of
matrix P is exactly the sum, over all spanning arborescences of Ḡ rooted at
i, of the product of the weights of the edges of this arborescence.

Apply this theorem to our particular case: let nij = λij if 1 ≤ i 6= j ≤ m;
if i ≤ m, let ni,m+1 =

∑n
k=m+1 λik and nm+1,i = 0. The (m + 1)th cofactor

of P is exactly the determinant of the matrix M and also equals the sum,
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over all spanning arborescences of Ḡ rooted at vertex m+1, of the product of
the weights of the edges of this arborescence. There is at least one spanning
arborescence yielding a nonzero contribution to this sum: to see this, take a
spanning tree of the graph induced by the inner vertices of G, and add one
directed edge from a vertex in G which, in G, is linked to an exterior vertex, to
vertex m+1. Since the weights of the edges are nonnegative, the contribution
of any spanning arborescence is nonnegative, hence the cofactor is positive
and M is invertible. 2

B Counter-examples

We present here the data sets of embeddings which present a failure of the
method presented in Section 2 (by lifting the embedding on the standard
paraboloid to compute the initial weights, and then using linear interpolation
between these weights and the unit weights).

The data format is as follows: each line corresponds to a vertex of the embed-
ding, and contains, in this order, the vertex number, its x- and y-coordinates,
and the list of its neighbors.

B.1 The smallest counter-example found

In this counter-example, the situation is close to a degeneracy, but one can
check by numerical computation that this mapping is indeed an embedding,
and that this does not yield an isotopy. It is made of four exterior vertices and
two interior vertices.

1 -500 900 2 5 6 4

2 -850 900 1 3 5

3 -950 -900 4 6 5 2

4 0 -400 1 6 3

5 -900 -699 6 1 2 3

6 -800 -300 1 5 3 4

B.2 Counter-example presented in Figure 6

1 -681.67 314.31 5 2 8 6

2 -938.19 -391.67 7 8 1 3

3 419.75 -833.89 4 8 7 2

4 841.39 52.42 5 6 8 3
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5 712.91 332.73 1 6 4

6 733.43 99.34 5 1 8 4

7 128.62 38.94 8 2 3

8 277.47 156.82 1 2 7 3 4 6

C Coordinates for Starbird’s embeddings

We present here two data sets in OOGL format (to be viewed for example
with Geomview 2 ), which are Starbird’s embeddings presented in Figure 7.
The format of the main part of each data set is as follows: each line denotes a
vertex, with its x-, y- and z-coordinates. Each pair of lines denotes an edge.

2 http://www.geomview.org
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First embedding:

VECT

17 34 17

2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1

####################

# Center part

0 -20 0 # 7

-4 20 0 # 5

-4 20 0 # 5

4 20 0 # 6

4 20 0 # 6

0 -20 0 # 7

# Upper part

4 20 0 # 6

-6 0 16 # ’4

-6 0 16 # ’4

-16 -6 14 # ’3

-16 -6 14 # ’3

2 6 8 # ’2

2 6 8 # ’2

-10 6 20 # ’1

-10 6 20 # ’1

0 -20 0 # 7

-10 6 20 # ’1

0 -12 0 # 8

-4 20 0 # 5

-6 0 16 # ’4

# Lower part (symm.

# in Z of upper part)

4 20 0 # 6

-6 0 -16 # 4

-6 0 -16 # 4

-16 -6 -14 # 3

-16 -6 -14 # 3

2 6 -8 # 2

2 6 -8 # 2

-10 6 -20 # 1

-10 6 -20 # 1

0 -20 0 # 7

-10 6 -20# 1

0 -12 0 # 8

-4 20 0 # 5

-6 0 -16 # 4

####################

1 0 0 1

1 0 0 1

1 0 0 1

1 0 0 1

1 0 0 1

1 0 0 1

1 0 0 1

1 0 0 1

1 0 0 1

1 0 0 1

1 0 0 1

1 0 0 1

1 0 0 1

1 0 0 1

1 0 0 1

1 0 0 1

1 0 0 1
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Second embedding:

VECT

17 34 17

2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1

####################

# Center part

0 -20 0 # 7

-4 20 0 # 5

-4 20 0 # 5

4 20 0 # 6

4 20 0 # 6

0 -20 0 # 7

# Upper part

4 20 0 # 6

-6 0 24 # ’4

-6 0 24 # ’4

-16 -6 21 # ’3

-16 -6 21 # ’3

2 6 12 # ’2

2 6 12 # ’2

-10 6 30 # ’1

-10 6 30 # ’1

0 -20 0 # 7

-10 6 30 # ’1

0 -12 0 # 8

-4 20 0 # 5

-6 0 24 # ’4

# Lower part (symm.

# in X, shrink in Z

# of upper part)

-4 20 0 # 6

6 0 8 # 4

6 0 8 # 4

16 -6 7 # 3

16 -6 7 # 3

-2 6 4 # 2

-2 6 4 # 2

10 6 10 # 1

10 6 10 # 1

0 -20 0 # 7

10 6 10 # 1

0 -12 0 # 8

4 20 0 # 5

6 0 8 # 4

####################

1 0 0 1

1 0 0 1

1 0 0 1

1 0 0 1

1 0 0 1

1 0 0 1

1 0 0 1

1 0 0 1

1 0 0 1

1 0 0 1

1 0 0 1

1 0 0 1

1 0 0 1

1 0 0 1

1 0 0 1

1 0 0 1

1 0 0 1
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métamorphose. D.E.A., École normale supérieure (Paris), 2000. http://www.

di.ens.fr/~colin/textes/dea.ps.gz.

[14] Y. Colin de Verdière. Comment rendre géodésique une triangulation d’une
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